FIRST-ORDER LOGIC (CONTINUED)

The first-order predicate calculus

By a generalization of @ we mean any formula of the form Vx,...¥x,a,
where k=1 and x,,...,X;, are any variables, not necessarily distinct.

what is an axiomatization?




the propositional case
only O-ary predicate letters (infinite), called propositional symbols

modus ponens
x x—P

B

As propositional axioms of ¥ we take all #-formulas of the following
forms:

(Ax.I) a-=>p-aq,
(Ax. 1) (a=>Pp-=>y)=>(@=>p)>a—>y,
(Ax. III) (ra—=>Pf)=>(Ma—>—1p)—a,

Notice that we have got here not three single axioms but three axiom
schemes, each representing infinitely many axioms obtained by all possible
choices of formulas a, B, 7. 2




Let ® be a set of #-formulas. By a propositional deduction from ® in
£ we mean a finite non-empty sequence of Z-formulas ¢,,...,9, such
that, for each £k (1=k=n), ¢, is a propositional axiom of #, or @, €®P
or ¢, is obtained by modus ponens from earlier formulas in the same
sequence (l.e., there are 7,j<k such that ¢;=¢;=> ¢)).

In this connection @ is cailed a set of hypotheses.

A propositional deduction in % from the empty set of hypotheses is
called a propositional proof in &.

We write “® |—,a”’ to assert that a is deducible from @ (i.e., that there is
a deduction of a from ®). If ® is empty, so that a is provable (i.e., there

is a proof of &), we write simply “I,a”. Also, we write, e.g., “@,a”
instead of “{@},a”.




10.3 LEMMA. For any a, ,0=>0.
PrOOF. Here is a propositional proof of a—»a:’

(a=> (@—>a)>o)—> (a—>a—>a)>a-—>a, (Ax. I)
o—> (=) —>a, (Ax. 1)
(a=>a—a)—>a—>a, (m.p.)
oL—> 0 —>0, (Ax. 1)
oL —>0. (m.p.)

In the sequel we shall make implicit use of the following simple facts
about deductions:

If ® ¥, then any deduction from ® is also a deduction from ¥.

If 94,...,9, is a deduction from ® and l<k<n, then @,,...,9, is also
a deduction from ®.

If ¢,,...,9,, 1s a deduction from ® and V{,,...,\, is a deduction from ¥,

then the concatenation of the two sequences (i.e., @,...,Q0,,, V1i,...,V,)

is a deduction from ®UW. )




10.5. THEOREM. For any a and B,

(a) 1710 oo,
(b) al—O_-l—las
© B, 1P e

—la—>a,
(Fla=>"a)=>(Ma—> "1a)>a,
(Cle=>"1"a)> q,

1714,

1T1a—=> T1a=> "T171a,

1= "1710,

o.

(Ax. III)
(m.p.)
(hyp.)
(Ax. I)
(m.p.)
(m.p.)




171719 714,

(C1T1as0) > (T1T1Te> Tle) - 17, (Ax. III)
o, (hyp.)
=11 1a—>a, (Ax. I)
1 a->a, (m.p.)
(171 e-> ") > 11, (m.p.)

‘17‘1 o. (m.p.)




(Trla—=>pf)—=> (o= 1) —a,
B,

B—> o>,

“la—,

(Tla—= "1p)—>a,

=18,

1> T1a—> TP,

—la— "1,
.

(Ax. IIT)
(hyp.)
(Ax. I)
(m.p.)
(m.p.)
(hyp.)
(Ax. I)
(m.p.)
(m.p.)




The first-order predicate calculus

As first-order axioms of ¥ we take all Z-formulas of the following

eight groups:

(Ax.1) All propositional axioms of #.

(Ax.2) Vx(a—B)—> Vxa—> Yxp,
where a, B are any .#-formulas and x is any variable.

(Ax.3) o= Yxa,
where a is any #-formula and the variable x is not free in a.

(Ax.4) Yxo—> a(x/t),
where o 1s any Z-formula and t is any #-term free for x in a.




(Ax.5) t=t,
where t is any .#-term.

(Ax.6) t;=t, . ;=>...>t,=t, =>ft,.. .t =ft _,...t,,
where f i1s any n-ary function symbol of % and t,,...,t,, are any
ZL-terms.

(Ax.7) t;=t, ;> ...>t,=t,,>Pt,..t,>Pt, ...t
where P 1s any n-ary predicate symbol of ¥ and t,,....t,, are any
ZL-terms.

(Ax.8) All generalizations of axioms of the preceding groups.

As rule of inference we again take modus ponens.

If & is without equality then (Ax.5), (Ax.6) and (Ax.7) are omitted.




1.2. THEOREM. If ®a then ®=a. In particular, if —o then =a.
Proor. Similar to Thm. 1.10.2. We first verify that our first-order axioms
are logically true. For (Ax.1) this follows from the fact that the proposi-
tional axioms are tautologies. For (Ax.2)-(Ax.7) we can use tableaux
(see Thm. 2.4.2 and Prob. 2.4.3) or verify directly that they are logically
true. For (Ax.8) we merely need to observe that if & is logically true then
so 18 {Yxa, and hence so is any generalization of a.

