Date: November 2009

UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems

Version 1.0

OMG Document Number: formal/2009-11-02

Standard document URL: http://www.omg.org/spec/MARTE/1.0

Associated Files*: http://www.omg.org/spec/MARTE/20090501
http://www.omg.org/spec/MARTE/20090502

Original files: ptc/2009-05-15 (XMI), ptc/2009-05-16 (model library XMI)

Copyright © 2001-2007, Alcatel-L ucent

Copyright © 2003-2007, ARTISAN Software Tools

Copyright © 2001-2007, International Business Machines Corporation
Copyright © 2003-2007, Telelogic AB

Copyright © 2003-2007, L ockheed Martin Corporation

Copyright © 1997-2009, Object Management Group

Copyright © 2001-2007, SOFTEAM

Copyright © 2003-2007, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specificationsthat are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsis for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. Thislimited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OM G specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.SA.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMl
Logo™, CWM™ CWM Logo™, IOP™ /MOF™ , OMG Interface Definition Language (IDL)™, and SysML™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http: //mww.omg.org, under
Documents, Report a Bug/lssue (http://www.omg.org/technol ogy/agreement.htm).

Table of Contents

Preface ... Vi
L S OO I i 1
0 I 1 o o ¥ o T o 1

2 CONFOIMANCEeiiii e e e e e e e e eeees 1
FZ0 R @ 1YY o = PP 1

2.2 Extension UNits and FEALUIESuuuiiiiiiiiiiiiiiiiiiiierieeeieeeiereeeeeeeeeeeseeeeeeeeeeaeeeaaeeaaeees 2

2.3 Conformance of MARTE With UMLcooiiiiiiiii e 2

2.4 Conformance With MARTEoooiiiiiii it s e e e e e er et e e e e e eeeaenes 3

2.4.1 COMPIANCE CASES ..oeeeiiiiiieiiiiiiit e e e e e e e e e et e et e e e e e s ss s st e e e e e ae e e e e s snssnnranaeeraeeaees 3

2.4.2 Extension Units in each Compliance Casecoovveeeeiiiieiieeiiiiiee e siiieee e 4

2.4.3 Special additional compliance case and extension UNitScccccvveeveenniiiieeennnne 4

3 Normative REfEre&nCEeSoeiiiiiiii e 4
4 Terms and DefiNItIONSivniieiiie e 4
5 SYMDBOIS ..o 5
6 Additional Informationcoi i 6
6.1 Scope of OMG RT/E Related Standardsccccevvviiiiiiiiiieiiieiiiiiieeeieeeiereeeeseeeeeeeees 6

6.2 Rationale and General PrinCIPIESuuuuiiiiiiiiiiiiiiiiiiiiiiiieeeiereiesreeeresereseeeereeereaeee 7

6.2.1 Real-time and embedded dOmainccccoiiiiiiiiiiiiii s 7

6.2.2 GUIING PHINCIPIES ..ot e e e e e e e e e 9

6.2.3 How to use this SPeCifiCationoooiiiiiiiiiiie e 10

6.3 APProach and STIUCLUIEuueiiiiiiiiiiiiiieie ettt e e e e e e e e e e aaaaaeaaeaaaaaaaens 13

6.3.1 Profile ArChitECIUIEcoiiuiiiii et be e e e anes 13

6.3.2 A Foundation for Model Driven TEChNIQUEScccovviiiiiiiiiiiiee e 14

6.3.3 Approach to Modeling RT/E SYSEMSuuuiiiiiiiieeiee it e e e e s ssrenreeereeee e 14

6.3.4 Approach to Annotating for Model ANalySiScccccccoeiiviiiiiiieie e 15

6.3.5 MDA @Nd MARTEcciiiitietiiie e e e e e e e e s e e e e e e e e e en s s nn e neeeeaeeeeeas 15

6.4 How to Read this SPeCifiCationeeeeiiiiiiiiiiiiiiiii e 16

6.4.1 Structure of the DOCUMENTuiiiiiiiiiiie et 16

6.4.2 Extension Specification Rationale and Format Conventionccccccvvvvveeeeeennn. 16

6.4.3 Conventions and TYPOGrapNyccccooiiiiciiiiiriie e e ess e e e e e e er e e e e 17

6.5 ACKNOWIEAGEMENTS ... ee e e e seeaeseaeesaeeeeeeeeeeeees 17

7 Core Elements (CoreElements) ..o 21
A0 R @ 1= o= 21

72 1o] 14T V1 Y AT YRR 22

7.2.1 The FOundations PACKagecccceeieiiiiiiiiiie ettt n e e 22

7.2.2 The Causality::CommonBehavior Packageccccoovciiiiiiieiie e 23

7.2.3 The Causality::RunTimeContext Packagecccccovvivviiieiieriee s e 26

UML Profile for MARTE, V1.0 i

7.2.4 The Causality::Invocation Packageccccuviririiiieeeee e e e 27

7.2.5 The Causality::Communication Packageccccccevviiiiiiniiiiieiiee e cecieieeee e 28

7.3 UML RePresentationcoooiiiiiiiiii oo nrennees 30
7.3.1 Profile DIAQIamMScooiiiiiiieiiie ettt e e e e e e e e e e e e aanb e e aeeeaaaeas 31

7.3.2 Profile EIements DeSCIPLIONuiiiiiiiiiiiiiiiiiiiie et 31

7. 3.3 EXAMPIES ... e a e 33

8 Non-functional Properties Modeling (NFPS)ccviiiiviiiiiiiii, 35
S0 I @ YT o T 35
S T2 I T 4= 11 YT ST 36
8.2.1 OVEIVIEW .eeiiiitieiee e ittt ettt e sttt e ettt e e skttt e e e sttt et e e s bbb et e e s sbbb et e e sbbbeeee s anneeeaas 36

8.2.2 The NFP_Nature Packageccueeeieiieiiiiiiiiiiiiiieeieee e e e e s sss st teee e e e e e e e sn e snnannneeeeees 37

8.2.3 The NFP_ANNOtation PACKAQEccvveiieiii ittt e ee e e e e e ee e 38

8.2.4 The NFP_Declaration PaCKagecccceuiiiiiiiiiiiiiiiiie e e e e 40

8.3 UML REPreSENtatioNcccciiiiii i ae e s e eeseaeeeeeeeeeeees 41
8.3.1 Profile DIAQIaMSccceiiiiiiiiiieteie ettt e et e e e e e e s rnab e e eeeaaeeas 42

8.3.2 Profile elements deSCrPLIONeeiiiiiiiiiiiiie e 42

8.3.3 Graphical Syntax of NFP Value Specificationcccooociiiiiiiiiiiiiiiiiieeeeeee, 46

8.3 4 EXAMPIES ...t a e 46

9 Time Modeling (TIME)cceeeiii e 55
LS B I YT T R 55
LS 02 I T 4= 11 YT RS 56
9.2.1 The BasicTIMeMOdelS PACKAQEcvvvveeeiieiiiiiieeiiee et 57

9.2.2 The MultipleTimeModels Packageccooviiiiiiiiiiiiie e 59

9.2.3 The TIMEACCESSES PACKAGE ...vvvviiiieieeiiiiiiiieiiee e et e e e e e st e e e e e e s e s e s snennnaneeeeee s 62

9.2.4 The TimeRelatedENtitieS PACKAgecccoiviiiiiiiiiiiiiiie e 66

9.3 UML RePresSentationccooiiiiiiiiiiiiee oot eneeenees 73
LS IR A o o) 1 LT I 1T Vo = g PR 73

9.3.2 Profile EIemMents DESCHPLONuuiiiiiiieiii it s e s e e e e e e e e e nrneeee s 76

9.3. 3 EXAMPIES ... it et a e e 85

10 Generic Resource Modeling (GRM)coiviiiiiiiiiiiiiiiieeeeee e 89
L0.1 OVEIVIEW ittt ettt ettt e e e e e ettt et e e e e st bttt e e e e e e e s bbbt e et e e e e s e anbbeeeas 89
02 B To T o 4 F= U1 VA= PRSP 90
10.2.1 The ReSOUrceCore PACKAGEccoveiieiuuiiiiiieiieee e e e iestenee e e e e e e e e es s sntnnanneeeaaee e 90

10.2.2 The ResourceTypeSs PACKAQEccoccuvuiiiiiiiiiee et n e e e 92

10.2.3 The ResourceManagement PACKAQEuuvevieeeeeiiiiiiiiiiiiiiie e e e e ss s seienneeeeenee e 95

10.2.4 The Scheduling PACKAQEcciviiieieiiiiiiiiiieiiiees e e e e e s e e e e e e e e e enaneeeee s 96

10.2.5 The ResourceUsage Packagecocccviiiiiiiiii et a e e 98

10.3 UML REPIrESENTALIONuiuiiiiiiiiiiiiiiitiiitiieiitteeeaeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeees 99
10.3.1 Profile DIagramSccoiiiieeiiieieee e e s s eetee et e e e e e e e s s s e e e e e e e s s e s anreraeeea e 99

10.3.2 Profile Elements DESCIIPLIONcuiiiieeiie e eie e e e e e e se s eeee e s e e e e e e 103

10.3.3 GRM model library elements desCriptioncccccceeviviiciiiiiriieee e 115

O = 1 1]][PP PPPPPPP 115
11 Allocation Modeling (AlIOC)oovveveiiiiii e 119
0 O YT T PP 119
02 B To T o 4= U1 T =SSP 121

i UML Profile for MARTE, V1.0

11.3 UML REPIESENIALION ...vvvviiiiiiiiiiiiiiiiiiiet ettt ettt ettt a e 122

11.3.1 Profile DIAgQIamS . ..ottt ettt et e e e s e e st re e e e e e aaeeaas 123

11.3.2 Profile elements deSCriptionc.ueiiiiiiiiieee e 125

11,4 EXAMPIES oottt 132
L1140 URNIX PPOCESS .ieeiiieiiittiteeeeeeta e e e e e e ietbe sttt e e e aaeaas s sttt bbeeeeeeaaeseeeaabnnbbeeeeeeaaaaaeaans 132

11.4.2 SYSEM ON CRP oot e e e e e s e e s e bbb reeeaaaaa e as 133

11.4.3 AlIOCALE ACHVILY GrOUD ..eveeeieeiieaiaeiiitet ittt e et e e et r e e e e e e e e e st aeeeeaaeaaeeaas 134

12 Generic Component Model (GCM)coovviiiiiiiiiiieeceee e, 139
L12.1 OVEIVIEW ..ottt ettt e e e et e e e e e e e et e e e e s e e e e e e e e e nnn e 139
12.2 DOMAIN VIBW ...ttt ettt e e e e e e e e 139
12.2.1 The GenericComponentModel Packageccocuviiiiiiiiiiiiiiiiiieeec e 139

12.2.2 On the MARTE Causality Model for GCMoociiiiiiiiiiiii e 143

12.3 UML REPIESENIALION ...vvvviiiiiiiiiiiiiiieiiiis ettt ettt ettt a e e e e e e e e e e e e e e e e 146
12.3.1 Profile DIAgQramS . ..ottt e e e e e e et ee e e e e e aa e as 147

12.3.2 Profile Elements DeSCIPLIONcooiiiiiiiiiiiee e 148

12,4 EXAMPIES oottt 168
12.4.1 Example of Model Patterns lllustrating the Usage of Flow Ports 168

12.4.2 AUtOMOLIVE EXAMPIE ...eueiiiiiiiieiee et 172

12.4.3 AVIONICS EXAMPIE ..ottt e e e e e e e 174

13 High-Level Application Modeling (HLAM)cccooiiiiiiiiieeieiie e, 177
13,1 OVEIVIEW ...ttt ettt e e et e e e e e e ekt e e e e e e et e e e e e e nnnn e 177
13.2 DOMAIN VIBW ...ttt ettt et e e a e e 177
13.3 UML REPIESENIALION ...uvvviiiiiiiiiiiiiiieieiet ettt ettt a e e e e e e e e e e e e e e e e e e ae e 181
13.3.1 Profile DIagramS . ..ottt e e e e e e s e e s e e e e e e e e as 181

13.3.2 Profile Elements DeSCHPLIONooiiiiiiiiiiiee e 183

13,4 EXAMPIES oottt 190
13.4.1 Notational EXAMPIESeeiiiiiiiiiaiiiiee ettt ee e e e e e e 190

13.4.2 AVIONICS EXAMPIEeeiiiiiiiiieie ettt a e e e 192

14 Detailed Resource Modeling (DRM)cooiiiiiiiiiiiiii e, 197
14.1 Software Resource Modeling (SRM)uciiie i 197
L1410 OVEIVIEW ..ottt ettt nm et ss e se e e e smn e e e sane e s s e e e e ne e e ene e e s nnnee e 197

14.1.2 DOMAIN VIBW ...eeiiiiiieiiiee ittt ettt sne e e ne e e e e s nnne e 198

14.1.3 UML REPIrESENIALION ...uuviiiiiiieeeieiiiiiiieieeie e e eeeesssseiesteer e e e e e e s e s ssnsnnnnreeneeeeaeesenas 206

I (o)] [T B I Vo = g = PSR 207

14.1.5 Profile Elements DESCIIPLIONScccccvviiiiiiee e st e e s s ssinereee e e e e e 211

I G T = T o] RS 229

14.2 Hardware Resource Modeling (HRM)ooovviiiiiiiiiii 235
L4.2. 1 OVEIVIEW ...eiiieiiitiee ettt ettt e ettt e e e st e e s st e e e e e sabe e e e e e sanbaeeeeeannreeeeens 235

14.2.2 DOM@AIN VIEBW ..oeiiiiiiiiiiiieee ettt et e e e e s e e e e s snbn e e e s e snbeeeeesaans 237

14.2.3 UML REPIrESENTALIONuveiiiiiiieiiiiiiiiittte ettt e e e e ee e e e e e e e 247

L14.2.4 EXAMPIES .oeeeiiiieeiie ettt et e ettt e e et e e e e e e e e e et eeaaaaeeaaan 275

15 Generic Quantitative Analysis Modeling (GQAM)cccevvviveeeennn. 285
15.1 OVEIVIEW ..ottt ettt e e e e et e e e e e s ekt e e e e e e e e s e et e e e e e e nnnre e 285
15.2 DOMAIN VIBW ...iiiiiieiiiiie ettt e e e ettt e e e e s e e e e e e e e 287
15.2.1 The GQAM PACKAGE ...vvveiiiieieeiiei ittt e e ee e e s s s st rr e e e e e e s e e s s nnreanaeneeeaaeeanas 287

UML Profile for MARTE, V1.0 i

15.2.2 The GQAM_Workload Packagecccuvuirriiieeieiiiiciiieiie e e e e e 288

15.2.3 GQAM_ODSErvers PacCKagec.oooivieiiiiiieiiiee e 291

15.2.4 The GQAM_ReS0oUrce PacCkagecccuuviiiiiiieeie it e e e e e e e 291

15.2.5 Common NFP Attributes for ANalysisccccveereiieeiiniiiir e 293

15.3 UML REPIrESENIALIONuuiiiiiiiiiiiiiiiiiiiiietitattiteearesaeeesesseessaesssessseseeassessaesreeeaeeseees 295

15.3.1 Profile DISQIramScooeiiiiiiietee ettt e e e e e e e ee s 295

15.3.2 Profile Elements DEeSCIPLIONcuiiiiiiiiiiiiiiiiiie et 299

16 Schedulability Analysis Modelingcccccceviiiiiiiiiiiiiie e, 311
L16.1 OVEIVIEW it e ettt e e e e e et et e e e e s bt e e e e e e e e nn e e e e e e e e nnnee e 311

16.2 DOMAIN VIBWiiiiiiiieei ittt ettt e e e et e e e e e e e e e e e e e e e nnn e 311

16.2.1 The SAM ROOt PACKAGEuvvveiiiiiieeieei ittt e s saee e e e e e e e e e s e nnrnnaeeee e 312

16.2.2 The SAM Workload Packagecoooceicuiiriiiiieeie e e e e e e e s ssneereeee e 313

16.2.3 The SAM Observers Packagecooocoiiiiiiiiiiiice e 316

16.2.4 The SAM ReSOUICES PACKAJEcccoviiiiiviiiiiiiieei e e e s eieeee e e e e e e e s e nrnnrneee e 317

16.3 UML REPIrESENIALIONuuuiiiiiiiiiiiiiiiiieiitetitatiireeareaateseeebeeesaesssessseseeessessaesreeeseeseees 319

16.3.1 Profile DIagramiS......cooiiiiiiieie ettt e e e e e e e e e e e e as 320

16.3.2 Profile Elements DEeSCIIPLIONcuiiiiiiiiiiiiiiiieie e 322

16.3.3 EXAMPIES ..ttt e e e et e e e e e e e e e e a e ee e 328

17 Performance Analysis Modeling (PAM)coooviiiiiiiiiiieeeeie e, 335
L17.0 OVEIVIEW ittt e e e ettt e e e e skt e e e e e e e e e e e e e e e nnnne e 335

17.2 DOMAIN VIBWeiiiiiiiieee ettt ettt e et e e e e e s e e e e e e e e sinre e e e e e e e e e annnes 335

17.2.1 The PAM_Workload Packageccocovciiiiiiiiieiie s 335

17.2.2 Outline of DOMAIN CONCEPLS ..eevvviieeeeiiiiiiiiiieie e e e e e e s r e e e e e e s e s rneee e 338

17.3 UML REPIrESENTALIONieiiiiiiiiiitiitiitiiititetiteeeeeeeeteeeeeeeeeseeeeeeseeeeeeee e eeeeeeeeeeeeeeees 344

A B R = (0]] (ST D I = o | = g1 SO 344

17.3.2 Profile Elements DESCIIPLIONcviiiieeiie i e e e se s e e e e e e e e 345

17.4 Examples for Performance ANAlYSISccccccivuiiiuiiiiieiiiiiieesiersieeeeeererererreereeeeae 351

17.4.1 Example 1: A Simple Web Application ... 351

17.4.2 Example 2: An Electronic Bookstore Home Page Interactioncccceee.... 354

17.4.3 Example 3: a building surveillance SYStemMccccoiiiiiiiiiiiiiiiiee e 357

17.4.4 Example 4: Communications example, a layer subsystemccccccooviiinnneen. 361

17.4.5 Example 5: Services by component SUDSYSIEMSccuuuviiiieiiiiieiiiiiiieieeenn. 363

17.4.6 Example 6: State machine annotationsccccccoviiiiiiiiiiiiiiiee e 367

Annex A: Guidance Example for Use of MARTEcccoiiiiiiiiiiiiineeceeiiinn, 373
Annex B: Value Specification Language (VSL) ...cooovvvveiiiiiiiiiieiiiiieeeeeeeiiinnn 427
Annex C: Clock Handling FacilitieSccooeeiiiiiiiiiieeeeiie e 461
Annex D: Normative MARTE Model Libraries (MARTE_Library) 483
Annex E: Repetitive Structure Modeling (RSM)ccooovvviiiiiiiiiiiiiiieeeeeeeie, 517
Annex F: Domain Class DeSCrPliONScvveiiiiiiiiiiieeeeiiie e e eeaai e 535
Annex G: Bibliographyooo i 711
Annex H: Mapping SPT 0N MARTEooiieeee oottt ee e 717
10 [TP 719

iv UML Profile for MARTE, V1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technol ogy/documents/spec_catal og.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
e XMI

. CWM

. Profile specifications.

OMG Middleware Specifications
« CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
e CORBAservices

UML Profile for MARTE, V1.0

vii

e CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

Viil UML Profile for MARTE, V1.0

1 Scope

1.1 Introduction

This specification of a UML™ profile adds capabilities to UML for model-driven development of Real Time and
Embedded Systems (RTES). This extension, called the UML profile for MARTE (in short MARTE for Modeling and
Analysis of Real-Time and Embedded systems), provides support for specification, design, and verification/validation
stages. This new profile is intended to replace the existing UML Profile for Schedulability, Performance and Time
(formal/03-09-01).

MARTE defines foundations for model-based descriptions of real time and embedded systems. These core concepts are
then refined for both modeling and analyzing concerns. Modeling parts provides support required from specification to
detailed design of real-time and embedded characteristics of systems. MARTE concerns also model-based analysis. In this
sense, the intent is not to define new techniques for analyzing real-time and embedded systems, but to support them.
Hence, it provides facilities to annotate models with information required to perform specific analysis. Especially,
MARTE focuses on performance and schedulability analysis. But, it defines also a general analysis framework that
intends to refine/specialize any other kind of analysis.

Among others, the benefits of using this profile are thus:

« Providing acommon way of modeling both hardware and software aspects of an RTES in order to improve
communication between devel opers.

 Enabling interoperability between devel opment tools used for specification, design, verification, code generation, etc.

« Fostering the construction of models that may be used to make quantitative predictions regarding rea -time and
embedded features of systems taking into account both hardware and software characteristics.

2 Conformance

2.1 Overview

The range of applications and areas of knowledge that are inside the scope of this specification is largely broader than the
current usage of traditional tools in the real-time and embedded systems market. Though all of them are related from the
system perspective and will benefit from having a common place for notations, vocabulary, and semantics inside MARTE,
it is afact that a number of different specialized actors are involved. Consequently, the tools that are currently in the
market, which are those expected to evolve to support this specification, have different users and specific target
applications sub-domains. For this reason, and in order to ease its adoption process, this specification defines a modular
approach for conformance. Thisis similar to the UML compliance strategy, but in this case the compliance points are not
defined as stratified horizontal layers. Here they are defined as Compliance Cases, whose constitutions depend closely on
the expected use cases of the specification.

Though it is recognized that the ability to exchange models between tools is extremely important, this is not compromised
in this approach since interchange is only deemed useful between tools for similar and/or complementary purposes. When
such purposes are similar, the exchanging tools will likely satisfy the same conformance cases. If they are complementary,
model transformations and/or a broader scope of compliance cases will be required at least in one of the tools involved.

UML Profile for MARTE, V1.0 1

2.2 Extension Units and Features

In order to properly identify the elements of MARTE that will be required in each compliance case, the following
definition is made:

EXTENSION UNITS: These are the concrete separated UML profiles or Model Libraries in which the language
extensions that MARTE proposes are packaged. Some of them may require others to be complete or meaningful.
Extension Units play the role of language units and/or individual meta-model packages as they are used in the
definition of conformancein UML.

The Extension Units defined in this specification are listed in the following table.

Table 2.1 - Extension Units Defined

Acronym Name, description Section(s)
NFP Non-Functional Properties Chapter 8
Time Enhanced Time Modeling Chapter 9
GRM Generic Resource Modeling Chapter 10
Alloc Allocation Modeling Chapter 11
GCM Generic Component Model Chapter 12
HLAM High-Level Application Modeling Chapter 13
SRM Software Resource Modeling Section 14.1
HRM Hardware Resource Modeling Section 14.2
RTM Real-Time objects Modeling (RTE MoCC) Chapter 13
GQAM Generic quantitative Analysis Modeling Chapter 15
SAM Schedulability Analysis Modeling Chapter 16
PAM Performance Analysis Modeling Chapter 17
VSL Value Specification Language Annex B
CHF Clock Handling Facilities Annex C
RSM Repetitive Structure Modeling Annex E

2.3 Conformance of MARTE with UML

For many of the extension units considered, the Level 2 of conformance with UML may be sufficient. Though there are

some extensions for which several language units in Level 3 of conformance with UML are necessary, in particular

Templates.

UML Profile for MARTE, V1.0

2.4

Conformance with MARTE

Tools vendors and MARTE implementers require a set of conformance definitions that allow them to better target their
particular user needs without having to implement the complete MARTE Specification.

The target usages of the profile (its use cases and/or the actors involved) are good conceptual entities to look for groups
of Extension Units that may lead to useful compliance definitions.

2.4.1 Compliance Cases

Considering the Use cases of this specification, (described in Chapter 6), the compliance cases defined are:

» Software Modeling

 Congtructs for modeling real-time and embedded (RTE) software applications and its non functional properties
(NFP).
Hardware Modeling
 Congtructs for modeling the high level hardware aspects of RTE systems, including its NFP.

System Architecting

« It includes both Software Modeling and Hardware Modeling compliance cases mentioned before, plusthe
allocation extension units.

Performance Analysis

« It includes the extension units necessary to address the performance evaluation of RTES.
Schedulability Analysis

« It includes the extension units necessary to address the schedulability analysis of RTES.

Infrastructure Provider

« It includes the extension units necessary to address the definition and/or usage of platform specific services (like
OS services for example). This may be used to create RTOS services model libraries, as well as to specify the
services required to a platform in order to support higher level RT design methodologies.

M ethodol ogist

« Tools conforming to this compliance case are expected to support all the extension units required for the other
compliance cases, which in practice means to support all the mandatory features of MARTE.

In order to manage complexity and speed up the adoption process, Compliance Cases are defined at two compliance
levels: Base and Full. Each level indicates a concrete set of extension units that are considered as mandatory at that level.
The Base level is defined as a subset of the Full level. Extension units that are included in the Full level, but are not in
the Base level, are considered as optional at the Base level.

UML Profile for MARTE, V1.0

2.4.2 Extension Units in each Compliance Case

The Extension Units that must be supported in each Compliance Cases are assigned as depicted in the next table:

Table 2.2 - Extension Units that must be supported in each Compliance Case

CASE Level GRM | NFP | VSL | Time | CHF | SRM | HRM GCM Alloc | HLAM | GQAM | PAM SAM RSM
Software Base X X X X

Full X X X X
Hardware Base X X X X

Full X X X X X
System Base X X X X X

Full X X X X X X
Performance Base X X X X X

Full X X
Schedulability Base X X X X X

Full X X
Infrastructure Base X X X X

Full X X X X
Methodologist Base X X X X X X

Full X X X X X X X X

2.4.3 Special additional compliance case and extension units

Tools that wish to serve AADL users should implement Section A.3 in Annex A of this specification.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications:

« UML 2.1.2 Superstructure Specification (OMG document number formal/2007-11-02)
« UML 2.1.2 Infrastructure Specification (OMG document number formal/2007-11-04)
« XMI 2.1 Specification (OMG document number formal/2005-09-01)

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

4 UML Profile for MARTE, V1.0

5 Symbols

Acronym Meaning
AADL Architecture Analysis and Design Language
AHB AMBA High-performance Bus
AMBA Advanced Microcontroller Bus Architecture
ARM Advanced RISC Machines
CAN Controller Area Network
CCM Corba Component Model
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
DMA Direct Memory Access
DPRAM Double-Port RAM
DRAM Dynamic Random Access Memory
EAST-ADL2 EAST Architecture Description Language 2
EDF Earliest Deadline First
EON Extended Queueing Network
FIFO First In First Out
GQAM Generic Quantitative Analysis Modeling
GRM Generic Resource Modeling
GUI Graphical User Interface
LON Layered Queueing Network
Lw-CCM Lightweight CCM
MARTE UML profile for Modeling and Analysis of Real-Time and Embedded systems
MDA Model-Driven Architecture
NFP Non-Functional Properties modeling
OCL Object Constraint Language
(O] Operating System
PAM Performance Analysis Modeling
ON Queueing Network
QoS Quality of Service
QOS&FT UML Profile for Quality of Service and Fault Tolerance specification
RISC Reduced Instruction-Set Computer
RMA Rate Monotonic Analysis
RSM Repetitive Structure Modeling

UML Profile for MARTE, V1.0

RTOS Real-Time Operating System

SAM Schedulability Analysis Modeling

Sl Systéme International

SPT UML Profile for Schedulability, Performance and Time specification
SysML Systems Modeling Language

TCP Transmission Control Protocol

TPC-W Transaction Processing Council Web benchmark
TVL Tag Value Language

UML Unified Modeling Language

VSL Value Specification Language

WCET Worst Case Execution Time

6 Additional Information

6.1 Scope of OMG RT/E Related Standards

The MARTE profile, which replaces the current profile for Schedulability, Performance, and Time, is one of a group of
related OMG specifications (Figure 6.1). The most obvious of these is the UML 2 Superstructure specification, which is
the basis for any UML profile. It also uses the OCL 2.0 specification for all constraints specified in OCL.

1

#replace » u profile »
"""""" o SPT

« metamodel »

UML2 Superstructure {L3) DGL:z

Figure 6.1 - Informal description of the MARTE dependencies with other OMG standards

Note that the Superstructure is dependent on UML compliance level 3 (L3), which is the complete UML metamodel.
In addition, MARTE is related to the following other OMG specifications:

« The UML profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms. This
specification provides, among other things, a generic metamodel for defining different qualities of service and is used
for specifying any such characteristics defined in the MARTE profile.

» TheUML profilefor Systems Engineering (SysML), which deals with many of the same areas, such as the modeling of
platforms and their constituent elements (hardware resources) and the allocation of software to platforms (i.e.,
deployment). In areas where there is conceptual overlap, MARTE is either reuses the corresponding SysML
stereotypes, or defines elements that are conceptually and terminologically aligned with SysML.

6 UML Profile for MARTE, V1.0

» The Executable UML Foundation specification (currently in progress) defines, among other things, amodel of
causality for UML that is at the core of various scenario-based analysis methods (such as performance and
schedulability analyses). The MARTE causality model must be fully consistent with the model specified in the
Executable UML Foundation specification.

+ The RTCORBA and CCM specifications address issues related to software execution platforms, real-time constraints,
composition mechanisms, etc. (i.e., issuesthat are all in the scope of the MARTE specification). All these computing
platforms may be then considered as specific resources for executing MARTE model-based application.

The following OMG specifications deal with similar subject matter but are not considered relevant to this specification:
» The UML for SoC profile
« The EDOC UML profile

6.2 Rationale and General Principles

Since the adoption of the UML standard and its new advanced release UML 2, this modeling language has been used for
development of a large number of time-critical and resource-critical systems (a significant number of these can be found
in the various books, papers, and reports listed in the bibliography at the end of this specification). Based on this
experience, a consensus has emerged that, while a useful tool, UML is lacking in some key areas that are of particular
concern to real-time and embedded system designers and developers. In particular, it was noticed that first the lack of a
quantifiable notion of time and resources was an impediment to its broader use in the real-time and embedded domain.
Second, the need for rigorous semantics definition is also a mandatory requirement for a widespread usage of the UML
for RT/E systems development.

Fortunately, and contrary to an often expressed opinion, it was discovered that UML had all the requisite mechanisms for
addressing these issues, in particular through its extensibility faculties. This made the job much easier, since it was
unnecessary to add new fundamental modeling concepts to UML — so-called “heavyweight” extensions. Rather, the work
being done in the specification consisted of defining a standard way of using these capabilities to represent concepts and
practices from the real-time and embedded domain.

