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Virtualizing Resources 

• Physical Reality:  
Different Processes/Threads share the same hardware 

– Need to multiplex CPU (Just finished: scheduling) 
– Need to multiplex use of Memory (Today) 
– Need to multiplex disk and devices (later in term) 

• Why worry about memory sharing? 
– The complete working state of a process and/or kernel is 
defined by its data in memory (and registers) 

– Consequently, cannot just let different threads of control 
use the same memory 

» Physics: two different pieces of data cannot occupy the same 
locations in memory 

– Probably don’t want different threads to even have access 
to each other’s memory (protection) 
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Recall: Single and Multithreaded Processes 

• Threads encapsulate concurrency 
– “Active” component of a process 

• Address spaces encapsulate protection 
– Keeps buggy program from trashing the system 

– “Passive” component of a process 

 



5 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale 

Important Aspects of Memory Multiplexing 

• Controlled overlap: 
– Separate state of threads should not collide in physical 
memory.  Obviously, unexpected overlap causes chaos! 

– Conversely, would like the ability to overlap when 
desired (for communication) 

• Translation:  
– Ability to translate accesses from one address space 
(virtual) to a different one (physical) 

– When translation exists, processor uses virtual 
addresses, physical memory uses physical addresses 

– Side effects: 
» Can be used to avoid overlap 
» Can be used to give uniform view of memory to programs 

• Protection: 
– Prevent access to private memory of other processes 

» Different pages of memory can be given special behavior 
(Read Only, Invisible to user programs, etc). 

» Kernel data protected from User programs 
» Programs protected from themselves 
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Binding of Instructions and Data to Memory 
• Binding of instructions and data to addresses: 

– Choose addresses for instructions and data from the 
standpoint of the processor 

 

 
 
 
 
 
 
 

– Could we place data1, start, and/or checkit at 
different addresses?  

» Yes 
» When? Compile time/Load time/Execution time 

– Related: which physical memory locations hold particular 
instructions or data? 
 

data1: dw  32 

  …  

start: lw r1,0(data1)  

 jal checkit 

loop: addi r1, r1, -1 

 bnz  r1, r0, loop
  … 

checkit: …  

0x300 00000020 

   …    … 

0x900 8C2000C0 

0x904 0C000340 

0x908 2021FFFF 

0x90C 1420FFFF 

 … 

0xD00 … 
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Multi-step Processing of a Program for Execution 

• Preparation of a program for 
execution involves components at: 

– Compile time (i.e. “gcc”) 
– Link/Load time (unix “ld” does link) 
– Execution time (e.g. dynamic libs) 

• Addresses can be bound to final 
values anywhere in this path 

– Depends on hardware support  
– Also depends on operating system 

• Dynamic Libraries 
– Linking postponed until execution 
– Small piece of code, stub, used to 
locate the appropriate memory-
resident library routine 

– Stub replaces itself with the 
address of the routine, and 
executes routine 
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Uniprogramming 

• Uniprogramming (no Translation or Protection) 
– Application always runs at same place in physical 
memory since only one application at a time 

– Application can access any physical address 

 

 

 

 

 

 

 

– Application given illusion of dedicated machine by giving 
it reality of a dedicated machine 

• Of course, this doesn’t help us with multithreading 
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Multiprogramming (First Version) 

• Multiprogramming without Translation or Protection 
– Must somehow prevent address overlap between threads 
 
 
 
 
 
 
 
 

– Trick: Use Loader/Linker: Adjust addresses while 
program loaded into memory (loads, stores, jumps) 

» Everything adjusted to memory location of program 
» Translation done by a linker-loader 
» Was pretty common in early days 

• With this solution, no protection: bugs in any program 
can cause other programs to crash or even the OS 

0x00000000 

0xFFFFFFFF 

Application1 

Operating 
System 

Application2 0x00020000 
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Multiprogramming (Version with Protection) 

• Can we protect programs from each other without 
translation? 

 
 
 
 
 
 
 
 

– Yes: use two special registers Base and Limit to prevent 
user from straying outside designated area 

» If user tries to access an illegal address, cause an error 

– During switch, kernel loads new base/limit from TCB 
» User not allowed to change base/limit registers 

 

0x00000000 

0xFFFFFFFF 

Application1 

Operating 
System 

Application2 0x00020000 Base=0x20000 

Limit=+0x10000 
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Segmentation with Base and Limit registers 

• Could use base/limit for dynamic address translation 
(often called “segmentation”): 

– Alter address of every load/store by adding “base” 
– User allowed to read/write within segment 

» Accesses are relative to segment so don’t have to be 
relocated when program moved to different segment 

– User may have multiple segments available (e.g x86) 
» Loads and stores include segment ID in opcode: 

 x86 Example: mov [es:bx],ax.  
» Operating system moves around segment base pointers as 

necessary 

DRAM 

<? 

+ 

Base 

Limit 

CPU 

Virtual 
Address 

Physical 
Address 

No: Error! 
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Issues with simple segmentation method 

• Fragmentation problem 
– Not every process is the same size 

– Over time, memory space becomes fragmented 

• Hard to do inter-process sharing 
– Want to share code segments when possible 

– Want to share memory between processes 

– Helped by by providing multiple segments per process 

• Need enough physical memory for every process 

process 6 

process 5 

process 2 

OS 

process 6 

process 5 

OS 

process 6 

process 5 

OS 

process 6 

process 5 

process 9 

OS 

process 9 

process 10 
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Multiprogramming (Translation and Protection version 2)  

• Problem: Run multiple applications in such a way that 
they are protected from one another 

• Goals:  
– Isolate processes and kernel from one another 
– Allow flexible translation that: 

» Doesn’t lead to fragmentation 
» Allows easy sharing between processes 
» Allows only part of process to be resident in physical 

memory 

• (Some of the required) Hardware Mechanisms: 
– General Address Translation 

» Flexible: Can fit physical chunks of memory into arbitrary 
places in users address space 

» Not limited to small number of segments 
» Think of this as providing a large number (thousands) of 

fixed-sized segments (called “pages”) 
– Dual Mode Operation 

» Protection base involving kernel/user distinction 
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Example of General Address Translation 

Prog 1 
Virtual 
Address 
Space 1 

Prog 2 
Virtual 
Address 
Space 2 

Code 

Data 

Heap 

Stack 

Code 

Data 

Heap 

Stack 

Data 2 

Stack 1 

Heap 1 

OS heap &  
Stacks 

Code 1 

Stack 2 

Data 1 

Heap 2 

Code 2 

OS code 

OS data Translation Map 1 Translation Map 2 

Physical Address Space 
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Two Views of Memory 

• Recall: Address Space: 
– All the addresses and state a process can touch 
– Each process and kernel has different address space 

• Consequently: two views of memory: 
– View from the CPU (what program sees, virtual memory) 
– View fom memory (physical memory) 
– Translation box converts between the two views 

• Translation helps to implement protection 
– If task A cannot even gain access to task B’s data, no 
way for A to adversely affect B 

• With translation, every program can be linked/loaded 
into same region of user address space 

– Overlap avoided through translation, not relocation 

Physical 
Addresses CPU MMU 

Virtual 
Addresses 

Untranslated read or write 
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Example of Translation Table Format 

Two-level Page Tables 

32-bit address: 

P1 index P2 index page offset 

10 10 12 

4 bytes 

4 bytes 

4KB 

1K 
PTEs 

• Page: a unit of memory translatable by 
memory management unit (MMU) 

– Typically 1K – 8K 
• Page table structure in memory 

– Each user has different page table 
• Address Space switch: change pointer 

to base of table (hardware register) 
– Hardware traverses page table (for 
many architectures) 

– MIPS uses software to traverse table 
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 - Segmentation 

 - Paging 

 - Multi-level translation 

 - Paged page tables 

 - Inverted page tables 

 

 

 
 

 

   

Address Translation Schemes 
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More Flexible Segmentation 

• Logical View: multiple separate segments 
– Typical: Code, Data, Stack 
– Others: memory sharing, etc 

• Each segment is given region of contiguous memory 
– Has a base and limit 
– Can reside anywhere in physical memory 

1 

3 

2 

4 

user view of 
memory space  

1 

4 

2 

3 

physical  
memory space 

1 

2 
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Implementation of Multi-Segment Model 

• Segment map resides in processor 
– Segment number mapped into base/limit pair 
– Base added to offset to generate physical address 
– Error check catches offset out of range 

• As many chunks of physical memory as entries 
– Segment addressed by portion of virtual address 
– However, could be included in instruction instead: 

» x86 Example: mov [es:bx],ax.  
• What is “V/N”? 