The rest i1s exactly as in the proof of Thm. 1.10.2. [

ProoF. Let ¢,,...,@, be a deduction of o from ®. Thus ¢, =a. By induc-
tion on k = 1,...,n we show that ® =, ¢,. (Thus, for k=n, we have ® =;a.)

If @, is a propositional axiom, we easily verify that ¢, is a tautology
(cf. Prob. 6.10). Thus ¢, is satisfied by every truth valuation and is therefore
a tautological consequence of any set of formulas.

If ¢, € ® then clearly ® = ,0,.

Finally, if for some i,j<k we have @;=¢;>¢,, then {@; ¢;}=, ¢,
by Lemma 10.1. But by the induction hypothesis ® =, ¢; and ® =, @;.
Hence clearly ® =, ¢,. i
10.1. LEMMA. For any formulas o ,ﬁmd B, {o, x> B} =, B.




1.3. DEDUCTION THEOREM. Given a deduction of B from ®,a, we can
construct a deduction of a— P from ®. (Hence, if ®,0—f then ®—o—>p.)
Proor. Exactly the same as for the propositional calculus (Thm. 1.10.4). §

ProOOF. Let @,,...,0,(=p) be the given deduction of f from ®, a. We show

by induction on k£ = 1,...,n that a deduction of a— ¢, from ® can be
constructed. The following cases are possible: @, is an axiom, or @€ ®,
or ¢, =a, or @, is obtained by modus ponens from two earlier formulas
¢; and ¢;.

If @, is an axiom then the following is a proof of a— @, and a fortiori
a deduction of a—> ¢, from ®:

(Pk ’ (AX)
Q@ >A~> @, (Ax. D)
o= Q. (m.p.)

If ¢,€®, the same sequence of three formulas is a deduction of a— @,
from @ (except that in this case the justification in the first line should
read hyp. — short for hypothesis).

If ¢, =a, then in the proof of Lemma 10.3 we had a propositional proof™
of a=>a (=a—> ¢@,). This is a fortiori a deduction of a— @, from ®.




Finally, suppose that for some i,j<k we have ¢; =¢;—> ¢,. Then by
the induction hypothesis we have got deductions of a— ¢; and a—> ¢;—> @,

from ®. We concatenate these two deductions and adjoin three new
formulas:

aA—=>Q,

o= Q;=> @y,

(= @;=> @) > (> ¢)>a—> @, (Ax. II)
(€= @) >a—> ¢, (m.p.)
oL=> Q. (m.p.)

We thus have a deduction of a— ¢, from ®. K




As 1n Ch. 2, we say that a variable x is free in a set ® of formulas, if
x is free in some formula of ®. Similarly, we say that x is free in a deduction
D if x is free in some formula of D.

€ un lemma per dimostrare regola di generalizzazione
1.4. THEOREM. Let X be a variable which is not free in ®. Given a deduction
D of a from ®, we can construct a deduction D" of \yxa from ® such that

(a) x is not free in D’,

(b) every variable free in D’ is free in D as well.
PrROOF. Let @,,...,9, be the given deduction D. So ¢,=a. By recursion
on k (k=1,...,n) we construct a deduction D, of {x@, from ®, such that
X is not free in D, and such that each variable free in D, 1s free also in D.
Then D, is the required D’.

If @, is an axiom, then Yx@, is an axiom as well — see (Ax.8) — so
Vxo, by itself is the required D,.

If ¢, is in @, then x is not free in ¢,. We take D, to be

O (hyp.)
O —> qu)k ’ (AX3)
VXo,. (m.p.)




Proposizione mp: Se ® + a—f e ¥ =a allora &, ¥ - {3

Proposizione:
Sed+-kEar,.., ®Fon Wi, .., onkp
allora @, ¥+ f3

Dim.
Per il teorema di deduzione abbiamo che
lIJ FHol— ... — O(neB

applicando n volte la proposizione mp otteniamo il risultato
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Finally, if for some ij<k we have ¢;=¢,—>¢,, then by the induction
hypothesis we already possess D; and D;. We let D, be the deduction
obtained by concatenating D; and D; and adding three more formulas,

as follows:

D,.{ 5
VX(Pi)

pl:
J{VX(‘Pi—* (pk)s

VX(9,=> @) > VX0, > VX, (Ax.2)

Vxo,—>Vxe¢,, (m.p.)

VX (m.p.)
This completes the proof. g

1.5. REMARK. By Thm. 1.4 we have the following law of generalization
on variables: if ®—a and x is not free in ®, then ®—Vyxa. Two modified
forms of this law are stated in the following problem.

1.6. PROBLEM. Assuming that x is not free in ®, B, show that
(a) if ®p—a, then O+ p—> Yxa,
(b) if ®P+a—>p, then ®+Jxa—>P.
(To prove (b), begin by observing that' a— B —,—1p—> —1a.)
15




1.10. THEOREM. If B~ P’ then B and B’ are provably equivalent.

1.11. THEOREM. For every formula o, variable x and term t,

- W xa— a(x/t), - a(x/t) > Jxa.

