Prova del 09/02/2018

Traccia A

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica, la media geometrica e la media quadratica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	In(X)	In(X)*f	χ^2	X ² *f
2	20	40	10,00	0,6931	13,8629	4	80
7	40	280	5,71	1,9459	77,836406	49	1960
8	25	200	3,13	2,0794	51,9860385	64	1600
10	15	150	1,50	2,3026	34,5388	100	1500
	100	670	20,34	7,0211	178,2242		5140

a) Calcolo della media aritmetica, armonica e geometrica:

b) Calcolo della mediana e della moda:

$$moda = 7$$

$$V(X) = M(X^2) - m(X)^2 = 5140/100 - 6,7^2 = 6,5100$$

		NO
	DIABETE	DIABETE
OBESO	40	20
NON OBESO	10	55

Calcolo i subtotali:

		NO	
	DIABETE	DIABETE	
OBESO	40	20	60
NON OBESO	10	55	65
	50	75	125

Utilizzando i subtotali si ricavano le frequenze teoriche f*:

		NO	
	DIABETE	DIABETE	
OBESO	24	36	60
NON OBESO	26	39	65
	50	75	125

Calcolo il Chi-Quadrato:

f	f*	(f-f*) ² /f*
40	24	10,6667
20	36	7
10	26	10
55	39	6,5641
125	125	34.1880

Il Chi Quadrato calcolato risulta quindi pari a:

ChiQc = **34,1880**

Si individua sulle tavole del Chi Quadrato il valore teorico da confrontare:

$$ni=(r-1)*(c-1)=1$$
 gdl alpha = 1%

ChiQt = **6,64**

Poiché ChiQc > ChiQt si rifiuta l'ipotesi di indipendenza fra le due distribuzioni e si conferma la connessione fra i fenomeni.

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

```
p = 0.5
n = 4
```

La distribuzione di probabilità quindi è la seguente:

X	P(X)
0	0,0625
1	0,2500
2	0,3750
3	0,2500
4	0,0625
	1

Media = np = 2Varianza = npq = 1

ESERCIZIO 4 - LAB

```
# CREO IL VETTORE DELLE X:
k=c(0:4)

# CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 4, 0.5)

# DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITA':
barplot(dbinom(k,4,0.5), names.arg=k, xlab="X", ylab="P(X)")
```

ESERCIZIO 5 - LAB

length(country.gdp)

CALCOLO MEDIA, MEDIANA, PRIMO E TERZO QUARTILE, MINIMO E MASSIMO: summary(country.gdp)

CALCOLO IL NUMERO DI ELEMENTI DEL DATABASE:

CREO IL GRAFICO BOXPLOT: boxplot(country.gdp)

Prova del 09/02/2018

Traccia B

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica, la media geometrica e la media quadratica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	In(X)	In(X)*f	χ^2	X ² *f
2	60	120	30,00	0,6931	41,5888	4	240
3	40	120	13,33	1,0986	43,9444915	9	360
10	50	500	5,00	2,3026	115,129255	100	5000
11	30	330	2,73	2,3979	71,9369	121	3630
	180	1070	51,06	6,4922	272,5994		9230

a) Calcolo della media aritmetica, armonica e geometrica:

b) Calcolo della mediana e della moda:

moda = 2

$$V(X) = M(X^2) - m(X)^2 = 9230/180 - 5,9444^2 = 15,9414$$

		NO
	TUMORE	TUMORE
FUMATORE	50	10
NON FUMATORE	10	80

Calcolo i subtotali:

		NO	
	TUMORE	TUMORE	
FUMATORE	50	10	60
NON FUMATORE	10	80	90
_	60	90	150

Utilizzando i subtotali si ricavano le frequenze teoriche f*:

		NO	
	TUMORE	TUMORE	
FUMATORE	24	36	60
NON FUMATORE	36	54	90
	60	90	150

Calcolo il Chi-Quadrato:

f	f*	(f-f*) ² /f*
50	24	28,1667
10	36	19
10	36	19
80	54	12,5185
150	150	78.2407

Il Chi Quadrato calcolato risulta quindi pari a:

ChiQc = **78,2407**

Si individua sulle tavole del Chi Quadrato il valore teorico da confrontare:

$$ni=(r-1)^*(c-1)=1$$
 gdl alpha = 5%

ChiQt = **3,84**

Poiché ChiQc > ChiQt si rifiuta l'ipotesi di indipendenza fra le due distribuzioni e si conferma la connessione fra i fenomeni.

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

$$p = 0.25$$

 $n = 4$

La distribuzione di probabilità quindi è la seguente:

X	P(X)
0	0,3164
1	0,4219
2	0,2109
3	0,0469
4	0,0039
	1

Media = np = 1Varianza = npq = 0.75

ESERCIZIO 4 - LAB

```
# CREO IL VETTORE DELLE X: k=c(0:4)
```

CALCOLO I VALORI DELLA VARIABILE BINOMIALE: dbinom(k, 4, 0.25)

DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITA': barplot(dbinom(k,4,0.25), names.arg=k, xlab="X", ylab="P(X)")

ESERCIZIO 5 - LAB

CALCOLO MEDIA, MEDIANA, PRIMO E TERZO QUARTILE, MINIMO E MASSIMO: summary(rates.currency)

CALCOLO IL NUMERO DI ELEMENTI DEL DATABASE: length(rates.currency)

CREO IL GRAFICO BOXPLOT: boxplot(rates.currency)

