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language of propositional logic

alphabet:
(i) proposition symbols : po, p1, P2, - - -,
(i) connectives : A, v, =, 1, &, 1,

(1ii) auxiliary symbols : (, ).

AT={po, P1, P2, - - -

The set PROP of propositions is the smallest set X with
the properties
(1) pi eX(ieN), LeX,

(i) d,peX= (dAY), (dVY), (P Y), (P Y)eX,
(iii)peX =(~d)eX.

PROP is well defined? (PROP %2 ?)



The set PROP of propositions is the
smallest set X with the properties

-] ¢ PROP| (i) pi €X(ieN), LeX,

(i) ¢, WeX= (9AY), (PVY), (),

(P—W)eX,
(iii)peX =(~p)eX.

Suppose -— 1L € PROP.
Y = PROP - {-— 1} also satisfies (i), (ii) and
(iii).

-J_,pi eY.

Mo, ueY=0,pcPROP =(¢poW)cPROP.
(Do) L = (PpoP)eY.

B ocY=0pcPROP =(~¢)cPROP.
(~P)—L = (d)eY.

B PRORP is not the smallest set satisfying (i), (ii)
and (iii)!!'! impossible




Theorem
Let h: N X A = A and ceA.

There exist one and only one function
f:N —At.c.:

1. f(0)=cC

2. VneN, f(n+1)=h(n,f(n))

the proof is difficult

‘De{/\,v,—>}I

Theorem 1.1.6 (Definition by Recursion) Let mappings Hp : A> — A
and H-, : A — A be given and let H,; be a mapping from the set of atoms
into A, then there exists exactly one mapping F': PROP — A such that

= H,:(p) for ¢ atomic,
= Ho(F(p), F(1)),
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Theorem 1.1.3 (Induction Principle) exercise

Let A be a property, then A(¢) holds for all $ € PROP if
(i) A(pi), for all i,and A(L),

),
(i) A(d), A() = A((d—Y)),
(i) A(®), A(p) = A( (1Y),
(iv) A(®),

(

Iv) A(Y) = A((PvY)),
V) A(®) = A( (=9)).



N for atomic ¢

~N




Examples.

T((p1 — (L V(—p3)));

/

T (—=(=(p1 A (=p1))))




Examples. T((p1 — (L \/(ﬂpg))); T(_'(ﬁ(pl A (ﬂ]h))))

(p1 — (L V (=ps3))) o (=(=(p1 A (=p1))))
(LV (—ps)) s (=(p1 A (—=p1)))
. (—ps) (p1 A (—p1))
1
(—p1)
D3 P1

P1




SEMANTICS

truth table

V(¢ A g) = min(v(¢), v()),
V(¢ v ) = max(v(), v(p)),

A

0

1

0

0

0

1

0

1

Definition 1
A mapping v : PROP — {0, 1} is a valuation if

V(¢ W)=0 < v(9)=1 and v()=0,

V(o-y)=1 & v(P)=v(Y),

vV(7p) =1 - v(0)
v(L) =0.

V(e v ) =1 & v()=1 or v(y)=1
V(o Y)=1 & v($)=0 or v()=1,

V(¢oP)=1 & v(9)=v(y),
v(mp) =1 & v(p)=0
v(L1) =0.

Definition 2
A mapping v : PROP - {0, 1} is a valuation if
v(d A P) =1 & v(¢)=1 and v(y)=1

the two
definitions are
equivalent



Theorem

v: AT— {0, 1} s.t. v(L) = 0 (assignment for atoms)
=

there exists a unique valuation [-],:PROP—{0,1}
such that [®], = v(¢) for each ¢eAT

Lemma If v, w are two assignments for atoms s.t. for all p;
occurring in ¢, v(pi) = w(pi), then [®]y = [D]w .