6.2.1 Real-time and embedded domain

The main intent of this section is to describe the domain of interest for this current profile; i.e., the real-time and
embedded domain. There is no general consensus about the definition of both real-time and embedded terms. So, it is not
straight forward to define this domain. Nevertheless, it is possible to give some general descriptions of five main sub
categories included in the RT/E domain category and representative of most of RT/E systems.

Embedded domain

Embedded systems are generally defined as interconnected devices that contain software and hardware (mainly
electronics based) parts, but which are not computers in the classic sense. Embedded systems are computer-based systems
that are deployed into an environment (part of the physical world) with which they interact.

Embedded systems development implies designing a system in which resources are usually limited, and which may need
to run without manual intervention. So all errors need to be handled. As the resources are constrained (in memory size,
power consumption, etc.) the design of embedded systems requires optimization.

The designed system will be embedded in a real application, either software or hardware. Therefore, the produced code
must be easily interfaced with a software environment such as a real-time operating system (RTOS), middleware, a micro-
controller or onto specific hardware (e.g., ASIC, FPGA).

UML Profile for MARTE, V1.0 7

Embedded systems distinguish themselves especially by following specific characteristics: heterogeneity (hardware /
software), distribution (on potential multiple and heterogeneous hardware resources), ability to react (supervision, user
interfaces modes), criticality, real-time, and consumption constraints.

Reactive domain

Systems are generally tagged as “reactive” to stress the fact that they are meant to react to information inputs coming
from some environment. The main goal of such reactive systemsis actually to control, supervise, or simply collaborate or
interact with this environment. Of course such systems may perform heavy data computation, but this aspect is played
down and abstracted somehow in the system description.

The behavior of reactive systems usually consists of reaction cycles: first, input events are gathered from the environment
(through sensors); second, a reaction is computed and decided upon; third, the proper outputs are emitted back in atimely
manner in response to environment stimuli through actuators for example. The reactions may depend on alocal or global
state, defining the current mode of operation of the reactive system.

Reactive systems can be found in transportation (automotive, aircrafts), factory automation, in hardware/software
controllers, in various embedded electronic appliances, including mobile communications.

Control/Command domain

Applications for control/command domain are usually dedicated to manage the execution of a process or object of the
physical world. The command synthesis matches the production of commands toward actuators from a given request.

A request is generated after measures have been done on one or several sensors. A measure is packaged (i.e., processing
the signal coming from the sensor) and then managed (i.e., taking into account the process state) in order to build the
corresponding request. From a given request, it is possible to distinguish three kinds of command synthesis; (1) the
regulating or the request is fixed; (2) serving that means the adaptation of a command following the order variations; (3)
the trajectory monitoring in case of variable request.

The command synthesis may be achieved either in open loop or in closed loop mode. The command synthesis in open
loop mode consists in designing a function that depends on the request values and parameters of the actuators. The
command synthesis in closed loop mode is relying on an additional measure requiring to evaluate the level at which the
request is considered and to adjust the command if needed.

Moreover, real case studies demonstrate that, in addition to the usual functions for command synthesis and measuring, it
is necessary to have user information functions (via a specific API or network) and trace functions.

Systems dedicated to process control consist of three main activities: measuring, command synthesis, and information
output. Three components involved in the development of control/command systems may be also identified: Sensors
(buttons, serial input devices, etc.) related to measuring activities; Actuators (motors, printers, etc.) related to command
synthesis in open and closed loop; and output devices (e.g., screen, files, networks, etc.) related to information output.

Intensive data flow computation domain

Intensive data flow computation is mainly encountered in signal processing, image processing, and mobile devices. A
common scenario is aradio signal tuned by areceiver, filtered, and decoded. These different stages require intensive data
computation to be performed, possibly in parallel, with the help of several computation units.

Many signal and image processing applications follow an organization in two high level stages: systematic signal
processing and intensive data processing.

8 UML Profile for MARTE, V1.0

The systematic signal processing is the very first part of a signal processing application. It mainly consists of a chain of
filters and regular processing applied on the input signals independently of the signal values. It resultsin a
characterization of the input signals with values of interest.

The intensive data processing is the second part of a signal processing application. It applies irregular computations on
the values issued by the systematic signal processing. Those computations may depend on the signal values.

Software Defined Radio receiver is a concrete industrial example of such a domain. This emerging application is
structured with front end systematic signal processing including signal digitalization, channel selection, and application of
filters to eliminate interferences. The data is decoded in a second and more irregular phase (synchronization, signal
demodulation, etc.).

Intensive data-flow computation is an important class of embedded applications requiring hardware architectures
description. It requires mainly being able to express potential parallel processing of data and parallel hardware
architectures, preferably in simple ways that allow for factorization of repeated elements.

Best-effort service domain

Real-time systems sometimes include elements that do not deliver servicesin atotally safe or time-constrained way (such
as web application servers in an IP telephony system). These systems nonethel ess have properties (delay distribution,
probability of failure of a service) that need to be understood.

Best-effort services supply one or more responses as data, to a request. They often make subsidiary requests to other
services, particularly to data services (databases, caches, file servers, disk storage). Best-effort services are not
distinguishable from systems that are not primarily designated “real-time” systems.

To a certain extent most computer systems have some aspect of requirements for real-time responses, which are affected
by system resources. This profile provides some capabilities for describing and analyzing those real-time aspects of any
system.

6.2.2 Guiding principles

This section aims in defining what have been the main guiding principles used to write this specification. The main
guiding principles are then as follows:

» The profile should support independent modeling of both software or hardware parts of RT/E systems and the
relationships between them.

» The profile has to provide modeling constructs covering the development process of RT/E systems. Such features may
be categorized into qualitative (parallelism, synchronization, communication) or quantitative (deadline, periodicity).
The profile must provide high-level modeling constructs for specification purposes, for example, but also low-level
construct for implementation purposes.

» Asmuch as possible, modelers should not be hindered in the way they use UML to represent their systems just to be
ableto do model analysis. That is, rather than enforcing a specific approach or modeling style for real-time systems, the
profile should allow modelers to choose the style and modeling constructs that they feel are the best fit to their needs of
the moment.

» Modelers should be able to take advantage of different types of model analysis techniques without requiring a deep
understanding of the inner workings of those techniques. The steep learning curve behind many of the current model
analysis methods has been one of the major impediments to their adoption.

UML Profile for MARTE, V1.0 9

» The profile must support al the current mainstream real-time technologies, design paradigms, and model analysis
techniques. However, it should also be fully open to new developmentsin all of these areas.

It must foster construction of UML models that can be used to make quantitative and partitioning predictions and
analysis regarding hardware and software characteristics of the RT/E system. In particular, it is important to be able to
perform such analyses early in the development cycle. For that, it hasto be possible to analyze partial models. It should
be possible to automatically construct different analysis-specific models directly from a given UML model. Such tools

should be able to read the model, process it, and feed the results back to the modeler in terms of the original UML
model.

6.2.3 How to use this specification

This section describes which potential actors may use this specification and how they can do it. Of course, neither the
actors nor use cases described in this section represent an exclusive set for how this specification can be used, but rather
reflect on some of the ways that we expect it to be used or (in most cases) expanded.

Figure 6.2 describes a set of potential actors that may use this specification for designing RT/E systems.

X

Marte User

Lo

Model DeS|gner Modd A malyst E xecution Platform Provider Metlbdology P rovder

1

Softw are Moceler R T/E SystemArchitect Hadvare Moceler Analyss Methoddogy Provide D esign Methadology Provider
Softw ae A rchitect Hardware Architect

Figure 6.2 - Possible actors using the MARTE specification

» Model Designer: These are modelers that design models dedicated to be applied in the context of the development
process of RT/E systems. Models may be used for usual specification, design, or implementation stages. But models

may be also used for analyzing in order to determine whether they will meet their performance and schedul ability
reguirements.

« RT/E Systems Architect: These are specific modelers concerned with the overall architecture and they usually
make trade-offs between implementing functionality in hardware, software, or both.

10 UML Profile for MARTE, V1.0

« Hardware Modeler: These are model ers specifically dedicated to hardware aspects of the RT/E systems
devel opment.

« Hardware Architect: These are modelers concerned by designing hardware architecture.

 Software Modeler: These are modelers specifically dedicated to software aspects of the RT/E systems
devel opment.

« Software Architect: These are modelers concerned with designing software architecture.

» Model Analyst: These are modelers concerned with annotating system models in order to perform specific analysis
methodologies.

» Execution Platform Provider: These are devel opers and vendors of run-time technologies (hardware- or/and software-
based platforms) such as Real-Time CORBA, real-time operating systems, and specific hardware components.

» Methodology Provider: These are the individuals and teams who are responsible for defining model-based
methodology for RT/E domain. This category includes UML tool providers.

» Design Methodology Provider: These are specialized methodology providers who are responsible for defining
model-based methodology for specifying, designing or/and implementing RT/E systems.

« Analysis Methodology Provider: These are specialized methodology providers who are responsible for defining
model-based analysis methodology such as RMA or queuing theory, as well as technology provider such as tool
vendors providing tools and processes for supporting particular model analysis methods.

Common possible usages of the MARTE profile are specified in the use case diagram depicted in Figure 6.3.

Marte specification

define Method olo gy
— build Model

includ
«include » e Methodology Provider

adapt Marte Specification
Model D esigner P > led!

«incdude » ™~

annotate Mod el for Analysis
build Execution Platform Mo del

provide Execution Platform / ;

Execution Platform Provider

analyze Model

|
i

Model Analyst

Figure 6.3 - Common use cases of the MARTE specification

Details of the use case “build Model”
« Actor: Modeler
» Description: A modeler builds amodel iterating it through several stages defined in an appropriate devel opment
process. According to a given methodol ogy (see the “ define Methodology” use case), amodel er uses appropriate UML

extensions or specific model libraries defined in the MARTE specification in order to describe the RT/E aspectsin the
model of their system.

UML Profile for MARTE, V1.0 11

Deliverable: The result of this use caseisamodel of the user system containing all its RT/E specificities.

Details of the use case “adapt MARTE Specification”

Actor: Methodology Provider and Execution Platform Provider

Description: This use case consists in defining a specific MARTE sub-profile. The motivations to adapt MARTE may
be either to deal with a specific domain not covered by MARTE or to define restrictions on the usage of MARTE
modeling constructs. In the former case, the actor may either specialize MARTE modeling constructs in order to adapt
them suitably to their needs or introduce new concepts not available in MARTE. The second way to adapt the MARTE
specification is to define modeling rulesin order to constraint the usage of the specification.

Deliverable: The outcome of this use case is adefinition of MARTE extension that takes the form a UML profile based
on the MARTE specification. The dependencies with the MARTE profile may be merge, import or specialization.

Details of the use case “define Methodology”

Actor: Methodology Provider

Description: This use case consists in defining how to use the MARTE specification for a given purpose. For example,
one may define a specific methodology for the design of electronic automotive systems (cf. the EAST-ADL annex) or
for avionics (see AADL annex). One may also define model-based analysis methodol ogy such as schedulability or
performance analysis.

Deliverable: The outcome of this use caseis amodel-based methodology. This latter may include a process description,
aset of constraint rules and a set of required techniques that applies to the methodology. If necessary, this use case may
aso include the definition of an extension of the MARTE profile (include of the “extend MARTE Specification” use
case).

Details of the use case “annotate Model for Analysis”

Actor: Model Analyst

Description: The model analyst uses appropriate MARTE extensions, as defined for examplein a specific analysis
methodology, in order to annotate appropriately modelsin order to perform a given analysis techniques.

Deliverable: The outcome of this use case is amodel annotated with MARTE extensions and ready for performing
specific analysis.

Details of the use case “analyze Model”

Actor: Model Analyst

Description: The model analyst perform a given analysis techniques on a model. The purpose of the analysis may be
varied depending of the nature of the analysis techniques used. Some examples of analysis are: schedulability or
performance analyses.

Deliverable: The outcomes of this use case are analysis results.

Details of the use case “build Execution Platform Model”

12

Actor: Execution Platform Provider

Description: This use case consists in building model of execution platform for MARTE based developments of RT/E
systems.

UML Profile for MARTE, V1.0

» Deéliverable: The outcome of this use case isa MARTE compatible execution platform model.

Details of the use case “provide Execution Platform”

« Actor: Execution Platform Provider

« Description: This use case consistsin providing execution platform conform to a given model of platform.

» Deéliverable: The outcome of this use case is an execution platform.

6.3 Approach and Structure

6.3.1 Profile Architecture

The profileis structured around two main concerns, one to model the features of real-time and embedded systems and the

other to annotate application models so as to support analysis of system properties. These are shown by the RTEM

package named “MARTE design model” in Figure 6.4, and the cluster of three packages, respectively. These two major
parts share common concerns with describing time and the use of concurrent resources, which are contained in the shared
package named “MARTE foundations.” Finally the “AnalysisModeling” features are broken into a foundational generic
part in the package GQAM, and two packages for specific analysis domains, as shown. These first two specific analysis
domains are entirely concerned with time, however the profile structure allows for adding additional analysis domains,

such as power consumption, memory use, or reliability. It is the intention to encourage modular sub profiles like the two
analysis packages, for such domains.

MARTE foundations

L
MARTE design model

]] 1 1 1
« profile » « profile » « profile » # profile » « profile »
CoreElements NFP GRM Alloc
M M

MARTE analysis model

—1 —1 1
« profile » « profile » « profile »
GCM HLAM
1 1 —1 —1
« profile » « profile » « profile » a profile »
SRM HRM SAM PAM
MARTE annexes
1 1 1
« profile » « profile » « modelLibrary »
VSL RSM MARTE_Library

Figure 6.4 - Architecture of the MARTE Profile

UML Profile for MARTE, V1.0

13

6.3.2 A Foundation for Model Driven Techniques

The profile is intended to provide a foundation for applying transformations from UML models into a wide variety of
analysis models. The environment for exploiting the profile would consist of a set of tools, including model transformers,
as shown in Figure 6.5. Prototypes of such tool chains have been produced based on SPT.

The forward path shows the way the model is expected to be transformed via the XMI output, to a format readable by an
analysis tool. The dashed line indicates a potential feedback path to re-import the analysis results into the UML diagrams.

Another feedback path clearly exists from the analysis to the modeler.

Model Designer Model Analyst
b ui Id analyzei
Q Transformation
UML Tool Annotated to Analysis — Analy sis Analysis Tool
. UML Model Model Model
XMI 1
1
i hJ
= 7 : S
Annotated L l?:lagdnk;)stlﬁ/ [Analy sis
Plat form eedbac Re s ults
Model Librar

Figure 6.5 - A Tool Chain for Carrying out Analysis of a Model
6.3.3 Approach to Modeling RT/E Systems

Embedded systems are becoming increasingly heterogeneous. This is true of applications, which combine intensive, often
heavily pipelined, data computation for signal processing, together with control mode switches and communication
protocols. This is true also of execution platforms, which comprise flexible or custom-made hardware, multi-core
processors, cache and bus hierarchies, and so on. Thisisreflected in the design of such systems, which must try to fit best
applications onto existing platforms, or even adjust and dimension again execution platforms for pre-existing applications.
The main criteria governing this allocation of application functions to HW/SW execution resources are stringent real -time
requirements, but power- and area-consumption or cost also play arole. Adequate modeling can of course be of great help
with this design activity by providing the support for design and analysis. The modeling support should also encompass
early global timing budget and maximal latency requirements, as well as scheduling results display expressing the explicit
quality of allocation in a traceable manner.

Application modeling is based on interacting component blocks for structural aspects. As for behavior, data-intensive
pipe-lined computations are generally represented with block-diagrams amenable to activity charts, while control-flow
parts and communication protocols use hierarchical finite-state machines. This functionality is complemented with timing
aspects, based on appropriate time/cycle descriptions (see time model section below). Application modeling is further
described in Chapter 9.

14 UML Profile for MARTE, V1.0

Execution platform modeling comprises the description of both dedicated hardware and (middleware) software layers and
interconnects composing the platform. It can be described at the same level of abstraction as the application, and contains
timing information along with structural and behavioral aspects. Explicit detailed modeling can be needed in as far as the
appropriate match between application and architecture is to be studied (hierarchical cache structure or Instruction Set
Simulators for instance). Execution platform modeling is further described in both Chapters 10 and 14.

The allocation model describes the association matching applicative functions onto execution platform resources. It is
sometimes mandatory to provide timing information on this allocation link itself, rather than on its constituents, for
reasons of modular abstraction (for instance one may indicate that a complex filter function can be realized at a given cost
on a given specific processor, without going back to individual statements and instructions). Allocation modeling is
further described in Chapter 12.

Note: allocation is here reminiscent of the similar notion in the SysML specification.

Regular iterative constructs, that are often encountered in the embedded world to represent signal-processing applications
or dedicated DSP operator blocks, or processor arrays, are best modeled using dedicated iterative model representations
such as described in Annex E.

6.3.4 Approach to Annotating for Model Analysis

Annotations use stereotypes that permit us to map model elements into the semantics of an analysis domain such as
schedulability, and give values for properties that are needed in order to carry out the analysis. We may distinguish
“input” properties that are needed to carry out the analysis, and “output” properties that are determined by the analysis.
However the modeler may also input required values of output properties, which can be used to determine how well the
system meets its requirements (another output property).

Analysisis not aways simply “pass/fail,” and the particular goals of analysis are specific to its domain. Output properties
to be reported may include details of how and where time and resources are consumed, in order to diagnose problems, and
may include sensitivity studies to explore the importance of parameters whose values are uncertain.

6.3.5 MDA and MARTE

The MARTE profile defines precise semantics for time and resource modeling. These precise semantics allow automatic
transformations of models to lower abstraction level models such as UML for SoC for hardware / software simulation or
into C++ for implementation purposes.

One of the goals of this profile is to support common design flows for RT/E systems. One of these design flows is to
define in different views or models the application (including functional and non functional characteristics), the hardware
architecture and the allocation of the application onto the hardware architecture. Starting from this allocation model, if the
semantics is precise enough, one can automate code generation for simulation at different abstraction levels or synthesis
of specific hardware parts.

Another use of MDA (or MDE, “Model Driven Engineering”) with the MARTE profile is the integration of tools. Indeed,
some analysis or verification tools can be coupled with the modeling tools if the semantics of the models correspond to
the semantics of the analysis or verification tool. Model transformation techniques can then be used to enable this
coupling.

UML Profile for MARTE, V1.0 15

6.4 How to Read this Specification

6.4.1 Structure of the Document

The MARTE specification consists of five blocks of chapters:
» Block one gathers the introduction chapters (from Chapter 1 to 6).

» Block twoisPart | of the MARTE specification and it is intended to define the MARTE foundations. It conflates
chapters 7 to 12 respectively focused on: Chapter 7, Core Elements, defines the basic elements for model-based
approach and specialy for real-time embedded domains such as a causality model; Chapter 8, Non-Functional
Properties modeling, defines a common framework for annotating models with quantitative and qualitative non-
functional information; Chapter 9, Time modeling, defines the time as used within MARTE; Chapter 10, Generic
Resource M odeling, specifies how to describe at system level resource models; finally, Chapter 11, Allocation
modeling, defines concepts required to describe allocation concerns.

» Thethird block is Part Il of the MARTE specification. It isintended to define the MARTE concepts for model-based
design of RTES. It consists of the following chapters. Chapter 12, General Component Model, introduces a general
component model suitable for RTES. This component model, called GCM, is build on top of the composite structure of
the UML, and it is compatible with well-known component models such as the one of SysML, CCM, AADL and
EAST-ADL; Chapter 13, High-Level Application Modeling, defines high-level concepts for designing qualitative and
quantitative concerns of RTES (e.g., concurrency and synchronization); Chapter 14, Detailed Resource Modeling, is
split into two sub-sections respectively dedicated to detailed modeling of software (section 14.1, SRM, “ Software
Resource Modeling”) and hardware (section 14.2, HRM, “Hardware Resource Modeling”) resources.

» Thefourth block isPart I11 and focuses on model-based analysis. It does not intend to define new analysistechnologies,
but to define the information required for annotation models on which external analysis techniques may be applied. It
consists of three chapters: Chapter 15, Generic Quantitative Analysis Modeling, defines basis concept for specific
analysis technics; Chapter 16, Schedulability Analysis Modeling, specializes the generic framework for performing
schedulability analysis, whereas Chapter 17, Performance Modeling, is the specialization for model-based performance
analysis.

» Thelast block, Part 1V, contains all the MARTE annexes. The main information contained within these annexes is
about additional useful value specification languages provided by MARTE (Annex B and Annex C): the Value
Specification Language (VDL), the Clocked Value Specification Language (CV SL) and the Clock Constraint
Specification Language (CCSL). Another important added value contained is a predefined MARTE mode library
(Annex D). This latter annex described predefined primitive and data types required for defining the UML profile for
MARTE itself, but also usefull for user models. The annex part owns also a UML extension definition (Annex E, the
Repetitive Structure Modeling MARTE subprofile) intended to support specific system modeling consisting of
repetitions of structural elements, interconnected via a regular connection pattern. We call thiskind of structure
“repetitive structure.” Finally, the annex block of MARTE owns an annex dedicated to describe the detailed semantics
of each domain concepts introduced within the specification (see following section which relates on how to use this
Annex F).

6.4.2 Extension Specification Rationale and Format Convention

Extensions proposed by MARTE have been conflated around one main concern and detailed in separate chapters: Chapter
7 to Chapter 17 and Annex F. Such chapters are then organized following the same patterns. The way to define each sub
profile contained within MARTE rely on a two stage process. a domain model specification and its underlying UML
profile design.

16 UML Profile for MARTE, V1.0

The first stage consists of defining the required concepts (also called domain elements) related to one specific concern
(e.g., non-functional properties modeling and time modeling). The output of this stage is then called the domain model,
which formalized through the definition of a meta-model and the detailed semantics descriptions of each of its elements.
In order to reduce the bulk of this document, we decided to gather all these detailed descriptions within a common place,
Annex F.

The second stage of the process we adopted for MARTE aims at designing a UML profile (sections called “UML
representations”). Our purpose is then to define UML extensions (i.e., mainly stereotypes, tagged values, specific
notations, and OCL rules) for supporting within the UML the specific concepts introduced within each MARTE domain
model for supporting RTES model-based engineering.

In order to minimize the impact of the MARTE extensions on the model readability, firstly we try to reduce the size of
stereotype names as much as possible, but without scarifying their meaning too much. Secondly, we decided to prefix the
stereotypes only when required. A typical example was when we define stereotype that was inherited by other
stereotypes.

6.4.3 Conventions and Typography

In the description of this specification, the following conventions have been used:

« While referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are always used.

» Novisibilities are presented in the diagrams, since al elements are public.
- If asectionisnot applicable, it is not included.

» Stereotype, metaclass and meta-association names: initial embedded capitals are used (e.g., ‘ModelElement’,
‘ElementReference’).

» Boolean meta-attribute names always start with ‘is’ (e.g., ‘isComposite’).
« Enumeration types always end with “Kind” (e.g., ' DependencyKind’).

 Indiagrams described in the rest of this document, the way of identifying an element external to the package being
described will be its name preceded by the hierarchy of containing packages/namespaces; the root element to use for
this sequence shall be the closest ancestor in the hierarchy that is common to both the imported element, and the
package being described.

6.5 Acknowledgements

The following companies submitted and/or supported parts of this specification:
» Adaptive
 Alcatel
« ARTISAN Software Tools
« Carleton University
« Commissariat al’ Energie Atomique
- ESEO
- ENSIETA

UML Profile for MARTE, V1.0 17

France Telecom

International Business Machines
INRIA

INSA from Lyon

Lockheed Martin

MathWorks

Mentor Graphics Corporation
NASA

No Magic

Software Engineering Institute (Carnegie Mellon University)
Softeam

Telelogic AB

Thales

Tri-Pacific Software Inc.
Universidad de Cantabria

The following persons were members of the core team that originally designed and wrote this specification (sorted in
alphabetical order): Charles André, Jean-Philippe Babau, Pierre Boulet, Irv Badr, Arnaud Cuccuru, Gérard Cristau,
Jérome Delatour, Cédric Dumoulin, Sébastien Demathieu, Robert De Simone, Huascar Espinoza, Madel eine Faugere,
Sébastien Gérard, Mark Gerhardt, Peter Kortmann, Frédéric Mallet, Julio Medina, Alan Moore, Chokri Mraidha, Dorina
Petriu, Laurent Rioux, Bran Selic, Safouan Taha, Jean-Pierre Talpin, Frédéric Thomas, Murray Woodside and Ben
Watson.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification (sorted in alphabetical order): Jérdme Blanc, Joel Champeau, José Maria Drake, Thierry
Gautier, Michael Gonzélez Harbour, Jack Low, Benoit Masson, and Yves Sorel.

18

UML Profile for MARTE, V1.0

Part | - MARTE Foundations

This Part contains the following chapters:
e 7 - Core Elements (CoreElements)
* 8- Non-functional Properties Modeling (NFPs)
¢ 9-TimeModeling (Time)
« 10 - Generic Resource Modeling (GRM)

11 - Allocation Modeling (Alloc)

UML Profile for MARTE, V1.0

19

20

UML Profile for MARTE, V1.0

7 Core Elements (CoreElements)

7.1 Overview

The concepts presented in this chapter serve as a general basis for the description of most elements of the rest of this
specification. They are a comprehensive set of related concepts that are useful to define those others more elaborated,
which are used to build the subsequent chapters of this specification. They are split in two packages for convenience. The
Foundations package holds the basic elements used to represent the dual descriptor-instance nature of any modeling
entity. These concepts may serve different purposes for modeling and analysis, and are the basis for structural modeling.
The Causality package describes the basic elements necessary for behavioral modeling, and their run-time semantics.
Figure 7.1 shows these packages and their relationship.

MARTE::CoreEle ments

Foundations rE——————— —— Causality

Figure 7.1 - Dependencies between packages for the CoreElements package

The Causality package is a specification of how things happen at run time. The purpose of this model isto provide a very
high-level view of the run-time semantics for those modeling elements that are suitable for real-time and embedded
systems, and will be later used when required to point out the various elements of that view that are covered and
specialized in the domain models of the MARTE specification. The term “run-time” is used to refer to the execution
environment. Run-time semantics are therefore specified as a mapping of modeling concepts into corresponding program
execution phenomena.

This model is used as a basis for any dynamic model description associated with the MARTE profile. It captures the
essentials of the cause-effect chains in the behavior of run-time instances. The model is inspired from (and hence
compliant with) the Common Behavior model of the UML superstructure. But, it is more detailed and precise in certain
aspects, in particular for its further use as the basis for the definition of a richer timing model, which includes the timing
constraints induced by the real-time annotations. A complete model and a language for timed expressions are provided at
full length in Chapter 9. Other dedicated attribute properties for time-related concepts are also introduced further along
this specification. Figure 7.2 presents the internal sub-packages of the causality model. The purpose and contents of each
sub package are described in the next sections.

UML Profile for MARTE, V1.0 21

Causality
1

CommonBehavior

A 3

/ RunTimeContext
J" :’f t\é‘:\.

v - -

—‘—| # —i‘_‘

Invacation Communication

Figure 7.2 - Architecture of the Causality package
7.2 Domain View

7.2.1 The Foundations Package

The domain models presented in this specification will use a consistent set of modeling elements, which in spite of being
non-normative, form a large meta-model that covers all the modeling requirements imposed by the RFP.

For modeling and analysis purposes, it is fundamental to distinguish between design-time classifier elements, such as
classes and types, and run-time instance elements that are created on the basis of those classifiers. All modeling elements
at any level of specification will represent either one or the other of these two fundamental aspects, based on their
purpose.

This basic partitioning into classifiers and instance is reflected in the diagram depicted in Figure 7.3. Any number of
instances can be created from a given classifier. This latter is referred to as the type of the instance. Notice that an
instance may have multiple types (which can be used either to represent different viewpoints of the model element) or a
composition of partial descriptions, including multiple inheritance for example).

The concept of Instance may be in practice represented in UML not only as InstanceSpecifications but also by those other
elements that are described in terms of role-based models (like UML ::ConnectableElement in collaborations or internal
structure diagrams, parts, ports, or roles).

Foundations |

ModalElament

TR

0.

T . ownadElamant

0.* 0.*
Instance - Classifier
instance type

name! String [0..1]

Figure 7.3 - Instance and Classifier root diagram of the Foundations package

22 UML Profile for MARTE, V1.0

As described in Chapter 8, values of non-functional properties (NFP) may be annotated on any model element designated
as such. In this way, further specializations of Classifiers or Instances may become kinds of AnnotatedElements. In
particular, time-based analysis methods operate on annotated models that are usually described over a number of specific
instances of the system. However, it is also useful to be able to associate NFP values with classifiers. In this case it
simply means that such values apply by default to all instances created on the basis of those descriptors, and not that the
classifier itself has that value. These default values can be further overridden in specific instance cases. But, this uniform
annotation of instances requires special care and may not always be appropriate. In case of interface specifications, for
example, there could be many realizations of the same interface, each with different service characteristics described by
means of NFP.

For practical reasons, most concepts and modeling elements in the domain views of this specification as well as the
stereotypes in the UML representation will be defined and described using the classifier root concept, but it should be
noted that a corresponding instance may also exist. However, instance based elements will be defined to stress its nature,
when appropriate. This semantic variation will also be taken into account in the UML views of the specification firstly to
define the applicability of the required consistency rules, and secondly in the subsequent adoption of the proper semantics
when the corresponding stereotype is applied to extend user defined modeling elements.

Foundations |
ModelElemeant
MultiplicityElemeant owningUpper uppervalue
0.1 .1
Jupper ; UnlimitedMatural [0..1] MARTE::VSL::
floweer - Integer [0..1] owningLower lowervalus | ValueSpecification
0.1 0.1
% « enumeration »
ownedProperties Property AggregationKind
Gl i
aggregation : Aggregationkind [1] = none none
shared
type /[0.1 composite

Figure 7.4 - Property diagram of the Foundations package

A Property is a MultiplicityElement, so that it can have an upper and lower bound specifying the valid range of
cardinalities for this property. Additionally, it has an aggregation kind and a type (as a classifier).

7.2.2 The Causality::CommonBehavior Package

7.2.2.1 Basic Behavior

This model states the relationships between classifier element models and their instances from a behavioral viewpoint. It
isaligned to the UML semantics basis, in the sense that there is no disembodied behavior: al behavior emanates from the
actions of structural entities. In particular since in UML a behavior isakind of class, it is possible for a behavior to be its

UML Profile for MARTE, V1.0 23

own structural context. For many of the UML behavioral concepts mentioned here you may find the corresponding UML 2
semantics description in Chapter 13 of the OMG document ptc/06-04-02. For those that reify the UML2 concepts,
analogous definitions have been extracted from that OMG document.

