

 Main memory and virtual memory

Adapted by Tiziano Villa from lecture notes by
Prof. John Kubiatowicz (UC Berkeley)

2 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

3 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Virtualizing Resources

• Physical Reality:
Different Processes/Threads share the same hardware

– Need to multiplex CPU (Just finished: scheduling)
– Need to multiplex use of Memory (Today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is
defined by its data in memory (and registers)

– Consequently, cannot just let different threads of control
use the same memory

» Physics: two different pieces of data cannot occupy the same
locations in memory

– Probably don’t want different threads to even have access
to each other’s memory (protection)

4 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system

– “Passive” component of a process

5 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Important Aspects of Memory Multiplexing

• Controlled overlap:
– Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!

– Conversely, would like the ability to overlap when
desired (for communication)

• Translation:
– Ability to translate accesses from one address space
(virtual) to a different one (physical)

– When translation exists, processor uses virtual
addresses, physical memory uses physical addresses

– Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

• Protection:
– Prevent access to private memory of other processes

» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves

6 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Binding of Instructions and Data to Memory
• Binding of instructions and data to addresses:

– Choose addresses for instructions and data from the
standpoint of the processor

– Could we place data1, start, and/or checkit at
different addresses?

» Yes
» When? Compile time/Load time/Execution time

– Related: which physical memory locations hold particular
instructions or data?

data1: dw 32

 …

start: lw r1,0(data1)

 jal checkit

loop: addi r1, r1, -1

 bnz r1, r0, loop
 …

checkit: …

0x300 00000020

 … …

0x900 8C2000C0

0x904 0C000340

0x908 2021FFFF

0x90C 1420FFFF

 …

0xD00 …

7 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Multi-step Processing of a Program for Execution

• Preparation of a program for
execution involves components at:

– Compile time (i.e. “gcc”)
– Link/Load time (unix “ld” does link)
– Execution time (e.g. dynamic libs)

• Addresses can be bound to final
values anywhere in this path

– Depends on hardware support
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code, stub, used to
locate the appropriate memory-
resident library routine

– Stub replaces itself with the
address of the routine, and
executes routine

8 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Uniprogramming

• Uniprogramming (no Translation or Protection)
– Application always runs at same place in physical
memory since only one application at a time

– Application can access any physical address

– Application given illusion of dedicated machine by giving
it reality of a dedicated machine

• Of course, this doesn’t help us with multithreading

0x00000000

0xFFFFFFFF

Application

Operating
System

V
a
li
d
 3

2
-
b
it

A
d
d
re

ss
e
s

9 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Multiprogramming (First Version)

• Multiprogramming without Translation or Protection
– Must somehow prevent address overlap between threads

– Trick: Use Loader/Linker: Adjust addresses while
program loaded into memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days

• With this solution, no protection: bugs in any program
can cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

10 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Multiprogramming (Version with Protection)

• Can we protect programs from each other without
translation?

– Yes: use two special registers Base and Limit to prevent
user from straying outside designated area

» If user tries to access an illegal address, cause an error

– During switch, kernel loads new base/limit from TCB
» User not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 Base=0x20000

Limit=+0x10000

11 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Segmentation with Base and Limit registers

• Could use base/limit for dynamic address translation
(often called “segmentation”):

– Alter address of every load/store by adding “base”
– User allowed to read/write within segment

» Accesses are relative to segment so don’t have to be
relocated when program moved to different segment

– User may have multiple segments available (e.g x86)
» Loads and stores include segment ID in opcode:

 x86 Example: mov [es:bx],ax.
» Operating system moves around segment base pointers as

necessary

DRAM

<?

+

Base

Limit

CPU

Virtual
Address

Physical
Address

No: Error!

12 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Issues with simple segmentation method

• Fragmentation problem
– Not every process is the same size

– Over time, memory space becomes fragmented

• Hard to do inter-process sharing
– Want to share code segments when possible

– Want to share memory between processes

– Helped by by providing multiple segments per process

• Need enough physical memory for every process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 6

process 5

process 9

OS

process 9

process 10

13 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Multiprogramming (Translation and Protection version 2)

• Problem: Run multiple applications in such a way that
they are protected from one another

• Goals:
– Isolate processes and kernel from one another
– Allow flexible translation that:

» Doesn’t lead to fragmentation
» Allows easy sharing between processes
» Allows only part of process to be resident in physical

memory

• (Some of the required) Hardware Mechanisms:
– General Address Translation

» Flexible: Can fit physical chunks of memory into arbitrary
places in users address space