– Can mark segments as invalid; requires check as well 

Base0 Limit0 V 
Base1 Limit1 V 
Base2 Limit2 V 
Base3 Limit3 N 
Base4 Limit4 V 
Base5 Limit5 N 
Base6 Limit6 N 
Base7 Limit7 V 

Offset Seg # Virtual 
Address 

Base2 Limit2 V 

+ Physical 
Address 

> Error 
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Intel x86 Special Registers 

Typical Segment Register 
Current Priority is RPL 
Of Code Segment (CS) 

80386 Special Registers 
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Example: Four Segments (16 bit addresses) 

Seg ID # Base Limit 

0 (code) 0x4000 0x0800 

1 (data) 0x4800 0x1400 

2 (shared) 0xF000 0x1000 

3 (stack) 0x0000 0x3000 

Offset Seg 
0 14 13 15 

0x4000 

0x0000 

0x8000 

0xC000 

Virtual 
Address Space 

Virtual Address Format 

0x0000 

0x4800 

0x5C00 

0x4000 

0xF000 

Physical 
Address Space 

Space for 
Other Apps 

Shared with 
Other Apps 

Might  
be shared 
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Example of segment translation 

Let’s simulate a bit of this code to see what happens (PC=0x240): 
1. Fetch 0x240. Virtual segment #? 0; Offset? 0x240 
 Physical address? Base=0x4000, so physical addr=0x4240 
 Fetch instruction at 0x4240. Get “la $a0, varx” 
 Move 0x4050  $a0, Move PC+4PC 
2. Fetch 0x244. Translated to Physical=0x4244.  Get “jal strlen” 

Move 0x0248  $ra (return address!), Move 0x0360  PC 
3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0,0” 

Move 0x0000  $v0, Move PC+4PC 
4. Fetch 0x364. Translated to Physical=0x4364. Get “lb $t0,($a0)” 

Since $a0 is 0x4050, try to load byte from 0x4050 
 Translate 0x4050. Virtual segment #? 1; Offset? 0x50 

Physical address? Base=0x4800, Physical addr = 0x4850,  
 Load Byte from 0x4850$t0, Move PC+4PC 
 

0x240 main: la $a0, varx 

0x244  jal strlen 

  …     … 

0x360 strlen: li  $v0, 0  ;count 

0x364 loop: lb  $t0, ($a0) 

0x368  beq $r0,$t1, done 

  …     … 

0x4050 varx dw 0x314159 

Seg ID # Base Limit 

0 (code) 0x4000 0x0800 

1 (data) 0x4800 0x1400 

2 (shared) 0xF000 0x1000 

3 (stack) 0x0000 0x3000 



23 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale 

Observations about Segmentation 

• Virtual address space has holes 
– Segmentation efficient for sparse address spaces 
– A correct program should never address gaps (except 
as mentioned in moment) 

» If it does, trap to kernel and dump core 

• When it is OK to address outside valid range: 
– This is how the stack and heap are allowed to grow 
– For instance, stack takes fault, system automatically 
increases size of stack 

• Need protection mode in segment table 
– For example, code segment would be read-only 
– Data and stack would be read-write (stores allowed) 
– Shared segment could be read-only or read-write 

• What must be saved/restored on context switch? 
– Segment table stored in CPU, not in memory (small) 
– Might store all of processes memory onto disk when 
switched (called “swapping”) 
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Schematic View of Swapping 

• Extreme form of Context Switch: Swapping 
– In order to make room for next process, some or all 
of the previous process is moved to disk 

» Likely need to send out complete segments  
– This greatly increases the cost of context-switching 

• Desirable alternative? 
– Some way to keep only active portions of a process in 
memory at any one time 

– Need finer granularity control over physical memory 
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Paging: Physical Memory in Fixed Size Chunks 
• Problems with segmentation? 

– Must fit variable-sized chunks into physical memory 
– May move processes multiple times to fit everything 
– Limited options for swapping to disk 

• Fragmentation: wasted space 
– External: free gaps between allocated chunks 
– Internal: don’t need all memory within allocated chunks 

• Solution to fragmentation from segments? 
– Allocate physical memory in fixed size chunks (“pages”) 
– Every chunk of physical memory is equivalent 

» Can use simple vector of bits to handle allocation: 
 00110001110001101 … 110010 

» Each bit represents page of physical memory 
 1allocated, 0free 

• Should pages be as big as our previous segments? 
– No: Can lead to lots of internal fragmentation 

» Typically have small pages (1K-16K) 
– Consequently: need multiple pages/segment 



26 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale 

Physical Address 

Offset 

How to Implement Paging? 

• Page Table (One per process) 
– Resides in physical memory 
– Contains physical page and permission for each virtual page 

» Permissions include: Valid bits, Read, Write, etc 
• Virtual address mapping 

– Offset from Virtual address copied to Physical Address 
» Example: 10 bit offset  1024-byte pages 

– Virtual page # is all remaining bits 
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries 
» Physical page # copied from table into physical address 

– Check Page Table bounds and permissions 

Offset 
Virtual 
Page # Virtual Address: 

Access 
Error 

> PageTableSize 

PageTablePtr page #0 

page #2 
page #3 
page #4 
page #5 

V,R 

page #1 V,R 

V,R,W 

V,R,W 

N 

V,R,W 

page #1 V,R 

Check Perm 

Access 
Error 

Physical 
Page # 
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PageTablePtrB page #0 
page #1 
page #2 
page #3 

page #5 

V,R 

N 

V,R,W 

N 

page #4 V,R 

V,R,W 

page #4 V,R 

What about Sharing? 

Offset 
Virtual 
Page # 

Virtual Address 
(Process A): 

PageTablePtrA page #0 
page #1 

page #3 
page #4 
page #5 

V,R 

V,R 

page #2 V,R,W 

V,R,W 

N 

V,R,W 

Offset 
Virtual 
Page # 

Virtual Address: 
Process B 

Shared 
Page 

This physical page 
appears in address 

space of both processes 

page #2 V,R,W 
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Simple Page Table Discussion 

• What needs to be switched on a context switch?  
– Page table pointer and limit 

• Simple Page Table Analysis 
– Pros 

» Simple memory allocation 
» Easy to Share 

– Con: What if address space is sparse? 
» E.g. on UNIX, code starts at 0, stack starts at (231-1). 
» With 1K pages, need 4 million page table entries! 

– Con: What if table really big? 
» Not all pages used all the time  would be nice to have 

working set of page table in memory 

• How about combining paging and segmentation? 
– Segments with pages inside them? 
– Need some sort of multi-level translation 
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• What about a tree of tables? 
– Lowest level page tablememory still allocated with bitmap 
– Higher levels often segmented 

• Could have any number of levels. Example (top segment): 
 
 
 
 
 
 
 
 
 
 

• What must be saved/restored on context switch? 
– Contents of top-level segment registers (for this example) 
– Pointer to top-level table (page table) 

 

Multi-level Translation: Segments + Pages 

page #0 
page #1 

page #3 
page #4 
page #5 

V,R 

V,R 

page #2 V,R,W 

V,R,W 

N 

V,R,W 

Offset 

Physical Address 

Virtual  
Address: 

Offset 
Virtual 
Page # 

Virtual 
Seg # 

Base0 Limit0 V 
Base1 Limit1 V 
Base2 Limit2 V 
Base3 Limit3 N 
Base4 Limit4 V 
Base5 Limit5 N 
Base6 Limit6 N 
Base7 Limit7 V 

Base2 Limit2 V 

Access 
Error > 

page #2 V,R,W 

Physical 
Page # 

Check Perm 

Access 
Error 
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What about Sharing (Complete Segment)? 

