
Edge detection

Digital Image Processing, K. Pratt, Chapter 15



Edge detection

• Goal: identify objects in images
– but also feature extraction, multiscale analysis, 3D reconstruction, 

motion recognition, image restoration, registration

• Classical definition of the edge detection problem: localization of 
large local changes in the grey level image → large graylevel
gradients
– This definition does not apply to apparent edges, which require a more 

complex definition
– Extension to color images

• Contours are very important perceptual cues!
– They provide a first saliency map for the interpretation of image 

semantics



Contours as perceptual cues



Contours as perceptual cues



What do we detect?

• Depending on the impulse response of the filter, we can detect 
different types of graylevel discontinuities
– Isolate points (pixels)
– Lines with a predefined slope
– Generic contours

• However, edge detection implies the evaluation of the local gradient 
and corresponds to a (directional) derivative



Detection of Discontinuities

• Point Detection

Detected point



Detection of Discontinuities

1R 2R 3R 4R

• Line detection



Detection of Discontinuities
• Line Detection Example:



Edge detection

• Image locations with abrupt 
changes → differentiation → high 
pass filtering ],[ nmf Intensity profile
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Types of edges



Continuous domain edge models



2D discrete domain 
single pixel spot 
models



Discrete domain edge models

a

b



Profiles of image intensity edges



Types of edge detectors

• Unsupervised or autonomous: only rely on local image features
– No contextual information is accounted for
– Simple to implement, flexible, suitable for generic applications
– Not robust

• Supervised or contextual: exploit other sources of information
– Some a-priori knowledge on the semantics of the scene
– Output of other kind of processing
– Less flexible
– More robust

• There is no golden rule: the choice of the edge detection strategy 
depends on the application



Types of edge detection

• Differential detection
– Differential operators are applied to the original image F(x,y) to produce 

a differential image G(x,y) with accentuated spatial amplitude changes
– Thresholds are applied to select locations of large amplitude

• Model fitting
– Fitting a local region of pixel values to a model of the edge, line or spot

• A binary indicator map E(x,y) is used to indicate the positions of 
edges, lines or points



Differential edge detection

• First order derivatives

• Second order derivatives



Differential edge detection

Signal

First order 
differentiation

Second order 
differentiation

Gradient thresholding

Zero-crossing



Diff. edge det.: Approach

1. Smoothing of the image 
– To reduce the impact of noise and the number of spurious (non 

meaningful) edges
– To regularize the differentiation

2. Calculation of first and second order derivatives
– Isolation of high spatial frequencies
– Required features: invariance to rotations, linearity
– Critical point: choice of the scale (size of the support)

3. Labeling
– Plausibility measure for the detected point belonging to a contour (to 

get rid of false edges)



Image gradient

• The gradient of an image

• The gradient points in the direction of most rapid change in intensity

• The gradient direction is given by

• The edge strength is given by the gradient magnitude



Gradient vector



Orthogonal gradient vector

• Continuous 1D gradient along a line normal to the edge slope

• Need of a discrete approximation: definition of a row and a column 
gradient combined in a spatial gradient amplitude
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Discrete orthogonal gradient vector



Simplest row/col gradient approximations
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The discrete gradient

• How can we differentiate a digital image f[x,y]?
– Option 1:  reconstruct a continuous image, then take gradient
– Option 2:  take discrete derivative (finite difference)

– Discrete approximation
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Example



Diagonal gradients

• Robert’s cross-difference operator
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Example: Robert’s



Orthogonal differential gradient edge op.



Gradients as convolutions

• The gradient calculation is a neighborhood operation, so it can be 
put in matrix notations

– Hrow/col: row and column impulse response arrays

• The size of the convolution kernels can be increased to improve 
robustness to noise

• Example: normalized boxcar operator
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Gradient filters

• Pixel differences

• Symmetric differences

• Roberts

• Prewitt

• Sobel
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H  detects vertical edges
H  detects horizontal edges

T
V HH H=

The filter along the y direction is obtained by 
transposition of that along the x direction

HV: detecting 
vertical edges



Introducing averaging

• Differential methods are highly sensitive to small luminance 
fluctuations → combine with averaging

• Prewitt operator square root gradient

k=1



Sobel, Frei&Chen operator

• Sobel: same as Prewitt with k=2
– Give the same importance to each pixel in terms to its contribution to 

spatial gradient 

• Frei&Chen: same as Prewitt with k=sqrt(2)
– The gradient is the same for horizontal, vertical and diagonal edges



Sobel

Grow =(1/4)
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Sobel extentions
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Prewitt

• Kirsch operator
– 8 directional masks, each selecting one specific direction
– “winner takes all” paradigm for the absolute value of the gradient and direction 

selected by the index of the corresponding mask

• Robinson operator
– 8 directional masks, similar to Kirsh
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Original Sobel filtered

Example



Sobel

Kirsch

Prewit

Roberts Robinson



Prewit 7x7Prewit 3x3

Sobel 3x3 Sobel 7x7original noisy image



Truncated pyramid op.