» Not limited to small number of segments
» Think of this as providing a large number (thousands) of

fixed-sized segments (called “pages”)
– Dual Mode Operation

» Protection base involving kernel/user distinction

14 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Example of General Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS data Translation Map 1 Translation Map 2

Physical Address Space

15 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Two Views of Memory

• Recall: Address Space:
– All the addresses and state a process can touch
– Each process and kernel has different address space

• Consequently: two views of memory:
– View from the CPU (what program sees, virtual memory)
– View fom memory (physical memory)
– Translation box converts between the two views

• Translation helps to implement protection
– If task A cannot even gain access to task B’s data, no
way for A to adversely affect B

• With translation, every program can be linked/loaded
into same region of user address space

– Overlap avoided through translation, not relocation

Physical
Addresses CPU MMU

Virtual
Addresses

Untranslated read or write

16 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Example of Translation Table Format

Two-level Page Tables

32-bit address:

P1 index P2 index page offset

10 10 12

4 bytes

4 bytes

4KB

1K
PTEs

• Page: a unit of memory translatable by
memory management unit (MMU)

– Typically 1K – 8K
• Page table structure in memory

– Each user has different page table
• Address Space switch: change pointer

to base of table (hardware register)
– Hardware traverses page table (for
many architectures)

– MIPS uses software to traverse table

17 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

 - Segmentation

 - Paging

 - Multi-level translation

 - Paged page tables

 - Inverted page tables

Address Translation Schemes

18 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

More Flexible Segmentation

• Logical View: multiple separate segments
– Typical: Code, Data, Stack
– Others: memory sharing, etc

• Each segment is given region of contiguous memory
– Has a base and limit
– Can reside anywhere in physical memory

1

3

2

4

user view of
memory space

1

4

2

3

physical
memory space

1

2

19 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
• What is “V/N”?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Offset Seg # Virtual
Address

Base2 Limit2 V

+ Physical
Address

> Error

20 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Intel x86 Special Registers

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

80386 Special Registers

21 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Example: Four Segments (16 bit addresses)

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

Offset Seg
0 14 13 15

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800

0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might
be shared

22 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Example of segment translation

Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x240. Virtual segment #? 0; Offset? 0x240
 Physical address? Base=0x4000, so physical addr=0x4240
 Fetch instruction at 0x4240. Get “la $a0, varx”
 Move 0x4050  $a0, Move PC+4PC
2. Fetch 0x244. Translated to Physical=0x4244. Get “jal strlen”

Move 0x0248  $ra (return address!), Move 0x0360  PC
3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0,0”

Move 0x0000  $v0, Move PC+4PC
4. Fetch 0x364. Translated to Physical=0x4364. Get “lb $t0,($a0)”

Since $a0 is 0x4050, try to load byte from 0x4050
 Translate 0x4050. Virtual segment #? 1; Offset? 0x50

Physical address? Base=0x4800, Physical addr = 0x4850,
 Load Byte from 0x4850$t0, Move PC+4PC

0x240 main: la $a0, varx

0x244 jal strlen

 … …

0x360 strlen: li $v0, 0 ;count

0x364 loop: lb $t0, ($a0)

0x368 beq $r0,$t1, done

 … …

0x4050 varx dw 0x314159

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

23 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Observations about Segmentation

• Virtual address space has holes
– Segmentation efficient for sparse address spaces
– A correct program should never address gaps (except
as mentioned in moment)

» If it does, trap to kernel and dump core

• When it is OK to address outside valid range:
– This is how the stack and heap are allowed to grow
– For instance, stack takes fault, system automatically
increases size of stack

• Need protection mode in segment table
– For example, code segment would be read-only
– Data and stack would be read-write (stores allowed)
– Shared segment could be read-only or read-write

• What must be saved/restored on context switch?
– Segment table stored in CPU, not in memory (small)
– Might store all of processes memory onto disk when
switched (called “swapping”)

24 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Schematic View of Swapping

• Extreme form of Context Switch: Swapping
– In order to make room for next process, some or all
of the previous process is moved to disk

» Likely need to send out complete segments
– This greatly increases the cost of context-switching

• Desirable alternative?
– Some way to keep only active portions of a process in
memory at any one time

– Need finer granularity control over physical memory

25 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Paging: Physical Memory in Fixed Size Chunks
• Problems with segmentation?

– Must fit variable-sized chunks into physical memory
– May move processes multiple times to fit everything
– Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
 00110001110001101 … 110010

» Each bit represents page of physical memory
 1allocated, 0free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment

26 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Physical Address

Offset

How to Implement Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset  1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

Offset
Virtual
Page # Virtual Address:

Access
Error

> PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R

page #1 V,R

V,R,W

V,R,W

N

V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

27 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R

N

V,R,W

N

page #4 V,R

V,R,W

page #4 V,R

What about Sharing?

