Edge detection

Digital Image Processing, K. Pratt, Chapter 15




Edge detection

Goal: identify objects in images
— but also feature extraction, multiscale analysis, 3D reconstruction,
motion recognition, image restoration, registration

Classical definition of the edge detection problem: localization of
large local changes in the grey level image — large graylevel
gradients

— This definition does not apply to apparent edges, which require a more
complex definition

— Extension to color images

Contours are very important perceptual cues!

— They provide a first saliency map for the interpretation of image
semantics




Contours as perceptual cues




Contours as perceptual cues




What do we detect?

Depending on the impulse response of the filter, we can detect
different types of graylevel discontinuities

— Isolate points (pixels)
— Lines with a predefined slope
— Generic contours

However, edge detection implies the evaluation of the local gradient
and corresponds to a (directional) derivative




Detection of Discontinuities

 Point Detection

d
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FIGURE 10.2
-1 8 -1 (a) Point

detection mask.
(b) X-ray image
R B of a turbine blade
with a porosity.
(c) Result of point
detection.

(d) Result of
using Eq. (10.1-2}.
(Original image
courtesy of
X-TEK Systems
Ltd.)

Detected point




Detection of Discontinuities

 Line detection

FIGURE 10.3 Line
masks.

-1 -1 —1 —1 -1 2 -1 2 -1 2 -1 -1

2 2 2 —1 2 -1 -1 2 -1 -1 2 -1

-1 -1 —1 2 -1 —1 -1 2 -1 -1 -1 2
Horizontal +45° Vertical —45°
R, R, R, R,




Detection of Discontinuities

Line Detection Example:

a
b c

FIGURE 10.4
[lustration of line
detection.

(a) Binary wire-
bond mask.

(b) Absolute
value of result
after processing
with —45° line
detector.

(¢) Result of
thresholding
image (b).




Edge detection

Image locations with abrupt
changes — differentiation — high

pass filtering flm.n1 Intensity profile

=SV

3|

0
— f[m,n]4
On[ ]

—>

%
>V




Types of edges
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Continuous domain edge models

y"  (a) Edge model
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2D discrete domain
single pixel spot
models
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Discrete domain edge models
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Profiles of image intensity edges
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Types of edge detectors

Unsupervised or autonomous: only rely on local image features
— No contextual information is accounted for

— Simple to implement, flexible, suitable for generic applications

— Not robust

Supervised or contextual: exploit other sources of information
— Some a-priori knowledge on the semantics of the scene
— QOutput of other kind of processing
— Less flexible
— More robust

There is no golden rule: the choice of the edge detection strategy
depends on the application




Types of edge detection

Differential detection

— Differential operators are applied to the original image F(x,y) to produce
a differential image G(x,y) with accentuated spatial amplitude changes

— Thresholds are applied to select locations of large amplitude

Model fitting
— Fitting a local region of pixel values to a model of the edge, line or spot

A binary indicator map E(X,y) is used to indicate the positions of
edges, lines or points




Differential edge detection

SPATIAL DIFFERENTIAL

o —
F(j.k) DIFFERENTIATOR | G(j,k) DETECTOR E(j,k)

FIGURE 15.1-6. Differential edge, line, and spot detection.

First order derivatives

Second order derivatives




Differential edge detection

Signal

v

First order Gradient thresholding

differentiation

v

Zero-crossing

Second order
differentiation

v




Diff. edge det.: Approach

2. Calculation of first and second order derivatives
— Isolation of high spatial frequencies
— Required features: invariance to rotations, linearity
— Critical point: choice of the scale (size of the support)

3. Labeling

— Plausibility measure for the detected point belonging to a contour (to
get rid of false edges)




Image gradient

The gradient of an image
_ [9f Of
VI= |55

The gradient points in the direction of most rapid change in intensity

The gradient direction is given by
_ —1 (9f ,0f
¢ = tan (a—y / %)
The edge strength is given by the gradient magnitude