• Linearly decreasing weighting to pixels away from the center of the 
edge



Comparison



Improving robustness to noise

• Combining smoothing with differentiation
– Solution 1: do smoothing first and then differentiation
– Solution 2: differentiate the smoothing filter and do filtering

( )d dh dfh f f h
dx dx dx

∗ = ∗ = ∗



Solution 1: Smoothing+Differentiation

Look for peaks in 



Sol. 2: Differentiation of the smoothing filter



Extending to 2° order derivative

• The derivative of a convolution is equal to the convolution of either 
of the functions with the derivative of the other 

• Iterating
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Hints of the proof

• Intuition (OP)
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Remark

• The order in which differentiation and smoothing are performed 
depends on their properties. 
– Such operations are interchangeable as long as they are linear. Thus, if 

both smoothing and differentiation are performed by linear operators 
they are interchangeable

– In this case they can be performed at the same time by filtering the 
image with the differentiation of the smoothing filter

• Argyle and Macleod

• Laplacian of Gaussian (LoG)
– Difference of Gaussians (DoG)



Argyle and Macleod

• Use a large neighborhood Gaussian-shaped weighting for noise 
suppression

Argyle operator horizontal coordinate impulse response array can
be expressed as a sampled version of the continuous domain impulse 
response smoothing+differentiation

Argyle

McLeod

The Argyle and Macleod operators, unlike the boxcar operator, give 
decreasing importance to pixels far removed from the center of the 
neighborhood.

smoothing along the 
edge and differentiation 
along the orthogonal 
direction



Argyle and Macleod

• Extended-size differential gradient operators can be considered to 
be compound operators in which a smoothing operation is 
performed on a noisy image followed by a differentiation operation. 

• The compound gradient impulse response can be written as

• Example
• if Hg is the 3x3 Prewitt row gradient operator and Hs (j,k) =1/9, for all (j,k) in 

a 3x3 matrix, is a uniform smoothing operator, the resultant row gradient 
operator, after normalization to unit positive and negative gain, becomes

gradient op. low pass



Second order derivative

• Edge detectors based on first order derivative are not robust
– High sensitivity to noise, need a threshold

• Second order derivative operators detect the edge at the zero-
crossing of the second derivative → more robust, more precise
– Less sensitive to noise, usually don’t need a threshold for post-

processing of the contours image

x x x

x∂

∂

x∂

∂
f f' f’’



Laplace operator

• Second order differentiation operator

• Directional derivative
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Laplace operator

• Second order derivative in the continuous domain

• Discrete approximation
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Discrete approximation: proof

• Centring the estimation on (i,j) the simplest approximation is to 
compute the difference of slopes along each axis

( ) ( )
( ) ( )

[ , ] [ , ] [ , 1] [ , 1] [ , ] 2 [ , ] [ , 1] [ , 1]
[ , ] [ , ] [ 1, ] [ 1, ] [ , ] 2 [ , ] [ 1, ] [ 1, ]

row

col

G i j f i j f i j f i j f i j f i j f i j f i j
G i j f i j f i j f i j f i j f i j f i j f i j

= − − − + − = − − − +

= − + − − − = − + − −

• This can be put in operator and matrix form as
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Discrete approximation

– The 4-neighbors Laplacian is often normalized to provide unit gain 
averages of the positive and negative weighted pixels in the 3x3
neighborhood

– Gain normalized 4-neighbors Laplacian

– The weights of the pixels in the neighborhood, and thus the 
normalization coefficient, can be changed to emphasize the edges. 

