
Modeling of Communication Infrastructure

for Design-Space Exploration

F. Fummi, G. Lovato, D. Quaglia, F. Stefanni
Dep. of Computer Science — University of Verona, Italy

[franco.fummi|davide.quaglia|francesco.stefanni]@univr.it
giovanni.lovato@aldu.net

Abstract—Computer-aided design has been traditionally applied to com-
puters and embedded systems but not to the communication infrastructure
among them. The paper contributes to fill this gap by proposing to use a
mathematical language to model a distributed application in terms of tasks,
hosting nodes, and interactions with the environment. Tasks are described in
terms of computation and communication requirements also in relationship
with state-of-the-art languages for system specification. Entities and rela-
tionships are introduced to relate tasks, data flows and environmental data
to network nodes, channels among them and communication protocols. The
resulting attributes and constraints can be used during a further design-
space exploration to synthesize automatically a suitable communication
infrastructure. The approach can be applied to significant applications, e.g.,
those based on wireless sensor networks and peer-to-peer networks. An
example related to building automation is also reported to demonstrate the
potentiality of the framework.

Index Terms—design-space exploration, distributed systems, networked
embedded systems

I. INTRODUCTION

Today’s distributed applications are becoming more and more com-

plex, involving many different tasks spread over hundreds or thousands

of heterogeneous network nodes connected through different types of

channels and protocols. In this context, computer-aided design should

be fruitfully applied not only to each node, as currently done in the

context of electronic systems design, but also to the communication

infrastructure among them.

For instance, let’s consider the scenario depicted in Figure 1, reporting

the temperature control application of a skyscraper. In each room, there

is at least one sensor (in Figure denoted with S) which keeps track of

the local temperature. Collected data are sent to controllers (denoted

with C), which send commands to actuators (denoted with A), e.g.,

coolers. Controllers can be either fixed (e.g., on the wall of each room)

or embedded into mobile applications to let people set the preferred

temperature of the environment around them. A centralized controller

is also present to perform some global operations on the temperature

control system, e.g., to ensure that room settings comply with the total

energy budget.

To properly design this application, many aspects should be taken into

account, e.g.:

• different concurrent tasks are involved, e.g., temperature sensing,

and cooler activation;

AAAAAA

CCCCCC

SSSSSS

AAAAAA

CCCCCC

SSSSSS

AAAAAA

CCCCCC

SSSSSS
Activation
of a set of

independent
coolers Temperature

sensing

Communication
infrastructure

Fig. 1. Example of application for building automation.

• many instances of each task are present, e.g., a mobile controller

for each user;

• tasks are hosted by physical devices with different capabilities, e.g.,

mobile vs. fixed embedded systems;

• physical channels can be either wireless or wired;

• communication protocols can be either reliable or un-reliable, best

effort or with priority;

• the position in which sensors, controllers and actuator are placed

affects the communications among them, the sensing performance

and the control policy.

Instead of traditional point-to-point applications, e.g., email transfer,

the design goal for this kind of applications is the good behavior of

the global distributed application, e.g., satisfying the largest number of

users’ preferences while minimizing power consumption.

Distributed applications pose new questions to designers, traditionally

mainly interested in the specification of each single network node. Some

possible questins are:

• How many network nodes are required?

• How many network nodes are supported at most?

• Which is the best assignment between tasks and network nodes by

taking into account tasks’ requirements and nodes’ capabilities?

• Given a partition of the environment into zones which is the best

task-zone assignment?

• Given an assignment of tasks to network nodes, which channel

types and protocols should be used among them to satisfy such

requirements?

• Is the introduction of additional intermediate systems (e.g., routers,

range extenders) useful to improve communication performance?

The answers to these questions lead to the complete definition of the
communication infrastructure. Similarly to the definition of components

in electronic system design, we refer this process with the name network
synthesis; it consists in the following steps:

1) specification of the communication requirements of the application

to be designed;

2) progressive refinement of the specification through design-space

exploration;

3) mapping of the solution onto actual objects, i.e., physical channels,

protocols, intermediate systems.

Related work on the design of networked systems can be divided into

two categories (Section II):

1) focused on HW/SW design and not considering the network as

part of the design space;

2) focused on network-related problems, but without a general design

methodology taking into account the whole application.