1.14. PrRoBLEM. Using Thm. 1.11 show that if x does not occur in the
term t then —3Jx(t=x).

I~ (L 3><) X/t = dx. t=x
o

L E-=t b=t > Fx. b=x
st e mIgE

4 x. t=%




1.12. THEOREM. Let ¢ be a constant which occurs neither in ® nor in o.
Given a deduction D of a(x/¢c) from ® we can construct a deduction D’ of

Vxa from ®@.
PrOOF. We choose a variable y which does not occur in D. Let D; be

obtained from D by replacing every formula § by B(c/y).

It is not difficult to verify that if B is an axiom then so is B(c/y). The
hypotheses (formulas of ®) used in D are left unchanged because ¢ does
not occur in ®. Aiso, every application of modus ponens is transformed
into an application of modus ponens. Since ¢ does not occur in a,

a(x/c)(c/y) =o(x/y).

Thus D, is a deduction of a(x/y) from ®. Moreover, if @, is the subset
of ® consisting of those hypotheses that are actually used in D,, then
y does not occur in ®, and D, is a deduction of a(x/y) from ®,. By Thm. 1.4
we get from D, a deduction D, of Yy [a(x/y)] from ®, and hence from ®.

Ciearly, Yyla(x/y)] is ¥xa or is obtained from ¥xa by alphabetic
change. Therefore (either trivially, or as in Thm. 1.10) we obtain a deduction
D. of Yxa from Yy [a(x/y)]. From D, and D; we get the required D’. |

1.13. REMARK. By Thm. 1.12 we have the following law of generalization

on constants:
If ® - a(x/c) and ¢ does not occur in @ nor in a, then @ Yxa.




consistency/inconsistency

d, & e insoddisfacibile sse ® = ~x

®, ~x e insoddisfacibile

sse P =

A set ® of formulas 1s Lﬁrst—order inconsistent

if for some B both ®-f

and ® —1p. Otherwise @ is first-order consistent.

applying soundness ...

1.17. THEOREM. An inconsistent set of formulas is unsatisfiable.

1.18. THEOREM. A set ® of formulas is inconsistent iff ®—a for every

formula a.

ProoF. Similar to that of Thm. 1.10.7. If ® is inconsistent, then for some
p both ®-p and ® —1p. But for every a we have {B, 1B} -, ; hence

@ a. The converse is obvious.




1.19. THEOREM. For any ® and o,
(a) ®, 1o is inconsistent iff ®a,
(b) @, o is inconsistent iff ® a.
Proor. (a) If ®, —1a is inconsistent, then, by Thm. 1.18, ®, —ja|-o.

Therefore, by the Deduction Theorem, ®+ —1a—>a. But one can easily
verify (e.g., by a propositional tableau) that —Ja—a |—,a. Hence @ a.
The converse is obvious.

(b) Similarly, if ®, o is inconsistent, one shows that ®—a— —Ja. Also,
it is readily verified that o= "1a—,~1a. Hence ®— —1a. The converse
1s again obvious. i




verso la completezza

3.14. STRONG COMPLETENESS THEOREM. If ®=a, then ®a.

20




§ 7. Hintikka sets

7.1. DerINITION. A set ¥ of Z-formulasis a Hintikka set in £ if the follow-
ing conditions hold:

(1) If ¢ is atomic, then ¢ and —1¢ do not both belong to ¥ (i.e., if
¢oc¥, then T104P).

(2) If 11ac¥, then ac V.

(3) If a—>Bc ¥, then 1ac¥ or BeW.

4) If 1(a—>P)€ Y, then both ac¥ and —1pc V.

(5) If YxacW, then a(x/t)e ¥ for every ZL-term t.

(6) If 1yYxac W, then —la(x/t)€ ¥ for some £-term t.

21




If & is a language with equality, we also require:

(7) For every #-term t, (t=t)c V.

(8) If f is an m-ary function symbol of ¥ and t,,... t,, are Z-terms,
then the formula

t1=tn+1_')t2=tn+2-') e -')tn=t2n_')ft1. . .tn=ftn+1. . .t2n

belongs to Y.
(9) If P is an n-ary predicate symbol of # and t,,...,t,, are terms then
the formula

t1=tn+1—)t2=tn+2-* ...-')tn=t2n—)Pt1...tn—)Ptn+1...t2n

belongs to ¥. (For n=2, P can be =.)

22




Throughout the present section we let

¥

be a fixed (but arbitrary)

Hintikka set. Also, throughout this section we shall refer to the nine
conditions of Def. 7.1 simply as (1), (2) etc. instead of 7.1.(1), 7.1.(2) etc.

Our aim 1s to show that W is satisfiable;

preliminary work.

23

but this will require some




We begin by defining a binary relation E between Z-terms.

If & is a language without equality, we simply take E to be the identity
relation. In other words, sEt iff s and t are the same term.*

If & has equality, we define sEt to mean that the equation s=t belongs
to .

7.2. LeMMA. E is an equivalence relation (i.e., it is reflexive, symmetric
and transitive).
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