VA1l = /D% + (3’




Gradient vector

ky&w g




Orthogonal gradient vector

Continuous 1D gradient along a line normal to the edge slope

G(Xx, yh%cosé@%sin@

Need of a discrete approximation: definition of a row and a column
gradient combined in a spatial gradient amplitude

GLJ K1= (G L. K17 + G [ KT7)

G[},k1=[G, [, k]| +|Gy [1.K] computationally
G ikl more efficient
9[ j, k] = arctan { —< [J_, __
GI’OW[J’ k_

orientation of the spatial gradient with respect to the row axis




Discrete orthogonal gradient vector

Fj, k)

ROW
GRADIENT
GENERATION

Ggli.k)

COLUMN
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Simplest row/col gradient approximations

K

Gowl) Kl= TL)k]I=f[), k-1 |11
Gcol[jik]E f[j,k]— f[J+1’k]

k
|

vertical step edge model: aaaabbbbb
0000h00O0O0

vertical ramp edge model:aaaa c_b bbb
000 0(/2h/2000

c=(a+b)/2
\the edge is not located

G, [I,kl= f[j,k+1]— f[ ],k =1« at the midpoint of the ramp
Gl kl= f[J-LK]- f[J+1K] 00h/2hh/200




The discrete gradient

How can we differentiate a digital image f[x,y]?

— Option 1: reconstruct a continuous image, then take gradient

— Option 2: take discrete derivative (finite difference)

of [X, Y] = f[x+1 y]- f[X, Y]
OX

XY ¢k y+1]— fx,y]
oy

— Discrete approximation
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Example

peppars

(a) Original

|lI _-_J' : J 2 : .-": T
: " [l ertienl aiffarancine

i b) Horizental magnitude ic) Vertical magnitude

FIGURE 15.2-2. Horizontal and wvertical differencing gradients of the peppers mon
image.




Diagonal gradients

Robert’s cross-difference operator

] ] ’ _ 5 \1/2
G[j,k] :(\GR[j,k]\ +|G.[i.K] ) square root form
G[j,k]1=|Ggl[].K]|+|G:[].k] magnitude form
I ], k] = % arctan GC[J:’ ] edge orientation with
4 Gel),k] respect to the row axis

G.l).k]l=f[J,k]-f[J+1, k+1]
G.l).k]=f[],k+1]- f[j+1K] ><




Example: Robert’s

(&) Magnitude () Square root

FIGURE 15.2-3. Roberts gradients of the peppers _mon image.




Orthogonal differential gradient edge op.
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Gradients as convolutions

The gradient calculation is a neighborhood operation, so it can be

put in matrix notations
GrOW[j’k]: f[j1k]*HroW[j1k]
Gcol[j’k]: f[j’k]*Hcol[jvk]

- H - row and column impulse response arrays

row/co

The size of the convolution kernels can be increased to improve

robustness to noise

Example: normalized boxcar operator 0

1
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 Pixel differences

1 1 -1

«  Symmetric differences

110 |-1

* Roberts

H, =H,'
H,, detects vertical edges
H,, detects horizontal edges

Gradient filters

* Prewitt
1
1
1
* Sobel
1
2
1

H,: detecting
vertical edges

The filter along the y direction is obtained by
transposition of that along the x direction




Introducing averaging

« Differential methods are highly sensitive to small luminance
fluctuations — combine with averaging

* Prewitt operator square root gradient

2 7. 1/2

k=1 GG, k) = GG, B +1G(, )]

]
K+2

Gplj, k) = (A, + KA;+A,)— (A, + KA, +A4,)]

1 . l r r




Sobel, Frei&Chen operator

Sobel: same as Prewitt with k=2

— Give the same importance to each pixel in terms to its contribution to
spatial gradient

Frei&Chen: same as Prewitt with k=sqrt(2)
— The gradient is the same for horizontal, vertical and diagonal edges