This lack of network modeling may lead to non-optimal solutions in

the system design, since recent work demonstrated that HW/SW design

and network design are correlated [1].

The main contributions of this paper are:

• a formalization that allows to represent the communication aspects

of the applications;

• an extended design methodology which considers the communica-

tion infrastructure as a dimension of the design space;

• a case study to show the potentiality of the approach.

The paper gives the mathematical basics of the network synthesis and

optimization problem, but no concrete algorithm for their solution. This

issue will be addressed in future works.

The proposed work is a first step towards the computer-aided syn-
thesis of the communication infrastructure, i.e., the automatic choice of

channel type, protocols and intermediate systems to support a distributed

application. Synthesis is currently done for hardware components but,

as far as we know, this is the first attempt to apply the same approach

to the communication infrastructure.

The rest of the paper is organized as follows. Related work is reported

in Section II. The global design flow is introduced in Section III. The

proposed formulation of the problem is reported in Section IV. A first

discussion of the synthesis methodology is provided in Section V. A

case study is described in Section VI. Conclusions and future work are

reported in Section VII.

II. RELATED WORK

The synthesis of distributed systems has been addressed by many re-

search works, in different fields.A virtual architecture has been proposed

in order to simplify the synthesis of algorithms for WSN [2]. Some

network information, like the topology and high-level functionality,

are used to configure the virtual architecture. However this work is

mainly focused on the application part of the system rather than

on communication aspects. Platform-Based Design (PBD) has been

adopted to project WSN for industrial control [3]. As usual in PBD,

the application is designed at high level and then mapped onto a set

of possible actual candidates for the nodes. However, no guideline is

provided about the selection of the appropriate network architecture and

communication protocol. Scope-based techniques have been proposed

in macroprogramming to specify complex interactions between hetero-

geneous nodes of a WSN [4]. However, the number of nodes and the

network topology are an input of the technique not a result as in our

approach.

The design of Networks-on-Chips (NoC) offers an example of system-

network integrated approach which is close to the one proposed in this

paper, since they have a simplified version of a packet-switched network.

The internal NoC topology can be either irregular or have regular form,

e.g., mesh, tour, ring, and butterfly [5]; its design presents problems

similar to the one of traditional packet-based networks. Some researches

have suggested that the mesh topology is most efficient in terms of

latency, power consumption and implementation simplicity [6]. Routing

protocols are a design issue, too. In NoC’s routing can be deterministic or

adaptive according to the current state of the network and to appropriate

quality-of-service (QoS) policies [6]. Regarding the latter, best effort and

guaranteed throughput have been proposed [7]; they are very similar

to those defined for TCP/IP [8]. The problem of the optimal mapping

of tasks onto NoC’s cores is known to be NP-hard. In some works,

heuristics based on graph-decomposition techniques have been used [6],

[9]. A Mixed Integer Linear Programming (MILP) formulation of the

problem has been proposed [10]. It assumes a regular 2D mesh topology,

and shortest-path static routing. This methodology allows two different

optimization criteria, i.e., minimization of the average hop distance and

minimization of the maximum link bandwidth.

Synthesis of communication protocols is another research topic related

to the focus of this work. Automatic tools have been adopted to derive

the actual implementation of protocols specified through finite state

machines [11], [12], Petri Nets [13], trace models [14], and languages

like LOTOS [15]. All these works are focused on particular problems,

and do not provide any general model or a global design flow. This

paper tries to fill such a lack.

III. DESIGN FLOW OF DISTRIBUTED SYSTEMS

Figure 2 shows the design flow of a distributed system; the right

part of the Figure depicts the state-of-the-art design flow of embedded

Formal
network model

Design-space
exploration of
the network

Network Synthesis

Channel and
protocol description

Network-aware
description of
the application

Design-space
exploration of nodes

Platform-
independent

model (UML,
Matlab, C/C++)

Platform description

Platform-dependent
model of functional
blocks and network

(SystemC,
VHDL, C/C++)

Computational
and

communication
requirements

Application requirements

Steps of state-of-the-art
system design flow

Additional steps for
network design

Fig. 2. The proposed design flow for distributed systems: new steps for network
design are added to the state-of-the-art system design flow.

systems while the left part of the Figure introduces the proposed

additional steps for the design of the network.