CommonBehavior |
CoreElements.:Foundations:: CoreElements::Foundations:: type
ModelElerment Classifier 0.1
Trigger M’ BehavioredClassifier
* 0. CaoraElements. Foundations::
] MaaalElarmeant
contaxt 1 1
. ImainBehavior
even .f1 ownedBehaviar | - D"lr{sub\sa[cwnedBehavior} ,Q)
action .
Evant Bafawviol
bl - e -’—“"1 palamele: Parameter —_—
0.1 él\:‘
CompositeBsahawor Action

Figure 7.5 - The CommonBehavior package

A Behavior defines how some system or entity changes over time. From a modeling point of view, this concept defines
the behavior of some classifier, specifically, a Behaviored Classifier. A behavior captures the dynamic of its context
classifier. It is a specification of how its context classifier as well as the state of the system that is in the scope of the
behavior may change over time. A behavior may have Parameters whose values may be used for evaluating a behavior.
A behaviored classifier may have behavior specifications that illustrate specific scenarios of interest associated with that
classifier, such as the start-up scenario. In particular, the behavior specification used to represent the behavior that starts
executing when instances of that classifier are created and started is called main behavior. For many real-time concurrent
systems, this can be, for example, the behavior that initiates the activity of athread, which continues until the thread is
terminated. Two kinds of Behavior may be defined: CompositeBehavior and Action. Action is an atomic behavior, and
CompositeBehavior may contain other Behaviors, which in turn may be either composite or atomic.

An Action is the fundamental unit of behavior. An action takes a set of inputs and converts them into a set of outputs,
though either or both sets may be empty. Actions are contained in behaviors, which provide their context. Behaviors
provide constraints among actions to determine when they execute and what inputs they have.

An Event is the specification of a kind of change of state that may happen in the modeled system. Event occurrences are
often generated as a result of some action either within the system or in the environment surrounding the system.
Consistently with UML 2, Triggers are specification of what can cause execution of behavior (e.g., the execution of the
effect activity of atransition in a state machine).

A Trigger specifies the event that may trigger a behavior execution as well as any constraints on the event to filter out
event occurrences not of interest. Indeed, a Trigger is the concept that relates an Event to a Behavior that may affect any
instance of the behavioral classifier.

The Timed versions of these concepts are introduced in Chapter 9, under the name of TimedProcessing (for Actions) and
TimedEvents (for Events and Triggers).

24 UML Profile for MARTE, V1.0

7.2.2.2 Modal Behavior

The previous section described the main concepts to describe basic system behavior. This basic behavior is aligned with
UML, and hence, it represents a common conceptual basis for further extensions required in the real-time and embedded
systems. There is however, a kind of behavior that is not particularly distinguished in UML and that requires specific
consideration when modeling time and safety-critical systems. This behavior is related to the notion of operational mode,
and for this reason we call it modal behavior.

An operational mode can represent different things:

» An operational system (or subsystem) state that is managed by reconfiguration mechanisms (e.g., fault-tolerance
management middleware) according to fault conditions.

» A state of system operation with agiven level of QoSthat can be handled by resource management infrastructures (e.g.,
middleware that assign resources at run time according to load demand, timing constraints, or resource usage).

» A phase of asystem operation e.g., starting, stopping, launching, in a mission-critical aerospace system.

CommonBehavior |
Behawior
ff {subsets context)
. composite
5 - ModeBehavior = o BehavioredClassifler
! {subsets ownedBehavior} 0.1
0.1 eBehavior ~ | participatingEntity
mode
activeln
Mode made
Configuration
source | q 1 | target
foutgoing | * * iincoming
i Lrigpgper
transition .
- ModeTransition e = Trigger
0.1

Figure 7.6. Domain model of Modal Behavior

A mode identifies an operational segment within the system execution that is characterized by a given configuration. The
system configuration may be defined by a set of active system elements (e.g., application components, platform
components, hardware resources), and/or by a set of operation parameters (e.g., QoS parameters or functional
parameters).

Working in a given mode may imply that a set of system entities are active during that operational fragment. We factorize
such mode-sensitive system entities in BehavioredClassifier. A BehavioredClassifier can be active in zero or more
operational modes. Furthermore, a BehavioredClassifier that represents a system, subsystem or any composite entity can
have a set of modes modeled as a ModeBehavior.

UML Profile for MARTE, V1.0 25

A ModeBehavior specifies a set of modes mutually exclusive, i.e., only one mode can be active in a given time instant.

Particularly, the dynamics of modes is represented by connecting modes by means of ModeTransitions. A mode transition
describes the modeled system under mode switching. A mode transition can be produced in response to a Trigger. Thus,
as described before in the Basic Behavior section, a Trigger is related to an Event that determines the conditions causing
the triggering action.

7.2.3 The Causality::RunTimeContext Package

A BehaviorExecution is a specification of the execution of a unit of behavior or action within the instances of
BehavioredClassifiers. Hence, behavior executions are run-time instances of the behavior and action concepts. For this
reason, in this domain model, this concept is specialized into both important concepts: CompBehavior Execution and
ActionExecution. Correspondingly, events have instances called EventOccurrences.

Any behavior execution is the direct consequence of the action execution of at least one instance of a classifier. A
behavior execution specification describes how the states of these instances change over time. Behavior executions, as
such, do not exist by their own, and they do not communicate. If a behavior execution operates on data, that data is
obtained from the host instance.

In UMLZ2, there are two kinds of behaviors at run-time, emergent behavior and executing behavior. An executing behavior
is performed by an instance (its host) and is the description of the behavior of this instance. Emergent behavior execution
results from the interaction of one or more participant instance(s).

MARTE does not highlight this difference on the nature of behaviors. Indeed, it deals only with behavior execution as the
general concept to express a behavior instance. Hence, the MARTE BehaviorExecution notion corresponds to the UML2
Behavior Performance concept described in the overview section of its common behavior chapter.

On one hand, a behavior execution is thus directly caused by the invocation of a behavioral feature of an instance or by
its creation. In either case, it is a consequence of the execution of an action by some related classifier instance. A behavior
has access to the structural features of its host instance.

On the other hand, behavior execution may result from the interaction of various participant instances. If the participating
classifier instances are parts of alarger composite classifier instance, a behavior execution can be seen as indirectly
describing the behavior of the container instance also. Nevertheless, a behavior execution can result from the executing
behaviors of the participant instances.

This latter form of behavior is of interest since the behavior that is to be analyzed and observed at the system level, in
order to predict its timing properties, is normally described as an abstract view of the run-time emergent behavior due to
the combination of the behavior executions of all its constituent parts.

26 UML Profile for MARTE, V1.0

RunTimeC ontext

Causality::CommonBehavior:: Causality::CommonBehavior:: Causality::CommonBehavior::
Event CompositeBehavior Action
event |1 behavior |1 effect | 0..1 0..1 | action
subset type subset type subset type
{ ype} { yPel . adion { ype}

BehaviorExecution

*

host A1 Z>

cause

EventOccurrence CompBehaviorExecution ActionExecution
1
exBehavior | *
14 host 0..1| invoker
CoreElements::Foundations:: 1.x
Instance participant

1

Figure 7.7 - The RunTimeContext package

There is a variety of behavior specification mechanisms supported by the UML, such as automata, activities (data-flow
like description), Petri-net like graphs, informal descriptions (e.g., Use Cases), or partially-ordered sequences of event
occurrences (Interactions), each corresponding to the concrete subtypes of Behavior that it provides.

This model supports not only scenario-based style for behavioral specification, by describing the observable event
occurrences resulting from the execution of one possible situation of behavior execution, but it also extends the behaviors
supported by the specification to state-based and activity-based approaches. The latter describes behaviors by specifying
a state machine that does not describe observable event occurrences, but that would implicitly induce event occurrences.
This intends to extend the domain of applicability of the MARTE profile to modeling and analysis techniques as Timed
Automata and Petri-nets.

Nevertheless, the relationship between a specified behavior and its hosting or participating instances is independent of the
specification mechanism chosen. The choice of specification mechanism is one of convenience and purpose; typically, the
same kind of behavior could be described by any of the different mechanisms. Note that not all behaviors can be
described by each of the different specification mechanisms, because behaviors do not have the same expressive power.
However, for many behaviors, the choice of specification mechanism depends on the formalism used to analyze the
system.

7.2.4 The Causality::Invocation Package

As shown in Figure 7.7, the execution of a behavior may be caused by an event occurrence. Events can occur from the
direct invocation of a behavior through an action or from a trigger occurrence representing an indirect invocation of a
behavior, such as through an operation call.

UML Profile for MARTE, V1.0 27

In a number of analyses, it is also useful to consider the events that occur when a behavior starts and ends its execution.
A start occurrence marks the beginning of a behavior execution, while its completion is accompanied by a termination

occurrence.

These and further defined concepts specialized from EventOccurrence will be considered eligible to be extended by
timing annotations, though for simplicity in the domain model these annotations may be defined in the form of extensions

to their common ancestor EventOccurrence.

Invocation
1 Causality::RunTimeC ontext: %
execution Behavior Execution execution
Causality::RunTimeC ontext:
EventOccurrence
finish | 1 | Q 1| start
—<@ TerminationOccurrence StartOccurrence
endEvent startEvent
1 |{subset event} {subset event}| 1
o 1 behavior Causalty:: behavior 1
TerminationEvent [@—— = CommonBehavior:: 1&. StartEvent
‘ 1 Behavior ‘
Causality::CommonBehavior: Event

Figure 7.8 - The Invocation package

7.2.5 The Causality::Communication Package

The Communication sub package of the Causality package adds the infrastructure to communicate between classifier
instances and to invoke behaviors. The domain model in Figure 7.8 shows how a communication takes place. This domain

model specifies the general semantics of communication between concurrent units.

28

UML Profile for MARTE, V1.0

Communication
Causality::RunTimeContext:: CoreElements::Foundations:: C ausality::RunTimeContext:
EventOccurrence Instance EventOccurrence
. cause effect 1 effect .
InvocationOccurrence Request ReceiveOccurrence
1 1.% cause 1
invocation | *
sender| 1 receiver |1
sender.
execution | 1 1 CoreElements::Foundations:: receiver
Instance 1
Causality::RunTimeContext:
ActionExecution

Figure 7.9 - The Communication package

In real time systems, the basic unit of logical concurrency is commonly known as a thread®. Threads are the root of a
special case of instances, usually called active, or real-time or even reactive objects. In fact, the recommended way of
adding concurrency into an object model is to identify the desired concurrent units (logical or physical depending of the
detail level of the model) through the application of concurrency identification strategies. Once the threads are identified,
the developer may create an active object for each. According to the level of specification other forms of expressing
concurrency in UML may be used, like the fork in an activity, or a state with orthogonal regions. Other objects, i.e. those
which are not identified as concurrent units, are then usually called passive objects. These latter objects are then
associated to the active objects via a composition or shared relationships. The role of the active object is to run when
appropriate and call or delegate actions to the passive objects that it owns. Passive objects execute usually using the
concurrent resource of the caller active object.

Instances respond to messages that are generated by others executing communication actions. When these messages
arrive, the receivers eventually respond by executing the behavior that is matched to that message. The dispatching
method by which a particular behavior is associated with a given message depends on the higher-level formalism used
and is not defined here (hence, it is an open-variation semantics point of UML).

Figure 7.8 shows the general communication model. An action representing the invocation of a behavioral feature is
executed by a sender instance resulting in an InvocationOccurrence. The invocation event may represent the sending of a
signal or the call to an operation. As aresult of the invocation event occurrence a Request is generated.

A Request, which fully corresponds to the Request concept of UML 2, is an instance of a communication in transit
between a calling instance and a called one. In fact, a request is an instance capturing the data that was passed to the
action causing the invocation event (the arguments that must match the parameters of the invoked behavioral feature);

1. It should be noted here that from the concurrency point of view, thereis no distinction between threads, tasks, and processes. They all
are variations of the very same concept, though they may differ in some aspects of their detailed properties (such as the context switch
time and whether low-cost pointers can be used across the concurrency boundary).

UML Profile for MARTE, V1.0 29

information about the nature of the request (i.e., the behavioral feature that was invoked); the identities of the sender and
receiver instances; as well as sufficient information about the behavior execution to enable the return of areply from the
invoked behavior, where appropriate. Eventually the request may include additional information, like a time stamp.

While each request is targeted at exactly one receiver instance and caused by exactly one sending instance, an occurrence
of an invocation event may result in a number of requests being generated (as in asignal broadcast). The receiver may be
the same instance that is the sender, it may be local (i.e., an instance held inside the currently executing instance, or the
currently executing instance itself, or the instance owning the currently executing instance), or it may be remote. The
manner of transmitting the request, the amount of time required to transmit it, the order in which the transmissions reach
their receiver instances, and the path for reaching the receiver instances are to be defined and annotated by using any of
the different communication mechanisms available, like rendezvous, message queuing, interrupts, etc.

Once the generated request arrives at the receiver instances, a ReceiveOccurrence occurs, which according to the triggers
expected may subsequently launch the behaviors of the receiver instance or of any of its internal instances. Like in the
Common Behaviors Domain Model of UML, two kinds of requests are determined according to the kind of invocation
occurrence that caused it: the sending of a signal, and the invocation of an operation. The former is used to trigger a
reaction in the receiver in an asynchronous way without a reply. The latter applies an operation to an instance, which may
be synchronous or asynchronous and may require a reply from the receiver to the sender.

Observe that modeling elements like invocation occurrence and receive occurrence shown in this domain model are no
explicitly represented in the specification of a system, but they are implicit in the dynamic semantics of the constructs
used.

7.3 UML Representation

A certain impact on the representation of modeling elements is envisioned according to their classifier/instance dual
nature.

The modeling elements defined in this specification may adopt the nature of Classifier or Instance presented here, or both.
This quality of being may be of course specifically stated as part of their definition, but it may be also left to the user to
be decided according to the purpose of the annotation, and the intended semantics.

In most of the cases the concepts defined in the domain view are proposed to be represented in UML by means of a
stereotype extending a concrete UML modeling element. When this is the case, the Classifier or Instance intrinsic nature
of the UML annotated element may lead to identify the corresponding nature, semantics, or concrete variations of the
MARTE concept that is intended to be represented with the annotation. Hence, the explicit different semantics that may
be defined for each MARTE modeling concept, when it is considered as an instance or as a classifier, may be inferred
directly from the fundamental nature of the corresponding UML element that is annotated.

When a stereotype is applied on an instance, and provided it can be also applied on classifiers, the value of the attributes
not explicitly assigned in the annotation of the instance are taken in principle from the defaults in the profile stereotype
definition, but they might be overridden by those in its corresponding classifier, if it happens to be annotated with the
same stereotype.

This section describes the UML extensions required to support the concepts defined in the previous domain view. The set
of extensions to support Core Elements modeling with UML is organized according to the application context of the
domain concepts. In particular, note that not every domain concept will result directly in a UML stereotype or tagged
value. In CoreElements, only the concepts related to the Modal Behavior domain model are concretized as stereotypes.

30 UML Profile for MARTE, V1.0

7.3.1 Profile Diagrams

Figure 7.10 shows the UML extensions for CoreElements. The CoreElements package (stereotyped as profile) defines
how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in

alphabetical order. The semantic descriptions corresponding to these stereotypes and their properties are provided in the

following section.

mode

« profile »
CoreElements
UML::Statelachines::: UML:: Statelachines:: UML:: StateMachines::
BehaviorStateMachines:: EBehaviorStateMachines:: BehaviorStateMachines::
State Transition StateMachine
Y Iy Fy
« stereotypes = « sterectype = « sterectype »
Mode ModeTransition ModeBehavior

LML= CompositeStructunaes::
InternalSruciures::
StructuredClassifier

UML::Classes::Kemel:
Package

=

« sterectype »

Configuration

Figure 7.10 - UML profile diagram for CoreElements modeling

7.3.2 Profile Elements Description

7.3.2.1 Configuration

The Configuration stereotype maps the Configuration domain element denoted in Annex F (Section F.1.10 in page 540).

A system configuration may be defined by a set of active system elements (e.g., application components, platform
components, hardware resources), and/or by a set of operation parameters (e.g., QoS parameters or functional

parameters).

Extensions

» StructuredClassifier (from UML::CompositeStructure::Internal Structures)

» Package (from UML::Classes::Kernel)

Generalizations
* None

UML Profile for MARTE, V1.0

31

Associations

» mode: CoreElements::Mode [*]
The operational modes that are represented by this configuration.

Attributes
« None

Constraints
+ None
7.3.2.2 Mode
The Mode stereotype maps the Mode domain element denoted in Annex F.

A Mode identifies an operational segment within the system execution that is characterized by a given configuration.
Working in a given mode may imply that a set of system entities are active during that operational fragment. We factorize
such mode-sensitive system entities in BehavioredClassifier domain concepts. However, since BehavioredClassifier is an
abstract concept (there is not a corresponding stereotype), we add the relationship of the different mode-sensitive system
entities to a mode directly in the concrete stereotypes. See for example, Chapter 8 - NFP where a mode is associated to
the NFPs::NfpConstraint stereotype.

Extensions
» State (from UML::UML:: StateM achines::BehaviorStateM achines)

Generalizations

« None

Associations

* None

Attributes

* None

Constraints

[1] Transitions between modes must be stereotyped as ModeTransition.

7.3.2.3 ModeBehavior

The ModeBehavior stereotype maps the ModeBehavior domain element denoted in Annex F (Section F.1.16 in page 543).

A ModeBehavior specifies a set of modes mutually exclusive, i.e., only one mode can be active in a given time instant.
Particularly, the dynamics of modes is represented by connecting modes by means of ModeTransitions.

Extensions
» StateMachine (from UML:: UML:: StateMachines:.: BehaviorStateM achines)

32 UML Profile for MARTE, V1.0

Generalizations
* None

Associations

* None

Attributes

+ None

Constraints
[1] Owned States must be stereotyped as Mode, and Owned Transitions must be stereotyped as ModeTransition.

7.3.2.4 ModeTransition

The ModeTransition stereotype maps the ModeTransition domain element denoted in Annex F.

A ModeTransition describes the modeled system under mode switching. A mode transition can be produced in response

to aUML::Trigger. Thus, an UML::Trigger is related to an UML::Event that determines the conditions causing the
triggering action.

Extensions
» Transition (from UML:: UML.:: StateMachines:.:BehaviorStateM achines)

Generalizations
* None

Associations

* None

Attributes

« None

Constraints
[1] Owned States must be stereotyped as Mode, and Owned Transitions must be stereotyped as ModeTransition.

7.3.3 Examples

We illustrate a reconfigurable system that uses the concepts of operational mode and configuration.

UML Profile for MARTE, V1.0

33

stm « modeBehavior » Systemhl'lodes)

r/"— « modeBehavior »
SystemModes

x modaTransiion =
[ModaCrash]'ReconfigToDegraded

W mode W mode
NominalMode DegradedMode

« configuration »

DegradedMoade_SystemConfiguration

{mods= DegradadMaode)

: Application_RobotArm

0w a3

Ape: GUIReleshar i * rip: Repaster

4 [—rt

: Rabet_RescarcesPlasiohm

+ Rabat_Swilatiorm

N k| Wi ORI i | L § ¥
taskd tash2 tharmell chaneetl k) takkd 1aiks
caliceaian, asocae. cubemae diocater gipes, <PiOcs L Ealutate
i g + Fihon_Hwi Latioam . K >
4 W m T vV F F
a ks L
L - W v {-_ — =

e
seaban ol

cabicales adBocale <aliorutes <EBOCIMS L gRocaies P .alu,-.

col: Commandintespreter wenms CoammandBan e woc: SenvosContiodles

o

Figure 7.11 - Modeling Modes and Configurations

In Figure 7.11 we can see that the software application has two possible modes, a NominalMode and a DegradedM ode.
We specify the modal behavior by using state machines. For instance, reconfiguration properties, such as mode transitions

and causing events are modeled with UML::Transition and guards/actions notation.

Then, the system configuration under DegradedMode is represented by using a composite structure. The composite
structure represents an allocation scenario of application components into a set of platform resources (for further details
on the alocation, see Section 11 in page 119). We say that this configuration is valid for the DegradedMode by using the

mode attribute in Configuration.

34

UML Profile for MARTE, V1.0

8 Non-functional Properties Modeling (NFPs)

8.1 Overview

This chapter describes both domain model and its UML representation for specifying Non-Functional Properties (NFPs).
It also describes how NFPs may be attached to UML modeling elements. This sub package of the MARTE specification
provides a general framework for annotating UML models with NFPs. It is especially focused on formalizing a set of
modeling constructs in order to specify this kind of property in a detailed way.

The NFP modeling framework deals with the following requirements:
« How NFPs are to be described, and particularly what NFPs should be considered.
» How particular instances of NFPs are to be attached to UML model elements.
» How relationships between different NFPs are to be defined.

» How to express constraints on or between NFPs in order to express requirements on the system model.

« Usability of the annotations should minimize the designer efforts?.

 To provide an open modeling framework, i.e., not tailored towards specifications of a particular modeling concern or a
restricted set of NFPs.

Although the UML Profile for “Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms”
(QoS& FT) aready defines a framework to express a similar concept to NFP, there are some reasons to define a different
one in the context of this specification.

For instance, the QoS&FT profile relies on a two-step annotation process. a) derive a Quality Model for each application
model by instantiating template classes from the QoS Catalogs and, b) annotate UML models with QoS Constraints and
QoS Values, which implies catalog binding and either the creation of extra objects (instantiated from the Quality Model),
or the specification of long OCL expressions. This two-step process requires too much effort for the users and may induce
not readable models.

The QoS& FT profile provides a flexible mechanism to store pre-defined QoS Characteristics. It supports declaring the
most common QoS characteristics for different application domains by means of QoS Catalogs. A particular QoS Catalog
may contain qualifiers of QoS properties including statistical qualifiers and measurement units. At the level of QoS value
specifications, however, QoS& FT ignores some important attributes such as measurement sources, precision, and time
expressions. These properties are required for the domain of MARTE and are therefore supported by the NFPs introduced
in this specification and the Value Specification Language (VSL) defined in Annex B.

In general, the term Quality of Service (QoS) is the aptitude of a service for providing a quality level to the different
demands of its clients. In the computer systems domain, the term QoS is frequently associated specifically with network
issues, such as throughput and bandwidth (and in conjunction with multimedia applications). But it has more recently
begun to be applied to NFPs of more general services. Thereis still no common consensus about the concepts of NFP and

2. Oneof the major constraints that drove the definition of this specification has been to minimize the required efforts to apply the profile.
But since our purpose was to enrich UML with capacities to describe formally and efficiently the real-time and embedded features of a
system, applying the profile hence requires some additional effort with regard to a common usage of the UML.

A UML Profile for MARTE, V1.0 35

QoS. Anyhow, the NFPs considered here have a larger extent than only quality levels. NFPs may describe the internals
and externals of the system, and some of them directly relate to the users of resource services and their QoS perception
and others not.

Besides, the UML profile for “Schedulability, Performance, and Time Specification” (SPT) provided a straightforward
annotation mechanism specifying a set of predefined stereotypes and tagged values. Moreover, it supports aready some
of the requirements for NFP annotations, such as support for symbolic variables and expressions through its specialized
Tag Value Language (TVL). However, its approach was not defined formally enough to allow for new user-defined NFP
or for different specialized domains. Indeed, SPT defines a grammar for powerful concepts, as for instance
“RTtimeValue’ expressions, but does not define a mechanism to extend or refine these constructs for more specific needs.

The MARTE NFP modeling framework has reused some useful structural concepts proposed in the UML profile for
QoS& FT. However, some considerations to reduce the inherent usage complexity of the UML profile for QoS& FT and to
facilitate the modeling process have been taken into account and led to a new proposal. Additionally, as much as possible,
features of the SPT profile have been reused. For instance, The Value Specification Language (VSL) introduced in
MARTE extends and formalizes (by means of a metamodel and its associated concrete syntax) some concepts supported
by TVL to annotate constant, variable, tuple, and expression values. In this manner, we provide a flexible and
straightforward framework for supporting a wide variety of NFPs annotations while adopting the best modeling practices
of both UML profiles.

The NFP modeling framework provides the capability to describe various kind of values related to physical quantities,
such as Time, Mass, Energy. These values are used to describe the non-functional properties of a system. This notion of
value isintroduced and used in a broader sense in the context of another OMG specification: Systems Modeling Language
(SysML) by the means of value properties and value types.

8.2 Domain View

8.2.1 Overview

The model of a computing system describes its architecture and behavior by means of model elements (e.g., resources,
resources services, behavior features, logical operations, configurations modes, modeling views), and the properties of
those model elements. It is convenient to group application properties into two categories: functional properties, which
are primarily concerned with the purpose of an application (i.e., what it does at run-time); and non-functional properties
(NFPs), which are more concerned with its fitness for purpose (i.e., how well it does it or it has to do it). Both functional
and non-functional property are specialization of a more general concept of value property, related to a quantity.

In the context of model-driven development approaches for real-time and embedded systems, modeling NFPs is of
fundamental relevance and implies a number of design decisions. NFPs provide information about different
characteristics, as for example throughput, delays, overheads, scheduling policies, deadline, or memory usage.

In this and subsequent sections, we will use metamodels to describe the domain viewpoint. Note that, although the intent
of this domain model is to be precise, it is not fully formal since its purpose is primarily to provide profile's users with
the minimal knowledge to understand the concepts and relationships of the domain.

The NFP annotation framework has many facets that are grouped into individual sub-packages. The overall package
structure of the NFP framework is shown in Figure 8.1.

36 A UML Profile for MARTE, V1.0

—1 1
N MARTE::
MARTE::CoreElements VSL
A M
a imgort = H
! u impert w
NFPs i
1
w IMpart o-- -2 NFP_Nature
|
1
— —
NFP_Declaration e ---=+ impom see----- NFP_Annotation

Figure 8.1 - Structure and dependencies of the NFPs modeling package

The purpose and contents of each sub package denoted in Figure 8.1 are described in subsequent sections.

8.2.2 The NFP_Nature package

From an abstract viewpoint, an NFP (AbstractNFP) can be either qualitative or quantitative, as shown in Figure 8.2.

QuantitativeNFPs are measurable properties. A given quantitative NFP may be characterized by a set of
SampleRealizations and Measures.

SampleRealizations represent a set of values that occur for the QuantitativeNFP under consideration at run-time (for
instance, measurements collected from a real system or a simulation experiment). A QuantitativeNFP may be sampled
once or repeated multiple times over an extended run. In a cyclic deterministic system, in which each execution cycle has
the same value, a single sample is sufficient to characterize completely the QuantitativeNFP.

A Measure is a (statistical) function (e.g., mean, max, min) characterizing the set of sample realizations. Measures may be
computed either directly by applying the desired function to the set of realizations values, or by using theoretical
functions of the probability distribution given for the respective QuantitativeNFP.

According to measurement theory (JCGM 200:2008, International Vocabulary of Metrology - Basic and General Concepts
and Associated Terms (VIM), 3rd edition, 2008, BIPM, Paris, France.), measures are defined as a Quantity expressed in
terms of a specific Unit. Quantities can be basic or derived for a given system of quantities. BasicQuantities are for
example length, mass, time, current, temperature, or luminous intensity. The units of measure for the basic quantities are
organized in systems of measures, such as the universally accepted Systéme International (SI) or International System of
Units. Quantities expressed in the same unit can be compared. DerivedQuantities (e.g., area, volume, force, frequency)
may be obtained from basic quantities by explicit formulas known as Dimension relationships. This notion of dimension
is useful for dimensional analysis of non-functional properties: for a given system of quantities, a derived quantity can be
expressed as a set of base quantities in a dimension equation. Additionally, different units of the same physical quantity
may be transformed to, or expressed in terms of, existing base units through a given conversion factor and an offset
factor.

A UML Profile for MARTE, V1.0 37

NFP_Nature

AbstractNFP

realizationValues paranmeber
SampleRealization % ‘Q
domain | 1.7 1 | L
-
QuantitativeNFP QualitativeNFP
0.* | function 1
0.
Measure
[UEETE
9 baseQuantily
Quantity BaseQuantity
physicalQuantity * {ordarad}
1
0.4, measurementnit
Unit allewad Units DerivedQuantity

comvFactor: Real [0..1]
conviOffset Real [0..1] | 7

baselnit / fu__1 Dimension
1

. - symbol: String [0..1]
dimension | hasaExponents: Integar [*] fordarad}

Figure 8.2 - Domain Model for NFP Nature

QualitativeNFP refers to inherent or distinctive characteristics that may not be measured directly. In general, a qualitative
NFP is denoted by alabel (e.g., “bronze,” “silver,” and “gold” level of service) representing a high-level of abstraction
characterization that is meaningful to the analyst and the analysis tools. More specifically, a qualitative NFP takes a value
from alist of allowed values, where each value identifies a possible alternative.

When looking in more detail at a qualitative NFP, it may be possible to define it in function of a set of criteria, which may
be in turn qualitative or quantitative. Some qualitative NFPs have known meanings that can be interpreted by particular
domains, for example the choice of a scheduler type for a processor, or the choice of a statistical distribution for the
latency of a network. In both examples, the full specification of the property requires not only a qualitative value, but also
some quantitative parameters, as for instance: scheduler-type = roundRobin (quantumSize) or latency-value = gamma
(mean, variance).

8.2.3 The NFP_Annotation Package

Figure 8.3 shows a domain model for NFP annotations. A model of a system (which is considered in this specification to
be expressed in UML) can be extended by annotated models with additional semantic expressing concepts from a given
modeling concern or domain viewpoint. An annotated model contains annotated elements, which are model elements
extended by standard modeling mechanisms. For example, some typical performance analysis-related annotated elements
are: step (aunit of execution), scenario (a sequence of steps), resource (an entity that offers one or more services), service
(offered by a resource or by a component of some kind) °.

3. The Sep and Scenario model elements are defined in GQAM (Chapter 15), whilst the Resource and Service model elements are intro-
duced in GRM (Chapter 10).

38 A UML Profile for MARTE, V1.0

An annotated element describes certain of its non-functional aspects (i.e., the ones that are directly related to the
annotation concern) by means of NFP value annotations. These annotations are specified by the designer in the models
and attached to model elements. Thus, the role nfpValue on ValueSpecification (Figure 8.3) indicates that an annotated
model element has a value or values for a specific NFP. ValueSpecification is used to define the value expressions
associated with NFPs. The values must conform to the defining NFP in type and multiplicity. Examples of NFPs are: the
total delay of a step when executed (including queuing delays), the utilization of a resource, and the response time and
throughput of a service.

