Image Processing for Bioinformatics

AA 2010-2011

Facoltà di Scienze MM, FF e NN

Dipartimento di Informatica

Università di Verona

General information

- Teacher: Gloria Menegaz
- Assistant: Francesca Pizzorni
- Scheduling
 - Theory (4 CFU)
 - Tue. 8.30 to 10.30, room A
 - Wed. 14.30 to 15.30, room B
 - Laboratory (2 CFU)
 - Mon. 14.30 to 16.30, room I
 - Tutoring (*ricevimento*)
 - by appointment (email)
 - Start and end dates
 - March 1°, 2011 May 25, 2011

- Exam
 - TBD, depending on the numerosity
 - Possibility to do a project for the Lab. part
- Support
 - Slides of the course
 - Books

Contents

Classical IP

- Review of Fourier Transform
- Extension to 2D
- Sampling in 2D
- Quantization
- Edge detection
 - Model-based, region-based
- Filtering
 - denoising, deblurring, image enhancement
- Segmentation techniques
- Basics of pattern recognition
 - Clustering, classification

Advanced Topics

- Color imaging
- Introduction to stochastic processes
- Hints for Wavelets and multiresolution
- The JPEG coding standard

Why do we process images?

- To facilitate their storage and transmission
- To prepare them for display or printing
- To enhance or restore them
- To extract information from them
- To hide information in them

Image types

Optical (CCD)

radar (SAR)

underwater

infrared

medical (MRI)

Microarray images

Image Restoration

Original image

Blurred

Restored by Wiener filter

Noise Removal

Noisy image

Denoised by Median filter

• Image Enhancement

Histogram equalization

• Artifact Reduction in Digital Cameras

Original scene

Captured by a digital camera

Processed to reduce artifacts

Image Compression

Original image 64 KB JPEG compressed 15 KB JPEG compressed 9 KB

Object Segmentation

"Rice" image

Edges detected using Canny filter

• Resolution Enhancement

- Security and encryption
 - Watermarking

Face Recognition

• Fingerprint Matching

Segmentation

• Texture Analysis and Synthesis

Pattern repeated

Photo

Computer generated

• Face detection and tracking

http://vasc.ri.cmu.edu/NNFaceDetector/

• Face Tracking

• Object Tracking

• Visually Guided Surgery

Taxonomy of the IP domain

Image processing

Pattern recognition

Computer graphics

Computer vision

Computer graphics

- Algorithms allowing to generate *artificial* images and scenes
- Model-based
 - Scenes are created based on models
- Visualization often rests on 2D projections
- Hot topic: generate perceptually credible scenes
 - Image-based modeling & rendering

DNA

VIRUS - Herpes

HEARTH (interior)

BRAIN (visual cortex)

Computer vision

- Methods for estimating the *geometrical* and *dynamical* properties of the imaged scene based on the acquired images
 - Scene description based on image features
- Complementary to computer graphics
 - Get information about the 3D real world based on its 2D projections in order to automatically perform predefined tasks

Pattern Recognition

- Image interpretation
- Identification of basic and/or complex structures
 - implies pre-processing to reduce the intrinsic redundancy in the input data
 - knowledge-based
 - use of a-priori knowledge on the real world
 - stochastic inference to compensate for partial data
- Key to clustering and classification
- Applications
 - medical image analysis
 - microarray analysis
 - multimedia applications

Pattern Recognition

- Clustering
 - data analysis aiming at constructing and characterizing clusters (sets without prior knowledge)
- Feature extraction and selection
 - reduction of data dimensionality
- Classification
 - Structural (based on a predefined "syntax"):
 - each pattern is considered as a set of primitives
 - clustering in the form of parsing
 - Stochastic
 - Based on statistics (region-based descriptors)

Applications

- Efficiently manage different types of images
 - Satellite, radar, optical..
 - Medical (MRI, CT, US)
 - Image representation and modelling
- Quality enhancement
 - Image restoration
 - deblurring, denoising, hole filling
- Image analysis
 - Feature extraction and exploitation
- Image reconstruction from projections
 - scene reconstruction, CT, MRI
- Compression and coding

Typical issues

Context-independent

- Image resampling and interpolation
 - Sampling, quantization, filtering
- Visualization and rendering
- Multispectral imaging
 - Satellite, color
- Motion detection, tracking
- Automatic quality assessment
- Data mining
 - query by example

Medical imaging

- Image analysis
 - optical devices, MRI, CT, PET, US (2D to 4D)
- Image modeling
 - Analysis of hearth motion, models of tumor growth, computer assisted surgery
- Telemedicine
 - remote diagnosis, distributed systems, medical databases

Other applications

- Quality control
- Reverse engineering
- Surveillance (monitoring and detection of potentially dangerous situations)
- Social computing (face and gesture recognition for biometrics and behavioural analysis)
- Robotics (machine vision)
- Virtual reality
- Telepresence