In the traditional system design flow a platform-independent model

of the system is created starting from application requirements, both

functional and non-functional. Behavior in this specification is usually

expressed through languages like UML, MARTE and C/C++ or through

the use of tools like Matlab/Simulink/Stateflow.

This specification, together with a description of the target platform,

is the subject of a design-space exploration which maps tasks onto HW

and SW components for the target platform.

This flow is perfect for single embedded systems but in case of

distributed applications made of many embedded systems it lacks a

specific path devoted to the design of the communication infrastructure

between them. For this reason, new steps are proposed as depicted in

the left side of Figure 2.

Starting from the platform-independent model, a formal network
model is derived. It contains computational cost of each task, e.g., in

terms of CPU and memory usage, and the requirements of communica-

tion flows between tasks, e.g., their throughput and permitted latency.

This formal model of the network, together with a description of

actual channels and protocols, is the subject of design-space exploration

aiming at searching the optimal solutions of the constraints expressed

in the mathematical model. Actual channels and protocols are chosen

according to their affinity to the optimal solutions. This last phase is

named network synthesis. The final result is a network-aware description
of the application with the mapping of application tasks onto network

nodes, their spatial displacement, the type of channels and protocols

among them, and the network topology.

The network-aware description of the application contains important

information for the design of each node of the network, i.e., the list of

tasks assigned to it. For this reason, this description is used as input in

the traditional design-space exploration of each node as reported in the

right part of Figure 2.

IV. THE FORMAL NETWORK MODEL

This Section defines the entities and relationships which constitute the

formal network model depicted in Figure 2. The structure of this model

is motivated by its goal which is network synthesis defined as follows.

Definition 1. Network synthesis is a design process which starts from
a high-level specification of a distributed system and finds an actual
description of its communication infrastructure in terms of mapping of
application tasks onto network nodes, their spatial displacement, the
type of channels and protocols among them, and the network topology.

Figure 3 reports a system under design with a partitioning between

the system portion and the network portion; the former is the subject of

traditional system design while the latter is the subject of network syn-

thesis. Both partitions will be described with entities and relationships

in this Section.

Abstract Channel

Physical Channel

1

N − 1

1

N − 1

Network portion

System portion

TaskTaskTask

Node

TaskTaskTask
Data flows

Node
Level-N Protocol

Fig. 3. System/network partitioning for network modeling and synthesis.

The system portion consists of network nodes which contains tasks,

i.e., sequences of operations accomplished to implement the overall

behavior of the distributed system. Data flows are exchanged between

tasks. A communication protocol is established between nodes to convey

the data flows of the hosted tasks. The network portion consists of the

physical channel and all the protocol entities which permit the com-

munication between the nodes. To better describe the network portion

the entity named abstract channel will be introduced. To understand

this entity, let us consider two examples. In the first example, the

design goal is a complete wireless device; therefore, the system portion

includes CPU, memory, and all the transmission components up to the

antenna while the network portion could be represented by the radio

channel. In the second example, the design goal is a a temperature

control application; therefore, the system portion is the control algorithm

while the network portion could be a reliable byte-oriented data flow as

provided by TCP/IP. The concept of Abstract Channel (AC) unifies the

physical channel of the first example and the transport channel of the

second one. AC is defined as follows.

Definition 2. Referring to the ISO/OSI model and assuming that the
functionality to be designed is at level N , the AC contains the physical
channel, and all the protocol entities up to level N − 1.

The AC connects network nodes whose tasks are implemented using

level-N protocols.

In this work, we assume that all the tasks of the application under

design belong to the same ISO/OSI level, i.e., all the Abstract Channels

contain the physical channel and all the protocol levels up to N − 1.

In the rest of the Section, entities will be described in details together

with relationships between them. Most of them are described as multiset,

since more instances of the same type could exist.

A. Tasks

A task represents a basic functionality of the whole application. From

the point of view of network synthesis the focus is not on the description

of the functionality in itself but rather on its computational and mobility

requirements which affect the assignment of tasks to network nodes.