NFP_Annotation |

CoreElemenis:: « enumaration »
Foundations:: ConstraintKind
ModelEfement required
offarad
f 5 confract
1 . MadelingConcern
Annotated TS | Annotated annotationConcem gC
Elemant : cwner Mods! i.* description: string [0.1]
0. context
consirainedElemant
ounedRule
NFP_Constraint mode CoreElemeants::
CommonBehavior::
kind: ConsirainiKing [0..1] . Mode
0.1
speciication 1
MARTE::VSL::
nfpValug ValueSpecification
NFPs:: .
NFP_Declaration:: |[=—
nfpDeclaration NFP relevanthip

Figure 8.3 - Domain model for NFP annotations

Due to the abstraction involved in the construction of a model, only some NFPs are relevant to a certain modeling
concern. In other words, a given modeling concern uses a set of NFPs, which establishes the ontology of the domain. For
instance, specific analysis techniques (e.g., performance or schedulability analysis) deal with distinctive non-functional
annotations.

An NFP_Constraint is a condition (a Boolean expression) on the non-functional properties associated with model
elements. In general, NFP_Constraints are assertions that indicate restrictions that must be satisfied by a real-time system.
The annotated model defines the context of the constraints for interpreting names used in the value specification. Kind of
constraints qualifies NFP constraints by either required, offered, or contract nature. When a constraint is defined as
required, the values specified in the NFP_Constraint indicate the minimum quantitative or qualitative level that the
constrained elements demand (these elements are usually clients of resources). An example of required constraints for a
step element is the maximum latency for execution. Offered constraints establish the space of NFP values that can support
amodel element, as for example the throughput of a CPU (elements in this case are commonly software or hardware
resources). Contract constraints define conditional expressions that specify relationships between offered and required
non-functional values. For instance, if a given model element (e.g., a computing resource) does not support a condition on
one or many of its NFP values (e.g., a processing capacity), other model element might change one or many of its NFP
values accordingly (e.g., the delay to execute a piece of code). In Section 8.3.2.5, we give a detailed example of
NFP_Contraints usage.

A UML Profile for MARTE, V1.0 39

Multiple NFP_Constraint may serve to specify different levels of qualities for the same services. For instance, in a
component-based architecture, components can support different operational modes, and these operational modes may
provide different non-functional values or qualities for the same component services. This is represented by the
association of NFP_Constraint to Mode. A given NFP_Constraint may also represent the quality level in more than one
Mode. The level of quality modeled by a given NFP_Constraint depends on the resources available and functional
parameters such as state variables that identify the mode configuration. For instance, in a reconfigurable system, resources
may offer different quality depending on the load that they have.

8.2.4 The NFP_Declaration Package

NFP declaration is intended to qualify and assign extended data types to NFP values (Figure 8.4).

This package introduces the notion of value property, further specialized by the notion of non-functional property. A value
property represents any kind of physical quantity relevant in the design of the system. A non-functional property (NFP) is
a kind of value property, which focuses on fitness for purpose aspects. These NFPs are used in other chapters of the
specification for design and analysis of RTES.

Value properties have a TupleType (see Annex D for MARTE extended data types), called ValueType. Two attributes
define the body of value types: valueAttribute and exprAttribute. ExprAttribute is used to specify expressions associated
with value properties. Hence, we are able to assign variables, literals, intervals, and other expressions. The return value of
the expression must conform to the associated value attribute of the value type.

ValueType adds the ability to carry a measurement unit (by means of unitAttribute) and additional qualifiers to values
(qualifier Attributes).

A ValueType with a measurement unit is associated with physical measures. In Section 8.3.3.1, we show some pre-
declared units largely used in the domain (e.g., time units, data size units, transmission speed units) that can be used when
specifying values.

NFP and NFP_Type are direct specialization of ValueProperty and ValueType to describe non-functional aspect of a
system.

Examples of qualifiers are statisticalQualifier, direction, value source, measurement precision, and (see NFP Types
Library in Section 8.3.2.4). A statisticalQualifier indicates the type of statistical measure of a given property (e.g.,
maximum, minimum, mean, percentile, distribution). The direction attribute (i.e., increasing or decreasing) defines the
type of the quality order relation in the allowed value domain of NFPs. Indeed, this allows multiple instances of NFP
values to be compared with the relation “higher-quality-than” in order to identify what value represents the higher quality
or importance. Source is a peculiarity of non-functional properties associated with the origin of specifications. Precision
is the degree of refinement in the instruments and methods used to obtain a result.

40 A UML Profile for MARTE, V1.0

NFP_Declaration
MARTE::VSL:: NFPs:: " MARTE::WSL::
ValueSpecification NFP_Nature:: DataTypes::
Unit TupleType
0.1 defavitvalue 0.1 " MallowsdUnits
aeffaniltLni
valuaéttribute 1
{subsats tupleAlnibutes]
unitattribute 2.1 RTE:: .
type > TEUbsets mmemtnnute?, M;m.r"vs!'_"
ValueProperty - ValueType P ?P::--
‘—"} ropa
axpritiribute 0.
{subsets tuplaAtributes}
T —
qualifierdtiibutes ™
[P {subsats uplaAttributes)
NFP NFP_Type

Figure 8.4 - Domain Model of NFP Declaration

Notice that the set of concepts supporting the declaration of NFPs provides means to annotate NFPs in a first phase, but
the concrete infrastructure for specifying values is supported by VSL (Annex B). Nevertheless, default measurement units
and values may be assigned when declaring NFPs and NFP types.

The ability to specify al the kinds of values supported by VSL is a key concern for NFP annotations. Indeed, NFP
specifications need to be composable. That means, it should be possible to specify NFP values at afine-grained level and
compose them into higher-level specifications. Conversely, a high-level NFP specification should be decomposable such
that fine-grained NFP specifications can be refined. The refinement relationship between two levels of NFP specification
must ensure consistency between both levels. The process of composition and decomposition should be carried out in
such a manner as to guarantee this consistency. NFP specifications should be able to be refined so that new NFP
specifications can be based on existing ones.

8.3 UML Representation

This section describes the UML extensions required to support the concepts defined in the previous domain view. The set
of extensions to support NFP modeling with UML is organized according to the application context of the domain
concepts. In particular, in the NFP modeling framework, note that not every domain concept will result directly ina UML
stereotype or tagged value. This is because some domain concepts are abstract, representing generalizations that will not
appear directly in any UML model.

For instance, the abstract notion of a“Measure” is very useful as an abstraction in our framework, but will only be
manifested in its concrete forms (e.g., delay, throughput, capacity) in MARTE models. While a corresponding stereotype
could have been defined for this abstract concept, it would never be used in practice. Therefore, we have chosen to only
define stereotypes for concepts that we envisage are actually going to be used in practical modeling situations. This
results in a simpler and more compact profile.

Thus, we first describe the extensions concretized in stereotypes. In Annex D, a set of NFP Types is predefined, which is
used extensively in MARTE to type and qualify non-functional properties.

A UML Profile for MARTE, V1.0 41

In Section 8.3.3, we will describe some examples that use the whole extensions for NFP annotations with both tagged
values and UML constraints.

8.3.1 Profile Diagrams

Figure 8.5 shows the UML extensions for NFP modeling. The NFP Modeling package (stereotyped as profile) defines
how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in
alphabetical order. The semantic descriptions corresponding to these stereotypes and their properties are provided in the
following section.

« profile »
NFPs
« metaclass » « metaclass » & metaclass »
UML::Classes::Kernel:: UML::Classes::Kernel: UML::Classes::Kernel::
EnumerationLiteral Property Constraint
A A A
" stereo_type » « stereotype » « stereotype »
Unit Nip NfpConstraint
convFacior: Real [0..1] kind: Canstraintiind [0..1]
convOffsat: Raeal [0..1]
BaseUnit Unit [0..1)
* J’mode
« metaclass » « stereotype » « stereotype »
UML::Classes::Kerneal:: VSL::DataTypes:: TupleType MARTE::CoreElements::
Enumeration tupleAttrib: Property [7] Mode
A [P
« stareotype » « stereotype » & enumeration »
Dimension NipType ConstraintKind
symbol: String [10..1] wvalusAbnk: Property [0..1] {subsets pleAlbrib) reguired
baseDimension: Dimension [*] fordered) wnitdtirib: Propery [0..1] (subsals gt} offerad
baseExponent: Intagsr [*] {ordered) exprAtinib; Froperty [0..1] {subsets ugphe it} contract

Figure 8.5 - UML profile diagram for NFPs modeling
8.3.2 Profile elements description

8.3.2.1 ConstraintKind

ConstraintKind is an enumeration type that defines literals used to specify the nature of constraint assertions by either
required, offered, or contract nature.

Literals

e required
It indicates the minimum quantitative or qualitative level that the constrained elements demand (these elements are
usualy clients of resources).

o offered
It establishes the space of values that can support a model element (elements in this case are commonly software or
hardware resources).

e contract

It defines conditional expressions that specify relationships between offered and required non-functional values.

42 A UML Profile for MARTE, V1.0

8.3.2.2 Dimension

A Dimension is a relationship between a quantity and a set of base quantities in a given system of quantities.

Extensions

» Enumeration (StructuredClasses::Kernel)

Generalizations

* None

Associations
* None

Attributes

e symbol: String [0..1]
This attribute represents the symbol used to designate the dimension.

* baseDimension: Dimension [*] { ordered}
This attribute represents the base dimensions by which the dimension of a derived quantity unit is created. Basic
dimensions do not require this attribute.

e baseExponent: Integer [*] { ordered}
This attribute represents the exponents that characterize the base dimensions used to define the dimension of a
derived quantity. Basic dimensions do not require this attribute.

Constraints
» None
8.3.2.3 Nfp
The Nfp stereotype maps the NFP domain element denoted in Annex F (Section F.2.10).

Non-Functional Properties (NFPs) declares an attribute of one or more instances in terms of a named relationship to a
value or values. Nfp isintended to declare, qualify and assign extended data types to NFP values.

Extensions
 Property (from UML::StructuredClasses::Kernel)

Generalizations
* None

Associations
* None

Attributes
* None

A UML Profile for MARTE, V1.0 43

Constraints
* None

8.3.2.4 NfpType

This NfpType stereotype maps the NFP_Type domain element denoted in Annex F (Section F.2.12). Note, however, that
the qualifier Attributes role is not implemented in the UML view. In practical terms, the tupleAttribute inherited from
TupleType is sufficient to define qualifier attributes.

An Nfp type is a type whose instances are identified only by NFP value specifications. An Nfp Type contains specific
attributes to support the modeling of NFP tuple types.

Extensions
 DataType (from UML::StructuredClasses::Kernel)

Generalizations
« TupleType (from VSL::DataTypes) in Annex B, Section B.3.2.5

Associations

* None

Attributes

e vaueAttrib: Property [1]
both physical and non-physical NFP types have a value attribute, which serves as
placeholder to specify avalue of NFPs.

e unitAttrib: Property [0..1]
measurement unit declaration that apply to all the value specifications of the NFP.
Usually, it is an enumeration data type with alist of the valid measurement units.

e exprAttrib: Property [0..1]
attributes representing an expression. MARTE uses the VSL language to define expressions.

Constraints
+ None
8.3.2.5 NfpConstraint
This NfpConstraint stereotype maps the NFP_Constraint domain concept denoted in Annex F (Section F.2.11).

NfpConstraint extends the UML mechanism for applying a condition or restriction to modeled elements. Specifically,
NFP constraints support textual expressions to specify assertions regarding performance, scheduling, and other embedded
systems’ features, and their relationship to other features by means of variables, mathematical, logical, and time
expressions.

Extensions
» Congtraint (from UML::StructuredClasses::Kernel)

44 A UML Profile for MARTE, V1.0

Generalizations
* None

Associations

* mode: Mode [*]
The set of modes in which the NFP constraint annotations are valid.

Attributes

e kind: CongtraintKind [0..1]
Tagged definition qualifying NFP constraints by either required, offered, or contract nature.

Constraints
* None

8.3.2.6 Unit
This Unit stereotype maps the Unit domain element denoted in Annex F (Section F.2.18).

Unit is a qualifier of measured values in terms of which the magnitudes of other quantities that have the same physical
dimension can be stated. A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of
length such as a meter may be specified as a multiple of a particular wavelength of light. A unit may also specify less
stable or precise ways to express some value, such as a cost expressed in some currency, or a severity rating measured by
anumerical scae.

Unit is defined as a stereotype of EnumerationLiteral. This allows modelersto assign alist of allowed units to a particular
physical NFP type by means of arelated Enumeration element. In this way, we bound the universe of legal units that
apply to a specific kind of NFPs.

Units can be declared with a parameter representing the Conversion Factor that is applied to a Base Unit to determine the
value in terms of the specified measurement unit.

Extensions

» EnumerationLiteral (StructuredClasses::Kernel)

Generalizations
* None

Associations

* None

Attributes
e convFactor: Readl [0..1]
This parameter allows referencing measurement units to other base units by a numerical factor.

e offsetFactor: Redl [0..1]
This parameter allows referencing measurement units to other base units by applying an offset value
to them.

A UML Profile for MARTE, V1.0 45

e baseUnit: Unit [0..1]
This attribute represent the base unit by which a derived measurement unit is created
Basic units do not require this attribute.

Constraints

+ None
8.3.3 Graphical Syntax of NFP Value Specification

In this section, we define an alternative graphical syntax for value specifications having NfpType as data type. This
syntax consists of a pair of avalue and a unit:

<nfp-value> ::= <value-specification> [' ' <unit-enumeration>]
The following are typical examples:

5ms # a duration value

50 kHz # a frequency value

Note that this notation is for the graphical view of models only. The tuple notation (see Section B.3.3.9) is still valid for
NFP values (NfpType inherits from VSL::TupleType), both in graphica models and in the repository as well. For
instance, the NFP value: '50 kHz' can be specified in the model repository as: '(50, -, kHz, max, -, est, -)' or '(value=50,
expr=null, unit=kHz, statQ=max, dir=null, source=est, precision=null)".

The main rationale of the “value-unit” notation is readability of graphical models. Specific tools could provide more
flexibility in the graphical notation. For instance, users may be able to customize the elements of atuple in a NFP value
specification that should be displayed. However, because of its common usage in engineering models in general, the
“value-unit” notation is normative (although not mandatory) in MARTE.

8.3.4 Examples

A requirement for NFP annotations is a trade-off between usability and flexibility. Usability suggests the merit of
declaring a set of standard NFPs for a given modeling domain, so they can be easily referred to and, consequently, every
user of the annotations means the same thing. For NFPs with well-known variants, a set of declarations can be
standardized, which cover the important cases with differently-named measures; these can be translated if necessary by
domain specialists for the use of a specific tool with different names. However there are some NFPs whose meaning is
domain- or even project-dependent. This requires a capability for users to define their own NFPs. Thus flexibility and
expressive power requires that the users have the capability to define their own NFPs, but usability requires a set of
standard measures that can be used in a straightforward way.

The following sections will describe respectively an example of NFP model library and examples of usage of such library.

8.3.4.1 Example of NFP model library definition

This section provides an example of NFP types model library definitions. This example corresponds to an excerpt of a
more complete model library predefined for MARTE and specified in detail in Annex D.1. This MARTE library includes
predefined data types supporting NFP annotations commonly used in the real-time and embedded system domain.

46 A UML Profile for MARTE, V1.0

NFP Types are implemented in MARTE through UML data types. UML data types (DataType metaclass) are a special
kind of classifier, similar to classes. A data type differs from a class in that instances of a data type are identified only by
their values. Like a class, data type may have attributes. In VSL, we define four kinds of composite data types (data types
allowing attributes): Interval Type, CollectionType, ChoiceType, and TupleType. A data type with attributes of different
types is called TupleType (see Annex D in p.395 for MARTE extended data types). If a tuple type has attributes with
different types, then instances of that data type will contain attribute values matching the types of their corresponding
attributes. Particularly in MARTE, we define a set of pre-declared NFP types that are useful for the other sub-profiles.
However, other domain-specific libraries can be defined either using the NFP profile or specializing the MARTE libraries.

Figure 8.6 shows the package pre-declaring NFP types. Note that we import the MARTE primitive types defined in the
VSL annex (Annex B, p. 353). The list of MARTE primitive types includes Real and DateTime in addition to the pre-
declared UML primitive types. However, note that the set of UML primitive types are completely redefined within
MARTE in order to allow specifying operators on these types (more rationales on this are provided in Annex D.1).

General MARTE data types that are not NFP types are declared in the MARTE_DataTypes library (Annex D). This library
uses stereotypes of the VSL Profile for data types (see Annex B).

General MARTE NFP types are declared in the BasicNFP_Types library (Annex D). A root NFP type called
NFP_CommonType is defined to factorize common NFP type attributes.

In addition to value, expression, and unit attributes, NFP types are declared specifying a set of qualifier attributes required
to precisely specify and qualify NFP values.

The semantic of the provided qualifier attributes is the following:

e source: SourceKind [0..1]
peculiarity of NFPs associated with the origin of specifications. Predefined kind of sources for values
are estimated, calculated, required, and measured.

e precision: Real [0..1]
degree of refinement in the performance of a measurement operation, or the degree of perfectionin the
instruments and methods used to obtain aresult. Precision is characterized in terms of a Real value, which
is the standard deviation of the measurement.

o statQ: StatisticaQualifierKind [0..1]
statistical qualifier indicates the type of “statistical” measure of a given property (e.g., maximum, minimum,
mean, percentile, distribution).

e dir: DirectionKind [0..1]
direction attribute (i.e., increasing or decreasing) defines the type of the quality order relation in the allowed

value domain of NFPs. Indeed, this allows multiple instances of NFP values to be compared with the
relation “higher-quality-than” in order to identify what value represents the higher quality or importance.

A UML Profile for MARTE, V1.0 47

« modelLibrary »

MARTE_Library::MeasurementUnits.

« dimension » « dimension » « dimension »
TimeUnitKind DataSizeUnitKind FrequencyUnitKind
{symbol = T} {symbaol = D} ibase.l_lllmenm?n = 1{T}-
wunitz 5 « unit » bit N = (1
wunity fick w unit v Byte [basellnit=hil, conyFactor=E} * units Hz _
aunits ms {baselinit=s, convFactor=0.0011 || « unit » KB {baseUni=Byle, # unit » kHz {basslnit=Hz,
wunits us fhaselnit=ms, convFactor=0,001} || convFactor=1024} canvFacior=1E3}
wunits min {basaUnit=5_ convFactor=60} # unit » ME [baselnit=KB, ® unit v MHz {baseUnil=Hz,
wunits hr {baseUnit=min, convFactor=60) convFactor=1024} convFactor=1E6}
wiinits day {baseUni=nis, convFacior=24) « URil v GE (BaseUnil=MB, # unit » GHz {basellnit=Hz,
convFactor=1024} convFactor=1E49}
% unit » rpm {basaUnit=Hz,
eorvFaclar=D.0167]

« dimension »
PowerUnitKind
{baseDimension = {L, M, T},
baseExponent = {2, 1, -3}}

= unit » W
unit » m\W [baselinit=W, convFactor=1E-3}
% unit » kW {baseUnit=W, convFactor=1E3}

« dimension »
DataT xRateUnitKind
{baseDimension = {D, T},
baseExponent = {1, -1}}

+ unit # bis
% unit » Khis {baselnit=b/s, convFactor=1024}
® Unil » Mb/s {baseUnil=bis, convF aclor=1024}

« modelLibrary »
MARTE_Library::MARTE_PrimitiveTypes

« modelLibrary »

MARTE_Library::MARTE_DataTypes * imp';oﬂ *
« dataType » « dataType » « dataType »
« collectionType » « collectionType » « intervalType » « primitive »
{ colectionAtirib= vectorElement) [collectionAurin= malrxElement) {imcarvalfaiin = baurd) VSL_Expression
IntegerVectar IntegerMatrix Integerinterval =
vactorElem: Integer [0..%] matrixElem: Integervector [0..%] | | bound: Integer [2]

R
« modelLibrary » a impor »
MARTE_Library::BasicNFP_Types !
dataType » enumeration »
enumeration “ “
 otrcoking ||| * gnumeration » « nipType » StatisticalQualifierKind
DirectionKind [expeAltrbe axpr)
a5t ner NFP_C: 1Type L
meas min
cale decr anpr: VEL_Exprassion mean
req source; Sourcakind wariance
statd: StatisticalCualifisrkind range
dir: Directionkind percant
made: String [*] distrib
datarm
& aother
[T T T T]
« dataType » « dataType » « dataType » « dataType » « dataType » « dataType »
= nfpType » « nfpType » « nfpType » u nfpType » « nfpType » « nfpType »
{ wakiehtiri value) { valuetirin= vaue | || { valuestiro=valua) [valumdtirib wabie) | | § valosdstrios valos) || [velustciibs value
MNFP_Boolean NFP_Natural NFP_String NFP_Real NFP_Integer NFP_DateTime
value; Boolaan walue: Unlimited Natural valua: Siring walua: Real valua: Integer valug: DataTime
« dataType » « dataType » « dataType » « dataType » « dataType »
« nfpType » « nfpType » « nfpType » anfpType » « nfpType »
[uritditrib= 1mit) [unitAtirin= it) 1 unitAliri= uni) [uritdtrib= it) [umitdtnib= it |
NFP_Duration NFP_DataTxRate NFP_Frequency NFP_Power NFP_DataSize
unit TimaUnitKind unit: DataTxRataliniting unit: FraquancyUnitking unit: Powarlnitking unit: DataSizat/nitkind
clack: String pracision: Raal pracision: Real pracision: Real precision: Real
precision; Real
warst: Real
bast: Real

Figure 8.6 - Extract of the model library defining the pre-declared Basic NFP Types and measure units

48

A UML Profile for MARTE, V1.0

The NFP_CommonType (parent of all the other NfpTypes) includes a set of probability distribution operations that are
defined in Annex D, Section D.2.2 (NFP_CommonType). This list of probability distributions is certainly not exhaustive
but it includes the more common distributions used in state-of-the-art performance analysis and simulation tools. Further
probability distributions can be added in specialized libraries without needing any modification in the MARTE profile or
VSL. Probability distribution is a fundamental concept to specify stochastic values. A probability distribution assigns to
every interval of the real numbers a probability, so that the probability axioms are satisfied. In technical terms, a
probability distribution is a probability measure whose domain is the Borel algebra on the reals. A probability distribution
is modeled in MARTE as the name of the function and a set of parameters allowing estimating the function in terms of
the standard form of the distribution.

Probability distributions are defined as operations of NFP types, each with particular parameters. The included
probability distribution function values are described by the following:

e bernoulli (prob: Real)
Bernoulli distribution has one parameter, a probability (areal value no greater than 1).

binomial (prob: Real, trials: Integer)
Binomial distribution has two parameters. a probability and the number of trials (a positive integer).

e exp (mean: Real)
Exponential distribution has one parameter, the mean value.

e gamma(k: Integer, mean: Real)
Gamma distribution has two parameters (“k” apositive integer and the “mean”).

¢ norma (mean: Real, standDev: Real)
Normal (Gauss) distribution has a mean value and a standard deviation value (greater than 0).

e poisson (mean: Real)
Poisson distribution has a mean value.

e geometric (p: Real)
The Geometric distribution is a discrete distribution bounded at 0 and unbounded on the high side.

e triangular (min: Real, max: Real, mode: Real)
The Triangular distribution is often used when no or little datais available; it israrely an accurate representation
of adata set.

e logarithmic (theta: Real)
The Logarithmic distribution is a discrete distribution bounded by [1,...]. Thetaisrelated to the sample size and
the mean.

For example, consider a property typed by NFP_CommonType:
distribution: NFP_CommonType

The values of this property can be constructed by using a special VSL expression called CallOperationExpression (see the
VSL annex, package Expressions, for further details). For instance, the following expression:

distribution= normal (50, 7)

is a CallOperationExpression that calls the probability distribution operation “normal” of the defining NfpType
(NFP_CommonType) and provides the arguments for its parameters “mean: Real" and “standDev: Real.”

Two kinds of data types are defined: physical dimension types and dimensionless types. In this latter group, we define all
the data types supporting NFP literal values (e.g., NFP_Real, NFP_DateTime, NFP_Boolean). For dimensionless types,
the value attribute is typed according to the related primitive type. For dimension types, the value attribute has the

A UML Profile for MARTE, V1.0 49

primitive type Real. This has a practical definition intended to allow modelers representing measured NFP values in the
domain of real numbers. Note that this set of dimension types is not a complete one, since in Annex D, we include
additional time and non-time specific NFP types as predeclared MARTE data types.

The time at which a VSL expression is evaluated depends on different factors. For example, some expressions could be
evaluated when a resource allocation at modelling level is done. Other properties may be evaluated when a given “real
time situation” is modeled. Analysis tools could also provide evaluation of certain expressions.

Notice that dimension types have measurement units. The BasicMeasurementUnits package (stereotyped «modelLibrary»)
define a set of measurement units that are useful for the MARTE scope. We apply to this package the «unit» stereotype
defined in the NFP profile. As illustrative examples, we show in Figure 8.6 some units used in the MARTE domain (a
complete MARTE library for measurement Units is shown in Annex D.1). It holds a set of self-defined units, as for
example: “s” denoting the time unit for “seconds.” Other derived units are defined with basis on basic units. For instance,
“ms’ denotes a time unit obtained with basis on “seconds” by a conversion factor of “0.001.” Modelers are able to define
further units in the same way.

8.3.4.2 Usage example of NFP model libraries

We consider three annotation mechanisms; Tagged Values, Constraints, and (Instance Specification) Sots. Tagged values
are a kind of value slots associated with attributes of specific UML stereotypes. Hence, one tagged value characterizes
just one model element. On the other hand, a constraint is a condition expressed in natural language text or in a machine-
readable language (e.g., OCL) for declaring some semantics of one or various model elements. Thisis useful if we define
NFPs that involve more than one element (for instance, a delay between two different events). On the other hand, NFP
annotations in instance specification slots are related to classifier-defined NFPs. Thus, while the stereotype attribute
mechanism implies the creation of UML profiles, the two latter are mainly aimed at supporting user-defined NFPs.

We explore the capabilities of the NFP modeling framework to annotate NFPs by means of stereotypes and tagged values.
In Figure 8.7, we show a generic scheme to define and apply NFPs. The Basic_NFP_Types package (stereotyped
modelLibrary) corresponds to that presented in Figure 8.6. It encloses the general NFP types and their default
measurement units supporting NFP annotations through all the UML profile for MARTE. Additionally, we depict an
extract of the UML sub-profile for GQAM (Generic Quantitative Analysis Modeling) (detailed in Chapter 15), which uses
the basic NFP Types. To illustrate annotation examples we present a small example of modeling for quantitative analysis.

« modelLibrary»
BasicNFP_Types

A
!
« imp_ort»
i
H
«profile»
(GenericGQQﬁgntitative pEmmanc AP Pl rewwana UserModelForAnalysis
Analysis Modeling

Figure 8.7 - General Structure for Declaring and Annotating NFPs
In the GQAM *“profile” package (Figure 8.8), we illustrate a description of one of the stereotypes defined in Chapter 15
and some of its property definitions. The exampl€e's intent is to show some particulars of the extension mechanisms used

in the NFP modeling framework. These arise from the fact that we use NFP annotations for defining most of types of the

50 A UML Profile for MARTE, V1.0

stereotype attributes. This feature provides more flexibility to the profile and full compliance with the profile extension
mechanism provided by UML2. The «gaExecHost» stereotype, which represents an execution resource with annotations
for analysis, has efficiency properties (e.g., utilization), and overhead properties as for example cntxtSnT (context switch
time), clockOvh (clock overhead). These attributes are then typed with the NFP Types defined in the Basic NFP_Types
model library (e.g., NFP_Duration, NFP_Real), which, in turn, contains the tuple information of NFPs. At this stage, we
use the NFP qualifiers statQ (statistical qualifier), dir (direction) and unit (measurement unit) as default values of NFPs
to define the exact semantic of the non-functional attributes. However, this does not prevent modifying these attributes for
specific instances.

« profile»
GQAM

« metaclass »
UML:: InstanceSpecification

A

« stereotype»
GaExecHost

utilization: NFP_Real= (statQ= percent, dir= decr)
clockOvh NFP_Duration= (statQ= max, unit= us)
cnixtSwT. NFP_Duration= (statQ= max)

Figure 8.8 - An example of declaration of NFPs in stereotype attributes

The use of this profile definition is shown in the package named UserModelfor Analysis (Figure 8.9). In this model, an
instance of a node model element is stereotyped «gaExecHost». The associated tagged values of this stereotype are shown
in a compartment (see notation alternatives in the UML Superstructure document, Chapter of Profiles). We can see that
tagged values are specified as structured data types. For example, clockOvh is atuple value that has expression and source
item values. The expression: “normal(50,7)" is a CallOperationExpression (see the VSL annex, package Expressions, for
further details) which calls the probability distribution operation of the defining NFP type (NFP_Duration). The
utilization tagged value is specified as an expression string making reference to a variable $ul. As a methodological rule
that we adopted in the analysis sections, variables indicate to analysis tools that these attributes must be computed and
returned to the UML model. Note that the default values defined in the stereotype attribute declarations can be overridden
in the tagged values if required. For instance, the measurement unit of clockOvh has been overridden in our example.

A UML Profile for MARTE, V1.0 51

UserModelForAnalysis

UserModelForAnalysis

UserModelForAnalysis

« gaExecHost»
uC: Controller

« gaExecHost»
utilization= (value=$ul, source= calc)
clockOvh= (value= normal (50, 7), source= est)
cntxtSwT= (value= 8, unit= us, source= meas)

« gaExecHost»
uC: Controller

« gaExecHost »
utilization= ($ul, -, -, -, calc, -)
clockOvh= (normal(50, 7), -, -, -, est, -)
cntxtSwT= (8, us, -, -, -, meas, -)

« gaExecHost»
uC: Controller

« gaExecHost »
utilization= $ul
clockOvh= normal (50, 7)
cntxtSwT= 8 us

(a) Extended Notation

Figure 8.9 - Example of user model for analysis with NFP annotations

(b) Reduced Notation

(c) Graphical Value-Unit
Notation

The second mechanism considered to annotate UML models with non-functional aspects is through NFP Constraints.
Constraints commonly define relational expressions between two terms containing parameters, specified by means of
VSL variables or UML properties, and possibly numeric values. Such constraints can be used to identify critical
performance parameters and their relationships to other parameters on the system modeled.