Query by example

Segmentation

Medical Image Analysis

Technology for HCI

Face recognition

Stereo imaging

Stereo couple

Disparity map: brighter pixels represent scene points closer to the observer

The disparity map is used to render 3D scenes

Medical textures

MI applications

• Tumor identitication and staging

MI applications

• Exploring brain anatomy by diffusion weighted MRI

Compression and coding

Object-based processing

Mosaicing

Image formation and fundamentals

IP framework

Natural scene

Digital image

Digital Image Acquisition

22.7 mm 40 mm 30 mm

151 mm

- When photons strike, electron-hole pairs are generated on sensor sites.
- Electrons generated are collected over a certain period of time.
- The number of electrons are converted to pixel values. (Pixel means *picture element*)

a b c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Digital Image Acquisition

Two types of discretization:

- There are finite number of pixels
 - Sampling → Spatial resolution
- The amplitude of pixel is represented by a finite number of bits
 - Quantization → Gray-scale resolution

Digital Image Acquisition

a b

 $\mbox{FIGURE 2.17}$ (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

- **256x256** Found on very cheap cameras, this resolution is so low that the picture quality is almost always unacceptable. This is 65,000 total pixels.
- **640x480** This is the low end cameras. This resolution is ideal for e-mailing pictures or posting pictures on a Web site.
- 1216x912 This is a "megapixel" image size -- 1,109,000 total pixels -- good for printing pictures.
- 1600x1200 With almost 2 million total pixels, this is "high resolution." You can print a 4x5 inch print taken at this resolution with the same quality that you would get from a photo lab.
- 2240x1680 Found on 4 megapixel cameras -- the current standard -- this allows even larger printed photos, with good quality for prints up to 16x20 inches.
- **4064x2704** A top-of-the-line digital camera with 11.1 megapixels takes pictures at this resolution. At this setting, you can create 13.5x9 inch prints with no loss of picture quality.

Basics: greylevel images

		100	100	200	90
		50	0	50	200
		100	200	100	50
		100	0	200	100

Images : Matrices of numbers Image processing : Operations among numbers bit depth : number of bits/pixel *N* bit/pixel : 2^{N-1} shades of gray (typically N=8)

Matrix Representation of Images

• A digital image can be written as a matrix

$$x[n_1, n_2] = \begin{bmatrix} x[0,0] & x[0,1] & \cdots & x[0, N-1] \\ x[1,0] & x[1,1] & \cdots & x[1, N-1] \\ \vdots & \vdots & \ddots & \vdots \\ x[M-1,0] & \cdots & \cdots & x[M-1, N-1] \end{bmatrix}_{M \times N}$$

Digital images acquisition

- Analog camera+A/D converter
- Digital cameras
 - CCDs (Charge Coupled Devices)
 - CMOS technology
- In both cases: optics
 - lenses, diaphragms

Matrices of photo sensors collecting photons of given wavelength

Features of the capture devices:

- Size and number of photo sites
- Noise

Transfer function of the optical filter

Some definitions

- Digital images
 - Sampling+quantization
- Sampling
 - Determines the graylevel value of each pixel
 - Pixel = picture element
- Quantization
 - Reduces the resolution in the graylevel value to that set by the machine precision
- Images are stored as matrices of unsigned chars

Resolution

- Sensor resolution (CCD): Dots Per Inch (DPI)
 - Number of individual dots that can be placed within the span of one linear inch (2.54 cm)
- Image resolution
 - Pixel resolution: NxM
 - Spatial resolution: Pixels Per Inch (PPI)
 - Spectral resolution: bandwidth of each spectral component of the image
 - Color images: 3 components (R,G,B channels)
 - Multispectral images: many components (ex. SAR images)
 - Radiometric resolution: Bits Per Pixel (bpp)
 - Greylevel images: 8, 12, 16 bpp
 - Color images: 24bpp (8 bpp/channel)
 - Temporal resolution: for movies, number of frames/sec
 - Typically 25 Hz (=25 frames/sec)

Example: pixel resolution

Image Resolution

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

Image Resolution

Don't confuse image size and resolution.

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Bit Depth – Grayscale Resolution

8 bits

a b c d

FIGURE 2.21

(a) 452×374 , 256-level image. (b)–(d) Image displayed in 128, 64, and 32 gray levels, while keeping the spatial resolution constant.

7 bits

5 bits

6 bits

Bit Depth – Grayscale Resolution

^{e f} ^{g h} 4 bits

FIGURE 2.21

(Continued) (e)-(h) Image displayed in 16, 8, 4, and 2 gray levels. (Original courtesy of Dr. David R. Pickens, Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center.)

2 bits

Image file formats

- Many image formats (about 44)
- BMP, lossless
- TIFF, lossless/lossy
- GIF (Graphics Interchange Format)
 - Lossless, 256 colors, copyright protected
- JPEG (Joint Photographic Expert Group)
 - Lossless and lossy compression
 - 8 bits per color (red, green, blue) for a 24-bit total
- PNG (Portable Network Graphics)
 - Freewere
 - supports truecolor (16 million colours)
- ... more to come ..