Process 
A 

Offset 
Virtual 
Page # 

Virtual 
Seg # 

Base0 Limit0 V 
Base1 Limit1 V 
Base2 Limit2 V 
Base3 Limit3 N 
Base4 Limit4 V 
Base5 Limit5 N 
Base6 Limit6 N 
Base7 Limit7 V 

Base2 Limit2 V 

page #0 
page #1 
page #2 
page #3 
page #4 
page #5 

V,R 

V,R 

V,R,W 

V,R,W 

N 

V,R,W 

Shared Segment 

Process 
B 

Offset 
Virtual 
Page # 

Virtual 
Seg # 

Base0 Limit0 V 
Base1 Limit1 V 
Base2 Limit2 V 
Base3 Limit3 N 
Base4 Limit4 V 
Base5 Limit5 N 
Base6 Limit6 N 
Base7 Limit7 V 

Base2 Limit2 V 
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Physical 
Address: 

Offset 
Physical 
Page # 

4KB 

Another common example: two-level page table 

10 bits 10 bits 12 bits 
Virtual  
Address: 

Offset 
Virtual 
P2 index 

Virtual 
P1 index 

4 bytes 

PageTablePtr 

• Tree of Page Tables 
• Tables fixed size (1024 entries) 

– On context-switch: save single 
PageTablePtr register 

• Valid bits on Page Table Entries  
– Don’t need every 2nd-level table 
– Even when exist, 2nd-level tables 
can reside on disk if not in use 

4 bytes 
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Multi-level Translation Analysis 

• Pros: 
– Only need to allocate as many page table entries as we 
need for application 

» In other wards, sparse address spaces are easy 
– Easy memory allocation 
– Easy Sharing 

» Share at segment or page level (need additional reference 
counting) 

• Cons: 
– One pointer per page (typically 4K – 16K pages today) 
– Page tables need to be contiguous 

» However, previous example keeps tables to exactly one 
page in size 

– Two (or more, if >2 levels) lookups per reference 
» Seems very expensive! 
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• With all previous examples (“Forward Page Tables”) 
– Size of page table is at least as large as amount of 
virtual memory allocated to processes 

– Physical memory may be much less 
» Much of process space may be out on disk or not in use 

 
 
 
 
 

 
• Answer: use a hash table 

– Called an “Inverted Page Table” 
– Size is independent of virtual address space 
– Directly related to amount of physical memory 
– Very attractive option for 64-bit address spaces 

• Cons: Complexity of managing hash changes 
– Often in hardware! 

Inverted Page Table 

Offset 
Virtual 
Page # 

Hash 
Table 

Offset 
Physical 
Page # 
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Dual-Mode Operation 

• Can Application Modify its own translation tables? 
– If it could, could get access to all of physical memory 
– Has to be restricted somehow 

• To Assist with Protection, Hardware provides at 
least two modes (Dual-Mode Operation): 

– “Kernel” mode (or “supervisor” or “protected”) 
– “User” mode (Normal program mode) 
– Mode set with bits in special control register only 
accessible in kernel-mode 

• Intel processor actually has four “rings” of 
protection: 

– PL (Priviledge Level) from 0 – 3 
» PL0 has full access, PL3 has least 

– Privilege Level set in code segment descriptor (CS) 
– Mirrored “IOPL” bits in condition register gives 
permission to programs to use the I/O instructions 

– Typical OS kernels on Intel processors only use PL0 
(“user”) and PL3 (“kernel”) 
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For Protection, Lock User-Programs in Asylum 
• Idea: Lock user programs in padded cell  

with no exit or sharp objects 
– Cannot change mode to kernel mode 
– User cannot modify page table mapping  
– Limited access to memory: cannot  
adversely effect other processes 

» Side-effect: Limited access to  
memory-mapped I/O operations  
(I/O that occurs by reading/writing memory locations) 

– Limited access to interrupt controller  
– What else needs to be protected? 

• A couple of issues 
– How to share CPU between kernel and user programs?  

» Kinda like both the inmates and the warden in asylum are 
the same person.  How do you manage this??? 

– How do programs interact? 
– How does one switch between kernel and user modes? 

» OS  user (kernel  user mode): getting into cell 
» User OS (user  kernel mode): getting out of cell 
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How to get from KernelUser 

• What does the kernel do to create a new user 
process? 

– Allocate and initialize address-space control block 

– Read program off disk and store in memory 

– Allocate and initialize translation table  
» Point at code in memory so program can execute 

» Possibly point at statically initialized data 

– Run Program: 
» Set machine registers 

» Set hardware pointer to translation table 

» Set processor status word for user mode 

» Jump to start of program 

• How does kernel switch between processes? 
– Same saving/restoring of registers as before 

– Save/restore PSL (hardware pointer to translation table) 
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UserKernel (System Call) 

• Can’t let inmate (user) get out of padded cell on own 
– Would defeat purpose of protection! 
– So, how does the user program get back into kernel? 

 
 
 
 
 
 
 

• System call: Voluntary procedure call into kernel 
– Hardware for controlled UserKernel transition 
– Can any kernel routine be called? 

» No!  Only specific ones. 
– System call ID encoded into system call instruction 

» Index forces well-defined interface with kernel 
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System Call Continued 

• What are some system calls? 
– I/O: open, close, read, write, lseek 
– Files: delete, mkdir, rmdir, truncate, chown, chgrp, .. 
– Process: fork, exit, wait (like join) 
– Network: socket create, set options 

• Are system calls constant across operating systems? 
– Not entirely, but there are lots of commonalities 
– Also some standardization attempts (POSIX) 

• What happens at beginning of system call? 
» On entry to kernel, sets system to kernel mode 
» Handler address fetched from table/Handler started 

• System Call argument passing: 
– In registers (not very much can be passed) 
– Write into user memory, kernel copies into kernel mem 

» User addresses must be translated!w 
» Kernel has different view of memory than user 

– Every Argument must be explicitly checked! 
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UserKernel (Exceptions: Traps and Interrupts) 
• A system call instruction causes a synchronous 

exception (or “trap”) 
– In fact, often called a software “trap” instruction 

• Other sources of Synchronous Exceptions: 
– Divide by zero, Illegal instruction, Bus error (bad 
address, e.g. unaligned access) 

– Segmentation Fault (address out of range) 
– Page Fault (for illusion of infinite-sized memory) 

• Interrupts are Asynchronous Exceptions 
– Examples: timer, disk ready, network, etc…. 
– Interrupts can be disabled, traps cannot! 

• On system call, exception, or interrupt: 
– Hardware enters kernel mode with interrupts disabled 
– Saves PC, then jumps to appropriate handler in kernel 
– For some processors (x86), processor also saves 
registers, changes stack, etc. 

• Actual handler typically saves registers, other CPU 
state, and switches to kernel stack 
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Additions to MIPS ISA to support Exceptions? 

• Exception state is kept in “Coprocessor 0” 
– Use mfc0 read contents of these registers: 

» BadVAddr (register 8): contains memory address at which 
memory reference error occurred 

» Status (register 12): interrupt mask and enable bits  
» Cause (register 13): the cause of the exception 
» EPC (register 14): address of the affected instruction 

 
 
 

• Status Register fields: 
– Mask: Interrupt enable 

» 1 bit for each of 5 hardware and 3 software interrupts 
– k = kernel/user:  0kernel mode 
– e = interrupt enable: 0interrupts disabled 
– Exception6 LSB shifted left 2 bits, setting 2 LSB to 0: 

» run in kernel mode with interrupts disabled  

Status 

15 8 5 4 3 2 1 0 

k e k e k e Mask 
old prev cur 
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Intel x86 Special Registers 

Typical Segment Register 
Current Priority is RPL 
Of Code Segment (CS) 

80386 Special Registers 
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Communication 

• Now that we have isolated processes, how  
can they communicate? 