The third NFP annotation mechanism is by using slots of UML Instance Specifications. For this purpose, NFPs are to be
declared at classifier level and NFP values are specified within the related slots. This mechanism has the disadvantage
that annotations are confined to classifiers' instances.

Figure 8.10 shows an example for using the two latter annotation mechanisms (contraints and slots). An important aspect
to have in mind regarding this particular example is that we declare NFPs at user model level, instead of defining NFPs
as stereotype attributes like in the formerlly illustrated mechanism. Our aim is to show how modelers can define their

owns NFPs and use them to specify NFP values by means of NfpContraints and Sots. Hence, in such cases, the semantics

of the defined NFPs is user-dependent®.

4. Notethat, ingeneral, if modelerswill use the different MARTE sub-profiles, they should follow the annotation mechanism of stereotype
attributes and tagged values to specify NFPs and NFP values. The approach illustrated in the second example has been included in
MARTE in order to support user model-defined (or library-defined) NFPs.

52

A UML Profile for MARTE, V1.0

Controller

«nfp» procUtiliz NFP_Real= (percent, decr)
«nfp» schedUtlliz NFP_Real= (percent, decr)
«nfp» contextSwitch NFP_Duration=(max)
«nfp» clockFreq: NFP_Frequency= (max, us)

Internal Composite Structure of a
specific Controller instance

Al
«computingResource»
uC: Controller

proc Utiliz= ($ul, calc)

«scheduler »

«clockResource » {schedPolicy=F xedPriority}

pl / procClock

s1/sysSched
N =
~ 1
‘\ .
N «nfpContraint » {kind=cflered }
\‘ {contextSwitch== (8, us, meas) and
‘\\ schedUtiliz== (5, percent) }
N
«nfpContraint » {kind= cortract}
{ procUtiliz > (90, percent) ? clockFreq=—(60, MHz) : clockFreg= (20, MH2) }

VSL Conditional

/ Expression

Condition If-True Expression If-False Expression

T TN T

procUtiliz > (90, percent) ? clockFreq==(60, MHz) : clockFreq==(20, MHZz)

VSL OperationCallExpression VSL PropertyCalExpres sion VSL Tuple Specific ation
(VSL infix notation: (call toa property of (related tothe
call to the operation *>*, ‘Controller) ‘NFP_Frequency’ NFP type

‘greater than’)
Figure 8.10 - Example of user model with NfpConstraint and Slot annotations

We defined a classifier, named Controller, that owns a set of properties stereotyped as «nfp». Note that we have declared
simmilar NFPs as in the previous example, but we intentionally changed their names to emphasize the fact that, in this
case, the declared NFPs have user-specific meaning. As for the stereotype annotation mechanism, in this example we use
NFP_Types to define the structure of NFP value specifications. We also defined default values for NFPs, which state the
predefined value qualifiers: statistical qualifier, direction and unit.

We created a uC instance of Controller and then specified its internal structure by means of a Composite Structure

diagram. These instance-level model elements are stereotyped with high-level modeling contructs, «computingResource»,
«scheduler», and «clockResource», which are formally introduced in the GRM sub-profile, Section 10.3. At this stage, we
specify a set of NFP values by means of two NfpConstraints attached to the specific constrained elements. In both cases,
the constrainedElement (association end from the UML Contraint metaclass to UML Element metaclass) are the specific

A UML Profile for MARTE, V1.0 53

model elements to which the non-functional annotations apply, and the context (association end from the UML Contraint
metaclass to the UML Namespace metaclass) is the Controller node element, which actuates as a namespace context for
VSL expressions.

For instance, one of the NFP_Contraints is attached to the sysScheduler part element. This one defines an “offered” non-
functional constraint written in VSL (see Annex B for details on the VSL textual language). The VSL expression is a
three-level nested boolean expression. In the first level, an infix CallOperationExpression makes reference to the “and”
operation (see the list of operations in Annex D) by specifying two operands. These operands are in turn other
CallOperationExpressions making reference to the equalTo (“==") operation, which has two operands. The first operand
in both cases is PropertyCallExpression (calling to the contextSwitch and schedUtiliz properties of Controller) and the
second operand in both expressions is a particular value that is conform to the defining property. In simple words, VSL
allows for specifying NFP values by using (NFP) properties previously declared in the model.

In order to complement this basic annotation, a more complex NFP_Constraint has been specified for the procClock par
(processor clock instance). We illustrate a non-functional contract assertion that is intended to be allowed at run time.
When the Controller utilization becomes greater than 90%, the clock’s frequency increase from 20 MHz to 60 MHz. In
this example, we do not make any assumption about the run-time mechanisms supporting this assertion. The contract has
been specified by using a VSL Conditional Expression, whose structure is detailed in Figure 8.10.

The third proposed annotation mechanism is depicted by defining a procUtiliz slot within the uC instance of Controller.
As in the first example (Figure 8.9), the utilization slot is specified by a variable $ul. The methodological rule indicates,
again, that this variable should be computed by analysis tools and returned to the UML model.

Additional examples of VSL time expressions and the constraint annotation mechanism are given in Annex B.

54 A UML Profile for MARTE, V1.0

9 Time Modeling (Time)

This chapter contains both domain and UML viewpoints for time modeling. The chapter describes a general framework
for representing time and time-related concepts and mechanisms that are appropriate for modeling real-time and
embedded systems. These serve as a base for the standard modeling elements defined in subsequent chapters of the
MARTE profile.

Since Real-time systems are specifically concerned with the cardinality of time (e.g., delay, duration, clock time),
(chrono-) metric time will be considered. Embedded systems may also require logical time models. Thus, both logical and
metric times are covered in this specification.

9.1 Overview

The time domain model described in this chapter identifies the set of time-related concepts and semantics that are
supported by this profile. The model is quite general, and a given application may need to use only a subset of its
concepts and semantics.

Time can be differently perceived at the different phases of the development of an embedded real-time system (modeling,
design, performance analysis, schedulability analysis, implementation, etc.). The concept of ordering (i.e., something
occurring before or after another thing) is common to many Time representations. MARTE adopts models of time that
rely on partial ordering of instants. The temporal ordering of behavior activities can be represented in many ways,
depending on the level of precision required. There are three main classes of time abstraction used to represent behavioral
flows (with minor variations at each level). They are known under different names in different contexts, and these names
are also often used with different meanings elsewhere (so there is no general consensus).

» Causal/temporal: in such models, oneisonly concerned about instruction precedence/dependency. Theserelations can
be partial in presence of concurrency. Cooperation between concurrent entities takes place as communications (i.e.,
through events). Communications themselves can be fully asynchronous, blocking (with the emitter awaiting areturned
reply), or hand-shake synchronization.

» Clocked/synchronous: this class of time abstraction adds a notion of simultaneity, and dividesthetime scalein a
discrete succession of instants. Rich causal dependencies can take place inside an instant, leading to the “ instantaneous
reaction” abstraction. When the clock(s) is (are) linked to aregular pulse, clock ticks become the unit scale of a
discrete-time model (but this need not be the case in any “synchronous’ temporal model). Thislevel isusedin
hardware modeling (at RTL level) where instantaneous propagation corresponds to “combinatorial” behaviors, in

simulation formalisms (asin MATLAB® / SIMULINK®, or in Hardware Description Languages such as SystemC/
VHDL/Verilog with &-cycles representing causal zero-delay dependencies), or in software modeling when relying on
synchronous languages semantics (such as Esterel or SCADE or Signal). A generalization of the synchronous domain
alows clocked entitiesto be linked in alooser, asynchronous network where no single-clock domainis defined. It leads
to the notion of GALS (Globally-Asynchronous/L ocally-Synchronous) domains. These are used in the field of system-
level models, for instance for SoC (System-on-Chip) design, where several levels of modeling — either software or
hardware — can be combined during the course of the design.

» Physical/real-time: this class of time abstraction demands the precise accurate modeling of real-time duration val ues,
for scheduling issues in critical systems. Physical time models can also be applied to clocked model, for instance to
derive the admissible speed of areaction.

In embedded real-time systems modeling, time should not be considered as an external model: Time and Behavior are
strongly coupled. The Time domain model identifies concepts that relate time and behavior. The Causality package in the
CoreElements chapter of MARTE has provided a high-level view of the run-time semantics of real time and embedded

UML Profile for MARTE, V1.0 55

systems. The Time modeling chapter enriches this view with explicit references to time-related concepts. The Invocation
package in the CoreElements chapter is also extended with the concept of SmultaneousOccurrenceSet. The notion of
instant has also to be revisited to deal with simultaneity. This is done in the TimeStructure®, which represents Time as a
partial ordering of instants. A timed event occurrence refers to one instant. An object may be bound to a time structure by
atime base. A time base is a set of instants at which the executions hosted by the object may take place. Time may be the
physical time, with its presumed regularity, but it can also be some endogenous time linked to some repetitive event, not
directly bound to physical time. Hence, the idea to associate time structure with events, behaviors, and objects, or more
generally instances of the concrete subtypes of the BehavioredClassifier metaclass.

To capture the influence of Time on behaviors, we suggest that objects, behavior executions, and event occurrences may
explicitly refer to clocks considered as accessors to the time structure.

9.2 Domain View

This chapter covers different concerns about time modeling and usage, informally shown in Figure 9.1. This figure is not
a UML diagram. It only gives an overview of the concepts covered by the Time Modeling chapter and their logical

grouping.

structure

Optional access to time ﬁ TimeValueS pecification

TimeAccess TimeUsage

]
Concepts Concepts Concepts
Time bases Clocks Timed elements
Multiple Time Base's Logical clocks Timed ewents
Instants Chrono metric clocks Timed adions
Time structure relations Currenttime Timed constraints

Figure 9.1 - Overview of the time model concerns

These concerns are reflected in the structure of the time domain model, which is partitioned into the following separate
but related groups of concepts:

» Concepts for modeling a simple form of time structured as atotally ordered set of instants owned by atime base
(TimeSructure concern as depicted in Figure 9.1).

» Concepts for modeling multiple time base models (TimeStructure concerns as depicted in Figure 9.1).

» Concepts for accessing to time structure, including clocks and time values (TimeAccess and TimeValueSpecification
concerns as depicted in Figure 9.1.

» Concepts for modeling entities bound to time (TimeUsage concerns as depicted in Figure 9.1).

5. TimeSructureis refined into both BasicTimeModels and MultipleTimeModel s packages in the rest of the chapter.

56 UML Profile for MARTE, V1.0

MA RTE::Time

BasicTimeModels regy
.

<<merge>>

.
il
.\.

MultipleTimeModels

>

_a="
<<imp ort>>
-

Time Accesses

M.,

S
<<imp ort>>
T~

-,
Q‘.~

TimeRelatedEntities

Figure 9.2 - Structure of the Time domain model

The BasicTimeModels and MultipleTimeModels packages provide a structural model of time (the TimeStructure) that
constitutes the semantic foundation of our approach to time. These two packages are merged because the concept of
TimeBase introduced in the former is enriched in the latter. Both packages are used by the TimeAccesses and
TimeRelatedEntities packages that contain concepts and constructs effectively used by the standard user of the profile.

9.2.1 The BasicTimeModels Package

The BasicTimeModels package (Figure 9.3) provides a structural view of time as an ordered set of instants. This model
does not refer to any notion of physical time. Hence, it can conveniently support logical time, which is widely used in
distributed systems and synchronous languages. This model of time focuses on the ordering of instants, while ignoring the
physical duration between successive instants.

A TimeBase is a container of Instants. The structure of time is specified by the nature attribute that takes its values in the
enumeration TimeNatureKind. Possible values are discrete or dense. In dense time, for any given pair of instants there
always exists at least one instant between the two. A TimeBase owns an ordered set of Instants. We consider only
countable sets. For a discrete time base, instants can be indexed by positive integers. For a dense time base, instants can
be indexed by rational number. Notice that continuous time models, whose indices would be real numbers, cannot be fully
represented by countable sets. Since UML behavioral semantics only deal with discrete behaviors, the countable nature of
sets is not a limitation for practical uses.

In order to avoid duplication of concepts based on a distinction between dense and discrete representations, all the
numbers are given using a unique predefined data type Real, which expresses the mathematical concept of a number,
covering integer, rational and real numbers. A real represents a count or a measurement. The primitive type Real does not
impose any restrictions on the precision and the scale of the representation.

Since discrete time bases play a central role in the time structure model, it is convenient to distinguish a special class for
discrete time bases, which subclasses TimeBase. Junction instants are specialized instants (their name will be justified in
the MultipleTimeModels package). A discrete time base owns junction instants only. This does not preclude a dense time
base from owing junction instants.

UML Profile for MARTE, V1.0 57

The association between a discrete time base and a time base optionally enables to link a discrete time base to a dense
time base. In this case, the former results from a discretization of the latter.

BasicTimeModels

<<enumeration>>
TimeNatureKind

discrete
dense

coveringTB

1

TimeBase

nature:TimeNatureKind

currentlnstant
{subsets instants}

tb 1
{Orderiﬁj‘i instants
Instant
date: Real

DiscreteTimeBase
{nature = discrete }

Junctioninstant

Figure 9.3 - Basic time diagram of the time model

Physical time is considered as a continuous and unbounded progression of physical instants. Physical time is assumed to
progress monotonically (with respect to any particular observer) and only in the forward direction. For a given observer,
it can be modeled as a dense time base. A convenient model for Physical Time as perceived in MARTE is the

mathematical concept of real line R.

58

UML Profile for MARTE, V1.0

9.2.2 The MultipleTimeModels Package

MultipleTimeModels

0..1 LparentMTB
nestedMTBs
0.* tsRelations
MultipleTimeB ase 0%0* TimeStructureRelation
1 ’owningMTB Z>
TimeBaseRelation TimelnstantRelation
union,ordered
ownedTBs | 0.* 0.* jrelated.lls)
2.*%
BasicTimeModels : Basic TimeModels :
TimeBase {union,orde red} Junctiorinstant
/related TBs

Figure 9.4 - Multiple time diagram of the time model

The linear vision of time presented in the BasicTimeModels is not sufficient for most of the applications, especially in the
case of distributed systems. Multiple time bases are then used. A time structure contains a tree of multiple time bases. A
MultipleTimeBase consists of one or many time bases. A time base is owned by one and only one multiple time base.

Time bases are a priori independent. They become dependent when instants from different time bases are linked by
relations (Time Instant Relations). Note that the word relation has been preferred to relationship in order to stress on the
mathematical meaning of this word. The instants involved in such relations are special instants called junction instants,
previously introduced in the BasicTimeModels package (Figure 9.3). All the instants of a discrete time base are also
junction instants, because they are potentially observable instants (see Section 9.2.3about Time Access, page 74).

A multiple time base owns a possibly empty set of time structure relations. These relations specify the time structure.
TimeStructureRelation is an abstract class. It is subclassed into TimeBaseRelation and Timel nstantRelation, which are
also abstract classes. A time base relation relates 2 or more time bases. A time instant relation relates 0 or more junction
instants. Notice that the relatedTBs and relatedJIs properties are derived union (i.e., the effectively related elements are
defined in concrete subclasses, as illustrated in the next 2 sections).

UML Profile for MARTE, V1.0 59

9.2.2.1 Concrete time instant relations

TimelnstantRelation

CoincidenceRelation PrecedenceRelation TimelntervalMembership
{ subsets relatedJIs } { subsets relatedJlIs }
after 1 1 b efore
2..* B asic Tim eModels: : 0.x
coincide ntJls JNREVE A SEAT members
{subsets relatedJIs } { subsetsrelatedJIs }
up ner 1 low er 1
Timelnterval
BasicTimeModels: ase 1
TimeBase 1 isLow er Ope n: Boolean[1] time Inte rval
isUpperOpen: Boolean|[1]

Figure 9.5 - TimelnstantRelation diagram of the time model

As shown in Figure 9.5, three concrete subclasses of the abstract TimelnstantRelation class are defined:
CoincidenceRelation, PrecedenceRelation, and Timel nterval Member ship.

CoincidenceRelation is a strong form of time instant relation: junction instants belonging to different time bases can be
coincident (i.e., same time and same place). In modeling, coincidence has not necessarily this strict relativistic meaning.
It may represent clock synchronizations or design choices, for instance. The coincidence relation must be symmetric and
transitive. Moreover, we assume that any junction instant is coincident with itself, so that the coincidence relation is an
equivalence relation over instants. A strong regquirement is that adding coincidence does not introduce cyclic
dependencies in the temporal ordering. In mathematical words, the set of instants quotiented by the coincidence relation
must be a partially ordered set. For convenience, the coincidence relation is often represented in diagrams by linking
pairs of coincident instants. The actual relation is obtained by computing the transitive closure of the relation. Figure 9.6
shows an example for a multiple time base made of three time bases. Junction instants a2 and b2 are coincident. So are
b2 and c2. Even if not drawn in the picture, a2 and c2 are also coincident junction instants (by transitivity).

ATimeBase
Legend: AN
Q instance of
Instant
:MultipleTimeBase B:TimeBase
S
Instance of
CoincidenceRelation
C TimeBase O O
cl c2 c3 c4 S c6

Figure 9.6 - Example of multiple time base with coincidences

60 UML Profile for MARTE, V1.0

PrecedenceRel ation between junction instants from different time bases is atime instant relation weaker than coincidence.
It expresses a directional dependency: a junction instant owned by a time base may precede or follow junction instants
owned by other time bases.

A time interval on atime base is a convex set of junction instants owned by this time base. The convexity is the property
that ensures that any junction instant between two junction instants of the interval is also in the interval. Two Boolean
attributes specify whether the lower and upper bounds of the interval are in the interval or not. By default, the interval is
closed on both boundaries. The bounds and the closure attributes must specify a non empty set of instants. The time
interval is specified by its two bound junction instants. The Timel ntervalMembership is a relation that characterizes
junction instants (members) that are either in the given time interval or are coincident with junction instants in this time
interval.

9.2.2.2 Concrete time base relations

As explained in the previous section, time instant relations induce relations on time bases of a multiple time base. Time
base relations are a higher level way to impose dependencies between junction instants. A time base relation specifies a
set of time instant relations. As shown in Figure 9.7, for any two time bases A and B, one defines arelation A is finer
than B (or B is coarser than A) if for each junction instant in B there exists one and only one coincident junction instant
in A. This relation can be characterized by a mapping M from the coarser time base B to the finer time base A. This
mapping is injective and order-preserving (i.e., if bl and b2 are two junction instants of B, and bl is before b2, then al =
M(bl) and a2 = M(b2) are such that al is before a2 in time base A). Notice that the specific association between
DiscreteTimeBase and TimeBase (Figure 9.3) represents a coarser/finer relationship: the coarser time base, which is
discrete, results from a discretization of its covering time base (i.e., its coveringTB property), which is a dense time base.

al a2 a3 a4 ab a6 a7 a8 a9 allall
A:TimeBase ~
A'is finer than B
B is coarser than A
o
b1l b2 b3 b4 b5 ‘.\

More precisely, Ais 2-finer than B %

Figure 9.7 - Example of time relations between two time bases

When the finer time base is also a discrete time base, more precise relations can be specified. For instance, the k-finer
relation is defined as follows. A is k-finer than B for k integer, k > 1, if A isfiner than B and for any two consecutive
instantsin B, there exist k-1 instants between the corresponding coincident instants in A. Figure 9.7 illustrates an example
where k=2.

Predefined time base relations are suggested in the TimeStructureRelation Library of MARTE. The semantics of these
relations is given in OCL.

UML Profile for MARTE, V1.0 61

9.2.3 The TimeAccesses Package

In real technical systems, special devices, called clocks, are used to measure the progress of physical time. In MARTE we
adopt a more general point of view: a clock is considered as a means to access to time, be it physical or logical. In the
TimeA ccesses package, we introduce the concepts of Clock, TimeValue, and DurationValue. These concepts are
introduced without any specific reference to physical time. Thus, they can be applied also to logical time. Clocks that
refer to physical time will be considered as specialized clocks.

The TimeAccesses package is subdivided into four packages, as shown in Figure 9.8:
» The Clocks package introduces a general concept of clock.
» The TimeValues package defines the concepts of time value and instant value.
« The DurationValues package defines the concept of duration value.

« The ChronometricClocks package contains a specialization of theinitia clock concept.

TimeAccesses
] [
Clocks ESsasass <N POr > > =maceaws Time Values
< <im pi\ort>>
I — {
ChronometricClocks mwa-<<import>>s=== DurationValues

Figure 9.8 - Subpackage diagram of the TimeAccesses package

The “Value Specification Language” annex (Annex B) provides detailed definitions of abstract and concrete syntax for
specifying time expressions in MARTE.

9.2.3.1 The Clocks Package

Asindicated in Figure 9.9, Clock is an abstract class. A concrete clock is either alogical clock or a chronometric clock.
The latter is defined in another package (ChronometricClocks package on page 78).

A Clock refers to a discrete time base (its timeBase) and therefore indirectly to a set of junction instants. The timeBase
discrete time base allows access to the time structure. A clock, whose nature is dense, may indirectly refer to a dense time
base through the coveringTB property of its base.

A Clock accepts units (acceptedUnits property). Unit is defined in the NFP_Nature package. One of these accepted units
is the defaultUnit. The default unit is the unit attached to the currentTime value. The resolution property specifies the
readout granularity of the clock, expressed in defaultUnit unit. Its default value is 1.

The optional attribute maximalValue expresses the limited capability of usual clocks to represent arbitrary large instant
values: the clock “rolls over” when the currentTime value gets to the maximalValue. Note that in this case currentTime
maps on many junction instants.

62 UML Profile for MARTE, V1.0

A clock may own an event (clockTick). This event occurs at each change of the current time of the clock.

A LogicalClock is a concrete subclass of Clock. It may be defined by an event (definingEvent property); in this case, the
logical clock ticks at each occurrence of the definingEvent. Logical time is usually counted in the number of ticks. So, tick
is a predefined unit often used as the defaultUnit for alogical clock, and then the resolution of the clock is 1 (the default
value).

Clocks

BasicTimeModels: 1 Clock NFPs::NFP_Annotation:
: A B —

DiscreteTimeBase tim eBase : - AnnotatedElement

nature: TimeNatureKind

resolution: Real=1.0

acceptedUnits

N FPs:: currentTime: Real -—
NFP_Natu re:: 1.% maximalValue : R eal[0..1]
Unit 0.1 CoreElements::
defaultUnit 1 clockTick Causality::
{subsets 0..1 CommonBehavior:
acceptedUnits} definingEvent Event

LogicalClock

Figure 9.9 - Clocks diagram of the time model

9.2.3.2 The TimeValues package

TimeValues

N FPs:: un it

NFP_Nature::Unit E0_.1
TimeValue

Ti A 1 nature: Time N atureKind
imeAccesses::

Clocks::Clo ck on Clock Zﬁ

BasicTimeModels:: 0.~
Jun ctionlnstant denotedInstan t

Instan tV alue

m in 1 m ax 1

N TimelntervalValue

MultipleT imeMod els:: 0.
Timelnterv al denoted Tim elnterval isMinOpen: Boolean[l]
isM axOpen: Boolean[1]

Figure 9.10 - TimeValues diagram of the time model

An application may use time in two ways:. either as a reference to a time instant, or as a time span. The TimeValues
package deals with the first usage, while the DurationValues package addresses the latter.

Since the access to time is done through clocks, a TimeValue refers to a Clock (the onClock property). A TimeValue may
also have a unit property. When unit is given, it must be in the acceptedUnits set of the onClock, and used instead of its
defaultUnit. The attribute nature specifies whether the time values associated with the clock take their values in a dense

UML Profile for MARTE, V1.0 63

or discrete domain. Since computers work with finite precision numbers, the distinction between discrete and dense sets
is blurred by the limited precision of the representation: ultimately all values are discrete. Since the distinction between
dense and discrete sets has a semantic meaning, we retain this distinction in the model, and we use “rea” numbers for
dense time values and integer numbers for discrete ones.

In the MARTE time model, logical clocks are always discrete, and their time values are integer numbers.

An InstantValue, which is a TimeValue, may refer to 0, 1, or many junction instants of a discrete time base. The multiple
denotation of junction instants is due to the bounded nature of the representation of values. There may exist a folding of
the time representation due to clock roll-over.

A TimelntervalValue is defined as a pair of instant values and denotes O or many time intervals (many results from

possible folding of the time representation). The min InstantValue refers to the lower instant of the time interval; the max
InstantValue refers to the upper instant of the time interval. The closure properties of the interval are specified by the two
Boolean attributes isMinOpen and isMaxOpen. By default, the interval is closed (i.e., it includes the min and max values).

When used in a time value specification, a time interval value indicates any time value in the interval.

The TimeValue class is abstract. It generalizes InstantValue, and DurationValue, which is introduced next.

9.2.3.3 The DurationValues package

DurationValues

TimeAccesses:: intervalValue TimeAccesses::
TimeValues:: DurationValue — TimeValues::
TimelntervalValue 1 TimeValue
minD 1 1 |maxD

DurationintervalValue

isMinDOpen: Boolean[1]
isMaxDOpen: Boolean[1]

Figure 9.11 - DurationValues diagram of the time model

The DurationVal ues package introduces the concept of duration value (Figure 9.11). Duration is a “distance” between two
instants. It characterizes the “extension” of atime interval. From the user’s point of view, atime interval is specified by
a Timelnterval Value. As explained in Section 9.2.3.2, a Timel nterval Value may denote O, 1 or many time intervals, due to
possible clock roll-over. In the simple case when the clock has no defined maximalValue, the DurationValue of a
Timelnterval Value is defined by the difference between the max and min instant values of this time interval value. When
the maximalValue property is defined, the DurationValue is defined as the difference modulo maximalValue between the
max and min instant values of this time interval value.

A Durationinterval Value is defined by a pair of duration values, which specifies an interval of values. When used in
specification, a duration interval value indicates any duration value in the interval.

64 UML Profile for MARTE, V1.0

9.2.3.4 The ChronometricClocks Package

ChronometricClocks

. <<enumeration>>
Tim eAccesses:: Tim eStandardK ind
Clocks: :Clock
TAI
U TO
UTl
UuTcC
TT
TDB
ChronometricClock $€S
Sidereal
referenceC lock standard: Time StandardKind [0 . 1] Local
0.1 sta bility : Real [0 .1] GPS
offse t DurationValue [0..1]
skew:Real[0.1] "'i
drift: Real[0.1] l

‘ PhysicalTime

Figure 9.12 - ChronometricClocks diagram of the time model

In Section 9.2.1, physical time has been characterized as a continuous and unbounded progression of physical instants.
The progression of physical time is perceived through event occurrences. Some events are considered as better candidates
to represent the (assumed) uniform progression of physical time. For instance, one may choose the period of the radiation
corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom (see the
definition of the second time unit). Today, this is the best known reference. More conveniently, one considers cyclic
events, whose occurrences are (more or less) periodic. Periodicity should be checked against the above mentioned best
reference. Usually, periodic event generators are called clocks. We have aready used this term in a broader sense: thereis
noreference to periodicity in clocks defined in Section 9.2.3. Therefore, we name ChronometricClock a clock that
implicitly refers to physical time.

The ChronometricClocks package introduces the main concepts related to clocks bound to physical time (Figure 9.12). A
chronometric clock provides quantitative information about time. Numerous non functional time-related properties can be
defined for chronometric clocks. Only a few are presented below.

Figure 9.13 represents, in an informal way, the dependency of chronometric clocks on physical time. Physical time is
modeled as a dense time base (the Real line). The instants of the discrete time base associated with a chronometric clock
are coincident with physical instants regularly interspaced on the real line. In a chronometric clock, the resolution
property is the duration value of physical time elapsed between two consecutive instants of this clock. Real chronometric
clocks do not perfectly reflect evolution of physical time. Possible defects are characterized by non functional properties.
For instance, stability is the ability for a clock to report consistent intervals of time. Stability is measured by derivatives
of the clock rate, derivation against time or against environmental factors.

When many clocks are present in a system, other non functional time properties are considered. They are time-dependent
pair-wise characteristics. Usually, one clock is taken as a reference clock against which the other clock is matched. When
omitted, the reference clock is supposed to be an “almost perfect clock.” Two clocks with the same rate may present an
offset. This duration value may vary along time. The rate of change of the offset (i.e., its first derivative against time)
between two clocks is called the skew. This skew itself may change over time. The derivative of the skew is called the
drift.

UML Profile for MARTE, V1.0 65

. . cl c2
Physical time ‘ :C hronometricC lock ‘ ‘ :C hronom etricClock ‘

J/coveringTB ‘ b ase base

R -TimeBase t1Discrete Time t2:Discrete Time

‘ {de nse} ‘ Base ‘ ‘ Base ‘
/FcoveringTB ‘
offse t
. v)
q i N

OO0

Figure 9.13 - Dependency example of chronometric clocks on physical time

9.2.4 The TimeRelatedEntities Package

TimeRelatedEntities
ClockConstraints - TimedObservations
-~
SSoo <<import>>
._'- ,—
<<import>> [—— = 1
Tvay
TimedElements ==-<<import>-——= TimedEventModels
== e
<<imp ort>> “See
1 _e* <<import> []
-,
N
TimedConstraints 4 TimedProcessingModels

Figure 9.14 - Subpackages of the TimeEntities package

Time can be used for observation or for control. Typical examples of the first usage are observations of event occurrences
in interactions diagrams. Time events triggering behaviors are examples of the second usage. MARTE explicitly relates
events, actions, messages... to time. The TimeRelatedEntities package is subdivided into the following subpackages
(Figure 9.14):

66 UML Profile for MARTE, V1.0

» TimedElements package defines the key concept of TimedElement;

 ClockConstraints package introduces constraints on clocks;

» TimedObservations package provides concepts related to observation of timed entities;

» TimedConstraint package specifies constraints on time-related observations;

- TimedEventM odels package deal s with events whose occurrences are bound to time;

» TimedProcessingM odel s package addresses executions bound to time.

9.2.4.1 The TimedElements Package

TimedElements

TimeAccesses:
Clocks::Clock

1.*

on

TimedElement

CoreElements::

Foundations:
ModelElement

Figure 9.15 - TimedElement diagram of the time model

A timed element, introduced in the TimedElements package (Figure 9.15), is amost general concept. TimedElement is an
abstract class generalization of all other timed concepts. It associates a non empty set of clocks with amodel element. The
semantics of the association with clocks depends on the kind of timed element.