• Ex. Prewitt modified Laplacian
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Discrete approximation

– Gain normalized separable 8 neighbors Laplacian
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Note

• Without sign change after the evaluation of the Laplacian
– However, the sign is meaningless if we evaluate the modulus of the 

gradient

• Different possible Laplacian matrices
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Laplacian of Gaussian

• Quite often the zero crossing does not happen at a pixel location
– See the example of the step edge

• It is common choice to locate the edge at a pixel with a positive 
response having a neighbor with a negative response 

• Laplacian of Gaussian: Marr&Hildrith have proposed an operator in 
which Gaussian shaped smoothing is performed prior to the 
application of the Laplacian

Continuous LoG gradient
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LoG operator

• As a result of the linearity of the second derivative operator and of 
the convolution

• It can be shown that
– The convolution (1) can be performed separately along rows and cols
– It is possible to approximate the LOG impulse response closely by a 

difference of Gaussians (DOG) operator
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The LoG operator
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• How to choose s?
– Large values: pronounced smoothing → better denoising BUT smears out sharp 

boundaries reducing the precision in edge localization
– Small values: soft smoothing → lower noise reduction BUT better boundary 

preservation
– A good solution could be to follow a multiscale approach (s is the scale)



LoG filtering

• Gaussian smoothing (low-pass filter)
– Noise reduction (the larger the filter, the higher the smoothing)
– BUT

• Smears out edges
• Blurs the image (defocusing)

• Laplacian detection (high-pass filter)

• Edge location by interpolation
– The zero-crossing does not happen in a pixel site

LoG filtering = Gaussian smoothing + Laplacian detection
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FDoG

• First derivative of Gaussian op. [Pratt]
– Gaussian shaped smoothing is followed by differentiation

• FDoG continuous domain horizontal impulse response
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11x11 LoG



LoG

• Independent variables
– s value: larger values allow larger denoising but smear out details and 

made contour extraction not quite precise

• Solutions
– Trade off
– Multiscale



2D edge detection filters
Laplacian of GaussianGaussian derivative of Gaussian
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LoG: example
• The Laplacian of a Gaussian filter

A digital approximation:

0 0 1 0 0

0 1 2 1 0

1 2 -16 2 1

0 1 2 1 0

0 0 1 0 0



Second derivative

• Laplacian of Gaussian: (LoG) –
Mexican Hat

• Laplacian of Gaussian: Link to 
early vision: the 2D Mexican Hat 
closely resembles the receptive 
fields of simple cells in the retina 
→ edge detection is one of the 
first steps in vision

0 1 0
1 -4 1
0 1 0



Laplacian zero-crossing detection

• Zero-valued Laplacian response pixels are unlikely in real images

• Practical solution: form the maximum of all positive Laplacian
responses and the minimum of all Laplacian responses in a 3x3 
window. If the difference between the two exceeds a threshold an 
edge is assumed to be present.

• Laplacian zero-crossing patterns
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Laplacian of Gaussian (LoG)

Laplacian of Gaussian
operator

Zero-crossings of bottom graph



Effects of noise

• Consider a single row or column of the image
– Plotting intensity as a function of position gives a signal



Gradient thresholding
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Revisiting Line detection

• Possible filters to find gradients along vertical and horizontal
directions

This gives more importance to the 
center point.

Averaging provides noise 
suppression



Edge Detection



Edge Detection



Edge Detection qui

One simple method to find zero-
crossings is black/white thresholding:
1. Set all positive values to white
2. Set all negative values to black
3. Determine the black/white 
transitions.

Compare (b) and (g):
• Edges in the zero-crossings image is 
thinner than the gradient edges.
• Edges determined by zero-crossings 
have formed many closed loops. 

original sobel

smoothing kernel

Laplacian
mask

LoG LoG mask zero crossings



Edge detection: Gradient thresholding

Prewitt filter: decreasing the threshold



Edge detection: Gradient thresholding
Prewitt filter: decreasing the threshold
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(a) Input image; (b) Laplacian of (a); (c) Spatially invariant high-pass filtering [sum of (a) and (b)]; (d)
Mask image [Sobel gradient of (a) smoothed by a 5x5 box filter]; (e) Product of (b) and (d); (f) Space-
variant enhancement [sum of (a) and (e)]. 

Application to image enhancement



Multiscale edge detection

• The information obtained by filtering the image at different scales is 
combined to determine the edge map
– scale ↔ width (s, sigma parameter) of the filter

• Different possibilities
– Adapting the filter bandwidth to the local characteristics of the image 

(Wiener)
– Combining edge maps obtained at different scales

• Canny algorithm
– Smoothing (allows for different scales)
– Gradient maxima
– Two thresholds to detect both weak and strong edges. Weak edges are 

retained if they are connected to strong ones (labeling)
– Less sensible to noise



Canny algorithm

• Based on a 1D continuous model of a step edge of amplitude hE
plus additive Gaussian noise of amplitude σn

