

Master's Program in Applied Mathematics Written test of Functional Analysis January 6, 2013

Solve some of the following problems. Justify your conclusions. Time: 120 min.

Pb 1. Show that the function $u(x) = \arctan(1/x)$ is in $L^p(0, +\infty)$ for every p > 1. Deduce that the same holds for $u_n(x) = \pi/2 - \arctan(nx)$, and study the convergence of u_n in $L^p(0, +\infty)$.

Pb 2. In \mathbb{R}^2 consider the subspace

 $V = \{ (x, y) \in \mathbb{R}^2 : 3y - x = 0 \},\$

and the linear functional $\varphi: V \to \mathbb{R}$ defined by $\varphi(x, y) = y$. Find the unique linear extension $\Phi: \mathbb{R}^2 \to \mathbb{R}$ of φ , having the same norm as φ .

Pb 3. Let (u_n) be a sequence in $C^1([0,1])$, bounded in C([0,1]) and such that (u'_n) is bounded in $L^3(0,1)$. Prove that (u_n) has a convergent subsequence in C(0,1).

Pb 4. Let $f : [0,1] \to [0,1]$ be a continuous function such that $1 \le f(x) \le 2$ for all $x \in [0,1]$. Consider the operator

$$T: C([0,1]) \to C([0,1])$$

defined by (Tu)(x) = f(x)u(x). Is T continuous, invertible, compact? Is T continuous and/or compact in the case f(x) = x?

Pb 5. Consider the convex closed set

$$C = \Big\{ u \in L^2(0,2) : \int_0^2 u(s) ds = 1 \Big\}.$$

Show that C^{\perp} is a *very* small subspace of $L^2(0,2)$ and discuss why the equality $L^2(0,2) = C \oplus C^{\perp}$ does *not* hold.

Pb 6. Let $\gamma > 0$ and $p \ge 1$. Consider $T : \ell^p \to \ell^p$ defined by

$$(Tx)_j := \frac{x_j}{j^{\gamma}}, \quad j \ge 1.$$

Is it a bounded linear operator? Is it compact? (*Hint: use finite-dimensional approxi*mation.) Furthermore, consider the same questions when $T: \ell^p \to \ell^q$ for $1 \le q < p$.

Pb 7. Study the convergence of the sequence $u_n(x) = (x + 1/n)^{1/3}$ in the Sobolev spaces $W^{1,p}(0,1), p \ge 1$.