Definition

= ¢ is a tautology if [¢]y = 1 for all valuations v,
= = ¢ stands for ‘¢ is a tautology’,
= |et I be a set of propositions,

SUBSTITUTION
@Y/pl = { P i
- @

(P10 P2)[W/p] = (¢

[ &= ¢ iff for all v: ([Y]v = 1 for all pel)=[p], =1.

fp=p
if @ =/=p if ¢ atomic

1[W/p] O P2[W/p])

(=®)[W/p] = (=d[W/p])

Substitution Theo
=»|f =P < o, t

=[P1 « P2y = [U

rem
nen = YP[d1/p] « YP[d2/p], where p is an atom.

)[®41/p] < Y[P2/p]lv

=E=(P1 ©P2) (L

)[®1/p] Y[ P2/p])



tautologies

= (Pvy)voeov(Pvo) (PAY)AC e dA(PAoO)
associativity

- Pvyeovo PAYPAD
commutativity

=PV (PAro)e(®VvY)a(Pvo) ¢A(Pvo)e(@ay)v(dao)

distributivity
- (P Vv Y) e ad Ay (G AY) © =d VY
De Morgan’s laws
= PvpoP PrAPpoP
idempotency
- P o P

double negation law

De Morgan’s law: [-(dvy)]=1=[pvy]=0e[0]=[p]=0=[-¢]=[-Y]=1 [-) A -] = 1.
So [~(d v Y)] = [P A =] for all valuations, i.e = (P v P) < b A .




=) (@2 P)AP—o)
= = P) « (@ v )
v P < (7 = P)

P v P o a(mp A TY)
FP AP < (= v TY)
= © (p = 1),

FL < @ A Q.

~ C PROPXPROP: v =y iff E d < .
exercise = is an equivalence relation on PROP



Natural Deduction

- E q—L






E an elimination rule

p Y=Y
(0

— an introduction rule
] w

-4—a tree labelled with formulas

e —»
T foonun)




<+— Hypotheses

Proof tree
Deduction
Derivation

Y «—— conclusion

-

Vo
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The Elimination Rule
for Implication

e =Y




The Introduction Rule
for Implication




The Introduction Rule




The Introduction Rule

[p] (O [o] B




The Introduction Rule




The Introduction Rule




The Introduction Rule

L] Y L] B




Introduction rules Elimination rules
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MAwPAE © o — (Y — o))
Y ¢%0>E
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p AN — 0 L

(p—= (Y —0)) = (NP — o)



X = L




Derivations »

D
P ¢ ¢
Wy

I°4

new derivations
obtained by:
) unary rule

i) binary rule




@D — lenotes the set

Derivation with D (possibly empty)
hypothesis of all the leaves
(D labelled with the

formula y

[w]—bdenotes the set

D of all the leaves labelled with

the formula
P marked
g "cancelled" / "discharged"

A derivation with
hypothesis 1 cancelled




the set of derivations is the smallest set X s.t.

(1) The one element tree ¢ belongs to X for all p € PROP.




g

D
(2L)If € X,then L €X.
J_ S

¥
%
v D
If D € X, then c X.
1
J_ —_—
¥



there is a derivation with conc

(uncancelled) hypot

usion @ and with all

neses in I

Ly

there is a derivation

with conclusion ¢ and
with all hypotheses
cancelled



[ ifpel

[, TNFY=Tul oAy
[FpopAaP=>T+Hpandl Y
[vpopHY=TFHE-Y
-l ~e->PY=Tul Y
[ 1L =TF®

[u{—-p}+-L=TF+0



N

L

N

(IBndo)

(P = )

y) > (¢ = 0) = (¢ = 0)]
y) < (Y = )
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Soundness

[P =1 E=0o¢.