Offset
Virtual
Page #

Virtual Address
(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset
Virtual
Page #

Virtual Address:
Process B

Shared
Page

This physical page
appears in address

space of both processes

page #2 V,R,W

28 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Simple Page Table Discussion

• What needs to be switched on a context switch?
– Page table pointer and limit

• Simple Page Table Analysis
– Pros

» Simple memory allocation
» Easy to Share

– Con: What if address space is sparse?
» E.g. on UNIX, code starts at 0, stack starts at (231-1).
» With 1K pages, need 4 million page table entries!

– Con: What if table really big?
» Not all pages used all the time  would be nice to have

working set of page table in memory

• How about combining paging and segmentation?
– Segments with pages inside them?
– Need some sort of multi-level translation

29 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• What about a tree of tables?
– Lowest level page tablememory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual
Address:

Offset
Virtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error >

page #2 V,R,W

Physical
Page #

Check Perm

Access
Error

30 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

What about Sharing (Complete Segment)?

Process
A

Offset
Virtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R

V,R

V,R,W

V,R,W

N

V,R,W

Shared Segment

Process
B

Offset
Virtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

31 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Physical
Address:

Offset
Physical
Page #

4KB

Another common example: two-level page table

10 bits 10 bits 12 bits
Virtual
Address:

Offset
Virtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single
PageTablePtr register

• Valid bits on Page Table Entries
– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables
can reside on disk if not in use

4 bytes

32 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Multi-level Translation Analysis

• Pros:
– Only need to allocate as many page table entries as we
need for application

» In other wards, sparse address spaces are easy
– Easy memory allocation
– Easy Sharing

» Share at segment or page level (need additional reference
counting)

• Cons:
– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, previous example keeps tables to exactly one
page in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

33 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of
virtual memory allocated to processes

– Physical memory may be much less
» Much of process space may be out on disk or not in use

• Answer: use a hash table

– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes
– Often in hardware!

Inverted Page Table

Offset
Virtual
Page #

Hash
Table

Offset
Physical
Page #

34 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Dual-Mode Operation

• Can Application Modify its own translation tables?
– If it could, could get access to all of physical memory
– Has to be restricted somehow

• To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):

– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bits in special control register only
accessible in kernel-mode

• Intel processor actually has four “rings” of
protection:

– PL (Priviledge Level) from 0 – 3
» PL0 has full access, PL3 has least

– Privilege Level set in code segment descriptor (CS)
– Mirrored “IOPL” bits in condition register gives
permission to programs to use the I/O instructions

– Typical OS kernels on Intel processors only use PL0
(“user”) and PL3 (“kernel”)

35 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

For Protection, Lock User-Programs in Asylum
• Idea: Lock user programs in padded cell

with no exit or sharp objects
– Cannot change mode to kernel mode
– User cannot modify page table mapping
– Limited access to memory: cannot
adversely effect other processes

» Side-effect: Limited access to
memory-mapped I/O operations
(I/O that occurs by reading/writing memory locations)

– Limited access to interrupt controller
– What else needs to be protected?

• A couple of issues
– How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

– How do programs interact?
– How does one switch between kernel and user modes?

» OS  user (kernel  user mode): getting into cell
» User OS (user  kernel mode): getting out of cell

36 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

How to get from KernelUser

• What does the kernel do to create a new user
process?

– Allocate and initialize address-space control block

– Read program off disk and store in memory

– Allocate and initialize translation table
» Point at code in memory so program can execute

» Possibly point at statically initialized data

– Run Program:
» Set machine registers

» Set hardware pointer to translation table

» Set processor status word for user mode

» Jump to start of program

• How does kernel switch between processes?
– Same saving/restoring of registers as before

– Save/restore PSL (hardware pointer to translation table)

37 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

UserKernel (System Call)

• Can’t let inmate (user) get out of padded cell on own
– Would defeat purpose of protection!
– So, how does the user program get back into kernel?

• System call: Voluntary procedure call into kernel
– Hardware for controlled UserKernel transition
– Can any kernel routine be called?

» No! Only specific ones.
– System call ID encoded into system call instruction

» Index forces well-defined interface with kernel

38 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

System Call Continued

• What are some system calls?
– I/O: open, close, read, write, lseek
– Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
– Process: fork, exit, wait (like join)
– Network: socket create, set options

• Are system calls constant across operating systems?
– Not entirely, but there are lots of commonalities
– Also some standardization attempts (POSIX)

• What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started

• System Call argument passing:
– In registers (not very much can be passed)
– Write into user memory, kernel copies into kernel mem

» User addresses must be translated!w
» Kernel has different view of memory than user

– Every Argument must be explicitly checked!