Gow=(1/4) 2 | 0 | 2| Cea=(14) 1 g | ¢

Special case of the general one hereafter with c=2

G, [,LJ]]=(a0 + c a7 + ab) - (a2 + c a3 + a4)
G, =(@6+cad+ad)-(a0+cal +a2)
c=2

G=4G2, +5

row col

where

do | d1 s
a7 |(1)) |as
deg | as | a4




Sobel extentions
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Prewitt

-1 0|1 1 111
Gow=| -1 0|1 Geol = 0 0|0 c=1
11011 1] -1 -1

Kirsch operator
— 8 directional masks, each selecting one specific direction

— “winner takes all” paradigm for the absolute value of the gradient and direction
selected by the index of the corresponding mask

Robinson operator
— 8 directional masks, similar to Kirsh
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Sobel filtered

Original




Prewit

Roberts Kirsch Robinson




original noisy image

Prewit 3x3

Prewit 7x7




Truncated pyramid op.

« Linearly decreasing weighting to pixels away from the center of the
edge
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Comparison
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Improving robustness to noise

« Combining smoothing with differentiation
— Solution 1: do smoothing first and then differentiation
— Solution 2: differentiate the smoothing filter and do filtering




Solution 1: Smoothing+Differentiation

Sigma = 50

Signal

~
Kernel

=]

h x f

Convolution

D (h* f)

Differentiation

Look for peaks in




Sol. 2: Differentiation of the smoothing filter

e (o ) = (G:h) * f

Sigma = 50

...................................................

Signal

; | ; | | | | | |
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Extending to 2° order derivative

The derivative of a convolution is equal to the convolution of either
of the functions with the derivative of the other

h(x) = f(x)*g(x)
dh _df . .dg

dx dx © ' dx
lterating
h(x) = T(x)*9(x)
d*h d(df ) d*f
= *g = *g

dx?  dx\ dx dx?




Hints of the proof

 Intuition (OP)

+00

c(t)=T()*g(t)=1*g(t) = J f(z)g(t-7)dz

—00

c(t) = dc(t) (‘j (f®*g(t))

C(w)= {c(t)} = 3{F()*g(t)) = F (0)G ()

| | joF (0)]G (@) > f'(©)*g(t)
3ie' )} = joS{ct)} = joF (@) G (o) :{[ij)a))[ lea a;] : f(t)*g'(t)




Remark

The order in which differentiation and smoothing are performed
depends on their properties.

— Such operations are interchangeable as long as they are linear. Thus, if
both smoothing and differentiation are performed by linear operators
they are interchangeable

— In this case they can be performed at the same time by filtering the
image with the differentiation of the smoothing filter

Argyle and Macleod

Laplacian of Gaussian (LoG)
— Difference of Gaussians (DoG)




Argyle and Macleod

Use a large neighborhood Gaussian-shaped weighting for noise
suppression

/2
o(x,s) = [2ns7]  expl—1/2(x/s)")

Argyle operator horizontal coordinate impulse response array can
be expressed as a sampled version of the continuous domain impulse

response smoothing+differentiation

—2a(x,8)g(v, 1) forx=0
Argyle Hp(j k) = 1 smoothing along the
N 1 ) edge and differentiation
i 2g(x. s)g(y. 1) for x <0 along the orthogonal
direction

McLeod Hyp(j k) = [gx+s,5)—g(x—s,5)]g, 1)

The Argyle and Macleod operators, unlike the boxcar operator, give
decreasing importance to pixels far removed from the center of the
neighborhood.




Argyle and Macleod

Extended-size differential gradient operators can be considered to
be compound operators in which a smoothing operation is
performed on a noisy image followed by a differentiation operation.