A task t is defined as follows:

t = [c,m] ∈ T where:

c ∈ R
n m ∈ B

(1)

T is a multiset of tasks. The vector named t.c represents the resource

requirements to perform task’s activity. For instance, in the early stage

of the design flow, when detailed requirements are not available, it can

be described by a single abstract number (t.c ∈ R). As more details

are available, it could be described by many more components, e.g.,

the memory usage and the computation time (t.c ∈ R2). Choosing the

appropriate components of t.c is a designer’s responsibility. The attribute

named t.m is a boolean attribute representing the possible mobility

requirement of the task.

B. Data Flows

A data flow (DF) represents communication between two tasks. For

network synthesis, the focus is on the communication requirements

between tasks which affects the choice of channels and protocols

between nodes hosting the involved tasks.

A data flow f is defined as follows:

f = [ts, td, c] ∈ F where:

ts ∈ T td ∈ T

c = [throughput,max delay,max error rate] ∈ R
3

(2)

F is a multiset of data flows. Source and destination tasks are

represented by ts and td, respectively. The vector named f.c contains the

communication requirements: throughput is the amount of transmitted

information in the time unit; the maximum permitted delay is the

maximum time to deliver data to destination, the maximum permitted

error rate is the maximum number of errors tolerated by the destination.

As instance, in a file transfer application no errors are permitted while

in multimedia applications this requirement could be relaxed.

C. Nodes

A node can be seen as a container of tasks. From the point of view

of network synthesis, the focus is on the resources made available by

the node to host a number of tasks.

Formally, the node n is a tuple defined as follows:

n = [t, c, p, k, γ,m] ∈ N where:

t ⊆ T c ∈ R
n p ∈ R k ∈ R γ ∈ R

n m ∈ B
(3)

N is a multiset of nodes. The multiset named n.t contains the

tasks associated to the node n. The vector named n.c represents node’s

capabilities, i.e., the resources available on the node and its components

have the same type as those of t.c. The power budget of the node is

denoted by n.p. The economic cost of the node is denoted by n.k and

it could be estimated by referring to an actual platform.

The vector of coefficients named n.γ is used to calculate the con-

tribution to node’s power consumption of each task assigned to the

node; a scalar product connects node’s coefficients n.γ to task’s resource

requirements t.c as follows:

P : Rn ×R
n → R

(t.c, n.γ) �→ n.γ · t.cT (4)

The component named n.m is a boolean attribute indicating if the

node can be mobile.

D. Abstract Channels

An AC interconnects two or more nodes as described at the beginning

of Section IV.

Formally, the AC a is a tuple characterized as follows:

a = [n, c, p, k, d, w] ∈ A where:

n ⊆ N p ∈ R k ∈ R d ∈ R w ∈ B

c = [max throughput, delay, error rate] ∈ R
3

(5)

A is a multiset of abstract channels. The multiset a.n is the multiset

of nodes that communicate between them by using the given AC. The

vector a.c is a vector of capabilities, i.e., it represents the communication

resources of the given AC, i.e., the maximum transmission throughput,

the transmission delay, and the error rate. It is worth noting that a.c
has the components of the same type of f.c, but the former represents

the communication resources provided by the AC while the latter

represents the communication requirements needed by the data flow and

the involved tasks.

The power consumption of an a is denoted by a.p. The economic

cost is denoted by a.k which can be estimated by referring to an actual

platform. Since in the proposed model an AC may includes intermediate

systems, their economic cost shall be considered in the evaluation of a.k.

The attribute named a.d is the maximum distance between nodes

which are connected by the given abstract channel. The notion of

distance is quite generic at this point and it could represent the length

of a wire. The designer has the responsibility to complete the semantic

value of this attribute according to design goals.

The field named a.w is a boolean attribute indicating if the AC is

wireless. If at least one node binded with the AC is mobile, then the

AC shall be wireless.

E. Zones

When designing a network infrastructure, the relationship with the

environment is important. For example, regarding a wireless sensor

network for environmental monitoring, the placement of the sensor

nodes depends on the spatial behavior of the data to be monitored.

The proposed approach to capture this relationship in the formal

model is based on both the partitioning of the space into zones which

contain nodes and the notion of contiguity between zones. Each zone is

characterized by an environmental attribute, e.g., a temperature value in

case of a monitoring application. The contiguity between zones poses

constraints on the reachability of the corresponding nodes. In this way,

the creation of network topologies can be controlled during network

synthesis.