– Shared memory: common mapping to physical page 
» As long as place objects in shared memory address range, 

threads from each process can communicate 
» Note that processes A and B can talk to shared memory 

through different addresses 
» In some sense, this violates the whole notion of 

protection that we have been developing 

– If address spaces don’t share memory, all inter-
address space communication must go through kernel 
(via system calls) 

» Byte stream producer/consumer (put/get): Example, 
communicate through pipes connecting stdin/stdout 

» Message passing (send/receive): Will explain later how you 
can use this to build remote procedure call (RPC) 
abstraction so that you can have one program make 
procedure calls to another 

» File System (read/write): File system is shared state! 
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Closing thought: Protection without Hardware 

• Does protection require hardware support for 
translation and dual-mode behavior? 

– No: Normally use hardware, but anything you can do in 
hardware can also do in software (possibly expensive) 

• Protection via Strong Typing 
– Restrict programming language so that you can’t express 
program that would trash another program 

– Loader needs to make sure that program produced by 
valid compiler or all bets are off 

– Example languages: LISP, Ada, Modula-3 and Java 
• Protection via software fault isolation: 

– Language independent approach: have compiler generate 
object code that provably can’t step out of bounds 

» Compiler puts in checks for every “dangerous” operation 
(loads, stores, etc). Again, need special loader. 

» Alternative, compiler generates “proof” that code cannot 
do certain things (Proof Carrying Code) 

– Or: use virtual machine to guarantee safe behavior 
(loads and stores recompiled on fly to check bounds) 
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Summary (1/2)  

• Memory is a resource that must be shared 
– Controlled Overlap: only shared when appropriate 
– Translation: Change Virtual Addresses into Physical 
Addresses 

– Protection: Prevent unauthorized Sharing of resources 
• Simple Protection through Segmentation 

– Base+limit registers restrict memory accessible to user 
– Can be used to translate as well 

• Full translation of addresses through Memory 
Management Unit (MMU) 

– Every Access translated through page table 
– Changing of page tables only available to user 

• Dual-Mode 
– Kernel/User distinction: User restricted 
– UserKernel: System calls, Traps, or Interrupts 
– Inter-process communication: shared memory, or 
through kernel (system calls) 
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Summary (2/2) 

• Segment Mapping 
– Segment registers within processor 
– Segment ID associated with each access 

» Often comes from portion of virtual address 
» Can come from bits in instruction instead (x86) 

– Each segment contains base and limit information  
» Offset (rest of address) adjusted by adding base 

• Page Tables 
– Memory divided into fixed-sized chunks of memory 
– Virtual page number from virtual address mapped 
through page table to physical page number 

– Offset of virtual address same as physical address 
– Large page tables can be placed into virtual memory 

• Multi-Level Tables 
– Virtual address mapped to series of tables 
– Permit sparse population of address space 

• Inverted page table 
– Size of page table related to physical memory size 
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What is in a PTE? 

• What is in a Page Table Entry (or PTE)? 
– Pointer to next-level page table or to actual page 
– Permission bits: valid, read-only, read-write, write-only 

• Example: Intel x86 architecture PTE: 
– Address same format previous slide (10, 10, 12-bit offset) 
– Intermediate page tables called “Directories” 
 

 
 

  P:  Present (same as “valid” bit in other architectures)  
  W:  Writeable 
  U:  User accessible 
 PWT: Page write transparent: external cache write-through 
  PCD: Page cache disabled (page cannot be cached) 
  A:  Accessed: page has been accessed recently 
  D:  Dirty (PTE only): page has been modified recently 
  L:  L=14MB page (directory only). 
  Bottom 22 bits of virtual address serve as offset 

Page Frame Number 
(Physical Page Number) 

Free 
(OS) 

0 L D A 

PC
D
 

PW
T
 

U W P 

0 1 2 3 4 5 6 7 8 11-9 31-12 
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Examples of how to use a PTE 

• How do we use the PTE? 
– Invalid PTE can imply different things: 

» Region of address space is actually invalid or  
» Page/directory is just somewhere else than memory 

– Validity checked first 
» OS can use other (say) 31 bits for location info 

• Usage Example: Demand Paging 
– Keep only active pages in memory 
– Place others on disk and mark their PTEs invalid 

• Usage Example: Copy on Write 
– UNIX fork gives copy of parent address space to child 

» Address spaces disconnected after child created 
– How to do this cheaply?   

» Make copy of parent’s page tables (point at same memory) 
» Mark entries in both sets of page tables as read-only 
» Page fault on write creates two copies  

• Usage Example: Zero Fill On Demand 
– New data pages must carry no information (say be zeroed) 
– Mark PTEs as invalid; page fault on use gets zeroed page 
– Often, OS creates zeroed pages in background 
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How is the translation accomplished? 

• What, exactly happens inside MMU? 
• One possibility: Hardware Tree Traversal 

– For each virtual address, takes page table base pointer 
and traverses the page table in hardware 

– Generates a “Page Fault” if it encounters invalid PTE 
» Fault handler will decide what to do 
» More on this next lecture 

– Pros: Relatively fast (but still many memory accesses!) 
– Cons: Inflexible, Complex hardware 

• Another possibility: Software 
– Each traversal done in software 
– Pros: Very flexible 
– Cons: Every translation must invoke Fault! 

• In fact, need way to cache translations for either case! 

CPU MMU 

Virtual 
Addresses 

Physical 
Addresses 
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Caching Concept 

• Cache: a repository for copies that can be accessed 
more quickly than the original 

– Make frequent case fast and infrequent case less dominant 
• Caching underlies many of the techniques that are used 

today to make computers fast 
– Can cache: memory locations, address translations, pages, 
file blocks, file names, network routes, etc… 

• Only good if: 
– Frequent case frequent enough and 
– Infrequent case not too expensive 

• Important measure: Average Access time =  
 (Hit Rate x Hit Time) + (Miss Rate x Miss Time) 
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CPU 
µProc 
60%/yr. 
(2X/1.5yr) 
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9%/yr. 
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“Moore’s Law” 
(really Joy’s Law) 

Processor-DRAM Memory Gap (latency) 

Why Bother with Caching? 

“Less’ Law?” 
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• Cannot afford to translate on every access 
– At least three DRAM accesses per actual DRAM access 
– Or: perhaps I/O if page table partially on disk! 

• Even worse: What if we are using caching to make 
memory access faster than DRAM access??? 

• Solution? Cache translations! 
– Translation Cache: TLB (“Translation Lookaside Buffer”) 

Another Major Reason to Deal with Caching 

page #0 
page #1 

page #3 
page #4 
page #5 

V,R 

V,R 

page #2 V,R,W 

V,R,W 

N 

V,R,W 

Offset 

Physical Address 

Virtual  
Address: 

Offset 
Virtual 
Page # 

Virtual 
Seg # 

Base0 Limit0 V 
Base1 Limit1 V 
Base2 Limit2 V 
Base3 Limit3 N 
Base4 Limit4 V 
Base5 Limit5 N 
Base6 Limit6 N 
Base7 Limit7 V Access 

Error > 

Physical 
Page # 

Check Perm 

Access 
Error 
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Why Does Caching Help? Locality! 