39 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

UserKernel (Exceptions: Traps and Interrupts)
• A system call instruction causes a synchronous

exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions:
– Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves
registers, changes stack, etc.

• Actual handler typically saves registers, other CPU
state, and switches to kernel stack

40 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Additions to MIPS ISA to support Exceptions?

• Exception state is kept in “Coprocessor 0”
– Use mfc0 read contents of these registers:

» BadVAddr (register 8): contains memory address at which
memory reference error occurred

» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction

• Status Register fields:
– Mask: Interrupt enable

» 1 bit for each of 5 hardware and 3 software interrupts
– k = kernel/user: 0kernel mode
– e = interrupt enable: 0interrupts disabled
– Exception6 LSB shifted left 2 bits, setting 2 LSB to 0:

» run in kernel mode with interrupts disabled

Status

15 8 5 4 3 2 1 0

k e k e k e Mask
old prev cur

41 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Intel x86 Special Registers

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

80386 Special Registers

42 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Communication

• Now that we have isolated processes, how
can they communicate?

– Shared memory: common mapping to physical page
» As long as place objects in shared memory address range,

threads from each process can communicate
» Note that processes A and B can talk to shared memory

through different addresses
» In some sense, this violates the whole notion of

protection that we have been developing

– If address spaces don’t share memory, all inter-
address space communication must go through kernel
(via system calls)

» Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout

» Message passing (send/receive): Will explain later how you
can use this to build remote procedure call (RPC)
abstraction so that you can have one program make
procedure calls to another

» File System (read/write): File system is shared state!

43 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Closing thought: Protection without Hardware

• Does protection require hardware support for
translation and dual-mode behavior?

– No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)

• Protection via Strong Typing
– Restrict programming language so that you can’t express
program that would trash another program

– Loader needs to make sure that program produced by
valid compiler or all bets are off

– Example languages: LISP, Ada, Modula-3 and Java
• Protection via software fault isolation:

– Language independent approach: have compiler generate
object code that provably can’t step out of bounds

» Compiler puts in checks for every “dangerous” operation
(loads, stores, etc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)

– Or: use virtual machine to guarantee safe behavior
(loads and stores recompiled on fly to check bounds)

44 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Summary (1/2)

• Memory is a resource that must be shared
– Controlled Overlap: only shared when appropriate
– Translation: Change Virtual Addresses into Physical
Addresses

– Protection: Prevent unauthorized Sharing of resources
• Simple Protection through Segmentation

– Base+limit registers restrict memory accessible to user
– Can be used to translate as well

• Full translation of addresses through Memory
Management Unit (MMU)

– Every Access translated through page table
– Changing of page tables only available to user

• Dual-Mode
– Kernel/User distinction: User restricted
– UserKernel: System calls, Traps, or Interrupts
– Inter-process communication: shared memory, or
through kernel (system calls)

45 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Summary (2/2)

• Segment Mapping
– Segment registers within processor
– Segment ID associated with each access

» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

– Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped
through page table to physical page number

– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

• Inverted page table
– Size of page table related to physical memory size

46 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

47 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

What is in a PTE?

• What is in a Page Table Entry (or PTE)?
– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

 P: Present (same as “valid” bit in other architectures)
 W: Writeable
 U: User accessible
 PWT: Page write transparent: external cache write-through
 PCD: Page cache disabled (page cannot be cached)
 A: Accessed: page has been accessed recently
 D: Dirty (PTE only): page has been modified recently
 L: L=14MB page (directory only).
 Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS)

0 L D A

PC
D

PW
T

U W P

0 1 2 3 4 5 6 7 8 11-9 31-12

48 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Examples of how to use a PTE

• How do we use the PTE?
– Invalid PTE can imply different things:

» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory

– Validity checked first
» OS can use other (say) 31 bits for location info

• Usage Example: Demand Paging
– Keep only active pages in memory
– Place others on disk and mark their PTEs invalid

• Usage Example: Copy on Write
– UNIX fork gives copy of parent address space to child

» Address spaces disconnected after child created
– How to do this cheaply?

» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be zeroed)
– Mark PTEs as invalid; page fault on use gets zeroed page
– Often, OS creates zeroed pages in background

49 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

How is the translation accomplished?

• What, exactly happens inside MMU?
• One possibility: Hardware Tree Traversal

– For each virtual address, takes page table base pointer
and traverses the page table in hardware

– Generates a “Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture

– Pros: Relatively fast (but still many memory accesses!)
– Cons: Inflexible, Complex hardware

• Another possibility: Software
– Each traversal done in software
– Pros: Very flexible
– Cons: Every translation must invoke Fault!