Towards Soundness

Notation:

M, Ms ol
¢ T, {¢}

=20 &['=Edp=1T,1"

==, "=}




I, ¢

= 0= [

¢—0

I,0FO
Vv. {([T'h=1&[¢].=1)=[c]=1}

Wv. {Nor([T}=1s [0},=1) ok [],=1}

Vv. (([T]y =1 ORE]V=O) OR [O]y=1}

Y. {[The1 o ([§=0 or [0}=1)}
9. {[The1 o8 (9—h=1)}

=

Vv. {I'l=1=[¢—0c]=1}

—

I'=¢—0




Soundness

[0 =T .

Notation: hpD is the
set of uncancelled

hypoteses of D

We prove, by induction on the lenght of
derivations, that

for each derivationD and [, with hpDcl
¥

we have [ E @




Basis:|D =¢

@=¢=>¢EF:F=¢'




Inductive cas
We prove, by induction on the lenght of

e derivations, that
/
D D for each derivation Spand [, with hpDcl
A D"=, ¥, gp’
7 we have [ = @
AN
\ ﬁ—
hp@ug I‘W
Inductive Hypothesis (IH)
—
hpD =¢p & hpD' =o'
—
hp2 u hpD' Epap’
—_—

[’N =§0A¢I




D

2: A Eq =1 N\ w
¥
hpD'c I
Inductive Hypothesis (IH)
—
hpD Epay

=

3: A E2| as the previous one




hpD'c I

Inductive Hypothesis (IH)
—

hp? =y
—

hp? -{¢} Fp—y

=> (since hpD' = hpD -{p})
1" Ep—y




hp@"g [w

"= -

Inductive Hypothesis (IH)

—

hpD

—

=p & hpD'

hp2 u hpD' =y

=

F"

—Y

nZ2nd’



4: RAA ]
D
D'=
1
\_ SO J
hpD'c I

Inductive Hypothesis (IH)
—

hpD =
—
hpD -{~¢} =p

=> (since hpD' = hpD -{—¢})
"=




An application ofsoundness\ [ - (I) = [ q)

(pvo)—0

1. let p=po and a=p;
2. let v(po)=0 and
v(p1)=T

3. V((povp1)—’po)—

4. ¥ (povp1)—po

5. F (poVvp1)—po




Completeness

[=E0=T+ ¢




A set [ of propositions is consistent if
[ L.
A set [ of propositions is inconsistent if
1. I

[ is consistent| <= (2) For no ¢, NP and Fl——-cp\

(3) There is at least one ¢ such that '+ ¢



(1) I is inconsistent (2) Thereis ¢ s.t. '=¢ and M=

(3) Foreach ¢. '~ ¢

(1) ["is inconsistent]‘ (2) Thereis ¢ s.t. ¢ and '@ |

(3) Foreach ¢. T+ ¢



(1) I' is inconsistent

(3) Foreach ¢. '+ ¢

(1= 3Ds.t. P with hpD c I
1

D
=1 = Irg

¥




« (2) Thereis ¢ s.t. P and I'—=¢

(3) Foreach ¢. '~ ¢

immediate



(1) I' is inconsistent « (2) Thereis ¢ s.t. P and I'—=¢

[+ = 3D s.t. ?3 with hpD' c I

P

—

[ G= 3 D" s.t.

with hp2" c I

@l @II




Proposition:
If there is a valuation such that [@]y, =1 forall ¢ e T,
then I Is consistent.

Proof:
Suppose I' —1, then I" =1, so for any valuation v

[(Py=1forallpel =[L],=1

Since [L]y = 0 for all valuations, there is no valuation with [(], =
1 for all ¢ € I'. Contradiction.
Hence [ Is consistent.




[ u{-d}isinconsistent =T + ¢,

[ u{}}isinconsistent = [ + .

i with hp2' € Tu{-}}

['u{—~@}is inconsistent = I D's.t.

[~¢]
)

[u{}} is inconsistent = 3ID's.t. P with hp?' € I'u{d}
(]
@l

1




A set I is maximally consistent iff
(a) I' is consistent,

(b) T <" and " consistent =r=I".

example: Let v a valuation, I' = {¢: [p]v = 1}. [ is consistent.
Let " suchthat " c I'".