• Temporal Locality (Locality in Time): 
– Keep recently accessed data items closer to processor 

• Spatial Locality (Locality in Space): 
– Move contiguous blocks to the upper levels  

Address Space 
0 2n - 1 

Probability 
of reference 

Lower Level 

Memory Upper Level 

Memory 
To Processor 

From Processor 

Blk X 

Blk Y 
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Memory Hierarchy of a Modern Computer System 

• Take advantage of the principle of locality to: 
– Present as much memory as in the cheapest technology 

– Provide access at speed offered by the fastest technology 
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n
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• Compulsory (cold start or process migration, first 
reference): first access to a block 

– “Cold” fact of life: not a whole lot you can do about it 

– Note: If you are going to run “billions” of instruction, 
Compulsory Misses are insignificant 

• Capacity: 
– Cache cannot contain all blocks access by the program 

– Solution: increase cache size 

• Conflict (collision): 
– Multiple  memory locations  mapped 
to the same cache location 

– Solution 1: increase  cache size 

– Solution 2: increase associativity 

• Coherence (Invalidation): other process (e.g., I/O) 
updates memory  

A Summary on Sources of Cache Misses 
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• Index Used to Lookup Candidates in Cache 
– Index identifies the set  

• Tag used to identify actual copy 
– If no candidates match, then declare cache miss 

• Block is minimum quantum of caching 
– Data select field used to select data within block 

– Many caching applications don’t have data select field 

 

How is a Block found in a Cache? 

Block 
offset 

Block Address 

Tag Index 

Set Select 

Data Select 
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: 

0x50 

Valid Bit 

: 

 Cache Tag 

Byte 32 

0 

1 

2 

3 

: 

 Cache Data 

Byte 0 Byte 1 Byte 31 : 

Byte 33 Byte 63 : 
Byte 992 Byte 1023 : 31 

Direct Mapped Cache 
• Direct Mapped 2N byte cache: 

– The uppermost (32 - N) bits are always the Cache Tag 
– The lowest M bits are the Byte Select (Block Size = 2M) 

• Example: 1 KB Direct Mapped Cache with 32 B Blocks 
– Index chooses potential block 
– Tag checked to verify block 
– Byte select chooses byte within block 

Ex: 0x50 Ex: 0x00 

Cache Index 

0 4 31 

Cache Tag Byte Select 

9 

Ex: 0x01 
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Cache Index 

0 4 31 

Cache Tag Byte Select 

8 

Cache Data 

Cache Block 0 

Cache Tag Valid 

: : : 

Cache Data 

Cache Block 0 

Cache Tag Valid 

: : : 

Mux 0 1 Sel1 Sel0 

OR 

Hit 

Set Associative Cache 

• N-way set associative: N entries per Cache Index 
– N direct mapped caches operates in parallel 

• Example: Two-way set associative cache 
– Cache Index selects a “set” from the cache 
– Two tags in the set are compared to input in parallel 
– Data is selected based on the tag result 

Compare Compare 

Cache Block 
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Fully Associative Cache 

• Fully Associative: Every block can hold any line 
– Address does not include a cache index 
– Compare Cache Tags of all Cache Entries in Parallel 

• Example: Block Size=32B blocks 
– We need N 27-bit comparators 
– Still have byte select to choose from within block 

 

: 

 Cache Data 

Byte 0 Byte 1 Byte 31 : 

Byte 32 Byte 33 Byte 63 : 

Valid Bit 

: : 

 Cache Tag 

0 4 

Cache Tag (27 bits long) Byte Select 

31 

= 

= 

= 

= 

= 

Ex: 0x01 
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• Example: Block 12 placed in 8 block cache 

0 1 2 3 4 5 6 7 Block 

no. 

Direct mapped: 
block 12 can go 

only into block 4 

(12 mod 8) 

Set associative: 
block 12 can go 

anywhere in set 0 

(12 mod 4) 

0 1 2 3 4 5 6 7 Block 

no. 

Set 

0 

Set 

1 

Set 

2 

Set 

3 

Fully associative: 
block 12 can go 

anywhere 

0 1 2 3 4 5 6 7 Block 

no. 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

32-Block Address Space: 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 Block 

no. 

Where does a Block Get Placed in a Cache? 



61 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale 

• Easy for Direct Mapped: Only one possibility 

• Set Associative or Fully Associative: 
– Random 

– LRU (Least Recently Used) 

 

             2-way        4-way          8-way 
Size LRU Random  LRU Random  LRU Random 

 16 KB 5.2% 5.7%    4.7% 5.3% 4.4% 5.0% 

 64 KB 1.9% 2.0%    1.5% 1.7% 1.4% 1.5% 

 256 KB 1.15% 1.17%   1.13%  1.13% 1.12% 1.12% 

 

Review: Which block should be replaced on a miss? 
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• Write through: The information is written to both the 
block in the cache and to the block in the lower-level 
memory 

• Write back: The information is written only to the 
block in the cache.  

– Modified cache block is written to main memory only 
when it is replaced 

– Question is block clean or dirty? 
• Pros and Cons of each? 

– WT:  
» PRO: read misses cannot result in writes 
» CON: Processor held up on writes unless writes buffered 

– WB:  
» PRO: repeated writes not sent to DRAM 

  processor not held up on writes 
» CON: More complex 

  Read miss may require writeback of dirty data 

Review: What happens on a write? 



63 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale 

Cache performance 

CycleTimeyMissPenaltMissRate
Inst

MemAccess
CPIICCPUtime Execution 










• Miss-oriented Approach to Memory Access: 

 

 

• Separating out Memory component entirely 
– AMAT = Average Memory Access Time 

 

 

 

 

 

• AMAT for Second-Level Cache 
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Caching Applied to Address Translation 

• Question is one of page locality: does it exist? 
– Instruction accesses spend a lot of time on the same 
page (since accesses sequential) 

– Stack accesses have definite locality of reference 
– Data accesses have less page locality, but still some… 

• Can we have a TLB hierarchy? 
– Sure: multiple levels at different sizes/speeds 
 

Data Read or Write 
(untranslated) 

CPU Physical 
Memory 

TLB 

Translate 
(MMU) 

No 

Virtual 
Address 

Physical 
Address 

Yes 
Cached? 
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What Actually Happens on a TLB Miss? 

• Hardware traversed page tables: 
– On TLB miss, hardware in MMU looks at current page 
table to fill TLB (may walk multiple levels) 

» If PTE valid, hardware fills TLB and processor never knows 
» If PTE marked as invalid, causes Page Fault, after which 

kernel decides what to do afterwards 

• Software traversed Page tables (like MIPS) 
– On TLB miss, processor receives TLB fault 
– Kernel traverses page table to find PTE 

» If PTE valid, fills TLB and returns from fault 
» If PTE marked as invalid, internally calls Page Fault handler 

• Most chip sets provide hardware traversal 
– Modern operating systems tend to have more TLB faults 
since they use translation for many things 

– Examples:  
» shared segments 
» user-level portions of an operating system 
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What happens on a Context Switch? 

• Need to do something, since TLBs map virtual 
addresses to physical addresses 

– Address Space just changed, so TLB entries no 
longer valid! 

• Options? 
– Invalidate TLB: simple but might be expensive 

» What if switching frequently between processes? 

– Include ProcessID in TLB 
» This is an architectural solution: needs hardware 

• What if translation tables change? 
– For example, to move page from memory to disk or 
vice versa… 

– Must invalidate TLB entry! 
» Otherwise, might think that page is still in memory! 
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What TLB organization makes sense? 

• Needs to be really fast 
– Critical path of memory access  

» In simplest view: before the cache 
» Thus, this adds to access time (reducing cache speed) 

– Seems to argue for Direct Mapped or Low Associativity 
• However, needs to have very few conflicts! 

– With TLB, the Miss Time extremely high! 
– This argues that cost of Conflict (Miss Time) is much 
higher than slightly increased cost of access (Hit Time) 

• Thrashing: continuous conflicts between accesses 
– What if use low order bits of page as index into TLB? 

» First page of code, data, stack may map to same entry 
» Need 3-way associativity at least? 