• In fact, need way to cache translations for either case!

CPU MMU

Virtual
Addresses

Physical
Addresses

50 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Caching Concept

• Cache: a repository for copies that can be accessed
more quickly than the original

– Make frequent case fast and infrequent case less dominant
• Caching underlies many of the techniques that are used

today to make computers fast
– Can cache: memory locations, address translations, pages,
file blocks, file names, network routes, etc…

• Only good if:
– Frequent case frequent enough and
– Infrequent case not too expensive

• Important measure: Average Access time =
 (Hit Rate x Hit Time) + (Miss Rate x Miss Time)

51 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

CPU
µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10
yrs)

DRAM

1

10

100

1000
1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m
a
nc

e

Time

“Moore’s Law”
(really Joy’s Law)

Processor-DRAM Memory Gap (latency)

Why Bother with Caching?

“Less’ Law?”

52 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make
memory access faster than DRAM access???

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual
Address:

Offset
Virtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error >

Physical
Page #

Check Perm

Access
Error

53 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time):
– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels

Address Space
0 2n - 1

Probability
of reference

Lower Level

Memory Upper Level

Memory
To Processor

From Processor

Blk X

Blk Y

54 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Memory Hierarchy of a Modern Computer System

• Take advantage of the principle of locality to:
– Present as much memory as in the cheapest technology

– Provide access at speed offered by the fastest technology

O
n

-C
h

ip

C
a

ch
e

R
eg

isters

Control

Datapath

Secondary

Storage

(Disk)

Processor

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

1s 10,000,000s
 (10s ms)

Speed (ns): 10s-100s 100s

100s Gs Size (bytes): Ks-Ms Ms

Tertiary

Storage

(Tape)

10,000,000,000s
 (10s sec)

Ts

55 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Compulsory (cold start or process migration, first
reference): first access to a block

– “Cold” fact of life: not a whole lot you can do about it

– Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program

– Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped
to the same cache location

– Solution 1: increase cache size

– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O)
updates memory

A Summary on Sources of Cache Misses

56 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Index Used to Lookup Candidates in Cache
– Index identifies the set

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

• Block is minimum quantum of caching
– Data select field used to select data within block

– Many caching applications don’t have data select field

How is a Block found in a Cache?

Block
offset

Block Address

Tag Index

Set Select

Data Select

57 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

:

0x50

Valid Bit

:

 Cache Tag

Byte 32

0

1

2

3

:

 Cache Data

Byte 0 Byte 1 Byte 31 :

Byte 33 Byte 63 :
Byte 992 Byte 1023 : 31

Direct Mapped Cache
• Direct Mapped 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00

Cache Index

0 4 31

Cache Tag Byte Select

9

Ex: 0x01

58 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Cache Index

0 4 31

Cache Tag Byte Select

8

Cache Data

Cache Block 0

Cache Tag Valid

: : :

Cache Data

Cache Block 0

Cache Tag Valid

: : :

Mux 0 1 Sel1 Sel0

OR

Hit

Set Associative Cache

• N-way set associative: N entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block

59 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Fully Associative Cache

• Fully Associative: Every block can hold any line
– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

 Cache Data

Byte 0 Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Valid Bit

: :

 Cache Tag

0 4

Cache Tag (27 bits long) Byte Select

31

=

=

=

=

=

Ex: 0x01

60 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7 Block

no.

Direct mapped:
block 12 can go

only into block 4

(12 mod 8)

Set associative:
block 12 can go

anywhere in set 0

(12 mod 4)

0 1 2 3 4 5 6 7 Block

no.

Set

0

Set

1

Set

2

Set

3

Fully associative:
block 12 can go

anywhere

0 1 2 3 4 5 6 7 Block

no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 Block

no.

Where does a Block Get Placed in a Cache?

61 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Easy for Direct Mapped: Only one possibility

• Set Associative or Fully Associative:
– Random

– LRU (Least Recently Used)

 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random

 16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

 64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

 256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Review: Which block should be replaced on a miss?

62 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

• Write back: The information is written only to the
block in the cache.

– Modified cache block is written to main memory only
when it is replaced

– Question is block clean or dirty?
• Pros and Cons of each?

– WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
» PRO: repeated writes not sent to DRAM

 processor not held up on writes
» CON: More complex

 Read miss may require writeback of dirty data

Review: What happens on a write?