Formally, the zone z is a tuple characterized as follows:

z = [n, s, e] ∈ Z where:

n ⊆ N s ∈ R
n e ∈ R

m (6)

The attribute named z.n is the multiset of nodes placed in the given

zone. The spatial features of the zone (e.g., its extension) are represented

by the attribute named z.s. The environmental information (e.g., the

value of temperature) is described by the attribute named z.e. The

designer has the responsibility to complete the semantic value of z.s
and z.e according to design goals.

The zones are related by the notion of contiguity defined as follows:

Definition 3. Two zones are contiguous if nodes belonging to them can
communicate each other.

The contiguity is characterized as follows:

c = [z1, z2, d] ∈ C where:

z1 ∈ Z z2 ∈ Z d ∈ R
(7)

The components z1 and z2 represents the zones involved in the

relationship. The attribute named c.d is the distance between the zones.

It must be of the same type as a.d since it represents the minimum value

of a.d that an abstract channel shall have to connect two nodes placed

in the corresponding zones. This implies that two nodes placed in the

same zone are always able to communicate.

F. Graph representation

The entities described above can be connected by using three graphs

as follows:

FG = (T ,F) CG = (N ,A , E) ZG = (Z ,C) (8)

The Flow Graph (FG) is the directed graph in which the tasks are

the vertices, and the data flows are the edges.

The Channel Graph (CG) is the directed bipartite graph, in which the

vertices are the nodes and the abstract channels while E is the set of

edges defined as follows:

E = {[n, a] | a ∈ A ∧ n ∈ a.n}.

The representation as bipartite graph is useful to represent channels

shared by more than two nodes.

The Zone Graph (ZG) is a non-directed graph in which the vertices

are the zones, and the edges are the contiguity relationships between

them.

G. Relationships between entities

The proposed entities can be used by the designer to specify the appli-

cation requirements which can be expressed through formal relationships

between their attributes.

For instance, to state that the tasks associated to a node shall not

require more resources than the ones available on that node, and that

they shall respect the total available power limit, the formal constraints

can be written as follows.
∑

t∈n.t

t.c � n.c
∑

t∈n.t

P (t, n) � n.p (9)

Where P is taken from Equation 4.

Also spatial relationships can be easily expressed. For instance, in

a home monitoring application let us assume that the designer created

several zones for each room and used the attribute z.s to record the

room identifier; the following Equation specifies that there must be at

least one node for each room.

Zi = {z | z.s = i} ∀i
⋃

z∈Zi

z.n �= ∅ (10)

The constraint that a node shall be mobile if it contains at least one

mobile task, and that the attached abstract channels shall be wireless,

can be modeled as follows:

∀n ∈ N (
∨

t∈n.t

t.m) ⇒ n.m ∀a ∈ A (
∨

n∈a.n

n.m) ⇒ a.w (11)

In Equation 11 the operator
∨

is intended as the logical or.

From a mathematical point of view, the ability to express relationships

and formulae between entities is useful to describe constraints and

optimization metrics.

V. NETWORK SYNTHESIS

In the previous Section all the network-related variables have been

formalized. What it is left to be provided is:

• a formulation of the synthesis process;

• a methodology to find the solution of the synthesis problem.

These issues are briefly introduced in the following Subsections, and

they will be addressed in future works.

A. Problem formulation

All the variables expressed in the proposed framework can be either

free or bounded. Thus, the network synthesis problem can be defined

as follows:

Definition 4. Given a formal description of a network, a set of
constraints and an optimization metric, the network synthesis is a
process whose objective is to find the optimal solution, i.e. to find optimal
values for the free variables.

The optimization metric can be very complex, taking into account

many parameters, e.g., power, and economic cost. Actually, the parame-

ters have not the same importance and the designer has the responsibility

to sort them according to the priority of the design goal. For instance,

in a low-budget system the economic cost could be the most important

optimization parameter followed by power consumption.

t1t4t3 t5 t2
f2 f1f4 f5

f3

Fig. 4. Tasks and data flows for the given application.

B. How to find solutions

The optimal solution of the problem can be found analytically but

this option is usually unfeasible due to the high number of parameters

to be set and the search range of their values. Furthermore, it is known

that similar problems are NP-hard even in specific fields as NoC [6].