– What if use high order bits as index? 
» TLB mostly unused for small programs 

CPU TLB Cache Memory 
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TLB organization: include protection 

• How big does TLB actually have to be? 
– Usually small: 128-512 entries 
– Not very big, can support higher associativity 

• TLB usually organized as fully-associative cache 
– Lookup is by Virtual Address 
– Returns Physical Address + other info 

• What happens when fully-associative is too slow? 
– Put a small (4-16 entry) direct-mapped cache in front 
– Called a “TLB Slice” 

• Example for MIPS R3000: 
 
 
 
 

 

 0xFA00 0x0003 Y N Y R/W 34 

 0x0040 0x0010 N Y Y R 0 

 0x0041 0x0011 N Y Y R 0 

Virtual Address   Physical Address   Dirty   Ref   Valid   Access ASID 
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Example: R3000 pipeline includes TLB “stages” 

Inst Fetch Dcd/ Reg ALU  /  E.A Memory Write Reg 

 TLB       I-Cache          RF        Operation                                WB 

 E.A.    TLB        D-Cache 

MIPS R3000 Pipeline 

ASID V. Page Number Offset 

12 20 6 

0xx User segment (caching based on PT/TLB entry) 

100 Kernel physical space, cached 

101 Kernel physical space, uncached 

11x Kernel virtual space 

Allows context switching among 

64 user processes without TLB flush 

Virtual Address Space 

TLB 

64 entry, on-chip,  fully associative, software TLB fault handler 

Combination 
Segments and 

Paging! 
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• As described, TLB lookup is in serial with cache lookup: 

 

 

 

 

 

 

 

 

 

• Machines with TLBs go one step further: they overlap 
TLB lookup with cache access. 

– Works because offset available early 

Reducing translation time further 

Virtual Address 

TLB Lookup 

V 
Access 
Rights PA 

V page no. offset 
10 

P page no. offset 

10 

Physical Address 
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• Here is how this might work with a 4K cache:  
 
 
 
 
 
 
 
 

• What if cache size is increased to 8KB? 
– Overlap not complete 
– Need to do something else.  See CS152/252  

• Another option: Virtual Caches 
– Tags in cache are virtual addresses 
– Translation only happens on cache misses 

TLB 4K Cache 

10 2 

00 

4 bytes 

index 1 K 

page # disp 
20 

assoc 
lookup 

32 

Hit/ 
Miss 

FN Data Hit/ 
Miss 

= FN 

Overlapping TLB & Cache Access 
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Summary (1/2): Caching 

• The Principle of Locality: 
– Program likely to access a relatively small portion of the 
address space at any instant of time. 

» Temporal Locality: Locality in Time 
» Spatial Locality: Locality in Space 

• Three (+1) Major Categories of Cache Misses: 
– Compulsory Misses: sad facts of life.  Example: cold start 
misses. 

– Conflict Misses: increase cache size and/or associativity 
– Capacity Misses: increase cache size 
– Coherence Misses: Caused by external processors or I/O 
devices 

• Cache Organizations: 
– Direct Mapped: single block per set 
– Set associative: more than one block per set 
– Fully associative: all entries equivalent 
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Summary (2/2): Translation Caching (TLB) 

• PTE: Page Table Entries 
– Includes physical page number 
– Control info (valid bit, writeable, dirty, user, etc) 

• A cache of translations called a “Translation Lookaside 
Buffer” (TLB) 

– Relatively small number of entries (< 512) 

– Fully Associative (Since conflict misses expensive) 

– TLB entries contain PTE and optional process ID 

• On TLB miss, page table must be traversed 
– If located PTE is invalid, cause Page Fault  

• On context switch/change in page table 
– TLB entries must be invalidated somehow  

• TLB is logically in front of cache 
– Thus, needs to be overlapped with cache access to be 
really fast 
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Demand Paging 

• Modern programs require a lot of physical memory 
– Memory per system growing faster than 25%-30%/year 

• But they don’t use all their memory all of the time 
– 90-10 rule: programs spend 90% of their time in 10% 
of their code 

– Wasteful to require all of user’s code to be in memory 

• Solution: use main memory as cache for disk 
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Page 
Table 

T
L
B
 

Illusion of Infinite Memory 

• Disk is larger than physical memory  
– In-use virtual memory can be bigger than physical memory 
– Combined memory of running processes much larger than 
physical memory 

» More programs fit into memory, allowing more concurrency  
• Principle: Transparent Level of Indirection (page table)  

– Supports flexible placement of physical data 
» Data could be on disk or somewhere across network 

– Variable location of data transparent to user program 
» Performance issue, not correctness issue 

Physical 
Memory 
512 MB 

Disk 
500GB 

 

Virtual 
Memory 
4 GB 
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Demand Paging is Caching 

• Since Demand Paging is Caching, must ask: 
– What is block size? 

» 1 page 

– What is organization of this cache (i.e. direct-mapped, 
set-associative, fully-associative)? 

» Fully associative: arbitrary virtualphysical mapping 

– How do we find a page in the cache when look for it? 
» First check TLB, then page-table traversal 

– What is page replacement policy? (i.e. LRU, Random…) 
» This requires more explanation… (kinda LRU) 

– What happens on a miss? 
» Go to lower level to fill miss (i.e. disk) 

– What happens on a write? (write-through, write back) 
» Definitely write-back.  Need dirty bit! 
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• PTE helps us implement demand paging 
– Valid  Page in memory, PTE points at physical page 
– Not Valid  Page not in memory; use info in PTE to find 
it on disk when necessary 

• Suppose user references page with invalid PTE? 
– Memory Management Unit (MMU) traps to OS 

» Resulting trap is a “Page Fault” 
– What does OS do on a Page Fault?: 

» Choose an old page to replace  
» If old page modified (“D=1”), write contents back to disk 
» Change its PTE and any cached TLB to be invalid 
» Load new page into memory from disk 
» Update page table entry, invalidate TLB for new entry 
» Continue thread from original faulting location 

– TLB for new page will be loaded when thread continued! 
– While pulling pages off disk for one process, OS runs 
another process from ready queue 

» Suspended process sits on wait queue 

Demand Paging Mechanisms 



78 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale 

Software-Loaded TLB 

• MIPS/Nachos TLB is loaded by software 
– High TLB hit rateok to trap to software to fill the 
TLB, even if slower 

– Simpler hardware and added flexibility: software can 
maintain translation tables in whatever convenient format 

• How can a process run without access to page table? 
– Fast path (TLB hit with valid=1): 

» Translation to physical page done by hardware 
– Slow path (TLB hit with valid=0 or TLB miss) 

» Hardware receives a “TLB Fault” 
– What does OS do on a TLB Fault?  

» Traverse page table to find appropriate PTE 
» If valid=1, load page table entry into TLB, continue thread 
» If valid=0, perform “Page Fault” detailed previously 
» Continue thread 

• Everything is transparent to the user process: 
– It doesn’t know about paging to/from disk 
– It doesn’t even know about software TLB handling 
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Transparent Exceptions 

• How to transparently restart faulting instructions? 
– Could we just skip it?  

» No: need to perform load or store after reconnecting 
physical page 

• Hardware must help out by saving: 
– Faulting instruction and partial state  

» Need to know which instruction caused fault  
» Is single PC sufficient to identify faulting position???? 

– Processor State: sufficient to restart user thread 
» Save/restore registers, stack, etc 

• What if an instruction has side-effects? 
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Consider weird things that can happen 
• What if an instruction has side effects? 

– Options: 
» Unwind side-effects (easy to restart) 
» Finish off side-effects (messy!) 

– Example 1: mov (sp)+,10 
» What if page fault occurs when write to stack pointer? 
» Did sp get incremented before or after the page fault? 

– Example 2: strcpy (r1), (r2) 
» Source and destination overlap: can’t unwind in principle! 
» IBM S/370 and VAX solution: execute twice – once 

read-only 
• What about “RISC” processors? 

– For instance delayed branches? 
» Example:  bne somewhere 
      ld r1,(sp) 

» Precise exception state consists of two PCs: PC and nPC 
– Delayed exceptions: 

» Example: div r1, r2, r3 
  ld r1, (sp) 

» What if takes many cycles to discover divide by zero, 
but load has already caused page fault? 
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Precise Exceptions 

• Precise  state of the machine is preserved as if 
program executed up to the offending instruction 

– All previous instructions completed 
– Offending instruction and all following instructions act as 
if they have not even started 

– Same system code will work on different implementations  
– Difficult in the presence of pipelining, out-of-order 
execution, ... 