Prova del 09/02/2018

Traccia C

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica, la media geometrica e la media quadratica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	In(X)	In(X)*f	χ^2	X ² *f
1	30	30	30,00	0,0000	0,0000	1	30
5	50	250	10,00	1,6094	80,4718956	25	1250
6	20	120	3,33	1,7918	35,8351894	36	720
9	20	180	2,22	2,1972	43,9445	81	1620
	120	580	45,56	5,5984	160,2516		3620

a) Calcolo della media aritmetica, armonica e geometrica:

b) Calcolo della mediana e della moda:

$$X60^{\circ} = < mediana = < X61^{\circ} : me = 5$$

moda = 5

$$V(X) = M(X^2) - m(X)^2 = 3620/120 - 4,8333^2 = 6,8056$$

		NO
	ALZHEIMER	ALZHEIMER
SPORT	15	70
NO SPORT	50	35

Calcolo i subtotali:

		NO	
	ALZHEIMER	ALZHEIMER	
SPORT	15	70	85
NO SPORT	50	35	85
	65	105	170

Utilizzando i subtotali si ricavano le frequenze teoriche f*:

		NO	
	ALZHEIMER	ALZHEIMER	
SPORT	32,5	52,5	85
NO SPORT	32,5	52,5	85
	65	105	170

Calcolo il Chi-Quadrato:

f	f*	(f-f*) ² /f*
15	32,5	9,4231
70	52,5	6
50	32,5	9
35	52,5	5,8333
170	170	30.5128

Il Chi Quadrato calcolato risulta quindi pari a:

ChiQc = **30,5128**

Si individua sulle tavole del Chi Quadrato il valore teorico da confrontare:

$$ni=(r-1)^*(c-1)=1$$
 gdl alpha = 1%

ChiQt = **6,64**

Poiché ChiQc > ChiQt si rifiuta l'ipotesi di indipendenza fra le due distribuzioni e si conferma la connessione fra i fenomeni.

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

```
p = 0,67
n = 4
```

La distribuzione di probabilità quindi è la seguente:

X	P(X)
0	0,0119
1	0,0963
2	0,2933
3	0,3970
4	0,2015
	1

Media = np = 2,68Varianza = npq = 0,8844

ESERCIZIO 4 - LAB

```
# CREO IL VETTORE DELLE X: k=c(0:4)
```

CALCOLO I VALORI DELLA VARIABILE BINOMIALE: dbinom(k, 4, 0.67)

DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITA': barplot(dbinom(k,4,0.67), names.arg=k, xlab="X", ylab="P(X)")

ESERCIZIO 5 - LAB

CALCOLO MEDIA, MEDIANA, PRIMO E TERZO QUARTILE, MINIMO E MASSIMO: summary(bank.loans)

CALCOLO IL NUMERO DI ELEMENTI DEL DATABASE: length(bank.loans)

CREO IL GRAFICO BOXPLOT: boxplot(bank.loans)

Prova del 09/02/2018

Traccia D

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica, la media geometrica e la media quadratica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	In(X)	In(X)*f	χ^2	X ² *f
3	5	15	1,67	1,0986	5,4931	9	45
5	10	50	2,00	1,6094	16,0943791	25	250
8	15	120	1,88	2,0794	31,1916231	64	960
9	20	180	2,22	2,1972	43,9445	81	1620
	50	365	7.76	6.9847	96.7236		2875

a) Calcolo della media aritmetica, armonica e geometrica:

b) Calcolo della mediana e della moda:

moda = 9

$$V(X) = M(X^2) - m(X)^2 = 2875/50 - 7,3^2 =$$
4,2100

		NO
	AUTISMO	AUTISMO
VACCINO	5	90
NO VACCINO	5	25

Calcolo i subtotali:

		NO	
	AUTISMO	AUTISMO	
VACCINO	5	90	95
NO VACCINO	5	25	30
	10	115	125

Utilizzando i subtotali si ricavano le frequenze teoriche f*:

		NO	
	AUTISMO	AUTISMO	
VACCINO	7,6	87,4	95
NO VACCINO	2,4	27,6	30
	10	115	125

Calcolo il Chi-Quadrato:

f	f*	(f-f*) ² /f*
5	7,6	0,8895
90	87,4	0
5	2,4	3
25	27,6	0,2449
125	125	4.0284

Il Chi Quadrato calcolato risulta quindi pari a:

ChiQc = 4,0284

Si individua sulle tavole del Chi Quadrato il valore teorico da confrontare:

 $ni=(r-1)^*(c-1)=1$ gdl alpha = 1%

ChiQt = **6,64**

Poiché ChiQc < ChiQt si accetta l'ipotesi di indipendenza fra le due distribuzioni.

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

$$p = 0,4$$

 $n = 4$

La distribuzione di probabilità quindi è la seguente:

X	P(X)
0	0,1296
1	0,3456
2	0,3456
3	0,1536
4	0,0256
	1

Media = np = 1,6Varianza = npq = 0,96

ESERCIZIO 4 - LAB

```
# CREO IL VETTORE DELLE X:
k=c(0:4)

# CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 4, 0.4)

# DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITA':
```

barplot(dbinom(k,4,0.4), names.arg=k, xlab="X", ylab="P(X)")

ESERCIZIO 5 - LAB

CALCOLO MEDIA, MEDIANA, PRIMO E TERZO QUARTILE, MINIMO E MASSIMO: summary(intel.stocks)

CALCOLO IL NUMERO DI ELEMENTI DEL DATABASE: length(intel.stocks)

CREO IL GRAFICO BOXPLOT: boxplot(intel.stocks)