For this reason, there is a lot of literature focused on alternative

strategies, which can be divided into two classes:

• algorithms which can theoretically find the optimal solution pro-

vided that a long amount of time is spent;

• algorithms which use heuristics to find good solutions in a short

amount of time without any guarantee to get the optimal solution.

In the first class there are techniques like the Simulated Annealing

while in the second class there are techniques like graph decomposition.

Also simulation plays an important role in such design-space exploration

since it allows to refine the analytical model thus reducing the search

space.

A good starting point for future works could be the extension of the

heuristics proposed for NoC’s.

VI. CASE STUDY

A. Introduction

The proposed modeling methodology has been applied to a case

study consisting in the temperature control application described at

the beginning of Section I and depicted in Figure 1. Temperature

is controlled inside a building composed of floors and rooms. For

simplicity’s sake, in this example we consider a single floor with

five rooms. Furthermore, to simplify the description of problem data,

attribute values are reported without dimension type (e.g., bit, second,

meter).

The objective of this case study is just to clarify the proposed formal

model, and not to provide an example of a complete workflow.

B. Tasks, data flows and zones

We assume as starting point that a set of tasks T = {t1, t2, t3, t4, t5}
can be extracted from a platform-independent description of the applica-

tion. Task t1 is the system initialization, t2 is the centralized temperature

control, t3 is the user temperature control, t4 is the air-conditioner

actuation, and task t5 is the temperature sensing.

Tasks exchange information according to the set of data flows F =
{f1, f2, f3, f4, f5} as shown in Figure 4.

Each task has an attribute c ∈ R2 which represents CPU and memory

usage, and a mobility attribute m ∈ B; their values are:

t1 = [[6, 4], 0] t2 = [[3, 5], 0] t3 = [[1, 1], 1]

t4 = [[1, 2], 0] t5 = [[1, 2], 0]

Similarly, each data flow has an attribute c ∈ R3 which represents

communication requirements (throughput, maximum allowed delay,

maximum allowed error rate); the attribute values are:

f1 = [t1, t5, [1, 3, 0.1]] f2 = [t1, t4, [1, 3, 0.1]]

f3 = [t2, t4, [5, 2, 0.1]] f4 = [t3, t4, [3, 1, 0.3]]

f5 = [t5, t2, [5, 2, 0.1]]

A technological library for network nodes and channels is also

available as input and it is reported in Table I. All the types of node

are listed with the corresponding capability c, coefficient vector γ (see

Section IV-C), and price k. All the types of channels are listed with

Name c γ d w k

Node

A [2, 4] [0.8, 1.1] — 1 25
B [10, 10] [0.6, 0.9] — 0 100
C [2, 4] [1.2, 0.8] — 1 80
D [1, 3] [1.5, 1.2] — 1 15

A.C.
X [100, 0.2, 0] — 100 0 5
Y [54, 2, 0.1] — 30 1 20
Z [12, 1, 0.3] — 10 1 10

TABLE I
TECHNOLOGICAL LIBRARY FOR NODES AND ABSTRACT CHANNELS.

the corresponding capability c, distance d, wireless attribute w (see

Section IV-D), and price k.

The floor in which the application will be deployed has been parti-

tioned into a set of zones Z = {z1, z2, z3, z4, z5} with the correspond-

ing set of contiguity relationships C = {c1, c2, c3, c4, c5, c6, c7, c8}
which records the distance between zones as follows:

c1 = [z1, z2, 3] c2 = [z1, z3, 6] c3 = [z1, z5, 3] c4 = [z2, z3, 5]

c5 = [z2, z5, 5] c6 = [z3, z4, 3] c7 = [z3, z5, 3] c8 = [z4, z5, 3]

Finally, some constraints are given:

1) one instance of t4 should be placed in each zone;

2) one instance of t5 should be placed in each zone;

3) minimum five instances of t3 must be present in the environment;

4) maximum three instances of t3 can be present in the same zone,

simultaneously;

5) maximum one instance of t3 can be assigned to a single node;

6) an instance of t3 is able to communicate only with other tasks in

the same zone.

The goal of the design problem is to minimize the total cost of the

deployed application.

Considering tasks, data flows, zones and the number of deployed

nodes |N | and abstract channels |A |, then the total number of possible

solutions would be proportional to |N ||T | · |A ||F | · |Z ||N |.
This expression takes into account all the possible assignments of

tasks to nodes, flows to channels, and nodes to zones, respectively.