– MIPS takes this position 
• Imprecise  system software has to figure out what is 

where and put it all back together 
• Performance goals often lead designers to forsake 

precise interrupts 
– system software developers, user, markets etc. usually 
wish they had not done this 

• Modern techniques for out-of-order execution and 
branch prediction help implement precise interrupts 
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Steps in Handling a Page Fault 
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Demand Paging Example 

• Since Demand Paging like caching, can compute 
average access time! (“Effective Access Time”) 
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time 
– EAT = Hit Time + Miss Rate x Miss Penalty 

• Example: 
– Memory access time = 200 nanoseconds 
– Average page-fault service time = 8 milliseconds 
– Suppose p = Probability of miss, 1-p = Probably of hit 
– Then, we can compute EAT as follows: 

  EAT  = 200ns + p x 8 ms 
          = 200ns + p x 8,000,000ns 
• If one access out of 1,000 causes a page fault, then 

EAT = 8.2 μs: 
– This is a slowdown by a factor of 40! 

• What if want slowdown by less than 10%? 
– 200ns x 1.1 > EAT  p < 2.5 x 10-6 

– This is about 1 page fault in 400000! 
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What Factors Lead to Misses? 

• Compulsory Misses:  
– Pages that have never been paged into memory before 
– How might we remove these misses? 

» Prefetching: loading them into memory before needed 
» Need to predict future somehow!  More later. 

• Capacity Misses: 
– Not enough memory. Must somehow increase size. 
– Can we do this? 

» One option: Increase amount of DRAM (not quick fix!) 
» Another option:  If multiple processes in memory: adjust 

percentage of memory allocated to each one! 

• Conflict Misses: 
– Technically, conflict misses don’t exist in virtual memory, 
since it is a “fully-associative” cache 

• Policy Misses: 
– Caused when pages were in memory, but kicked out 
prematurely because of the replacement policy 

– How to fix? Better replacement policy 
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Page Replacement Policies 

• Why do we care about Replacement Policy?  
– Replacement is an issue with any cache 
– Particularly important with pages 

» The cost of being wrong is high: must go to disk 
» Must keep important pages in memory, not toss them out 

• FIFO (First In, First Out) 
– Throw out oldest page.  Be fair – let every page live in 
memory for same amount of time. 

– Bad, because throws out heavily used pages instead of 
infrequently used pages 

• MIN (Minimum):  
– Replace page that won’t be used for the longest time  
– Great, but can’t really know future… 
– Makes good comparison case, however 

• RANDOM: 
– Pick random page for every replacement 
– Typical solution for TLB’s.  Simple hardware 
– Pretty unpredictable – makes it hard to make real-time 
guarantees 
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Replacement Policies (Con’t) 

• LRU (Least Recently Used): 
– Replace page that hasn’t been used for the longest time 
– Programs have locality, so if something not used for a 
while, unlikely to be used in the near future. 

– Seems like LRU should be a good approximation to MIN. 
• How to implement LRU? Use a list! 

 
 
 
 

– On each use, remove page from list and place at head 
– LRU page is at tail 

• Problems with this scheme for paging? 
– Need to know immediately when each page used so that 
can change position in list…  

– Many instructions for each hardware access 
• In practice, people approximate LRU (more later) 

Page 6 Page 7 Page 1 Page 2 Head 

Tail (LRU) 
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• Suppose we have 3 page frames, 4 virtual pages, and 
following reference stream:  

– A B C A B D A D B C B 
• Consider FIFO Page replacement: 

 
 
 
 
 
 
 

 
– FIFO: 7 faults.  
– When referencing D, replacing A is bad choice, since 
need A again right away 

Example: FIFO 
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• Suppose we have the same reference stream:  
– A B C A B D A D B C B 

• Consider MIN Page replacement: 
 
 
 
 
 
 

 
 

– MIN: 5 faults  
– Where will D be brought in? Look for page not 
referenced farthest in future. 

• What will LRU do? 
– Same decisions as MIN here, but won’t always be true! 

Example: MIN 
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• Consider the following: A B C D A B C D A B C D 
• LRU Performs as follows (same as FIFO here): 

 
 
 
 
 
 

– Every reference is a page fault! 

• MIN Does much better: 
 

D 
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Graph of Page Faults Versus The Number of Frames 

• One desirable property: When you add memory the 
miss rate goes down 

– Does this always happen? 
– Seems like it should, right? 

• No: BeLady’s anomaly  
– Certain replacement algorithms (FIFO) don’t have this 
obvious property! 



91 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale 

Adding Memory Doesn’t Always Help Fault Rate 

• Does adding memory reduce number of page faults? 
– Yes for LRU and MIN 
– Not necessarily for FIFO!  (Called Belady’s anomaly) 
 
 
 
 
 
 
 
 
 
 
 
 

 
• After adding memory: 

– With FIFO, contents can be completely different 
– In contrast, with LRU or MIN, contents of memory with 
X pages are a subset of contents with X+1 Page 
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Implementing LRU 

• Perfect: 
– Timestamp page on each reference 
– Keep list of pages ordered by time of reference 
– Too expensive to implement in reality for many reasons 

• Clock Algorithm: Arrange physical pages in circle with 
single clock hand 

– Approximate LRU (approx to approx to MIN) 
– Replace an old page, not the oldest page 

• Details: 
– Hardware “use” bit per physical page: 

» Hardware sets use bit on each reference 
» If use bit isn’t set, means not referenced in a long time 
» Nachos hardware sets use bit in the TLB; you have to copy 

this back to page table when TLB entry gets replaced 
– On page fault: 

» Advance clock hand (not real time) 
» Check use bit: 1used recently; clear and leave alone 

 0selected candidate for replacement 
– Will always find a page or loop forever? 

» Even if all use bits set, will eventually loop aroundFIFO 
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Clock Algorithm: Not Recently Used 

Set of all pages 

in Memory 

Single Clock Hand: 
Advances only on page fault! 
Check for pages not used recently 
Mark pages as not used recently 

• What if hand moving slowly? 
– Good sign or bad sign? 

» Not many page faults and/or find page quickly 

• What if hand is moving quickly? 
– Lots of page faults and/or lots of reference bits set 

• One way to view clock algorithm:  
– Crude partitioning of pages into two groups: young and old 
– Why not partition into more than 2 groups? 
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Nth Chance version of Clock Algorithm 

• Nth chance algorithm: Give page N chances 
– OS keeps counter per page: # sweeps 
– On page fault, OS checks use bit: 

» 1clear use and also clear counter (used in last sweep) 
» 0increment counter; if count=N, replace page 

– Means that clock hand has to sweep by N times without 
page being used before page is replaced 

• How do we pick N? 
– Why pick large N? Better approx to LRU 

» If N ~ 1K, really good approximation 
– Why pick small N? More efficient 

» Otherwise might have to look a long way to find free page 

• What about dirty pages? 
– Takes extra overhead to replace a dirty page, so give 
dirty pages an extra chance before replacing? 

– Common approach: 
» Clean pages, use N=1 
» Dirty pages, use N=2 (and write back to disk when N=1) 
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Clock Algorithms: Details 

• Which bits of a PTE entry are useful to us? 
– Use: Set when page is referenced; cleared by clock 
algorithm 

– Modified: set when page is modified, cleared when page 
written to disk 

– Valid: ok for program to reference this page 

– Read-only: ok for program to read page, but not modify 
» For example for catching modifications to code pages! 

• Do we really need hardware-supported “modified” bit? 
– No.  Can emulate it (BSD Unix) using read-only bit 

» Initially, mark all pages as read-only, even data pages 

» On write, trap to OS. OS sets software “modified” bit, 
and marks page as read-write. 