The compound gradient impulse response can be written as

H(j, k) = Hg;(j, k) ® Hg(j, k)
gradient op. low pass

Example

« if Hg is the 3x3 Prewitt row gradient operator and Hs (j,k) =1/9, for all (j,k) in
a 3x3 matrix, is a uniform smoothing operator, the resultant row gradient
operator, after normalization to unit positive and negative gain, becomes

|
H, = —
R8s

— ko W R —
—_— b2 ) D —
o © o < O
|
|




Second order derivative

« Edge detectors based on first order derivative are not robust
— High sensitivity to noise, need a threshold

« Second order derivative operators detect the edge at the zero-
crossing of the second derivative — more robust, more precise

— Less sensitive to noise, usually don’t need a threshold for post-
processing of the contours image

I fl - f”




Laplace operator

Second order differentiation operator

Af =V f =V.Vf

N 5° f
Vet =
iz_;‘@xiz
2 2
N=2->Vf :ZXZ +2 :
y

Directional derivative
N of
D f(X)=) v.—

V. :<\7,T> |




Laplace operator

Second order derivative in the continuous domain
v2 6% f azf
P=—o+—
X~ oy

Discrete approximation

2
ot 0Gy %, . o
= = f(,j+1)—f(, )=
:af(i,j+1)_af(i,j):
OX OX

=[f@,j+2)- G, j+D]|-[fG, j+1- @, j)]=
=f(@i,j+2)-21(, j+D+f(,])




Discrete approximation: proof

Centring the estimation on (i,j) the simplest approximation is to
compute the difference of slopes along each axis

G(X’ y) — _VZ f (X1 y) %

Gl J1= (0, j1-f0, j-1)— ([, j+2- f[, j)) =2 [, j1- f[i, j -1~ f[i, j+1]
G i, i1=(F[i, J1- FLi+1 j1) - (FLi-1 jI- f[i, jI)=2F[i, j1- fLi+1, j1- f[i-1, j]
This can be put in operator and matrix form as

Gli, j]= 101, J]=H[I, ]]
(0 -1 0]
H=-1 4 -1
0 -1 0




Discrete approximation

— The 4-neighbors Laplacian is often normalized to provide unit gain
averages of the positive and negative weighted pixels in the 3x3
neighborhood

— Gain normalized 4-neighbors Laplacian

0 -1 0]

H=11 4 2
4

0 -1 0

— The weights of the pixels in the neighborhood, and thus the
normalization coefficient, can be changed to emphasize the edges.
» Ex. Prewitt modified Laplacian

1 -1 -1
H=2_1 8 -1

8

-1 -1 -1




Discrete approximation

— Gain normalized separable 8 neighbors Laplacian

2 1 -2]
H=31 4 1

8

2 1 -2

a a a a b b b

OOO—§h§hOO
8 8

a a a c¢c b b b

S oo %ho 3ho o
16 16




Note

« Without sign change after the evaluation of the Laplacian

— However, the sign is meaningless if we evaluate the modulus of the

gradient
0%t ... o
—— =10+ =210, )+ 101, 1-1)
OX
o2t . L
—=f+L)-21(0, )+ (-1 J)
8y2

Different possible Laplacian matrices

ve= |1 |4 |1 4 1204 | ve= |-1]4 |1 118 | -1




Laplacian of Gaussian

Quite often the zero crossing does not happen at a pixel location
— See the example of the step edge

It is common choice to locate the edge at a pixel with a positive
response having a neighbor with a negative response

Laplacian of Gaussian: Marr&Hildrith have proposed an operator in
which Gaussian shaped smoothing is performed prior to the
application of the Laplacian

Continuous LoG gradient
LOG(x,y) ==V { T (x,y)*Hs (X, )}
Hs (X, y) = 9(x,5)g(y,s)
1( x 2 impulse response of the
exp ——(—j Gaussian smoothing

2 kernel

g(x,8) = ——
27S




LoG operator

« As a result of the linearity of the second derivative operator and of
the convolution
LOG[j,k]= f[j,k]1*H[]j,k] (1)
H(x,y)=-V*{g(x,5)g(y,9)}

1 X° +y? X° +y?
H (X, y):g(l— 232y Jexp{— ZSZy}

* It can be shown that
— The convolution (1) can be performed separately along rows and cols