The number of solutions could be very large but constraints could

considerably decrease it. In the rest of the Section some simple heuristics

will be used to find the solution while efficient search techniques will

be investigated in future work.

C. Task assignment

Considering the nature of the given constraints the first phase of

design-space exploration could be the assignment of tasks to zones.

An instance of t4 and an instance of t5 are placed in each zone.

Instances of t1 and t2 are not subjects to position constraints, so that

they can be placed in any zone. We decide to choose one of the most

connected zones, i.e., z3 and z5. We can randomly choose between z3
and z5 (or even place one task per zone) or we can split the solutions’

space and proceed with two or more possible solutions; for the sake

of simplicity we place t1 and t2 in z3. Instances of t3 are mobile (for

clarity’s sake in this example mobile task and node labels are denoted

with a bar) so we can randomly place them among all the five zones.

D. Node assignment

Once tasks are placed, they should be assigned to nodes. Node

assignment could be done by grouping tasks in the same zone into a

single node (provided that node’s capacity can support them). Exceptions

to this method arise when a task should be mobile and others don’t, or

the cost of a couple of nodes is lower then the cost a single node. The

process of choosing which kind of node should be picked up from the

technological library could follow the rule of the best fitting capacity
which leads to the following configuration:

z2

z1

z3

z5 z4

n1

n2 n3

n4n5

n̄6

n̄7n̄8

n̄9 n̄10 n̄11

n̄12n̄13

n14

Fig. 5. Assignment of nodes and abstract channels to zones.

z1 = {n1[t4, t5], n̄6[t̄3], n̄7[t̄3], n̄8[t̄3]}
z2 = {n2[t4, t5], n̄9[t̄3]}
z3 = {n3[t4, t5], n14[t1, t2], n̄10[t̄3], n̄11[t̄3]}
z4 = {n4[t4, t5], n̄12[t̄3]}
z5 = {n5[t4, t5], n̄13[t̄3]}

where nodes n1, . . . , n5 are implemented by type-A nodes, nodes

n6, . . . , n13 by type-D nodes and node n14 by type-B nodes.

Table II summarizes tasks and nodes assignment and the choice of

node types.

E. Assignment of abstract channels

Given the previous assignment of tasks to nodes and considering the

data flows between tasks, six channels are needed to connect nodes as

follows:

a1 = {n1, n̄6, n̄7, n̄8} a2 = {n2, n̄9}
a3 = {n3, n̄10, n̄11} a4 = {n4, n̄12}
a5 = {n5, n̄13} a6 = {n14, n1, n2, n3, n4, n5}

To choose the type of channels from the technological library, the

following aspects must be taken into account:

• channel capabilities (in terms of maximum throughput, delay and

error rate) must satisfy the requirements of data flows;

• channel distance must satisfy the contiguity between zones;

• node mobility, i.e., mobile nodes must be connected through

wireless channels.

According to these issues, channels a1, . . . , a5 could be instances of

Z type which satisfies requirements concerning throughput, delay, error

rate, and mobility. For instance, the maximum throughput in a1 is 9

when the three instances of task t3 send data to node n1; this value is

lower than the maximum allowed throughput of the abstract channel Z
(i.e., 12).

The abstract channel a6 can be an instance of X type which satisfies

requirements on throughput, delay, and error rate.

The chosen abstract channels and the connected nodes are summarized

in Table II. This leads to the complete network specification, and the

economic cost associated to the found solution is:

K = 5 ·A.k + 8 ·D.k +B.k +X.k + 5 · Z.k = 400 (12)

VII. CONCLUSIONS AND FUTURE WORK

A extension of the traditional design flow has been proposed for

distributed applications based on networked embedded systems. Ad-

ditional design phases have been introduced to model the application

from a communication perspective and to provide the synthesis of the

communication infrastructure. The former point is the focus of this work,

i.e., the creation of a formal framework to model tasks, network nodes,

data flows, channels, and interactions with the environment. Entities and

relationships have been introduced through a mathematical approach

which simplifies the specification of requirements and constraints. Each

Node Type Tasks

n1–5 A t4, t5
n6–13 D t3
n14 B t1, t2

A.C. Type Nodes

a1 Z n1, n6, n7, n8

a2 Z n2, n9

a3 Z n3, n10, n11

a4 Z n4, n12

a5 Z n5, n13

a6 X
n14, n1, n2,
n3, n4, n5

TABLE II
A FEASIBLE SOLUTION FOR THE DESIGN PROBLEM.

element has been described with examples of real-world network appli-

cations and, finally, the framework has been applied to a case study. This

work is a first contribution to a global strategy for network synthesis

and thus some research topics are still open:

• Extraction of task’s requirements from the platform-independent

model.