9.2.4.2 The ClockConstraints package

ClockCo nstraints

TimeAccesses::

2.*

NFPs::

NFP_Annotation:
NfpCo nstrain t

1

Clocks::Clock

constrainedClocks

{subsets
constrainedElement }

ClockConstraint

1
o ——

specification

{ redefines

CCs::
ClockConstraintSpecification

specffication }

Figure 9.16 - ClockConstraints diagram of the time model

A clock constraint constrains two or more clocks. The specification of the constraint is expressed by a

ClockConstraintSpecification. Clock constraint specifications are special value specifications described in Annex C
(Clock Constraint Specification Language). An example of clock constraint is that two clocks are harmonic with one

twice faster than the other.

UML Profile for MARTE, V1.

0

67

9.2.4.3 The TimedObservations Package

TimedOb servations

) CoreElements:
TimedElements:: Timed Observation observationContext Causality:
Timed Element 0.. RunTimeCo ntext:
ZF CompBehaviorExecution
TimedInstantObservation TimedDurationObservation CoreElements::
0.. Causality:
o . . . exc RunTimeContext:
obsKind:EventKind[0..1] obsKind:EventKind[0..2] Bairvie S Eeuion
<<enumeration>>
EventKind
1 |eocc 0..1 | stim
start
CoreElements: CoreElements: finish
Causdity: 0.2 Causality: send
RunTimeCo ntext: e0ce Communication:: receive
EventOccurrence Request consume

Figure 9.17 - TimedObservations diagram of the time model

TimedObservation is an abstract superclass of TimedInstantObservation and TimedDurationObservation. A
TimedObservation is a TimedElement. As a TimedElement it has associated clocks, used for observing time. A
TimedObservation is made in the runtime context of a (sub)system behavior execution (the observationContext property).

The enumeration literals of the EventKind enumeration allow the user to specify the kind of events considered in a
TimedObservation. For a behavior, observed events can be either its start event or its finish event. For a Request, the
possible events are its sending, its receipt, or the start of its processing by the receiver.

A TimedInstantObservation denotes an instant in time, associated with an event occurrence (eocc property) and observed
on a given clock. The obsKind property of the TimedlnstantObservation may specify the kind of observed event.

A TimedDurationObservation denotes some interval of time, associated with execution, request, or two event occurrences,
and observed on one clock or two clocks. The exc property associates the duration observation with a BehaviorExecution,
which is an abstraction of CompBehaviorExecution and ActionExecution. The duration is the time elapsed between the
occurrences of the start and the finish events of an execution of this BehaviorExecutionSpecification (i.e., a
CompBehaviorExecution or an ActionExecution). The stim property associates the duration observation with a Request.
A Message is akind of Request. The duration can be observed between two of the three events associated with a request
(its sending, its receipt or the start of its processing). The precise kind of event can be given by the obsKind attribute.
Finally, a duration can be observed between two event occurrences (eocc property), not necessarily observed on the same
clock.

68 UML Profile for MARTE, V1.0

9.2.4.4 The TimedConstraints Package

TimedConstraints |
VSL::TimeExpressions::
InstantExpression
ZF\ 1 NFP_Modeling::
InstantPredicate & TimedinstantConstraint NFP_Annatatian::
1. | observation specification NipConstraint
- { redefines
specification } z;:"
Tima::TimeRelatedEntitias::
TimedQbservations:: —_— TimedConstraint
TimedObservation
1. | cbservation {7
1 i =
DurationPredicate k= & TimedDurationConstraint TimedEfements::
specification TimedElement
{ redefines
%’, specification }
VSL::TimeExpressions::
DurationExpression

Figure 9.18 - TimedConstraints diagram of the time model

A TimedConstraint is a constraint imposed on the occurrence of an event (TimedlnstantConstraint), or on the duration of
some execution, or even on the temporal distance between two events (TimedDurationConstraint). The constraints are
specified by predicates (InstantPredicate for instants and DurationPredicate for durations). A usual form of predicate is
“the constrained instant value belongs to a given time interval value” or “the constrained duration value belongs to a
given duration interval value.” Instant and duration predicates contain usages of timed observations.

9.2.4.5 The TimedEventModels package

This package consists of two packages: TimeEventOccurrences and TimedEvents (Figure 9.19).

TimedEventModels

TimedEventOccurrences Timed Events

Figure 9.19 - The TimeEventModels package

UML Profile for MARTE, V1.0 69

9.2.4.5.1 The TimeEventOccurrences package

An event occurrence can be associated with time instants. MARTE introduces the concept of TimedEventOccurrence
(Figure 9.20), which is both a TimedElement and an EventOccurrence. The at property specifies the instant value of this
timed event occurrence on one of its clocks. Since a timed event occurrence may refer to several clocks (on property),
several instant values (at property) are possible. Usually, there is one clock only, but several are allowed at least to cover
the case of simultaneous occurrence set, introduced below.

This package also introduces the concept of SimultaneousOccurrenceSet. In the Causality Modeling chapter, an execution
of a behavior may be caused by an event occurrence. In some situations, several events have to be considered as a whole
because their collective effect cannot reduce to the serialization of their individual effects. The concept of
SimultaneousOccurrenceSet is introduced to address thisissue. A SimultaneousOccurrenceSet is an EventOccurrence, and
as such, it can be the cause of a behavior execution. This concept is useful at design-time when different views of a same
event, which have been introduced earlier, have to be merged into one event. It is also of common use in reactive
synchronous modeling.

TimedEventModels
;:Timed EventOccurrences

CoreElements::
Causality:: TimedElements::
RunTimeContext: Timed Element
EventOccurrence

0.* | occSet Z}

0.1
SimultaneousOccurrenceSet TimedEventOccurrence
0.1
1.* at

TimeAccesses::
TimeValues::
InstantValue

Figure 9.20 - TimedEventOccurrences diagram of the time model

9.2.4.5.2 The TimeEvents package

A TimedEvent is an event the occurrences of which are bound to clocks. A TimedEvent may have several occurrences.
The when property specifies when the first occurrence occurs. The Boolean attribute isRel ative specifies whether the time
value is relative (the when property is a time duration value) or absolute (the when property is atime instant value). The
every optional property permits repetitive occurrences of the timed event. When every is present, its value is the duration
that separates the successive occurrences of the timed event. The number of occurrences can be limited by the repetition
attribute. The time values are specified by CVS expressions. CV'S (Clocked Value Specification) is defined in Annex C.
A CVS::ClockedValueSpecification specifies a TimeValue, a CV S::DurationValueSpecification a DurationValue, and a
CV S::InstantValueSpecification an InstantValue.

70 UML Profile for MARTE, V1.0

TimedEventModels
::TimedEvents

CoreElements:
TimedElements:: Causality::
Timed Element CommonBehavior:
Event

Timed Event

isRelative : Boolean
repetition: Integer[0..1]

1 when 0..1 |every
CVS:: CVs::
ClockedValueSpecification DurationValueSpecification

Figure 9.21 - TimedEvents diagram of the time model

9.2.4.6 The TimedProcessingModels package

This package consists of two packages: TimedExecutions and TimedProcessings.

TimedProcessingModels

TimedExecutions TimedProcessings

Figure 9.22 - The TimedProcessingModels package

9.2.4.6.1 The TimedExecutions package

A TimedExecution is a TimedElement that is a specialization of the
CoreElements::Causality::RunTimeContext::BehaviorExecution. As a TimedElement, a timed execution makes explicit
reference to clocks.

Two instant values, startinstant and finishinstan, are associated with an execution and they correspond to the occurrence
instants of its StartOccurrence and TerminationOccurrence, respectively. A DurationValue may also characterize an
execution. Since a timed execution may refer to several clocks (on property), several time values are possible.

UML Profile for MARTE, V1.0 71

In the CoreElements::Causality::RunTimeContext package, CompBehaviorExecution and ActionExecution are concrete
subclasses of BehaviorExecution, so that timed behavior executions and timed action executions also make explicit
reference to clocks. A message transfer can also be assimilated to a timed execution (the sending instant being the
startInstant of the communication and the receipt instant being its finishinstant). In what follows, Behavior, Action, and
Message are collectively designated as timed processing, even if this assimilates a Message to its transfer.

TimedProcessingModels
;:TimedExecutions

CoreElements:
Causality:: Timed Elements:

RunTimeContext: Timed Element
BehaviorExecution

e 1

Timed Execution

executionDuration | 1. startinstant | 1..* finishinstant | 1..*
TimeAccesses:: TimeA ccesses::
DurationvValues:: TimeValues::

Duration Value InstantValue

Figure 9.23 - TimedBehaviorExecutions diagram of the time model

9.2.4.6.2 The TimedProcessings package

TimedProcessing (Figure 9.24) is a generic concept for modeling activities that have known start and finish times, or a
known duration. In fact, two out of the three time values suffice to characterize a particular execution of the processing.
For a timed message, start and finish events are respectively named as sending and receipt events.

A delay is a specia kind of timed action that represents a null operation lasting for a given duration.

72 UML Profile for MARTE, V1.0

Timed Processing Mo dels
::TimedPro cessings

CoreElements::
Causality::
CommonBehavior:
Behavior

CoreElements::
Causality::
Communication::
Requ est

5

5

Timed Behavior

TimedMessage

CoreElements::
Causality::
Common Behavior:
Action

5

Timed Action

V

TimedProcessing

1

Delay

0.1 | duraion start| 0.1 finish | 0..1
CoreElements::
CVS:: Causality::
Duration ValueSpecification CommonBehavior:
Event

Timed Elements::
Timed Element

Figure 9.24 - TimedProcessings diagram of the time model

9.3 UML

Representation

This section describes the UML extensions required to support the concepts defined in the Time Modeling domain view.
Some concepts result in new stereotypes, others specialize stereotypes defined for NFPs modeling, and still others need

no extensions at al. Most of the time-related stereotypes extend metaclasses from UML ::Classes::Kernel,

UML::CommonBehaviors, and the SimpleTime package of CommonBehaviors.

9.3.1 Profile Diagrams

The Time profile depends on the NFPs profile as shown in Figure 9.25.

Figure 9.25 - Time profile dependencies diagram

UML Profile for MARTE, V1.0

«profile» « modelLibrary »
NFPs TimeTypesLibrary
. 7 .
. -~ <\<.'A t>>
"~) impor
<<import>> <<import>> -
-§\. "‘o \\
I 47\. .'r 4‘~—‘
«profile» T _—— «profile » S S modelL ibrary »
VSL::DataTypes [<=——-<<import>> Time = <<apply>> TimeL ibrary

73

For convenience, the Time profile is represented as a collection of diagrams. Each diagram gathers tightly related model
elements. The actual Time profile consists of all these diagrams. The libraries are presented in Annex D.

9.3.1.1 TimedElement and Clock stereotypes

In the Time domain view, the concepts related to the time structure have been introduced in the BasicTimeModels and
MultipleTimeModels packages. These concepts constitute the semantic domain of the Time model. The corresponding

concepts in the UML view are ClockType and TimedDomain. The TimedDomain stereotype of the UML view maps to
MultipleTimeBase and the ClockType stereotype maps to TimeBase.

« metaclass » « metaclass » « metaclass »
UML::Classes:: UML.::Classes::Kernel:: . . .
Kerniel::Property InstanceSpecification UML::Classes::Kernal::Class
A A
¥ metaclass »
UML::Classes::Kernel:: « stereatype » « stereotype »
Namespace Clock ClockType
standard: TimeStandardkind[D,.1] nature: TimeMatureKind[1]
unitType: Enumeration[0..1]
“ ?mmoupe: » onl 1.0 isLogical: Boolean[1])=false
TimedDomain : resolAllr: Property[0..1]
¥Pe | maxvalatr Property[D..1]
1 cffsetAttr: Property[0..1]
SRy el getTime: Operation[0..1]
NFP_profile::Unit « stereatype » setTime: Operation[d..1]
TimedElemeant indexToalue: Oparation[0..1]

Figure 9.26 - UML extensions for Time modeling (1)

9.3.1.2 Timed value specification stereotypes

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a
TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of
the value as duration or instant specification.

<<metaclass>> <<stereotype>
UM L::Classes::Kernel:: - TimedValueSpecification I <T<iz::é?lgqpe®m>
ValueSpecification interpretation: Time Inte rpr etation Kind[O0.. 1]

Figure 9.27 - UML extensions for Time modeling (2)

9.3.1.3 Constraint stereotypes

Time Modeling introduces two stereotypes specializing the NfpConstraint stereotype, which is itself an extension to the
UML Constraint. TimedConstraint deals with constraints imposed on either instant value or on duration value, according
to the value given to the interpretation attribute. ClockConstraint imposes dependency between clocks or between clock
types. As TimedElement, both stereotypes refer to clocks. Additional OCL rules specify the constrained elements, the
specification, and the context of the constraint. Note that VSL is convenient to express various timed constraints.

74 UML Profile for MARTE, V1.0

« stereotype »

NFP_Profile::

NfpConstraint

« stereotype » « stereotype »
TimedConstraint ClockConstraint
Interpratation: Timelnterpretationkind izCoincidenceBased: Boolean

isPrecedenceBased: Boolean
isChronemetricBased: Boolean

« stereotype »

TimedElfement

Figure 9.28 - UML extensions for Time modeling (3)

9.3.1.4 Observation Stereotypes

TimedObservation is an abstract stereotype of TimedlnstantObservation and TimedDurationObservation. It allows time
expressions to refer to either in a common way. As a TimedElement, a TimedObservation makes reference to clocks. The
optional obsKind attribute may specify the kind of the observed event(s). The Enumeration EventKind is part of the
TimeTypesLibrary (Annex D.3.1).

‘;:::mm"p‘;: <<stercotype>> <<metaclass>>
L2 TimedinstantObservation | UML::CommonBehaviors::
g SimpleTime::
obsKind;Eventkind([0..1] TimeObservation
<<stereotype>>
TimedObservation ::]
+ enumaeration »
EventKind
?mﬂh <<stereotype>> ==metaclass>>
Wi TimedDurationObservation _ | UML::CommonBehaviors::
?:S;ve % | SimpleTime::
CONELTIS obsKind Eventkind[0..2] DurationObservation

Figure 9.29 - UML extensions for Time modeling (4)

9.3.1.5 Timed event stereotype

The TimedEvent stereotype represents Event whose occurrences are explicitly bound to clocks.

<<metaclass>>
UML::CommonB ehaviors:
SimpleTime::

TimeEvent
A
<<stere oty pe>>
<<metaclass>> ever ; <<stereotype>
UML::Classes: Kernel: yﬁ‘ TimedEvent —= TimedEe);r?ent
ValueSpecification 0.1 0-1 | repetition: Integer[0..1]

Figure 9.30 - UML extensions for Time modeling (5)

UML Profile for MARTE, V1.0 75

9.3.1.6 Timed processing stereotype

The TimedProcessing stereotype represents activities that have know start and finish times or a known duration, and
whose instants and durations are explicitly bound to clocks.

<<metaclass>>
UML::Actions::
Action

f

<<metaclass>>

UML: :CommonB ehaviors: :

Behavior

4

<<metaclass>>
UML::CommonB ehaviors::
Communication::
Ev ent

tart

<<metaclass>>
UML: dInteractions:
Basiclnteractions:

Message

A

0.1

finish

<<stereotype>>
TimedProcessing

0.1

y

<<stereotype> >
TimedElement

Figure 9.31 - UML extensions for Time modeling (6)

9.3.2 Profile Elements Description

9.3.2.1 Clock

duration
0.1

<<metaclass>>
UML::Classe s::Kernel::
ValueSpecific ation

The Clock stereotype maps the Clock domain element denoted in Annex F (Section F.3.2). It also relates to the
ChronometricClock domain element (Section F.3.1).

A Clock is a model element that represents an instance of ClockType. A Clock gives access to time. A Clock existsin a
TimedDomain. A Clock maps to a TimeBase in the semantic domain. The stereotype specifies the unit of the Clock. A
Clock is also characterized by its resolution, and optionally by its offset (its initial instant value) and its maximal value.
The values of these attributes are contained in the slots of the stereotyped InstanceSpecification.

A Clock can also be a stereotyped Property, so that it can be used in composite structure and interactions.

9.3.2.1.1 Extensions

e Property (from UML::Classes::Kernel)

¢ InstanceSpecification (from UML::Classes::Kernel).

9.3.2.1.2 Generalizations

* None

9.3.2.1.3 Associations

e type: ClockType[1]

Specifies the ClockType whose this Clock is an instance.

76

UML Profile for MARTE, V1.0

e unit: NFPs::Unit[0..1]
Defines the unit used by this Clock. If unit is not defined, then this Clock uses the anonymous
tick unit. When defined, this unit must be of the unitType specified in the ClockType.

9.3.2.1.4 Attributes

e standard: TimeStandardKind[0..1]
References the system of time adopted by the clock. This property is not defined for alogical clock.

9.3.2.1.5 Constraints
[1] The base InstanceSpecification of the Clock must be an InstanceSpecification of the base Class of its type property.

not self.base_InstanceSpecification.oclIsUndefined() implies
self.base_InstanceSpecification.classifier->includes(self.type.base Class)

[2] The base Property of the Clock must be a Property of the base Class of its type property.
not self.base Property.ocllsUndefined() implies self.base_Property.type = self.type.base Class
[3] The unit must be an ownedLiteral of the unitType enumeration of the ClockType.
self.unit->notEmpty() implies self.type.unitType.ownedLiteral->includes(self.unit)
[4] A logical clock does not have a defined standard.

self.type.isLogical implies self.standard->isEmpty()

9.3.2.2 ClockConstraint
The ClockConstraint stereotype maps the ClockConstraint domain element denoted in Annex F (Section F.3.3).

A ClockConstraint is a Constraint that imposes dependency between clocks or between clock types. A ClockConstraint
refersto a set of clocks or clock types, and possibly to other model elements. The clocks in the constrained elements must
belong to the on clock set of this ClockConstraint; the constrained clock types must be types of clocks in the on clock set.
The specification of the constraint is usually an opaque expression using a dedicated language: CCSL (Clock Constraint
Specification Language) defined in Annex C.

A ClockConstraint may define one or several clock relations and relies on many, often infinitely many, instant relations.
When relying on coincidence instant relations, the attribute “isCoincidenceBased” must be set to true. When relying on
precedence instant relations, the attribute “isPrecedenceBased” must be set to true. Note that they are not exclusive.
However, when only “isCoincidenceBased” is true, the constraint is purely synchronous, when only “isPrecedenceBased”
is true, the constraint is purely asynchronous. Apart from these structural distinctions, a ClockConstraint may also define
a constraint related to chronometric aspects of the clocks (like stability, skew, offset ...). In such cases, the attribute
“isChronometricBased” must be set to true.

9.3.2.2.1 Extensions

* None

9.3.2.2.2 Generalizations
e NfpCongtraint (from NFPs)
¢ TimedElement

UML Profile for MARTE, V1.0 77

9.3.2.2.3 Associations

¢ None

9.3.2.2.4 Attributes

e isCoincidenceBased: Boolean [1]
Specifies whether this ClockConstraint relies on coincidence instant relations.

e isPrecedenceBased: Boolean [1]
Specifies whether this ClockConstraint relies on precedence instant relations.

e isChronometricBased: Boolean [1]
Specifies whether this ClockConstraint relies on chronometric aspects (such as stability, offset, skew) that are not
purely structural.

9.3.2.2.5 Constraints

[1] The constrained clocks are members of the on clock set of the ClockConstraint.
self.on->includesAll(self.base_Constraint.constrai nedElement->select(c|c.ocl I sTypeOf (Clock))

[2] The constrained clock types are types of clock members of the on clock set of the ClockConstraint.

self.on->includesAll(self.base_Constraint.constrainedElement->sel ect(c|c.ocl I sTypeOf (ClockType).type)

9.3.2.3 ClockType

The ClockType stereotype maps the TimeBase domain element denoted in Annex F (Section F.3.21). It also relates
indirectly to Clock (Section F.3.2) and ChronometricClock (Section F.3.1).

A ClockType is a classifier for Clock. The attributes of the stereotype define the nature of the represented time (discrete
or dense), the type of units, and whether its instances are logical clocks or chronometric clocks.

9.3.2.3.1 Extensions
e Class (from UML::Classes::Kernel)

Note: The ClockType stereotype the UML Class. This metaclass goes through several merge increments in the UML
specification. Using UML::Classes::Kernel::Class does not preclude usage of Class from UML::StructuredClasses.

9.3.2.3.2 Generalizations

* None

9.3.2.3.3 Associations

* None

9.3.2.3.4 Attributes

e nature: TimeNatureKind [1]
Specifies the nature dense or discrete of the time represented by this ClockType.

e unitType: UML::Classes::Kernel::Enumeration [0..1]
Is the type of units supported by this ClockType.

78 UML Profile for MARTE, V1.0

e isLogica: Boolean [1] = false
Specifies whether this ClockType reads alogical time or not. When isLogical isfalse, the ClockTypereads a
chronometric time, i.e., atime bound to physical time.

« maxValAttr: Property [0..1]
The maxVal Attr property refers to a property of the base class. This property declares aread only attribute which
determines the maximal Value of the associated Clock, value at which the clock rolls over. The maximal valueis
expressed with the clock's unit as a unity.

e offsetAttr: Property [0..1]
The offsetAttr property refersto a property of the base class. This property declares aread only attribute which
determines the offset (initial instant) of the associated Clock. The offset is expressed with the clock's unit asa
unity.

e resolAttr: Property [0..1]
The resol Attrib property refersto a property of the base class. This property declares aread only attribute which
determines the resolution of the associated Clock. The resolution is expressed with the clock’s unit as a unity.
When resolution is not defined, the granularity is arbitrarily small. Thisis the case for dense time.

e getTime: UML::Classes::Kernel::Operation [0..1]
The getTime property refersto an operation of the base class that returns the current time.

e setTime: UML::Classes::Kernel::Operation [0..1]
The setTime property refersto an operation of the base class that sets the current time.

¢ indexToVaue: UML::Classes::Kernel::Operation [0..1]
The indexToValue property refers to an operation of the base class that yields the instant value associated with an
instant specified by itsindex.

9.3.2.3.5 Constraints

* None

9.3.2.4 TimedConstraint

The TimedConstraint stereotype maps the TimedConstraint domain element denoted in Annex F (Section F.3.25). It also
relates indirectly to TimedinstantConstraint (Section F.3.32) and TimedDurationConstraint (Section F.3.26).

A TimedConstraint imposes constraints on either instant value or duration value associated with model elements bound to
clocks. If interpretation is set to the enumeration literal instant, then the constraint is interpreted as a constraint on instant
value. If interpretation is set to the enumeration literal duration, then the constraint is interpreted as a constraint on
duration value. There is no other case. The specification of the constraint itself can be conveniently expressed in VSL.

9.3.2.4.1 Extensions

« None

9.3.2.4.2 Generalizations
¢ NfpCongtraint (from NFPs)
*« TimedElement

9.3.2.4.3 Associations

* None

UML Profile for MARTE, V1.0 79

9.3.2.4.4 Attributes

« interpretation: TimelnterpretationKind [1]
Specifies whether the constraint applies to an instant value or to aduration value.

9.3.2.4.5 Constraints

[1] The owner of a constraint stereotyped by TimedConstraint must be a Package stereotyped by TimedDomain
base Constraint.owner.ocllsTypeOf(TimedDomain)

[2] The interpretation property is either instant or duration

[3] self.interpretation <> TimelnterpretationKind::any

9.3.2.5 TimedDomain
The TimedDomain stereotype maps the MultipleTimeBase domain element denoted in Annex F (Section F.3.17).

A TimedDomain is a container of Clocks. Model elements of the TimeDomain may refer to Clocks to express that their
behavior depends on time. A TimedDomain is also a context for a ClockConstraint. A TimedDomain may own nested
TimedDomains. A TimedDomain maps to a MultipleTimeBase in the semantic domain.

9.3.2.5.1 Extensions
¢ Namespace (from UML::Classes::Kernel::Namespace)
9.3.2.5.2 Generalizations

¢ None

9.3.2.5.3 Associations
¢ None

9.3.2.5.4 Attributes

* None

9.3.2.5.5 Constraints

* None

9.3.2.6 TimedDurationObservation

The TimedDurationObservation stereotype maps the TimedDurationObservation domain element denoted in Annex F
(Section F.3.27).

A TimedDurationObservation denotes some interval of time, observed on one or two clocks. The duration may be the
time elapsed between the occurrences of the start and the finish events of an execution. The duration may also be the time
elapsed between two of the three events associated with a message (its sending, its receipt, and the start of its processing
by the receiver). More generally, the duration may be the time elapsed between the occurrences of two distinct events.

9.3.2.6.1 Extensions

¢ DurationObservation (from UML::CommonBehaviors.:SimpleTime:: DurationObservation).

80 UML Profile for MARTE, V1.0

9.3.2.6.2 Generalizations

¢ TimedObservation

9.3.2.6.3 Associations

¢ None

9.3.2.6.4 Attributes

e 0obsKind: EventKind [0..2]
Specifies the kind of the observed events.

9.3.2.6.5 Constraints

* None

9.3.2.7 TimedElement (abstract)
The TimedElement stereotype maps the TimedElement domain element denoted in Annex F (Section F.3.28).

The TimedElement stereotype is an abstract stereotype that does not extend UML meta classes. It stands for model
elements referencing Clocks. Only concrete specializations of TimedElement can be applied.

9.3.2.7.1 Extensions

* None

9.3.2.7.2 Generalizations

* None

9.3.2.7.3 Associations

e on: Clock [1..*]
Rreferences a set of Clocks.

Attributes
* None

9.3.2.7.4 Constraints

* None

9.3.2.8 TimedEvent

The TimedEvent stereotype maps the TimedEvent domain element denoted in Annex F (Section F.3.29). It also relates
indirectly to TimedEventOccurrence (Section F.3.30).

The TimedEvent stereotype represents events whose occurrences are explicitly bound to a Clock. When this stereotype is
applied to an Event, this Event specifies the first occurrence of this Event (isRelative and when properties). The when

valueis considered read on the on Clock of this TimedEvent, and with the unit of this Clock. The every property specifies
the duration between successive occurrences, if any. The number of occurrences can be limited by the repetition property.

UML Profile for MARTE, V1.0 81

9.3.2.8.1 Extensions

e TimeEvent (from CommonBehaviors::SimpleTime)
9.3.2.8.2 Generalizations
e TimedElement

9.3.2.8.3 Associations

e every: UML::Classes::Kerndl::VaueSpecification [0..1]
Isan optional owned specification of the duration value between two successive occurrences
of this TimedEvent. By default this duration is read on the on Clock of this TimedEvent. By applying
the TimedVal ueSpecification stereotype to this ValueSpecification, another Clock can be chosen.

9.3.2.8.4 Attributes

e repetition: Integer[0..1]
Isan optional repetition factor. When defined, repetition is the number of successive
occurrences of the TimedEvent. Its absence is interpreted as an unbounded repetition.

9.3.2.8.5 Constraints
[1] A TimedEvent is bound to one Clock.
on->size() =1
[2] The optional repetition property of a TimedEvent must be not defined when every is not defined.

every->isEmpty() implies repetition->isEmpty()

9.3.2.9 TimedInstantObservation

The TimedI nstantObservation stereotype maps the TimedI nstantObservation domain element denoted in Annex F (Section
F.3.33).

A TimedlnstantObservation denotes an instant in time, associated with an event occurrence, and observed on a clock. The
obsKind attribute may specify the kind of the observed event.

9.3.2.9.1 Extensions

¢ TimeObservation (from UML::CommonBehaviors::SimpleTime:: TimeObservation)

9.3.2.9.2 Generalizations

* TimedObservation

9.3.2.9.3 Associations

* None

9.3.2.9.4 Attributes

e obsKind: EventKind [0..1]
specifies the kind of the observed event.

82 UML Profile for MARTE, V1.0

9.3.2.9.5 Constraints

* None

9.3.2.10 TimedObservation (abstract)
The TimedObservation stereotype maps the TimedObservation domain element denoted in Annex F (Section F.3.4).

TimedObservation is an abstract stereotype generalizing both stereotypes, TimedlnstantObservation (Section 9.3.2.9), and
TimedDurationObservation (Section 9.3.2.6). It allows time expressions to refer to either in a common way. As a
TimedElement, a TimedObservation makes reference to clocks.

9.3.2.10.1 Generalizations

* TimedElement

9.3.2.10.2 Associations

* None

9.3.2.10.3 Attributes

* None

9.3.2.10.4 Constraints

* None

9.3.2.11 TimedProcessing

The TimedProcessing stereotype maps the TimedProcessing domain element denoted in Annex F (Section F.3.36). It also
relates indirectly to TimedEventOccurrence (Section F.3.30), TimedBehavior (Section F.3.24), TimedAction (Section
F.3.23), TimedMessage (Section F.3.34), and TimedExecution (Section F.3.31).

The TimedProcessing stereotype represents activities that have known start and finish times or a known duration, and
whose instants and durations are explicitly bound to Clocks.

9.3.2.11.1 Extensions
e Action (from UML::Actions)
e Behavior (from UML::CommonBehaviors)

¢ Message (from UML::Interactions::Basicl nteractions)

9.3.2.11.2 Generalizations

*« TimedElement

9.3.2.11.3 Associations

e duration: UML::Classes::Kernel::ValueSpecification [0..1]
Is an optional owned specification of the duration of an execution for Action and Behavior, or the
duration of atransmission for a Message. By default this duration is read on the on Clock of this
TimedProcessing, if it is unique. By applying the TimedVal ueSpecification stereotype to this
ValueSpecification, another Clock can be chosen.

UML Profile for MARTE, V1.0 83

e finish: UML::CommonBehaviors;:Communication::Event [0..1]
the event whose occurrence determines the end of execution of the processing, for Action or Behavior;
the receipt for a Message.

e dart: UML::CommonBehaviors::Communication::Event [0..1]
the event whose occurrence determines the start of execution of the processing, for Action or Behavior;
the sending for a Message.

9.3.2.11.4 Attributes

* None

9.3.2.11.5 Constraints

[1] Not all three properties are empty.

duration->notEmpty() or (start->notEmpty() and finish->notEmpty())

9.3.2.12 TimedValueSpecification

The TimedValueSpecification stereotype maps the TimeValue domain element denoted in Annex F (Section F.3.44),
InstantValue domain element (Section F.3.14), and DurationValue domain element (Section F.3.10).

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a
TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of
the value as duration or instant specification.