— It is possible to approximate the LOG impulse response closely by a
difference of Gaussians (DOG) operator

H(X’ y)=g(x,sl)g(y,sl)—g(x,sz)g(y,sz), S <3,




The LoG operator

1 ~ X* +y°
g(x,y) = Py exp{ 9g? }
h(x,y):V[g(x,y)* f(x,y)] = [VZQ(X, Y)]* f(x,y)=h(xy)* f(xy)

where

2

2 2 9g2 2, \2
VZg(x, y)=X +2y x 28 exp{—xzy} mexican hat
T

 How to choose s?
— Large values: pronounced smoothing — better denoising BUT smears out sharp
boundaries reducing the precision in edge localization
— Small values: soft smoothing — lower noise reduction BUT better boundary
preservation
— A good solution could be to follow a multiscale approach (s is the scale)




LoG filtering

« Gaussian smoothing (low-pass filter)
— Noise reduction (the larger the filter, the higher the smoothing)

— BUT
« Smears out edges
» Blurs the image (defocusing)

« Laplacian detection (high-pass filter)

« Edge location by interpolation
— The zero-crossing does not happen in a pixel site

LoG filtering = Gaussian smoothing + Laplacian detection
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FDoG

First derivative of Gaussian op. [Pratt]

— Gaussian shaped smoothing is followed by differentiation
* FDoG continuous domain horizontal impulse response

Hy(j, k) = —3[55(1151)_5;(% 0]

5 —1/2 2
g(x,s) = [2ns7] exp{—1/2(x/s5)"}

. —XolX,8)e :jf
HH(""‘"{) — vg (x "'j)é-,(} )

g /

He (6 Y) == 5 9(x5)g(y.1)

introduces the sign change

He (X,Y) =—t129(x15)9(y’t)




LoG, =05

5x5 LoG

180

H[j,k]=[-1 -2 16 -2 -1
0O -1 -2 -1 0 T

150




11x11 LoG

Lo, 1111, =0.01

¥ 10

150




LoG

Independent variables

— svalue: larger values allow larger denoising but smear out details and
made contour extraction not quite precise

Solutions
— Trade off
— Multiscale




Gaussian

2D edge detection filters
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LoG: example

« The Laplacian of a Gaussian filter

A digital approximation:




Second derivative

Laplacian of Gaussian: (LoG) —

Mexican Hat
0 1 0 06
-4 0.4+
0 1 0

0.2

Laplacian of Gaussian: Link to
early vision: the 2D Mexican Hat

closely resembles the receptive

fields of simple cells in the retina

— edge detection is one of the

first steps in vision




Laplacian zero-crossing detection

Zero-valued Laplacian response pixels are unlikely in real images

Practical solution: form the maximum of all positive Laplacian
responses and the minimum of all Laplacian responses in a 3x3
window. If the difference between the two exceeds a threshold an
edge is assumed to be present.

Laplacian zero-crossing patterns

+ + -
+@- + |+ | - + |+ | -
+ + +

+: zero or positive




Laplacian of Gaussian (LoG)

Sigma = 50
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o
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Zero-crossings of bottom graph




Effects of noise

« Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

f(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

duf (@)

| | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000




Gradient thresholding

Modulus of the gradient thresholding %,
— —>h,
OX
0
0 —
< 01 =M
OX X

C'Di Tresholding ——

Smoothing is
usually introduced

Laplacian zero-crossing either before or

after the filtering
update
— Laplacian —— the edge ——
map




Revisiting Line detection

Possible filters to find gradients along vertical and horizontal

directions
-1 -1
0 0
1 1
_1 i, |
0 0
‘1 )

Sobel

Averaging provides noise
suppression

This gives more importance to the
center point.
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FIGURE 10.10

(a) Original
image. (b) |G,].
component of the
oradient in the
x-direction.

(¢) ]Gy
component in the
y-direction.