Let Yel™' s.t. Yl i.e. [W]v=0, then[-Y]v=1, and so —Perl.

But since ' ¢ I this implies that " is inconsistent.
Contradiction.




Theorem:
Each consistent set ' is contained in a maximally
consistent set ™

1) enumerate all the formulas
Do, ©1, P2, .....

2) define the non decreasing sequence:
[o=I
Thu{dn}if [n u{dn}is consistent,

['n otherwise

rn+1: 3

3) define




(a)T', is consistent for all n (a trivial induction on n)

(b) I'* is consistent
suppose I'* —_1

we have 3 ?_ with hpD={yy,... p }C I'*;

F’*‘ = Urn — VlSk Hni . ”l.])i Erni.

n=0

Let n=max{n;: i<k}, theny,,...py €', and hence I',, L.
But T',, is consistent. Contradiction.

(c) I'* is maximally consistent
Let I'* C A and A consistent. If y € A, then Am. Y=y,
', CI'* CA and Ais consistent,I',,U{¢,} is consistent.

ThereforeI'y,1 =Ty U {bm )}, i.€. o €E Tye1 ST
[ =A.




If I' is maximally consistent, then I is closed under
derivability (i.e. I —¢pp=cl).

Let I' = ¢ and suppose @& I' . Then I' U {¢p} must be
inconsistent. Hence I' = =@, so I 1s inconsistent.
Contradiction.




Let I' be maximally consistent;
a)vq> either ¢el’, or =<l /(/D

b)V,p. 2 pelre(per=yerl).

(a) We know that not both ¢ and ~¢ can belong to I' . Consider
" =T u{p). If " isinconsistent, then, -p e . If [ "is
consistent, then ¢ € I' by the maximality of I'.

(b) b1) Let d— el and el

Since ¢,o—Yel and since I is closed under derivability we
get Yel by — E.

b2) Letdpecll =2 er.

It § € [ then obviously N'=y, so N=¢p—4.
If o< I',then =¢pel, and then I —-.
Therefore [ —p— .




Corollary
If ' is maximally consistent,then e I' & =zl ,andp el & oz .

If I' is consistent, then there exists a valuation such that [¢] =1 forall p € T.

Proof.(a) I' 1s contained in a maximally consistent [™
B litp, el™
(b) Define v(p;) = {O oo

and extend v to the valuation | [,.

Claim: [¢] =1 < ¢ € I'*. Use induction on ¢.

1. For atomic ¢ the claim holds by definition.

2. o=y ANo. o], =1 < [¢¥], = o], =1 < (induction hypothesis)
Y,o € I'™ and so o € I'™*. Conversely Y No € "= ¢Y,0c € [™
The rest follows from the induction hypothesis.

3. =1 —o0. [Yv—o0],=0<%[¢],=1and [o], =0 < (induction
hypothesis) y e " and o € [ < o & [

(¢) Since I' C I'* we have [¢], =1 for all ¢» € I".




Corollary
I ¥ ¢ & there is a valuation such that [] = 1 for all ¢l and [¢]=0.

[+ ¢ & [ u{-®p}consistent & there is a valuation such that [{] = 1 for all
Pel u{~¢}, namely, [W]=1forall el and[P]=0

Theorem (Completeness Theorem)
N=¢p =TI+~ ¢

Proof.TH- o =T ¢

=0 =<l - ¢




The connective v

proof by cases






o o] Y ik
(o ANY) Vo oV o go\/cf1 (p ANY) Vo YV o w\/cf2
oV o YV o

(pVa)A(¥Vo)




(pVa)n(pVo)

pV o



















= (e AY) — V)

) ]
(e V)] Vo (e V)] V)
1 1
P (0
(e A Y)) i AP
1
V)




oV a(mp A ).

exercise