63 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Cache performance

CycleTimeyMissPenaltMissRate
Inst

MemAccess
CPIICCPUtime Execution 










• Miss-oriented Approach to Memory Access:

• Separating out Memory component entirely
– AMAT = Average Memory Access Time

• AMAT for Second-Level Cache

CycleTimeAMAT
Inst

MemAccess
CPIICCPUtime AluOps 










yMissPenaltMissRateHitTime
MissTimeMissRateHitTimeHitRateAMAT







 
 DataDataDataData

InstInstInstInst

yMissPenaltMissRateHitTimeFrac
yMissPenaltMissRateHitTimeFrac




 ststststst

ndstst

stststst

yMissPenaltMissRateHitTimeMissRateHitTime

AMATMissRateHitTime

yMissPenaltMissRateHitTimeAMAT

22211

211

1111







64 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same
page (since accesses sequential)

– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

65 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

What Actually Happens on a TLB Miss?

• Hardware traversed page tables:
– On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which

kernel decides what to do afterwards

• Software traversed Page tables (like MIPS)
– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults
since they use translation for many things

– Examples:
» shared segments
» user-level portions of an operating system

66 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

What happens on a Context Switch?

• Need to do something, since TLBs map virtual
addresses to physical addresses

– Address Space just changed, so TLB entries no
longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?

– Include ProcessID in TLB
» This is an architectural solution: needs hardware

• What if translation tables change?
– For example, to move page from memory to disk or
vice versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

67 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

What TLB organization makes sense?

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
– This argues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

68 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

TLB organization: include protection

• How big does TLB actually have to be?
– Usually small: 128-512 entries
– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

 0xFA00 0x0003 Y N Y R/W 34

 0x0040 0x0010 N Y Y R 0

 0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

69 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg

 TLB I-Cache RF Operation WB

 E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset

12 20 6

0xx User segment (caching based on PT/TLB entry)

100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among

64 user processes without TLB flush

Virtual Address Space

TLB

64 entry, on-chip, fully associative, software TLB fault handler

Combination
Segments and

Paging!

70 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V
Access
Rights PA

V page no. offset
10

P page no. offset

10

Physical Address

71 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

• Another option: Virtual Caches
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2

00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

= FN

Overlapping TLB & Cache Access

72 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Summary (1/2): Caching

• The Principle of Locality:
– Program likely to access a relatively small portion of the
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start
misses.

– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O
devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent

73 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Summary (2/2): Translation Caching (TLB)

• PTE: Page Table Entries
– Includes physical page number
– Control info (valid bit, writeable, dirty, user, etc)

• A cache of translations called a “Translation Lookaside
Buffer” (TLB)

– Relatively small number of entries (< 512)

– Fully Associative (Since conflict misses expensive)

– TLB entries contain PTE and optional process ID

• On TLB miss, page table must be traversed
– If located PTE is invalid, cause Page Fault

• On context switch/change in page table
– TLB entries must be invalidated somehow

• TLB is logically in front of cache
– Thus, needs to be overlapped with cache access to be
really fast

74 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Demand Paging

• Modern programs require a lot of physical memory
– Memory per system growing faster than 25%-30%/year

• But they don’t use all their memory all of the time
– 90-10 rule: programs spend 90% of their time in 10%
of their code

– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as cache for disk

O

n
-C

h
ip

C
a

ch
e

Control

Datapath

Secondary

Storage

(Disk)

Processor

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

Tertiary

Storage

(Tape)

Caching

75 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Page
Table

T
L
B

Illusion of Infinite Memory

• Disk is larger than physical memory 
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than
physical memory

» More programs fit into memory, allowing more concurrency
• Principle: Transparent Level of Indirection (page table)

– Supports flexible placement of physical data
» Data could be on disk or somewhere across network

– Variable location of data transparent to user program
» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB



Virtual
Memory
4 GB

76 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Demand Paging is Caching

• Since Demand Paging is Caching, must ask:
– What is block size?

» 1 page

– What is organization of this cache (i.e. direct-mapped,
set-associative, fully-associative)?

» Fully associative: arbitrary virtualphysical mapping

– How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal

– What is page replacement policy? (i.e. LRU, Random…)
» This requires more explanation… (kinda LRU)

– What happens on a miss?
» Go to lower level to fill miss (i.e. disk)

– What happens on a write? (write-through, write back)
» Definitely write-back. Need dirty bit!

77 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• PTE helps us implement demand paging
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue

» Suspended process sits on wait queue

Demand Paging Mechanisms

78 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Software-Loaded TLB

• MIPS/Nachos TLB is loaded by software
– High TLB hit rateok to trap to software to fill the
TLB, even if slower

– Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format

• How can a process run without access to page table?
– Fast path (TLB hit with valid=1):

» Translation to physical page done by hardware
– Slow path (TLB hit with valid=0 or TLB miss)

» Hardware receives a “TLB Fault”
– What does OS do on a TLB Fault?

» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “Page Fault” detailed previously
» Continue thread

• Everything is transparent to the user process:
– It doesn’t know about paging to/from disk
– It doesn’t even know about software TLB handling

79 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Transparent Exceptions

• How to transparently restart faulting instructions?
– Could we just skip it?

» No: need to perform load or store after reconnecting
physical page

• Hardware must help out by saving:
– Faulting instruction and partial state

» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

• What if an instruction has side-effects?

Load TLB
F
a
ul
ti
ng

I
ns

t
1

F
a
ul
ti
ng

I
ns

t
1

F
a
ul
ti
ng

I
ns

t
2

F
a
ul
ti
ng

I
ns

t
2

Fetch page/
Load TLB

User

OS

TLB Faults

80 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once

read-only
• What about “RISC” processors?

– For instance delayed branches?
» Example: bne somewhere
 ld r1,(sp)

» Precise exception state consists of two PCs: PC and nPC
– Delayed exceptions:

» Example: div r1, r2, r3
 ld r1, (sp)

» What if takes many cycles to discover divide by zero,
but load has already caused page fault?

81 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Precise Exceptions

• Precise  state of the machine is preserved as if
program executed up to the offending instruction

– All previous instructions completed
– Offending instruction and all following instructions act as
if they have not even started

– Same system code will work on different implementations
– Difficult in the presence of pipelining, out-of-order
execution, ...

– MIPS takes this position
• Imprecise  system software has to figure out what is

where and put it all back together
• Performance goals often lead designers to forsake

precise interrupts
– system software developers, user, markets etc. usually
wish they had not done this

• Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

82 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Steps in Handling a Page Fault

83 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Demand Paging Example

• Since Demand Paging like caching, can compute
average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

 EAT = 200ns + p x 8 ms
 = 200ns + p x 8,000,000ns
• If one access out of 1,000 causes a page fault, then

EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 > EAT  p < 2.5 x 10-6

– This is about 1 page fault in 400000!

84 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

What Factors Lead to Misses?

• Compulsory Misses:
– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later.

• Capacity Misses:
– Not enough memory. Must somehow increase size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option: If multiple processes in memory: adjust

percentage of memory allocated to each one!

• Conflict Misses:
– Technically, conflict misses don’t exist in virtual memory,
since it is a “fully-associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out
prematurely because of the replacement policy

– How to fix? Better replacement policy

85 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Page Replacement Policies

• Why do we care about Replacement Policy?
– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

– Bad, because throws out heavily used pages instead of
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time
guarantees

86 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Replacement Policies (Con’t)

• LRU (Least Recently Used):
– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that
can change position in list…

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2 Head

Tail (LRU)

87 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:

– A B C A B D A D B C B
• Consider FIFO Page replacement:

– FIFO: 7 faults.
– When referencing D, replacing A is bad choice, since
need A again right away

Example: FIFO

C

B

A

D

C

B

A

B C B D A D B A C B A

3

2

1

Ref:

Page:

88 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Suppose we have the same reference stream:
– A B C A B D A D B C B

• Consider MIN Page replacement:

– MIN: 5 faults
– Where will D be brought in? Look for page not
referenced farthest in future.

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C

D C

B

A

B C B D A D B A C B A

3

2

1

Ref:

Page:

89 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!

• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

C B A D C B A D C B A D

3

2

1

Ref:

Page:

B

C

D C

B

A

C B A D C B A D C B A D

3

2

1

Ref:

Page:

90 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the
miss rate goes down

– Does this always happen?
– Seems like it should, right?

• No: BeLady’s anomaly
– Certain replacement algorithms (FIFO) don’t have this
obvious property!

91 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Adding Memory Doesn’t Always Help Fault Rate

• Does adding memory reduce number of page faults?
– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Belady’s anomaly)

• After adding memory:

– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with
X pages are a subset of contents with X+1 Page

D

C

E

B

A

D

C

B

A

D C B A

E B A D C B A E

3

2

1

Ref:

Page:

C D 4

E

D

B

A

E

C

B

A

D C B A E B A D C B A E

3

2

1

Ref:

Page:

92 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Implementing LRU

• Perfect:
– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with
single clock hand

– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1used recently; clear and leave alone

 0selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop aroundFIFO

93 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Clock Algorithm: Not Recently Used

Set of all pages

in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• What if hand moving slowly?
– Good sign or bad sign?