(d) Gradient

image,

G, + |G,/

Edge Detection




Edge Detection

a b

c d

FIGURE 10.11
Same sequence as
in Fig. 10.10. but
with the original
image smoothed
witha 5 X 5
averaging filter.




Ede Detection qui

FIGURE 10.15 (a) Original image. (b) Sobel gradient (shown for comparison). (c) Spatial Gaussian smooth-
ing function. {d) Laplacian mask. (e) LoG. {f) Thresholded LoG. (g) Zero crossings. { Original image courtesy
of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical
Center.)

One simple method to find zero-
crossings is black/white thresholding:
1. Set all positive values to white

2. Set all negative values to black

3. Determine the black/white

Laplacian transitions.
1| s | -1 | mask

Compare (b) and (g):

» Edges in the zero-crossings image is
thinner than the gradient edges.

» Edges determined by zero-crossings
have formed many closed loops.




Edge detection: Gradient thresholding

Prewitt filter: decreasing the threshold




Edge detection: Gradient thresholding

Prewitt filter: decreasing the threshold




Magnitude

Edge detection

Using only the vertical high frequencies

0
hhighpass= 0 0
0 -1 0

05




Application to iage enhancement

(a) Input image; (b) Laplacian of (a); (c) Spatially invariant high-pass filtering [sum of (a) and (b)]; (d)
Mask image [Sobel gradient of (a) smoothed by a 5x5 box filter]; () Product of (b) and (d); (f) Space-
variant enhancement [sum of (a) and (e)].




Multiscale edge detection

The information obtained by filtering the image at different scales is
combined to determine the edge map

— scale « width (s, sigma parameter) of the filter

Different possibilities

— Adapting the filter bandwidth to the local characteristics of the image
(Wiener)

— Combining edge maps obtained at different scales

Canny algorithm
— Smoothing (allows for different scales)
— Gradient maxima

— Two thresholds to detect both weak and strong edges. Weak edges are
retained if they are connected to strong ones (labeling)

— Less sensible to noise




Canny algorithm

Based on a 1D continuous model of a step edge of amplitude h,
plus additive Gaussian noise of amplitude o,

The impulse response of the filter h(x) is assumed to be FIR and
antisymmetric

First order derivative: the edge is located at the local maxima of
f (x)*h(x)
A threshold has to be chosen

Criterion: the Canny operator impulse response h(x) is chosen to
satisfy three criteria

— Good detection
— Good localization
— Single response




Step edge model

« Parameters
— Edge direction (tangent to the curve)
— Normal direction (vector orthogonal to the contour at edge location)
— Local contrast (edge strength)
— Edge location (along the normal direction)

normal
tangent

0, x<O edge
A, x>0

A

strength




Detection

Criterion: The amplitude of the Signal to Noise Ratio (SNR) of the
gradient is maximized for good detection

— to obtain low probability of failure to mark edge points (false negative
rate) and low probability to mark non-edge points (false positive rate)

strength \ additive Gaussian noise of amplitude on
h

SNR — hES(V N

Gn

0 |

j h(x)dx |
S(h) =¥ W -,

[ [P dx W

-W




| ocalization

« Criterion: Edge points marked by the ed operator must be as close
as possible to the center of the edge

 Localization factor
he L(h)

O,

h'(0)

LOC =

L(h) =
j [h'(x)]? dx

-W
dh(x)
dx

h'(x) =




Single response

« Criterion: There should be only a single response to a true edge

— The distance between peaks of the gradient when only noise is present
is set to

X =kW 2)

m

 Global criterion: maximization of the product S(h)L(h) subject to (2)
— Constrained maximization

— Note: a large filter (W) improves detection (better denoising) BUT
reduces the precision in localization

— No close form solution, numerical ones are adopted

— Forlow x_,, h(x) resembles the boxcar, while for larger x_ it is closely
approximated by a FDoG (first derivative of Gaussian)




Example




Example

threshold = 0.5




Performance assessment

« Possible errors
— False negatives (an edge point is present but it is not detected)
— False positives (a non-edge point is detected)
— Error in the estimation of the orientation
— Error in the localization of the edge