• The impulse response of the filter h(x) is assumed to be FIR and
antisymmetric

• First order derivative: the edge is located at the local maxima of

• A threshold has to be chosen

• Criterion: the Canny operator impulse response h(x) is chosen to
satisfy three criteria
– Good detection
– Good localization
– Single response

( ) ( )f x h x∗



Step edge model

• Parameters
– Edge direction (tangent to the curve)
– Normal direction (vector orthogonal to the contour at edge location)
– Local contrast (edge strength)
– Edge location (along the normal direction)
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Detection

• Criterion: The amplitude of the Signal to Noise Ratio (SNR) of the 
gradient is maximized for good detection
– to obtain low probability of failure to mark edge points (false negative 

rate) and low probability to mark non-edge points (false positive rate)
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Localization

• Criterion: Edge points marked by the ed operator must be as close 
as possible to the center of the edge

• Localization factor
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Single response

• Criterion: There should be only a single response to a true edge
– The distance between peaks of the gradient when only noise is present 

is set to

• Global criterion: maximization of the product S(h)L(h) subject to (2)
– Constrained maximization
– Note: a large filter (W) improves detection (better denoising) BUT 

reduces the precision in localization
– No close form solution, numerical ones are adopted
– For low xm, h(x) resembles the boxcar, while for larger xm it is closely 

approximated by a FDoG (first derivative of Gaussian)

mx kW= (2)



Example



Example

threshold = 0.5



Performance assessment

• Possible errors
– False negatives (an edge point is present but it is not detected)
– False positives (a non-edge point  is detected)
– Error in the estimation of the orientation
– Error in the localization of the edge

• Paradigms
– Use of synthetic images + noise with known parameters
– Tests on sets of real images



Performance evaluation

Objective

• The ground truth is assumed to be 
available and represented by the 
actual contour (full reference 
metric)

• Concerns low level features
– Measure to which extent the 

estimated contour represents the 
actual contour

• Metric: MSE among the estimated 
(f[j,k]) and the real (s[j,k]) edges

Subjective

• The ground truth is not necessarily 
given (reduced or no-reference 
metric)

• Concerns high-level features
– Measures to which extent the 

estimated contour allows to 
identify the corresponding object 
in the image

– Focus on semantics or image 
content

• Metric: subjective scores given to 
the different algorithms

• Lead to perception-based models 
and metrics



Objective assessment

• 1D case

A common strategy in signal detection theory is to establish a bound on 
the probability of false detection resulting from noise and then try to 
maximize the probability of true signal detection

• When applied to edge detection, this translates in setting a the
minimum value of the threshold such that the FP rate does not 
exceed the predefined bound. Then the probability of true edge 
detection can be calculated by a coincidence comparison of the 
edge maps of the ideal versus the real edge detectors

• 2D case
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Performance assessment: Figure of Merit

• Types of errors

• Detection
– Missing valid edge points (False Negatives, FN)
– Failure to localize edge points
– Classification of noise fluctuations as edge points (False Positives, FP)

• Localization
– Error in estimating the edge angle; 

• Mean square distance of the edge estimate from the true edge

• Accuracy
– Algorithm's tolerance to distorted edges and other features such as 

corners and junctions



Performance assessment: Figure of Merit
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II, IA: number of ideal and detected edge points, respectively
di: distance among the ideal and the detected edge point along the 
normal to a line of ideal edge points (evaluated according to (3))
α: scaling constant

ensures a penalty for 
smeared or fragmented 
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Figure of merit



Filters competition

• A possible classification strategy
– Synthetic image

• 64x64 pixels
• vertical oriented edge with variable slope and contrast
• added Gaussian noise of variance σn

• Control parameter SNR=(h/ σn), h being the normalize edge value (0<h<=1)
– Filter threshold: maximize the FM constrained to maximum bound for 

false detection rate
• False detection=false positives
• Probability to detect an edge when no edge is present

along a line



Filter comparison

Step edge (w=1)
FOM is low for wide and 
noisy edges; and high 
in the opposite case



Filter comparison

Ramp edge



Changing SNR

• Sobel

• Step edge



Changing the filter



Subjective evaluation
• Task: “Give a score to the 

detected edges”

• Many trials
– The experiment is repeated at 

least two times for each subject

• Many subjects
– A sufficiently high number of 

subjects must participate in the 
experiment to make data analysis 
significant from the statistical point 
of view

• Output: {scores}

• Data analysis

A high figure of merit generally corresponds to a 
well-located edge upon visual scrutiny, and vice 
versa.
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