• Presence of abstract channels and tasks at different ISO/OSI levels.

• Fast and efficient methodologies to perform design-space explo-

ration of network solutions, e,g, through simulation.

REFERENCES

[1] N. Bombieri, F. Fummi, D. Quaglia, “System/network design space explo-
ration based on tlm for networked embedded systems,” ACM Transactions
on Embedded Computer Systems, to appear 2010.

[2] A. Bakshi and V. K. Prasanna, “Algorithm design and synthesis for wireless
sensor networks,” in International Conference on Parallel Processing (ICPP
2004). IEEE Society, Aug. 2004, pp. 15–18 (1).

[3] A. Bonivento, L. P. Carloni, and A. Sangiovanni-Vincentelli, “Platform-
based design of wireless sensor networks for industrial applications,” in
Proc. of Design, Automation and Test in Europe (DATE’06). Munich:
IEEE Society, Mar. 2006, pp. 1–6 (1).

[4] L. Mottola, A. Pathak, A. Bakshi, V. K. Prasanna, and G. P. Picco,
“Enabling scope-based interactions in sensor network macroprogramming,”
in Internatonal Conference on Mobile Adhoc and Sensor Systems. IEEE,
Oct. 2008, pp. 1–9.

[5] T. Bjerregaard and S. Mahadevan, A Survey of Research and Practices of
Network-on-Chip.

[6] A. Agarwal, C. Iskander, H. Multisystems, and R. Shankar, “Survey
of network on chip (noc) architectures & contributions,” in Journal of
Engineering, Computing and Architecture, 2009.

[7] E. Rijpkema, K. Goossens, A. Radulescu, and J. Dielissen, “Trade offs in
the design of a router with both guaranteed and best-effort services for
networks on chip,” in IEEE Computers and Digital Techniques, 2003.

[8] R. Hunt, “A review of quality of service mechanisms in IP-based networks
– integrated and differentiated services, multi-layer switching, MPLS and
traffic engineering,” Computer Communications, vol. 25, no. 1, pp. 100–
108, January 2002.

[9] U. Y. Ogras and R. Marculescu, “Energy- and performance-driven noc
communication architecture synthesis using a decomposition approach,” in
IEEE Conference and Exhibition on Design, Automation and Test in Europe,
2005.

[10] R. Chae-Eun, J. Han-You, and H. Soonhoi, “Many-to-many core-switch
mapping in 2-d mesh noc architectures,” in IEEE International Conference
on Computer Design: VLSI in Computers and Processors, 2004.

[11] Y. Zhang, K. Takahashi, N. Shiratori, and S. Noguchi, “An interactive
protocol synthesis algorithm using a global state transition graph,” IEEE
Transactions on Software Engineering, vol. 14, pp. 394–404, 1988.

[12] A. Khoumsi, G. v. Bochmann, and R. Dssouli, “Protocol synthesis for real-
time applications,” in FORTE XII / PSTV XIX ’99: Proceedings of the
IFIP TC6 WG6.1 Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols (FORTE
XII) and Protocol Specification, Testing and Verification (PSTV XIX).
Deventer, The Netherlands, The Netherlands: Kluwer, B.V., 1999, pp. 417–
433.

[13] H. Yamaguchi, K. Okano, T. Higashino, and K. Taniguchi, “Protocol
synthesis from time petri net based service specification,” Parallel and
Distributed Systems, International Conference on, vol. 0, p. 236, 1997.

[14] R. L. Probert and K. Saleh, “Synthesis of communication protocols: Survey
and assessment,” IEEE Trans. Comput., vol. 40, no. 4, pp. 468–476, 1991.

[15] P. V. Eijk and J. Schot, “An exercise in protocol synthesis,” in Formal
Description Techniques IV. North-Holland, 1991, pp. 117–131.