9.3.2.12.1 Extensions
e ValueSpecification (from UML::Classes::K ernel::Val ueSpecification)
9.3.2.12.2 Generalizations

* TimedElement

9.3.2.12.3 Associations
* None

9.3.2.12.4 Attributes

e interpretation: TimelnterpretationKind[O0..1]
Specifies whether the time values are instant values or duration values.

9.3.2.12.5 Constraints

* None

9.3.2.13 TimelnterpretationKind (from TimeTypesLibrary)

Timel nterpretationKind is an enumeration type that defines literals used to specify the way to interpret a time expression.

9.3.2.13.1 Literals

e duration
Indicates that the typed elements are time spans.

84 UML Profile for MARTE, V1.0

¢ instant

Indicates that the typed elements are instants.

° any

Indicates that the typed elements can be durations or instants.

9.3.2.14 TimeNatureKind (from TimeTypesLibrary)

TimeNatureKind is an enumeration type that defines literals used to specify the nature discrete or dense of a time value.

9.3.2.14.1 Literals

e discrete

Indicates that the typed elements are from a discrete set.

e dense

Indicates that the typed elements are from a dense set.

9.3.3 Examples

9.3.3.1 Chronometric clocks

The MARTE::TimeLibrary contains the description (Ideal Clock, a class stereotyped by ClockType) and an instance

(idealClk) of an “ideal” clock. Starting with this clock, the user can define new chronometric clocks, as shown in Figure
9.32. These chronometric clocks may present deviations with respect to the ideal clock.

<< clockType >>
{nature = discrete , unitType = TimeUnitKind,
resolAttr=re solution, getTime = curre ntT ime }
Chronometric

resolution: R eal {read Only}

currentTime(): Real

<<timeD omain>>

<< clockType >>
{ nature = dense, unitType = TimeU nitkind ,
getTime = currentTime }
Id ealC lo ck

currentTime():Re al

Imp orte d from
M AR TE::TimeLibrary

AN

<< clock>>
{ unit=s,standard = UTC }
cc2:Chronom etric

resolution = 0.01

Application TimeDo m ain ,’

"'"

P

<< clock>> <<c|_oc_k>>

{ unit=s,standard = UT C}) {unit=s}
ccl:Chronometric D, idealC lk:ldea IClock

~~—.
resolution = 0.01 el Y
<< clockCon strain t>> { kind = require d} N

{ Clock cis idealClk discretizedBy 0.001;
ccl isPeriodicOn cperiod10;
cc2 isPeriodicOn cperiod10;
ccl hasStability 1E-5;
cc2 hasStability 1E-5;
ccl,cc2haveOffset [0..5] ms wrt idealC lk;

Figure 9.32 - Example of chronometric clocks

First, the user specifies a new ClockType: Chronometric, which is discrete, not logical (i.e., chronometric), and with a

read only attribute (resolution).

UML Profile for MARTE, V1.0

85

Instances of clocks belong to timed domains. In this example only one time domain is considered, and it owns 3 clocks:
idealClk, which is an instance of IdealClock, ccl, and cc2, which are two instances of Chronometric.

ccl and cc2 use s (second) as their unit of time, have a resolution of 0.01 s and adopt the UTC system of time. The
deviations of these clocks with respect to the ideal one are specified by a clock constraint. Clock constraints are expressed
using a simple declarative language, called CCSL (Clock Constraint Specification Language), described in Annex C.

The clock constraint in Figure 9.32 imposes to ccl and cc2 to be almost periodic (stability=10-5), with a period of 10 ms,
and with an offset between the two clocks no greater than 5 ms. Note that the 10 ms period must be consistent with the
given resolution (0.01 s = 10 ms). The first line, in the body of the constraint, declares a clock c, local to the constraint
and not part of the system. c is defined as an ideal discrete clock whose resolution is 0.001 s = 1 ms. The other lines are
constraints. Figure 9.33 represents a time structure that satisfies the given clock constraint.

. lia——10m 1 ms—» F
idealClk | >
(c)—0O<
CC 1 A S >
ccz2 O O >
offset of)
cclvs. cc2
~ ccl.period -

Figure 9.33 - Instants of clocks ccl and cc2

9.3.3.2 Logical Clocks

In this simplified example, a processor executes the same code for several controllers (Figure 9.34). The processor is a
Voltage Scaling processor: its frequency can be dynamically controlled. For simplicity, only two frequencies are
considered: the frequency in the full power mode, and the frequency in the low power mode, which is half the former. The
Boolean attribute inLowPower indicates the running mode of the processor. The control must be applied periodically (the
period attribute of the Controller) by executing some code (pidCode which is an OpagueBehavior). The behavior of the
controller is specified by a state machine (ctriBeh).

stm ctriBeh (p: NFP_Duration y

<<clockType>>

{nature=discrete, after p
re solAttr=r esolution,
isLo gical } 1 0.* Controller
Processor proc ctrl period: NFP_Duration

inLow Pow er: Boole an -
re so lutio n: R eal {re adO nly} entry pid Code

Figure 9.34 - Example of timed control

pidCode is a behavior that is executed in a fixed and known number of processor cycles. This can be modeled with a
logical clock. To this end, the class Processor is stereotyped by ClockType. This mixture of physical time (period of
activation) and logical time (execution duration expressed in processor cycles) is usual in control applications. Figure
9.35 represents instances and a clock constraint. The TimedDomain is not explicitly represented. There are two instances
of Controller, with periods of activation equal to 1 and 2 ms, respectively. Each execution of pidCode takes 100 cycles of
the processor, which is expressed by a TimedProcessing. The dependency between the processor cycle duration and the

86 UML Profile for MARTE, V1.0

physical time is specified by a ClockConstraint. The constraint specification indicates that the local Clock c is a discrete
clock with a period of 1 us (1E-6 s). Clock pr is derived from ¢. The period of pr is 20 us when running in the low power
mode, and 10 us in the full power mode. The trigger of the transition labeled “after p” in the state machine, implicitly
declares a TimeEvent with isRelative = true and when = p. This TimeEvent is stereotyped by TimedEvent with on =

ideal Clk.

<<clock>>
cl: Controller prProcessor c2: Controller
period = falue=1,unit=ms) reso lution = 1 period = (value=2 unit=ms)
:
4
<<clockConstraint>> <<timedPro cessing>>
{Clock cisidealClk discretizedBy 1E-6; {c_>n= pr,
<<°|9C1(>> _. pr=cfiteredByO0B(1.0"19)if pr.inLowPower, duration =100 }
- {unt=s} o pr = cfiltered ByOB(1 079)if not pr.inLowPower; <<opaqueBehavior>>
idealClk:ldealClock } pidCode

Figure 9.35 - Clocks and TimedProcessing

UML Profile for MARTE, V1.0 87

88

UML Profile for MARTE, V1.0

10 Generic Resource Modeling (GRM)

10.1 Overview

The objective of this package is to offer the concepts that are necessary to model a general platform for executing real-
time embedded applications. The generic resource model (GRM) includes the features that are required for dealing with:

» Modeling of executing platforms at different level of details. The level of granularity needed for platform modeling
depends on the concern motivating the description of the platform, as for example the type of the platform, the type of
the application, or the type of analysisto be carried out on the model.

« Modeling of both “hardware” (e.g., memory units or physical communication channels) and “ software” (e.g., rea-time
operating systems) platform.

Both Section 14.1 and Section 14.2 provide a specialization of this general resource model for software and hardware
related platforms respectively.

Figure 10.1 describes the dependencies of the GRM package with other sub-packages of MARTE.

———1
MARTE::MARTE_Library::
Basic_NFP_Types

— L — —
MARTE:: ' MARTE:: MARTE::
NFP_Medeling | Time CoreElements
B ')
GRM

Figure 10.1 - Dependencies of the GeneralResourceModel (GRM) package

The different facets of the GRM are grouped in individual packages, following the structure shown in Figure 10.2:
» The ResourceCore package defines the basic elements and their relationships.
» The ResourceTypes package defines fundamental types of resources as well as the basic services that they provide.

» The ResourceManagement package defines specific management resources and their associated services.

UML Profile for MARTE, V1.0 89

GRM
I
ResourceCore)‘n
a) R
5 1 Y A
i} 1 1 Y
A — R —
; \
/ ResourceTypes '-.. ResourceUsages
)
/ A 53 !
£)J e “
n'| o ——
ResourceManagement ez -----| Scheduling

Figure 10.2 - Architecture of the GeneralResourceModel (GRM) package

The purpose and contents of each sub-package are described in the following sections.

10.2 Domain View

10.2.1 The ResourceCore Package

The basic partitioning into classifiers and instances made in the Foundations package is used here to describe the nature
of the basic resource elements, depicted in the class diagram in Figure 10.3. The central concept of the GRM is the notion
of a Resource. A Resource represents a physically or logically persistent entity that offers one or more ResourceServices.
Resources and its services are the available means to perform the expected duties and/or satisfy the requirements for

which the system under consideration is aimed.

MARTE::Core Eements: 0.x 1.* | MARTE::CoreElements:
Foundations::Instance instance type Foundations::Classifier
MARTE:CoreElements: MARTE:CoreElements:Causality :: context
Causality::RunTimeContext Common Be havior::Beh avioredC lassifier 1
:BehaviorExecution Z}
ownedbehavior *
0. 1.* Resource
Resourcelnstance
instance type | resMul: Integer [0..1] MARTE:CoreElements:
Causality::Commo nBehavior
context 1 context 1 ::Behavior

p Services

B 0.* :
exeServices 1.*\/ {subset ownedbehavior}
instance 1.* .
ResourceService

Resource ServiceExecution
0.* type

Figure 10.3 - Instance/Classifier nature of core resource elements

90 UML Profile for MARTE, V1.0

As shown in Figure 10.4, Resources and their respective instances are also kinds of AnnotatedElements, hence values of
non-functional properties (NFPs) may be annotated on them. In particular, as a type of classifier, Resources may have
NFPs declared on it. Asit is also shown in Figure 10.4, besides the NFP specifications, a resource has an optional set of
referenced clocks, normally only one, but more in general.

MARTE::NFPs::NFP_Annotation::
AnnotatedElement

ZL‘ 0.* ownedElement

owner
o 1 Resource
Resourcelnstance 0.1
instance type | resMut: Integer [0..1]
MARTE:NFPs:: provided

NFP_declaration::NFP {suhset vale}

required
{subset value}

*

MARTE::Time::
TimeAccesses ::Clocks::Clock reference Clocks

Figure 10.4 - NFP annotations and reference Clocks of a Resource

A second orthogonal aspect, which is also very important, is the necessity to differentiate between application and
platform elements. These latter are considered either as resources or resource services. Resources are used to model the
execution platform from a structural point of view, while the resource services supply the behavioral point of view. A
resource may be structurally described in terms of its internal resources - this is represented by the “owner-
ownedElement” association in Resource inherited from the Model Element meta-class. For example, a processing resource
may be refined as a processor connected to a memory through a bus, if such level of detail is of interest for the modeler
or for the analysis method to be applied to the model.

The reference clock of a resource may be either a chronometric (i.e., “physical”) clock or alogical clock. In any case, a
clock is used as the reference unit for time related characteristics of the services provided by the resource. For example,
considering chronometric clocks, the “processing time” associated with functions in a computation library may be
expressed in terms of processor cycles rather than absolute time values. The reference clock (typically the processor
clock) would then allow translating such values into physical times.

The optional attribute resMult (resource multiplicity) is used to express the limited nature of an aggregated multi
elementary resource. When used it indicates the maximum number of instance of the elementary units of a particular type
of resource that are available through its corresponding services.

Resource and ResourceService, as well as their corresponding instance-based concepts, Resourcel nstance and
ResourceServiceExecution respectively, may also provide and/or require non-functional properties. A
ResourceServiceExecution is a kind of BehaviorExecution that represents a concrete instance of the realization of a
service, in the context of the instance of a resource.

UML Profile for MARTE, V1.0 91

MARTE::C oreElements::
Foundations::ModelElement

7

ResourceReference ResourceAmount

Figure 10.5 - Resource Reference, and ResourceAmount of the ResourceCore package

For convenience, as shown in Figure 10.5, two more abstract concepts are defined in this ResourceCore package:
» ResourceReference, to be used when modeling the dynamic creation of resourcesis required.

» ResourceAmount, representing a generic quantity of the “amount” provided by the resource. This may be mapped to
any significant quantification of the resource, like memory units, utilization, power, etc.

A resource can be a “black box,” in which case only the provided services are visible, or a “white box,” in which case its
internal structure, in terms of lower level resources, may be visible, and the services provided by the resource may be
detailed based on collaborations of these lower level resources.

Note that in the case of the platform provider for example, it is up to the modeler to represent it as:

» One black box resource (e.g., areal-time operating system), which abstracts the hardware hence considered as internal
elements.

« A collaboration between a software layer and a hardware layer.

A collaboration between basically hardware elements. In this case, software features of the execution platform may be
represented by overheads on raw hardware performance figure.

« Any combination of these previous approaches depending on the type of development and analysis method applied by
the user.

The rationale for deciding if an element in the execution platform should be represented as a resource in the platform
model is more related to its criticality in terms of real-time behavior, rather than to its software or hardware nature.
Therefore, the interface (i.e., the set of services) provided by the execution platform as a whole may be much simpler than
the API (Application Programming Interface) visible to the application software. Of course, a model library describing a
given platform may provide severa views, corresponding to different anticipated use cases for the platform.

As it occurs with classifiers, the execution platform may be represented as a hierarchical structure of resources.
10.2.2 The ResourceTypes Package

Figure 10.6 presents the basic resource types defined along with their specific attributes. Next a description of each of
them is provided, including the interpretation of the resource base clock when necessary. A first characterization of
resources can be done using the two additional attributes shown, isProtected and isActive. Each of the specialized kinds
may be defined by considering the Boolean values for them. isProtected implies the necessity to arbitrate access to the
resource or its services, while isActive means that it has its own course of action.

92 UML Profile for MARTE, V1.0

GRM::ResourceCore::
Resource

resMult: Integer
isProtected :Boolean
isActive : Boolean

\ \ Z%

StorageResource CommunicationResource TimingResource

SynchResource ConcurrencyResource ComputingResource DeviceResource

Figure 10.6 - Types of resources in the ResourceTypes package

» A StorageResource represents memory, and its capacity is expressed in number of elements; the size of an individual
element in bits must be given. The reference clock corresponds to the pace at which datais updated in it, and hence it
determines the time it takes to access to one individual memory element. The level of granularity in the amount of
storage resources represented is up to the model designer. For example, if the storage resource represents a hard disk
drive, the element could be a block or a sector, and the speed of the clock to access such element would be directly
related to the disk rotation speed. The services provided by a storage resource are intended to move data between
memory and a processing unit (which can be a computing resource or a communication endpoint).

» A TimingResource represents a hardware or software entity that is capable of following and evidencing the pace of
time. It isdefined as akind of chronometric clock, and may represent a clock itself or atimer, in which case it acts
according to the clock that it has as a reference. This concept is used to model the SPT TimingMechanism. According
to the concrete kind of resource or timing mechanism that it represents, the referenced clock may be another
chronometric clock or alogical clock, as defined in the Time chapter. A timing resource may have concrete services for
its management and operation. Figure 10.7 shows these services in the form of roles of associations with
ResourceService in the model of timing resources.

UML Profile for MARTE, V1.0 93

GRM::ResourceCore:Resource (e

referenceClocks MARTE: Time: TimeAccesses::
. Clocks::Clock

[‘3 slarl
]

TimingResource

| |
pause

ResourceSarvice

ClockResource

TimerResource

Duration: NFP_Duration

isPericdic: Boolean

Figure 10.7 - Timing resources

94

» A SynchResource represents the kind of protected resources that serve as the mechanisms used to arbitrate concurrent

execution flows, and in particular the mutual exclusive access to shared resources. This general concept is further
specialized inside the context of the GRM in the Scheduling package.

A ComputingResource represents either virtual or physical processing devices capable of storing and executing
program code. Hence its fundamental service isto compute, what in fact is to change the values of data without
changing their location. It is active and protected.

A ConcurrencyResource is a protected active resource that is capable of performing its associated flow of execution
concurrently with others, all of which take their processing capacity from a potentially different protected active
resource (eventually a ComputingResource). Concurrency may be physical or logical, when it islogical, the supplying
processing resource needs to be arbitrated with a certain policy. This root concept is further specialized in the
Scheduling package.

A DeviceResource typically represents an external device that may require specific servicesin the platform for its
usage and/or management. Active device resources may also be used to represent external specific purpose processing
units, whose capabilities and responsibilities are somehow abstracted away. The implicit assumption is that their
internal behavior is not arelevant part of the model under consideration.

Asshown in Figure 10.8, two kinds of CommunicationResources are defined. A communication media has an attribute
for defining the size of the elements transmitted; as expected, this definition is related to the resource base clock. For
example, if the communication media represents a bus, and the clock is the bus speed, “element size” would be the
width of the bus, in bits. If the communication media represents alayering of protocols, “element size” would be the
frame size of the uppermost protocol. It has also an attribute indicating the capacity of the communi cation element
when it is applicable. For timing evaluations, it holds also the time it takes to transmit the element used as a
communication quantum, usually called a packet, the size in bits of this quantum is described by the attribute
elementSize. It may have also the specification of the time the communicationMedia is blocked and cannot transmit
due to the transmission of one communication quantum, and the transmission mode available (simplex, half-duplex, or
full-duplex). A communication endpoint acts as aterminal for connecting to a communication media, and it is
characterized by the size of the packet handled by the endpoint. This size may or may not correspond to the media
element size.

UML Profile for MARTE, V1.0

CommunicationResource

o

CommunicationEndPoint CommunicationMedia
packetSize - Integer elementSize : Integer

capacity: NFP_DataTxRata
packetTime: NFP_Duration
blocking Time: MFP_Curation
ransmbiode: TransmMaodekind

Figure 10.8 - Kinds of Communication resource in the ResourceTypelResourceTypes package

Concrete services provided by CommunicationEndPoint include the sending and receiving of data, as well as a
notification service able to trigger an activity in the application. The fundamental service of a CommunicationMediaisto
transport information (e.g., message of data) from one location to another location.

Figure 10.9 denotes some other basic services that may be provided by resources.

*

GRM::ResourceCore:: 1.
ResourceService

4

+service

Acquire Release GetAmountAvailable Activate
isBlocking: Boolean
+amount
1.* GRM::ResourceCore | 1.*
1. ::ResourceAmount
+amount
+amount

Figure 10.9 - Basic resource services of the ResourceTypeResourceTypes package

» Both Acquire and Release services correspond respectively to the allocation and de-all ocation of some “amount” from
the resource. For example, for a resource representing storage, the amount could be the memory size. As another
example, aresource could represent a single element (maximum amount availableis®1"), and acquire/release would be
used to model mutual exclusive access.

 Activate corresponds to the application of a service on agiven quantity. For example, activate acommunication service
with the amount of datato be transferred as a parameter.

» GetAmountAvailable returns the amount of the resource that is currently available.

The behavior shown by each service (acquire, release, activate, etc.) of a concrete resource that offers it, shall be
described to the extent needed by the modeling concerns of that specific resource.

10.2.3 The ResourceManagement Package

The elements in this package serve for modeling various resource management services, such as those found in most
operating systems. Figure 10.10 shows both types of resources that hold management services.

UML Profile for MARTE, V1.0 95

brokedResource |- o M:ResourceCore : | _MmanagedResource

1.* Resource

P

ResourceBroker ResourceManager

*
broker manager

* *

accCtrlPolicy | 1..* 1. x|, resCtrlPolicy

AccessControlPolicy ResourceControlPolicy

Figure 10.10 - Resource management

The ResourceBroker is akind of resource that is responsible for allocation and de-allocation of a set of resource instances
(or their services) to clients according to a specific access control policy. For example, a memory manager will allocate
memory from a heap upon request from a client and also return it back into the heap once the client no longer needs it.
The access control policy determines the criteria for determining and making effective the provision of resources, it can
impose limitations on the prioritization of competing requests, or on the amount of memory provided to individual clients,
etc.

On the other hand, the ResourceManager is responsible for creating, maintaining, and deleting resources according to a
resource control policy. For example, a buffer pool manager is responsible for creating a set of buffers from one or more
chunks of heap memory. Once created and initialized, the resources are typically handed over to a resource broker. In
most practical cases, the resource manager and the resource broker are the same entity. However, since this is not always
true the two concepts are modeled separately (they can be easily combined by designating the same entity as serving both
purposes).

10.2.4 The Scheduling Package

Scheduling is the way of arranging behavior at run-time. At this level of description a Scheduler is defined as a kind of
ResourceBroker that brings access to its brokered ProcessingResource or resources following a certain scheduling policy.
The concept of scheduling policy as it is presented here corresponds to the scheduling mechanism described in Section
6.1.1 of SPT, since it refers specifically to the order to choose threads for execution. A ProcessingResource generalizes
the concepts of CommunicationMedia, ComputingResource, and active DeviceResource. It introduces an element that
abstracts the fundamental capability of performing any behavior assigned to the active classifiers of the modeled system.
Fractions of this capacity are brought to the Schedul ableResources that require it.

A SchedulableResource is defined as a kind of ConcurrencyResource with logical concurrency. This means that it takes
the processing capacity from another active protected resource, usually a ProcessingResource, and competes for it with
others linked to the same scheduler under the basis of the concrete scheduling parameters that each Schedul ableResource
has associated. In the case of hierarchical scheduling, schedulers other than the main scheduler are represented by the
SecondaryScheduler concept. This kind of schedulers do not receive processing capacity directly from a processing
resource, instead they receive it from a SchedulableResource, which isin its turn effectively scheduled by another
scheduler. These intermediate Schedul ableResource, play the role of avirtual processing resource, conducting the fraction
of capacity they receive from their host scheduler to its dependent secondaryScheduler.

96 UML Profile for MARTE, V1.0

Figure 10.11 shows the relationships between all these elements, as well as the various kinds of scheduling policies and
the corresponding scheduling parameters.

GRM :ResourceTypes:
ConcurrencyResource

1 schedParams

SchedulingParameters

Scheduling
GRM::ResourceManagem 51--* * . GRM:ResourceManage | broker brokedResource | GrRM: ResourceCore:
ent::AccessControlPolicy ment: :ResourceBroker % 1.% Resource
% accCtrlPolicy
SchedulinglPolicy N R 0..1\/ mainScheduler :
Scheduler * L * ProcessingResource
policy: SchedPolicyKind .
otherSchedPolicy : String policy schedule:OpaqueExpression processingUnits | speedFactor: NFP_Real =
9 (value = 1.0)
fsubset accCtriPolicy } {Subset brokedResour ce}
host | 1 A

«enumeration »

SchedPolicyKind SecondaryScheduler 1 GRM::ResourceTypes: GRM::ResourceTypes:
Earliest DeadlineFirst host ComputingResource CommunicationMedia
FIFO dependentScheduler | 0..1
FixedPriority
LeastLaxityFi .. .

Riauitdg)gl?i/n " virtualPr ocessingUnits Lx 0" | sehedulableResource GRM::ResourceTypes:
TimeTableDriven DeviceResource
g’:ee: SchedulableResource - {isActive=True}

Figure 10.11 - The Scheduling package

When the executionBehaviors of concurrencyResources need to access common protected resources, the underlying

scheduling mechanisms are typically implemented using some form of synchronization resource, (semaphore, mutex, etc.)
with a protecting protocol to avoid priority inversions. Other solutions avoid this concurrency issue by creating specific

schedules which order the access in advance. Whichever mechanism is used, the pertinent abstraction at this level of
specification requires at least the identification of the common resource, its protecting mechanism, and the associated
protocol; this is what the Mutual ExclusionResource defines. Figure 10.12 shows this element. Its associated protocol,

represented by Mutual ExclusiveProtocol, is derived from the policy associated to the scheduler that manages it, and the

parameters required by the protocol are represented by the ProtectionParameters element.

UML Profile for MARTE, V1.0

97

Scheduling
GRM:: Res ourceManagement GRM::ResourceManagement GRM::ResourceTypes:
::AccessControlPolicy ::ResourceBroker SynchResource
scheduler .1
«enumerated » *
ProtectProtocolKind MutualExclusionProtocol 1 "
R MutualExclusionResource
FIFO protocol: ProtectProtoc olKind
NoPreemption otherProtectProtocol:String protocol
PriorityCeiling *
Prioritylnheritance
StackBased
Undef ProtectionParameters .
Other
priorityCeiling: Integer protectparams
preemptionLevel: UnlimitedNatural

Figure 10.12 - The MutualExclusionResources in the Scheduling Package
10.2.5 The ResourceUsage Package

When resources are used, their usage may consume part of the “amount” provided by the resource. Taking into account
these usages when reasoning about the system operation, is a central task in the evaluation of its feasibility. Figure 10.13
shows the model of a ResourceUsage, it links resources with concrete demands of usage over them. The concept of
UsageDemand represents the dynamic mechanism that effectively requires the usage of the resource. Two general forms
of usage are defined the StaticUsage and the DynamicUsage, each used according to the specific needs of the model. A
few concrete forms of usage are defined at this level of specification under the concept of UsageTypedAmount; those are
aimed to represent the consumption or temporary usage of memory, the time taken from a CPU, the energy from a power
supply and the number of bytes to be sent through a network.

98 UML Profile for MARTE, V1.0

ResourceUsages

GRM::Resource Core::ResourceAmount

7

GRM::ResourceCore:Resource UsageTypedAmount

MARTE::CoreElements:Causality
::CommonBehavior.:Event

execTime: NFP_Duration [*]

usedResource 0.% msgSize: NFP_DataSize[*]

. allocatedMemory: NFP_DataSize [*]

0.1 |« event requiredAmount | ;segvemory: NFP_DataSize [*]
0. powerPeak :NFP_Power [*]

* " enery:NFP_Energy [*]

usage

0.* ResourceUsage
workload 0.* MARTE::Core Elements::Causality::
ZF CommonBeh avior. :Behavior

StaticUsage DynamicUsage J

Usage Demand

Figure 10.13 - Resource usage

10.3 UML Representation

This section describes the UML extensions provided to support the concepts defined in the presented domain view. The
stereotypes here provided are generic and may be used at different levels of specification.

In order to get the maximum flexibility in the ways of applying the proposed stereotypes, most of the UML elements
extended, are extended by the generic stereotype Resource. Then, through inheritance the large majority of stereotypesin
GRM may extend elements like Property, InstanceSpecification, Classifier, Lifeline, and ConnectableElement. In
particular, they might be applied for example to Classifiers, as well as to InstanceSpecifications of those very same
Classifiers. In this case it is worth to consider the rules described in Section 7.3 for the usage of a stereotype in such
situations. According to this rule when a stereotype is applied on an instance, the value of the attributes not explicitly
assigned in the annotation of the instance are taken in principle from the defaults in the profile stereotype definition, but
they might have to be taken from the annotation of the same stereotype on its corresponding classifier, which may have
overwrote them, making effective with it the classifier nature of the annotation.

10.3.1 Profile Diagrams

The UML extensions for the modeling of resources at this level of specification are provided in the MARTE::GRM
profile and the MARTE::MARTE_Library::GRM_BasicTypes model library. They are shown in separate figures for
convenience.

UML Profile for MARTE, V1.0 99

Figure 10.14 shows the stereotypes defined for the root concepts defined for the modeling of resources. Figure 10.16
shows the relationships between stereotypes defined for scheduling. Figure 10.17 shows the UML elements that may be
extended with the GrService stereotype. And Figure 10.19 shows for convenience the model library that collects al the
utilitarian types defined for the GRM profile and which is formally presented in Annex D.

The MARTE::GRM package (stereotyped as profile) defines how the elements of the domain model extend metaclasses
of the UML metamodel. All the stereotypes defined in the GRM profile are then listed and described in alphabetical order.
The semantic descriptions of the concepts that these stereotypes represent are provided along 10.2 "Domain View” on
page 90. And the detailed descriptions of their corresponding concepts in the domain view are presented in Annex F.
Finally the elements in the GRM_Basic_Types model library are also described in alphabetical order.

« profile »
GRM
etacl
« metaciass » « metaciass » « metaclass » « metaclass » UML"Cmp;'ﬂ‘t:;fn:cmrer
UML::Classes: Kemel: UML :Classes:: Kemel:: UML:: Classes: Kemel: UML: Interaction::Basic [e e—
Property InstanceSpecification Classifier Interactions::Lifeline ConnecebleElzmant
A A 'Y b ¥
« stereotypes
Resource
« stereotype » Iaprotscted: Goalan « stereaiype »
CommunicationEndPaint ISALvE: Baalaan StorageResource
packetSiza: MFP_Integer elamantSize: NFP_Integer

« stereotype »

ConcurrencyResource

w Steractype »

Scheduler

sterectype »
SynchronizationResource

isPreamplible; Boolaan = trua

schedPolicy: SchedPolicykind = FixedPriority
atherSchedPolicy: Sting

achedule: OpagueExpression

« slereolype »

slareotype
MutualExclusionResource “ lype o

SchedulableResource

provectiingd: ProtectProtocolkind =pricrityinheritance Params: schedParameters|0.."]
ceiling: NFP_Integer m,‘ad - o . .
atherProtectProtosal: String IzActive:Boolean=true{read Only, redefines isActivel)
isProtaciad: Boolean=trua {readCnly, redefines isProtected)
« mataclass » « steragiype »
* stereatype » UML :CompositeStructures- SecondaryScheduler

Pr ingRes
pressingresource IntemalStructures::

speadFactor: NFP_Real Connactar

: |

« stereotype »
CommunicationMedia

« sterectype »
ComputingResource

« slareotype »
DeviceResource

elementSize: NFP_Integer
capacity: NFP_DataTxRata [*]
packetT: NFP_Duration [*]
blockT: NFP_Duration [*]
transmMode; TransmModeKind

Figure 10.14 - UML extensions for GeneralResourceModeling

100 UML Profile for MARTE, V1.0

« profile »
GRM

« sterectypes

Resource

1

« slereatype »
TimingResource

b

o sterectype »
TimerResource

duration:-MFF_duration
IsFeriodic: Boolean

|

« sleraalype »
ClockResource

Figure 10.15 - UML Extensions for timing mechanisms in the GRM profile

« profile »
GRM
slereotype »
slerectype » # steraotype » MulualExclusionResource
ComputingResource ProcessingResource
profactKind: ProteciProfocolking = Prioritylnharitance
inaUnits | 0.* cailing: NFP_Integar
host | 0.1 processinglin - otherFrotectProtocol: Siring
mainScheduler | 0.1 IsProtected:Boolean = true {readOnly, radefines isProtectad}
« | protectedSharedResources
« stereotype » scheduler
Scheduler
0.1

isPreamptible: Boolean = frue

schedPaoliey: SchedPalicyking = FlxedPriarity host

otterSchadPalicy: String 0.1

schedule: OpagueExpression

1

« stereciype »
SecondaryScheduler

dependentSchaduler | 0.1

schedulabledResources | 0+

« stereotype »
SchedulableResource

sehedparams; SchedParameters(D, "]
ishclive:Boolean = tnee {readOnly, redefines isActive)

0..* | wirtual ProcessingUnits

UML Profile for MARTE, V1.0

Figure 10.16 - Relationships between UML Extensions for scheduling in the GRM Profile

101

u profile »

GRM
+ metaclass »
UML::Classes: Kemel:
Behavioral Feature ¢ sk
Iy UML::CommonBehaviors::
BasicBehaviors:: Behavior
a sier B 0
« metaclsss » Gﬁﬂge « metaclass »
UML: Interactions::Basiclnteractions |eg—— | UML:ComposileSiruciures::
1{ExacutionSpacification owner: Resource[0..1] Caollaborations::Collaboration

1

« metaclass »

UKL CompositaSructures;:
Collaborations::Collaborationlse

H Sleregtype »
Acguire

isBlocking: Boolean

« stereolype »
Releasa

Figure 10.17 - UML Extensions for Services in the GRM Profile

 profile »
GRIM

« mataclass »
UML::Classes: Kermel::NamedElement

t

4 SlEareotypen
Resourcellsage

forderned)

sublisage

exgcTime: MFF_Duration {ordared) [*]
msgSize: MFP_DataSize {ordared) [*]

allocated Memany: NFP_DataSize {ordered) [*]

usadMemary: NFP_DataSize {ordesed)]
powarPaak: MFP_Powar fordared) [*]
eneryNFP_Energy [orderad] [*]

{ordered)

usedResouces

u

« slereotypes
Resource

Figure 10.18 - UML Extensions for resource usage in the GRM Profile

102

UML Profile for MARTE, V1.0

« madel library »
MARTE::MARTE_Library:;
GRM_BasicTypes

PeradicSarerkind

Eporadic
Defarrahe
Unidet
Other

SchedParameters.