» Whenever page comes back in from disk, mark read-only 
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Clock Algorithms Details (continued) 

• Do we really need a hardware-supported “use” bit? 
– No. Can emulate it similar to above: 

» Mark all pages as invalid, even if in memory 
» On read to invalid page, trap to OS 
» OS sets use bit, and marks page read-only 

– Get modified bit in same way as previous: 
» On write, trap to OS (either invalid or read-only) 
» Set use and modified bits, mark page read-write 

– When clock hand passes by, reset use and modified bits 
and mark page as invalid again  

• Remember, however, that clock is just an 
approximation of LRU 

– Can we do a better approximation, given that we have 
to take page faults on some reads and writes to collect 
use information? 

– Need to identify an old page, not oldest page! 
– Answer: second chance list 
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Second-Chance List Algorithm (VAX/VMS) 

• Split memory in two: Active list (RW), SC list (Invalid) 
• Access pages in Active list at full speed 
• Otherwise, Page Fault 

– Always move overflow page from end of Active list to 
front of Second-chance list (SC) and mark invalid 

– Desired Page On SC List: move to front of Active list, 
mark RW 

– Not on SC list: page in to front of Active list, mark RW; 
page out LRU victim at end of SC list 

Directly 
Mapped Pages 

 
Marked: RW 
List: FIFO 

Second  
Chance List 

 
Marked: Invalid 

List: LRU 

LRU victim 

Page-in 
From disk 

New 
Active 
Pages 

New 
SC 

Victims 



98 A.A. 2019-20 Elementi di Sistemi Operativi – Memoria principale 

Second-Chance List Algorithm (con’t) 

• How many pages for second chance list? 
– If 0  FIFO 
– If all  LRU, but page fault on every page reference 

• Pick intermediate value.  Result is: 
– Pro: Few disk accesses (page only goes to disk if unused 
for a long time)  

– Con: Increased overhead trapping to OS (software / 
hardware tradeoff) 

• With page translation, we can adapt to any kind of 
access the program makes 

– Later, we will show how to use page translation / 
protection to share memory between threads on widely 
separated machines 

• Question: why didn’t VAX include “use” bit? 
– Strecker (architect) asked OS people, they said they 
didn’t need it, so didn’t implement it 

– He later got blamed, but VAX did OK anyway 
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Free List 

• Keep set of free pages ready for use in demand paging 
– Freelist filled in background by Clock algorithm or other 
technique (“Pageout demon”) 

– Dirty pages start copying back to disk when enter list 
• Like VAX second-chance list 

– If page needed before reused, just return to active set 
• Advantage: Faster for page fault 

– Can always use page (or pages) immediately on fault 

Set of all pages 

in Memory 

Single Clock Hand: 
Advances as needed to keep 
freelist full (“background”) 
 D 

D 

Free Pages 
For Processes 
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Demand Paging (more details)  

• Does software-loaded TLB need use bit?  
Two Options: 

– Hardware sets use bit in TLB; when TLB entry is 
replaced, software copies use bit back to page table 

– Software manages TLB entries as FIFO list; everything 
not in TLB is Second-Chance list, managed as strict LRU 

• Core Map 

– Page tables map virtual page  physical page  

– Do we need a reverse mapping (i.e. physical page  
virtual page)? 

» Yes. Clock algorithm runs through page frames. If sharing, 
then multiple virtual-pages per physical page 

» Can’t push page out to disk without invalidating all PTEs 
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Allocation of Page Frames (Memory Pages) 

• How do we allocate memory among different processes? 
– Does every process get the same fraction of memory?  
Different fractions? 

– Should we completely swap some processes out of memory? 
• Each process needs minimum number of pages 

– Want to make sure that all processes that are loaded into 
memory can make forward progress 

– Example:  IBM 370 – 6 pages to handle SS MOVE 
instruction: 

» instruction is 6 bytes, might span 2 pages 
» 2 pages to handle from 
» 2 pages to handle to 

• Possible Replacement Scopes: 
– Global replacement – process selects replacement frame 
from set of all frames; one process can take a frame 
from another 

– Local replacement – each process selects from only its own 
set of allocated frames 
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Fixed/Priority Allocation 

• Equal allocation (Fixed Scheme):  
– Every process gets same amount of memory 
– Example: 100 frames, 5 processesprocess gets 20 frames 

• Proportional allocation (Fixed Scheme) 
– Allocate according to the size of process 
– Computation proceeds as follows: 
  si = size of process pi and S = si  
  m = total number of frames 
 

  ai = allocation for pi =  
 

• Priority Allocation: 
– Proportional scheme using priorities rather than size 

» Same type of computation as previous scheme 
– Possible behavior: If process pi generates a page fault, 
select for replacement a frame from a process with lower 
priority number 

• Perhaps we should use an adaptive scheme instead??? 
– What if some application just needs more memory? 

m
S

si 
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Page-Fault Frequency Allocation 

• Can we reduce Capacity misses by dynamically 
changing the number of pages/application? 
 
 
 
 
 
 
 
 

• Establish “acceptable” page-fault rate 
– If actual rate too low, process loses frame 
– If actual rate too high, process gains frame 

• Question: What if we just don’t have enough memory? 
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Thrashing 

• If a process does not have “enough” pages, the page-
fault rate is very high.  This leads to: 

– low CPU utilization 
– operating system spends most of its time swapping to disk 

• Thrashing  a process is busy swapping pages in and out 
• Questions: 

– How do we detect Thrashing? 
– What is best response to Thrashing? 
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• Program Memory Access 
Patterns have temporal 
and spatial locality 

– Group of Pages accessed 
along a given time slice 
called the “Working Set” 

– Working Set defines 
minimum number of pages 
needed for process to 
behave well 

• Not enough memory for 
Working SetThrashing 

– Better to swap out 
process? 

 

Locality In A Memory-Reference Pattern 
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Working-Set Model 

•   working-set window  fixed number of page 
references  

– Example:  10,000 instructions 
• WSi (working set of Process Pi) = total set of pages 

referenced in the most recent  (varies in time) 
– if  too small will not encompass entire locality 
– if  too large will encompass several localities 
– if  =   will encompass entire program 

• D = |WSi|  total demand frames  
• if D > m  Thrashing 

– Policy: if D > m, then suspend/swap out processes 
– This can improve overall system behavior by a lot! 
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What about Compulsory Misses? 

• Recall that compulsory misses are misses that occur 
the first time that a page is seen  

– Pages that are touched for the first time 

– Pages that are touched after process is swapped 
out/swapped back in 

• Clustering: 
– On a page-fault, bring in multiple pages “around” the 
faulting page 

– Since efficiency of disk reads increases with sequential 
reads, makes sense to read several sequential pages 

• Working Set Tracking: 
– Use algorithm to try to track working set of application 

– When swapping process back in, swap in working set 
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Summary (1/2) 

• TLB is cache on translations 
– Fully associative to reduce conflicts  
– Can be overlapped with cache access 

• Demand Paging: 
– Treat memory as cache on disk 
– Cache miss  get page from disk 

• Transparent Level of Indirection 
– User program is unaware of activities of OS behind scenes 
– Data can be moved without affecting application correctness 

• Software-loaded TLB 
– Fast Path: handled in hardware (TLB hit with valid=1) 
– Slow Path: Trap to software to scan page table 

• Precise Exception specifies a single instruction for which: 
– All previous instructions have completed (committed state) 
– No following instructions nor actual instruction have started  

• Replacement policies 
– FIFO: Place pages on queue, replace page at end 
– MIN: replace page that will be used farthest in future 
– LRU: Replace page that hasn’t be used for the longest time 
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Summary (2/2) 

• Clock Algorithm: Approximation to LRU 
– Arrange all pages in circular list 
– Sweep through them, marking as not “in use” 
– If page not “in use” for one pass, than can replace 

• Nth-chance clock algorithm: Another approx LRU 
– Give pages multiple passes of clock hand before replacing 

• Second-Chance List algorithm: Yet another approx LRU 
– Divide pages into two groups, one of which is truly LRU 
and managed on page faults. 

• Working Set: 
– Set of pages touched by a process recently 

• Thrashing: a process is busy swapping pages in and out 
– Process will thrash if working set doesn’t fit in memory 
– Need to swap out a process 