« Paradigms
— Use of synthetic images + noise with known parameters
— Tests on sets of real images




Performance evaluation

Objective

The ground truth is assumed to be
available and represented by the
actual contour (full reference
metric)

Concerns low level features

— Measure to which extent the
estimated contour represents the
actual contour

Metric: MSE among the estimated
(f[,k]) and the real (s[j,k]) edges

Subjective

The ground truth is not necessarily
given (reduced or no-reference
metric)

Concerns high-level features

— Measures to which extent the
estimated contour allows to
identify the corresponding object
in the image

— Focus on semantics or image
content

Metric: subjective scores given to
the different algorithms

Lead to perception-based models
and metrics




Objective assessment

« 1D case estimated edge « 2D case

- [(@rsre e ey seren o

ot ground truth
A common strategy in signal detection theory is to establish a bound on

the probability of false detection resulting from noise and then try to
maximize the probability of true signal detection

 When applied to edge detection, this translates in setting a the
minimum value of the threshold such that the FP rate does not
exceed the predefined bound. Then the probability of true edge
detection can be calculated by a coincidence comparison of the
edge maps of the ideal versus the real edge detectors




Performance assessment: Figure of Merit

Types of errors

Detection
— Missing valid edge points (False Negatives, FN)
— Failure to localize edge points
— Classification of noise fluctuations as edge points (False Positives, FP)

Localization

— Error in estimating the edge angle;
« Mean square distance of the edge estimate from the true edge

Accuracy

— Algorithm's tolerance to distorted edges and other features such as
corners and junctions

N\ \




Performance assessment: Figure of Merit

ensures a penalty for
smeared or fragmented
edges

to penalized

edges that are
1+ '@ localized by offset
from the true

F, =1: perfectly detected edge position

I, 1,: number of ideal and detected edge points, respectively

d;: distance among the ideal and the detected edge point along the
normal to a line of ideal edge points (evaluated according to (3))
o. scaling constant




Figure of merit
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FIGURE 15.5-10. Indications of edge location.




Filters competition

N along a line

« A possible classification strategy

— Synthetic image /

* 64x64 pixels

« vertical oriented edge with variable slope and contrast

« added Gaussian noise of variance o,

» Control parameter SNR=(h/ 0,,), h being the normalize edge value (0<h<=1)
— Filter threshold: maximize the FM constrained to maximum bound for

false detection rate

» False detection=false positives
* Probability to detect an edge when no edge is present




Filter comparison
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FIGURE 15.5-11. Edge location figure of merit for a vertical ramp edge as a function of sig-
nal-to-noise ratio for i =0.1 and w= 1.




Filter comparison
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FIGURE 15.5-12. Edge location figure of merit for a vertical ramp edge as a function of
signal-to-noise ratio for A =10.1 and SNE = 10{.




Changing SNR

Sobel
Step edge

SNR =100

{a) Cwiginal (b) Edge map, R = 100%
SMR =10

{c) Original (d) Edge map, R =851%

SMA =1
(&) Criginal (f) Edge Map, R =24.2%

FIGURE 155-13. Edge location performance of Sobel edge detector as a function of signal-
to-noise ratio, A =01 w=1.a=1/9.




Changing the filter

(&) Original

{c) Hobarts magnitude, R =31.5%

{e) Sobel, R=851% {f) Kirsch, R =80.8%

FIGURE 15.5-14. Edge location performance of several edpe detectors for SNR
=0l w=l, a=19

10,




Subjective evaluation

 Task: “Give a score to the
detected edges”

 Many trials

— The experiment is repeated at
least two times for each subject

 Many subjects

— A sufficiently high number of
subjects must participate in the
experiment to make data analysis
significant from the statistical point
of view

* Output: {scores}
« Data analysis

A high figure of merit generally corresponds to a
well-located edge upon visual scrutiny, and vice
versa.
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