» Not many page faults and/or find page quickly

• What if hand is moving quickly?
– Lots of page faults and/or lots of reference bits set

• One way to view clock algorithm:
– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

94 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Nth Chance version of Clock Algorithm

• Nth chance algorithm: Give page N chances
– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1clear use and also clear counter (used in last sweep)
» 0increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page

• What about dirty pages?
– Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

95 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Clock Algorithms: Details

• Which bits of a PTE entry are useful to us?
– Use: Set when page is referenced; cleared by clock
algorithm

– Modified: set when page is modified, cleared when page
written to disk

– Valid: ok for program to reference this page

– Read-only: ok for program to read page, but not modify
» For example for catching modifications to code pages!

• Do we really need hardware-supported “modified” bit?
– No. Can emulate it (BSD Unix) using read-only bit

» Initially, mark all pages as read-only, even data pages

» On write, trap to OS. OS sets software “modified” bit,
and marks page as read-write.

» Whenever page comes back in from disk, mark read-only

96 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Clock Algorithms Details (continued)

• Do we really need a hardware-supported “use” bit?
– No. Can emulate it similar to above:

» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits
and mark page as invalid again

• Remember, however, that clock is just an
approximation of LRU

– Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

– Need to identify an old page, not oldest page!
– Answer: second chance list

97 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list,
mark RW

– Not on SC list: page in to front of Active list, mark RW;
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid

List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

New
SC

Victims

98 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Second-Chance List Algorithm (con’t)

• How many pages for second chance list?
– If 0  FIFO
– If all  LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused
for a long time)

– Con: Increased overhead trapping to OS (software /
hardware tradeoff)

• With page translation, we can adapt to any kind of
access the program makes

– Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway

99 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages

in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)
 D

D

Free Pages
For Processes

100 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Demand Paging (more details)

• Does software-loaded TLB need use bit?
Two Options:

– Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU

• Core Map

– Page tables map virtual page  physical page

– Do we need a reverse mapping (i.e. physical page 
virtual page)?

» Yes. Clock algorithm runs through page frames. If sharing,
then multiple virtual-pages per physical page

» Can’t push page out to disk without invalidating all PTEs

101 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Allocation of Page Frames (Memory Pages)

• How do we allocate memory among different processes?
– Does every process get the same fraction of memory?
Different fractions?

– Should we completely swap some processes out of memory?
• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into
memory can make forward progress

– Example: IBM 370 – 6 pages to handle SS MOVE
instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame
from set of all frames; one process can take a frame
from another

– Local replacement – each process selects from only its own
set of allocated frames

102 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Fixed/Priority Allocation

• Equal allocation (Fixed Scheme):
– Every process gets same amount of memory
– Example: 100 frames, 5 processesprocess gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:
 si = size of process pi and S = si
 m = total number of frames

 ai = allocation for pi =

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault,
select for replacement a frame from a process with lower
priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S

si 

103 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Page-Fault Frequency Allocation

• Can we reduce Capacity misses by dynamically
changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

104 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing  a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

105 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

• Program Memory Access
Patterns have temporal
and spatial locality

– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

• Not enough memory for
Working SetThrashing

– Better to swap out
process?

Locality In A Memory-Reference Pattern

106 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Working-Set Model

•   working-set window  fixed number of page
references

– Example: 10,000 instructions
• WSi (working set of Process Pi) = total set of pages

referenced in the most recent  (varies in time)
– if  too small will not encompass entire locality
– if  too large will encompass several localities
– if  =   will encompass entire program

• D = |WSi|  total demand frames
• if D > m  Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!

107 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

What about Compulsory Misses?

• Recall that compulsory misses are misses that occur
the first time that a page is seen

– Pages that are touched for the first time

– Pages that are touched after process is swapped
out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the
faulting page

– Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application

– When swapping process back in, swap in working set

108 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Summary (1/2)

• TLB is cache on translations
– Fully associative to reduce conflicts
– Can be overlapped with cache access

• Demand Paging:
– Treat memory as cache on disk
– Cache miss  get page from disk

• Transparent Level of Indirection
– User program is unaware of activities of OS behind scenes
– Data can be moved without affecting application correctness

• Software-loaded TLB
– Fast Path: handled in hardware (TLB hit with valid=1)
– Slow Path: Trap to software to scan page table

• Precise Exception specifies a single instruction for which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have started

• Replacement policies
– FIFO: Place pages on queue, replace page at end
– MIN: replace page that will be used farthest in future
– LRU: Replace page that hasn’t be used for the longest time

109 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale

Summary (2/2)

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approx LRU
– Divide pages into two groups, one of which is truly LRU
and managed on page faults.

• Working Set:
– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out
– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

