Esercizi per il Corso di ALGEBRA

Foglio 4

24 ottobre 2012

- 1. Sia p un numero primo. Si consideri l'insieme $\mathbb{Z}_p = \{\frac{m}{n} | m, n \in \mathbb{Z}, n \neq 0, p \text{ non divide } n\}$. Si verifichi che:
 - (a) \mathbb{Z}_p è un sottoanello di \mathbb{Q} .
 - (b) $\frac{m}{n} \in \mathbb{Z}_p$ è invertibile se e solo se p non divide m.
 - (c) L'insieme M degli elementi non invertibili è un ideale di \mathbb{Z}_p . È principale?
 - (d) l'anello \mathbb{Z}_p/M è isomorfo a $\mathbb{Z}/p\mathbb{Z}$. Si deduca che M è un ideale massimale di \mathbb{Z}_p .

(6 punti)

- 2. Sia B l'anello delle successioni limitate di numeri reali (una successione $(x_n)_{n\in\mathbb{N}}$ di numeri reali si dice limitata se esiste M>0 tale che $|x_n|\leq M$ per ogni $n\in\mathbb{N}$; la somma e il prodotto si eseguono termine a termine.)
 - (a) Si verifichi che una successione non nulla $(x_n)_{n\in\mathbb{N}}\in B$ è un divisore di zero in B se e solo se $x_m=0$ per qualche $m\in\mathbb{N}$.
 - (b) È vero che ogni elemento non nullo di B che non è divisore di zero è invertibile?
 - (c) si verifichi che l'insieme $I = \{(x_n)_{n \in \mathbb{N}} \in B | \lim_{n \to \infty} x_n = 0 \}$ è un ideale di B.

(6 punti)

- 3. Siano $i=\sqrt{-1}\in\mathbb{C}$ e $R=\mathbb{Z}[i]=\{a+i\,b\,|\,a,b\in\mathbb{Z}\}$ l'insieme dei numeri *interi di Gauss*. Sia inoltre $\delta:R\to\mathbb{N}_0,\ x=a+i\,b\mapsto \mid x\mid^2=a^2+b^2.$
 - (a) Si verifichi che R è un sottoanello di \mathbb{C} .
 - (b) Per ogni $z \in \mathbb{C}$ si trovi $q \in \mathbb{Z}[i]$ tale che $|z q|^2 \le \frac{1}{2}$.
 - (c) Si dimostri che (R, δ) è un anello euclideo.
 - (d) Si determini l'insieme degli elementi invertibili R^* .

(8 punti)

4. Teorema Cinese dei Resti:

(a) Siano $n, m \in \mathbb{N}$ primi tra loro. Si dimostri che l'applicazione

$$f: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}, x \mapsto (x + n\mathbb{Z}, x + m\mathbb{Z})$$

induce un isomorfismo

$$\mathbb{Z}/nm\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}.$$

- (b) Siano $n, m \in \mathbb{N}$ primi tra loro. Dati $a, b \in \mathbb{Z}$, si trovi $x \in \mathbb{Z}$ tale che $x + n\mathbb{Z} = a + n\mathbb{Z}$ e $x + m\mathbb{Z} = b + m\mathbb{Z}$ (si ricordi che la classe di resto $n + m\mathbb{Z}$ è invertibile in $\mathbb{Z}/m\mathbb{Z}$ e la classe di resto $m + n\mathbb{Z}$ è invertibile in $\mathbb{Z}/n\mathbb{Z}$!)
- (c) Si risolva il problema di Sun-Tsu (Cina, I secolo a.C.): si determini un numero naturale x con resto 2 se diviso per 3, resto 3 se diviso per 5, e resto 2 se diviso per 7.

- 5. Sia R un anello commutativo. Un elemento $z \in R$ si dice nilpotente se esiste $n \in \mathbb{N}$ tale che $r^n = 0$.
 - (a) Si verifichi che se $z \in R$ è nilpotente allora 1-z è invertibile (sugg: $1-z^n=(1-z)(1+z+\cdots+z^{n-1})$
 - (b) Sia $R = \mathbb{Z}/4\mathbb{Z}[x]$ l'anello dei polinomi in x a coefficienti in $\mathbb{Z}/4\mathbb{Z}$. Sia $f = \overline{a}_0 + \overline{a}_1x + \cdots + \overline{a}_mx^m$, $a_i \in \mathbb{Z}$. Si verifichi che f è nilpotente se e solo se tutti gli a_i sono pari.
 - (c) Si verifichi che f è invertibile se e solo se a_0 è dispari e ogni a_i con i > 0 è pari.

(**)

Consegna: mercoledì 31 ottobre durante la lezione.