PeriodicServerParameaters

« enumeration » « enumeration » « dataType » « dataType »
SchedPolicykind ProtectProtocolkind o tupleType » « upleType »
I s EDFParameters FixedPriorityParameters
FIFQ MoPraemption deadline: NFP_Duration priceity; NFE_Inlager
FlgdPrioiity PricityCelling
l'.?eamL;mt:wast Friorityinhesitanas
oundRabin StackBased
TimaTableDrivan Undef
Undet Cther
Qthar
« dataType »
« dataType » « dataType » a lupIeT?;a »
« enumeration » « choiceType » « tupleType »

PoalingParamatars

edf: EDFParamaters
T FixedPriority Paramebers
polling: PoolingP arameters

kind: PeriodicServerkind

backgroundPriority: NFP_Integer

indlial Budgat: NFF_Duration
lenishPeriod: MFP_Duration

servar: PariodicSarvarP

ma:-:F‘encIngRaplenlsﬁ: NFF_Integer

period: NFP_Duration
ovarhead: NFP_Duration [0..%]

tablsEntry: String [0..]

Figure 10.19 - Model library defining types used in the GRM profile (extract of Annex D)
10.3.2 Profile Elements Description

10.3.2.1 Acquire
The Acquire stereotype maps the Acquire domain element denoted in Annex F (Section F.4.3).
At this level of specification the amount to acquire is by default one and refers to the owner protected resource.

Extensions
* None

Generalizations
« GrService

Attributes

« isBlocking: Boolean [0..1]
If true, it indicates that any attempt to acquire the resource may result in a blocking situation if it is not
available. If false, it indicates that the unavailability of the protected resource will not block the caller but it will
be returned as part of the service results instead.

Associations
« None

Constraints

[1] The resource that owns the service must be a protected resource (i.e., its attribute isProtected must be true).

10.3.2.2 ClockResource

The ClockResource stereotype maps the ClockResource domain element denoted in Annex F (Section F.4.5).

UML Profile for MARTE, V1.0 103

Extensions
* None

Generalizations
« TimingResource

Attributes
* None

Associations
* None

Constraints
¢ None

10.3.2.3 CommunicationEndPoint

The CommunicationEndPoint stereotype maps the CommunicationEndPoint domain element denoted in Annex F (Section
F.4.6).

Extensions
* None

Generalizations
¢ Resource

Attributes

e packetSize: NFP_Integer[0..1]
The size of the packet handled by the endpoint.

Associations
¢ None

Constraints
¢ None

10.3.2.4 CommunicationMedia

The CommunicationMedia stereotype maps the CommunicationMedia domain element denoted in Annex F (Section
F4.7).

Extensions
e Connector (from UML ::CompositeStructures::I nternal Structures).

Generalizations
e ProcessingResource

104 UML Profile for MARTE, V1.0

Attributes

e elementSize: NFP_Integer[0..1]
Characterizes the size of the elements to be transmitted.

e capacity: NFP_DataTxRate[0..1]
Capacity of the communication element when applicablelink.

e packetT: NFP_Duration [0..1]
Time to transmit the element used as a communication quantum, usually called a packet, the sizein bits of this
quantum is described by the attribute elementSize.

e blockT: NFP_Duration [0..1]
Time the communicationMediais blocked and cannot transmit due to the transmission of one communication
quantum.

e transmMode: MARTE_ Library::MARTE_DataTypes.:TransmModeKind [0..1]
Defines the transmission mode, one of the following values: { simplex, half-duplex, full-duplex} .

Associations
* None

Constraints
* None

10.3.2.5 ComputingResource

The ComputingResource stereotype maps the ComputingResource domain element denoted in Annex F (Section F.4.9).

Extensions
* None

Generalizations
e ProcessingResource

Attributes
* None

Associations
* None

Constraints

[1] The attribute isActive inherited from Resource is always true.

10.3.2.6 ConcurrencyResource

The ConcurrencyResource stereotype maps the ConcurrencyResource domain element denoted in Annex F (Section
F.4.10).

UML Profile for MARTE, V1.0 105

Extensions
* None

Generalizations
¢ Resource

Attributes
* None

Associations
* None

Constraints
¢ None

10.3.2.7 DeviceResource
The DeviceResource stereotype maps the DeviceResource domain element denoted in Annex F (Section F.4.11).

When it is active it can be considered as an external processing resource whose responsibilities will not be described in
detailed in the model under consideration.

Extensions
* None

Generalization
¢ Resource

Attributes
* None

Associations
¢ None

Constraints
¢ None

10.3.2.8 GrService
The GrService stereotype maps the ResourceService domain element denoted in Annex F (Section F.4.26).
It is avery general concept that helps in the definition of generic resource models able for further refinement.

Extensions
e Behavior (from UML::CommonBehaviors::BasicBehaviors)

« BehaviorExecutionSpecification (from UML ::Interactions:.:Basiclnteractions)

106 UML Profile for MARTE, V1.0

e BehaviordFeature (from UML::Classes::Kernel)
e Collaboration (from UML::CompositeStructures::Collaborations)
e CollaborationUse (from UML ::CompositeStructures::Collaborations)

Generalizations
¢ None

Attributes

e owner: Resource[0..1]
Refers to the resource that owns the represented service.

Associations
* None

Constraints
* None

10.3.2.9 MutualExclusionResource

The Mutual ExclusionResource stereotype maps the Mutual ExclusionResource domain element denoted in Annex F

(Section F.4.15).

Extensions
* None

Generalizations
¢ Resource

Attributes
e ceiling: NFP_Integer [0..1]

Determines the concrete parameter used to characterize the protection access protocoal, it is used for the
PriorityCeiling and the StackBased protocols. For the latter only positive values are to be used. It holds the

concept of ProtectionParameters of the domain model.

e otherProtectProtocol: String [0..1]

I's used to annotate a protocol that is not included among the values of the

ProtectProtocol Kind enumerated type.

e protectKind: ProtectProtocolKind [0..1]=Prioritylnheritance

Determines the type of protection protocol used to access the resource.

e isProtected: Boolean = true { readOnly, redefines isProtected}

Associations
e scheduler: Scheduler [0..1]

Refers to the scheduler that will implement the protection protocol.

UML Profile for MARTE, V1.0

107

Constraints
[1] The attribute isProtected inherited from Resource is always true.

[2] The scheduling policy of the scheduler must be compatible to the kind of protectKind given to the
Mutual ExclusionResource.

10.3.2.10 ProcessingResource
The ProcessingResource stereotype maps the ProcessingResource domain element denoted in Annex F (Section F.4.16).

It is an active, protected, executing-type resource that is allocated to the execution of schedulable resources, and hence
any actions that use those schedulable resources to execute. In general, they abstract the processing capabilities of a
computing resource, a communication media or an active external device.

Extensions
* None

Generalizations
¢ Resource

Attributes

e speedFactor: Real [0..1] = (value=1.0)
Isarelative factor for annotating the processing speed expressed as a ratio to the speed of the
reference processingResource for the system under consideration. The amount of resource usages
specified for the entities in further usage models (like execution times for schedulability) assume a
normative value of 1.0, what means that they have been measured or estimated either in respect to
the reference system platform or directly over the platform used if it has speedFactor equal to 1.0.

Associations

« mainScheduler: Scheduler [0..1]
Is the scheduler that controls the access to its processing capacity.

Constraints
¢ None

10.3.2.11 Release
The Release stereotype maps the Release domain element denoted in Annex F (Section F.4.19).

At this level of specification the amount release is by default one and refers to the owner protected resource.

Extensions
¢ None

Generalizations
¢ GrService

108 UML Profile for MARTE, V1.0

Attributes
« None

Associations
* None

Constraints

[1] The resource that owns the service must be a protected resource (i.e., its attribute isProtected must be true).

10.3.2.12 Resource

The Resource stereotype maps both Resource denoted in Annex F (Section F.4.20) and Resourcel nstance domain
elements (Section F.4.23).

It is provided for further refinement and for the representation of generic resources from a holistic system wide
perspective. The nature of the concrete element extended defines the domain concept that it represents.

Extensions
¢ InstanceSpecification (from UML::Classes::Kernel)

e Classifier (from UML::Classes::Kernel)
e Property (from UML::Classes::Kernel)
e Lifeline (from UML::Interactions::Basiclnteractions)

¢ ConnectableElement (from UML::CompositeStructures::Internal Structures)

Generalizations
* None

Attributes

e resMult: NFP_Integer [0..1] =1
Indicates the multiplicity of aresource. For aclassifier it may specify the maximum number of instances of the
resource considered as available. By default only one instance is available.

e isProtected: Boolean [0..1]
If true it indicates that the access to the resource is protected by some kind of brokeringResource.

e isActive: Boolean[0..1]
If true it indicates that the resource has an initial behavior associated that allowsit to possibly perform its
services autonomously or by the triggering and animation of behaviors on others.

Associations
* None

Constraints
* None

UML Profile for MARTE, V1.0

109

10.3.2.13 ResourceUsage

The ResourceUsage stereotype maps both ResourceUsage denoted in Annex F (Section F.4.27) and UsageTypedA mount
(Section F.4.40) domain elements.

Extensions
¢ NamedElement (from UML::Classes::Kernel)

Generalizations
* None

Attributes

e execTime: NFP_Duration { ordered} [*]
Time that the resource isin use due to the usage.

¢ msgSize: NFP_DataSize { ordered} [*]
Amount of datatransmitted by the resource.

e dlocatedMemory: NFP_DataSize { ordered} [*]
Amount of memory that is demanded from or returned to the resource. It may be a positive or
negative value.

e usedMemory: NFP_DataSize { ordered} [*]
Amount of memory that will be used from aresource but that will be immediately returned, and
hence should be available while the usage isin course. This may be used to specify the required
free space in the stack for example.

e powerPeak:NFP_Power { ordered} [*]
Power that should be available from the resource for its usage.

e energy:NFP_Energy { ordered} [*]
Amount of energy that will be permanently consumed from a resource due to the usage.

Associations

» usedResources: Resource [0..*] { ordered}
List of resources that are used.

* subUsages: ResourceUsage { ordered} [0..*]
List of resourcelUsages used to complement the description of the resourceUsage and generate
composite descriptions.

Constraints

[1] To consider the ResourceUsage fully specified, if the list usedResources is empty the list subUsages should not be
empty and vice versa. Further refinements of ResoureUsage may define additional attributes that may bring implicit
elements into the usedResources list.

[2] If the list usedResources has only one element, all the optional lists of attributes (execTime, msgSize,
allocatedM emory, usedMemory, powerPeak and energy) refer to this unique Resource and at least one of them must
be present.

110 UML Profile for MARTE, V1.0

[3] If the list usedResources has more than one element, all of the optional lists of attributes (execTime, msgSize,
allocatedM emory, usedMemory, powerPeak, and energy) that are present, must have that number of elements, and
they will be considered to match one to one.

[4] If thelist subUsages is not empty, and any of the optional lists of attributes (execTime, packetSize, allocatedMemory,
usedM emory, powerPeak, and energy) is present, then more than one annotation for the same resource and kind of
usage may be expressed. In this case, if the annotations have also the same source and statistical qualifiers they will
be considered in conflict, and hence the ResourceUsage inconsistent.

10.3.2.14 SchedulableResource

The SchedulableResource stereotype maps the Schedul ableResource domain element denoted in Annex F (Section
F.4.29).

It is an active resource able to perform actions using the processing capacity brought from a processing resource by the
scheduler that manages it.

Extensions
« None

Generalizations
¢ Resource

Attributes

e schedParams. SchedParameters[0..*]
Parameters used to compete for processing capacity.

« isActive: Boolean = true {readOnly, redefinesisActive} .

Associations

e dependentScheduler: SecondaryScheduler [0..1]
This schedul er takes its capacity from the schedulable resource, and in its turn sharesit among its
nested served schedulable resources.

* host: Scheduler [0..1]
Is the scheduler that controls the processing capacity that will be shared among the demanding
schedul able resources.

Constraints

[1] The policy used by the scheduler (host) must be compatible with the scheduling parameters (schedparams) of the
schedulable resource.

10.3.2.15 Scheduler
The Scheduler stereotype maps the Scheduler domain element denoted in Annex F (Section F.4.30).

Extensions
« None

UML Profile for MARTE, V1.0 111

Generalizations
¢ Resource

Attributes

* isPreemptible: Boolean [0..1] =true
Qualifies the capacity of the scheduler for preempting schedulable resources once the accessto the
processing capacity has been granted upon the arrival of a new situation where a different
schedul able resource has to execute.

« otherSchedPolicy: String
I's used to annotate a scheduling policy that is not included among the values of the
schedPolicyKind enumerated type.
« schedPolicy: schedPolicyKind [0..1] = fixedPriority
Scheduling policy implemented by the scheduler.
e schedule: OpagueExpression [0..1]
I's the concrete schedule to use in the case of time table driven strategies. The format for expressing

the times for activation and suspension, the cycle time as well as the number and identification of
schedulable resourcesis user dependent.

Associations

¢ host: ComputingResource [0..1]
Refers to the computing resource on which the scheduler runs. It may be or not the same computing
resource whose processing capacity it will control and share among the demanding scedulable
resources.

e processingUnits: ProcessingResources [0..*]
List of ProcessingResources whose processing capacity is shared by the scheduler among the
schedulableResources it has associated.

e protectedSharedResources: M utual ExclusionResource[0..*]
List of the Mutual ExclusionResources to which access must be protected using the corresponding
protocol.

« schedulableResources: SchedulableResource [0..*]
List of schedulable resources that demand processing capacity from the scheduler.

Constraints

[1] The scheduling policy of the scheduler must be compatible with the scheduling parameters of all the schedulable
resources that it has associated.

[2] The scheduling policy of the scheduler must be compatible with the ProtectProtocol Parameters of all the associated
Mutual ExclusionResources.

10.3.2.16 SecondaryScheduler
The SecondaryScheduler stereotype maps the SecondaryScheduler domain element denoted in Annex F (Section F.4.33).

A scheduler of this kind takes its capacity from the set of schedulable resources collected as virtual processing units, and
in its turn shares it among its nested served schedulable resources.

112 UML Profile for MARTE, V1.0

Extensions
« None

Generalizations

e Scheduler
Attributes
« None

Associations

e virtualProcessingUnits: SchedulableResource [0..*]
Set of virtual processing resources to whose processing capacity the secondary scheduler controls access.

Constraints

[1] A SecondaryScheduler takes its capacity from the virtual ProcessingUnits list of schedulable resources, so it is not

possible to have processing resources capacity through the processingUnits list inherited from Scheduler.

10.3.2.17 StorageResource

The StorageResource stereotype maps the StorageResource domain element denoted in Annex F (Section F.4.35).

Extensions
« None

Generalizations
¢ Resource

Attributes
e elementSize: NFP_Integer [0..1]

Size in bits of the basic storage unit.

Associations
* None

Constraints
* None

10.3.2.18 SynchronizationResource

The SynchronizationResource stereotype maps the SynchResource domain element denoted in Annex F (Section F.4.36).

Extensions
* None

Generalizations
¢ Resource

UML Profile for MARTE, V1.0

113

Attributes
* None

Associations
* None

Constraints
* None

10.3.2.19 TimerResource
The TimerResource stereotype maps the TimerResource domain element denoted in Annex F (Section F.4.37).

Extensions
* None

Generalizations
e TimingResource

Attributes

e duration: NFP_Duration [0..1]
Interval after which the timer will make evident the elapsed time.

e isPeriodic: Boolean [0..1]
If true, the timer will indicate the arrival of a new finalization of the programmed interval in a periodic
repetitive way. If false, it will do it only one time after it is started.

10.3.2.20 TimingResource

The TimingResource stereotype maps the TimingResource domain element denoted in Annex F (Section F.4.38).

Extensions
¢ None

Generalizations
¢ Resource

Attributes
* None

Associations
* None

Constraints
¢ None

114 UML Profile for MARTE, V1.0

10.3.3 GRM model library elements description

The description of all the elements in the model library for GRM are in Annex D4.

10.4 Examples

The general resource model is planned to be used not only for further extension in the software and hardware platform
models, or in the analysis models of this specification, but also as a way to described resources and platform architectures
at avery high level, when design choices and analysis techniques to use for the verification are probably still undecided.
The illustration in Figure 10.20 shows a simple example of the platform description for a teleoperated robot using a
deployment diagram. This example is further revisited to illustrate the usage of schedulability analysis annotations in
Section 16.3.3.

The system platform is composed of two processors interconnected through a CAN bus, and a robot arm whose servo
control cards are connected by means of a backpanel VME bus.

a communicationMedia »
{speadFactor=(1.0)}

-
-

« compuling Resource »

a computingResource » o
{speadFactor={1.0)} =—CAN_Bus {speedFactor=(0.6)}
NT_Station Controller

-
-

.
-
#

ﬁ = communicationMedia VME_Bus

storageResource>>
{elemantSize=1024x1024x8,
resMuli=256}

{speedFactar={8.5}}

= deviceResource »
{speedFactor=[1.0)}
Robot Arm

Figure 10.20 - Simple example of usage of the GRM Profile at a high architectural level

The first processor is a teleoperation station (NT_Station); it hosts a GUI application, where the operator commands the
robot and where information about the system status is displayed. The second processor (Controller) is an embedded
microprocessor that implements the controller of the robot servos and its associated instrumentation. Figure 10.21 shows
a possible software architecture for this example.

UML Profile for MARTE, V1.0 115

« computingResource»

« computingResource» {speedFactor=(0.6)}

{speedFactor=(1.0)}

: Controller
NT_Station
« allodate » « allt}:ate »
- } spatialAllocation
| {spatialAllocation} « allogate » {sp ‘i }
« aljpcate ») « agocate » {spatialAJlocation} | Controller_Communication
{spatiaJAllocation} « mutualExclusionResource » {spatidlAllocation} « allogate »
Display_Data {spatialAflocation} + Send Saws@S: Saws)
— « "_:1"00 te > + Await Command(): Command
« allacate » +Read(): Data {spatialAllgcation} ~
{spatialfllocation} + Write(D: Data)
/ \ « schedulableResourc e » « schedulablel(?jesource »
Command_Manager
« schedulableResource » « schedulableResource » Reporter -)
Display_Refresher Command_Interpreter - T Task - T Task
- T: Task - T: Task - Report() - Manage()
- Update_Display() - Process_Event()
- Update Graphics() - __Plan_Trajectory) / «schedulableResource »
- « mutualExclusionResource » Servos_Controller
Servos_Data
- - T: Task
Station_Communication
. + Get(): Data - Control_Servos()

+Send_Command(C: Command + Set(D: Data) - Control Algorithms()
+ Await Status(): Status - Do_Control()

Figure 10.21 - Example of usage of the GRM Profile to annotate initial structural architectural choices

The software of the Controller processor contains three active classes and a passive one which is used by the active
classes to communicate. Servo_Controller is a periodic task that is triggered by a ticker timer with a period of 5 ms. The
Reporter task periodically acquires, and then notifies about, the status of the sensors. Its period is 100 ms. The
Command_Manager task is aperiodic and is activated by the arrival of a command message from the CAN bus.

The software of processor Station has the typical architecture of a GUI application. The Command Interpreter task
handles the events that are generated by the operator using the GUI control elements. The Display Refresher task updates
the GUI data by interpreting the status messages that it receives through the CAN bus. Display_Datais a protected object
that provides the embodied data to the active tasks in a safe way. Both processors have a specific communication software
library and a background task for managing the communication protocol.

According to the initial specification the system has at least three end-to-end flows of independent stimuli subject to hard
real-time requirements. Each one interferes with the others by sharing the processing resources (Station, Controller and
CAN_Bus) and by accessing the protected objects.

One is the basic control algorithm that executes the Control_Servos procedure with a period (and expectably a deadline)
of 5 ms. The second is the Report procedure that transfers the sensors and servos status data across the CAN bus, to
refresh the display with a period (and deadline) of 100 ms. Finally, the user commands that tipically have a sporadic
triggering pattern, but whose minimum inter-arrival time between events could be bounded to 1 s.

For illustration purposes Figure 10.22 shows a closer view of the end-to-end flow that makes the periodic reports every
tenth of a second by means of a sequence diagram. There, they have been annotated the deadline specification as well as
the periodic timing stimuli and the lifelines instances of the resources involved.

116 UML Profile for MARTE, V1.0

a communkzationiedia »
alamenisize=64

| = mutualExclusionResource » %

durali\jn={0.| = u mutualExcluslonResource = l}'I A
!r - AJI =
| I =
| « schedulableRessurce » B| Awall_Statys

Transrmit
« resourcellsage =
rimand msaSize=(80.Bybtas, max}
usedMesource=CAN_EBus

Transmittgd

Update Display

I_ ’L_ Read
Write

=« schedulableResource » I:‘;__— Lpdate Gragh

1 | 1

| 1 T

Nait_StatuE}J.

{Init. InitH(0.1)}

{return A

L5

I » schadulableRessuros o B.|
-

~

-

w schedulableResource » i>|

F

|

Figure 10.22 - Use of the GRM Profile to annotate behavioral specification instances

117

UML Profile for MARTE, V1.0

118 UML Profile for MARTE, V1.0

11 Allocation Modeling (Alloc)

This chapter contains both domain and UML viewpoints for allocation modeling.

11.1 Overview

Allocation of functional application elements onto the available resources (the execution platform) is main concern of
real-time embedded system design. This comprises both spatial distribution and temporal scheduling aspects, in order to
map various algorithmic operations onto available computing and communication resources and services.

The MARTE profile defines relevant application and execution platform models (Chapter 13 and Chapter 14). A MARTE
allocation is an association between a MARTE application and a MARTE execution platform. Application elements may
be any UML element suitable for modeling an application, with structural and behavioral aspects. An execution platform
is represented as a set of connected resources, where each resource provides services to support the execution of the
application. So resources are basically structural elements, while services are rather behavioral elements.

Application and execution platform models are built separately, before their pairing through the allocation process. Often
this requires prior adjustment (inside each model) to abstract/refine its components to allow a direct match. Allocation can
be viewed as a “horizontal” association, and abstraction/refinement layering as a “vertical” one, with the abstract version
relying on constructs introduced in the more refined model. While different in role, allocation and refinement share a lot
of formal aspects, and so both will be described here. This dual function was recognized in SPT, where allocation was
called realization, while refinement was used as such.

Application and execution platform elements can be annotated with time information based on logical or physical clocks.
Allocation and refinement should provide relations between these timing under the form of constraints between the clocks
and their ticks. Other similar non-functional properties definable from the NFPs package (such as space requirement, cost,
or power consumption) can also be considered.

Note: we do not use here the UML notion of deployment, but rather a SysML-inspired notion of allocation to emphasize
the fact that Execution Platform models should themselves be abstract and not seen as concretization models.

In the simplest case application elements are untimed, without explicit logical clocks attached. Asynchronous parts can
also be attached to fully independent virtual clocks. In this simple case the timed allocation provides a physical duration
(and maybe other constraints) to the execution of this given application function on this given execution platform service
or resource. In the more general case timed allocations provide constraints between the virtual logical clocks on the
application side and the more physical technical clocks on the platform side. Clocks on the application side can be
important as they allow the user for visualizing a possible scheduling, maybe computed by subsequent tools and
respecting the provided scheduling constraints, rather than being provided by the user himself.

Refinement (or its inverse abstraction) should also relate the more abstract clocks to the mode refined. On the application
side, abstraction grouping could amount to performing a number of operations in a single instruction (by paralelization,
vectorization, or by replacing a task body by a simple call to it). Atomic instants at some level can be subdivided into
many micro-steps at a more refined level. On the execution platform side, abstraction can help define new services built
as collaborations between resource elements and lower-level services; these services can be generic, or ad-hoc to help
represent simply the allocation of application functions using them. Again here the clocks can be subdivided to represent
the division of service calls into more atomic services.

UML Profile for MARTE, V1.0 119

Allocation can be specified in different kinds: Structural, behavioral, or hybrid. Structural allocation is an association
between a group of structural elements and a group of resources. Behavioral allocation is an association between a set of
behavioral elements and a service provided by the execution platform. When clear from context, hybrid allocations can
also be alowed (for instance when an implicit service is uniquely defined for a resource). At the finer level of detail,
behavioral allocation deals with the mapping of UML actions to resources and services.

The next subsection considers how resources can be grouped to collaborate and provide a given service, possibly with a
given scenario. The following subsection describes the principles of the Allocation process (between two previously
independent models). The last part deals with NFP annotations.

Grouping process (Abstraction/Refinement)

Allocations concerns groups of elements. Such grouping of resources was aready included in the service definition. The
intention is as follows. grouping, together with the associations already existing at each side (application or platform),
should provide a way to represent a change of atomicity level (abstraction/refinement) inside each model. If a number of
application actions (sets of instructions or subprogram) can be realized atomically as a platform service, itself being made
of several resources collaborating according to a given scenario, then this scheme allows for linking them by an atomic
mapping between the two models. The preliminary process of constructing the entities to be matched is conducted
separately, inside each model. This shows a separation of concern between service definition and actual mapping of
matching elements.

Groups of services could themselves be viewed as compound services. Keeping the two levels is useful to discriminate
between generic services, built on the platform in full isolation, and ad-hoc services, only introduced to cover specific
needs of a particular application.

Allocation process

Allocation results in both spatial distribution and temporal scheduling. Spatial distribution is the allocation of
computations to processing elements, of data to memories, and of data/control dependencies to communication resources.
Scheduling is the temporal/behavioral ordering of the activities (computations, data storage movements or
communication) allocated to each resource. Scheduling is represented as a relation between the respective time bases of
application and platform elements.

In turn, the potential analysis performed due to allocation mapping may refine “back” the temporal aspects of
applications, to reflect the results of constraints (scheduling, resource allocation and sharing) imposed by the execution
platform. It may do so according to a possible refinement of the Time model at the application level.

Structural allocation enforces the corresponding behavioral allocation of encapsulated behaviors, so that contained
elements “inherits’ the allocation of compound structures unless otherwise stated at their level (and then the proper
execution platform communication pattern should be feasible). For example, if a Behavior is executed in the context of a
particular object, and this object is allocated to a particular ComputingResource C1 for execution, then any
uml::CallBehaviorAction would by default use the “Call” service provided by C1. However, if the called Behavior
belongs to an object to which another ComputingResource is allocated, it uses the “RemoteProcedureCall” service
provided by C1 to reach C2 - assuming a communication path exists between C1 and C2.

The allocation model could offer different allocation alternatives for a given application element, so that there is an actua
choice on how to map application functions and objects to various parts of the execution platform. The mapping can then
be refined and made more precise in several ways by model transformations directed by analysis techniques.

Both spatial and temporal allocations have to be mutually and globally consistent to ensure a correct execution of the
application by its deployment on the execution platform. Thisisin general the topic of analysis techniques that the
current MARTE profile aims to offer. But the profile itself only describes the means to describe (total or partial)

120 UML Profile for MARTE, V1.0

allocations, some of which may be provided by users, some computed by advanced analysis techniques in any advanced
design methodology associated with the profile. In usage the allocation model can be made to represent relations that are
issued to the user from an analysis tool, not just provided by human edition.

Allocations should also comply with, or at least not contradict, the local associations and dependencies internal to both
the application and the execution platform. For instance two actions connected by a dependency link should not be
mapped to disconnected parts of the platform. Other well-formedness rules for maintaining structural and behavioral
consistency are listed below.

Application actions and services both derive from TimedAction, hence have “start” and “end” time value specifications
(related to different or to the same logical clock).

When an application action is allocated to an execution platform service, it implies a coincidence relation between all
“start” events on the time base supporting the application action, and all “start” events on the time base supporting the
execution platform service.

The same coincidence relation isimplied for the “end” events on respective time bases. This enforces relations between
logical clocks defined by the application, and logical clocks defined by the execution platform.

11.2 Domain View

Figure 11.1 shows a general view of allocation, while Figure 11.2 shows the refinement relations. Both the Allocations
and the refinement are annotated with NFP_Constraints as built from the NFP section. Time constraints can also be
associated since the metaclass NFP_Constraints is a generalization of the metaclass ClockConstraint defined in the Time
Model section (Refer to the section entitled “Time Modeling (Time)” on page 59). Allocations provide links between
independent models, while refinement/abstraction works by changing the focus on an underlying similar structure.

Allocations
source
= ApplicationAllocationEnd
1
target
Allocation — — ExecutionPlatformAllocationEnd

1 *

impliedConstraint | NFP_Annotation::

+ | NFP_Constraint

Figure 11.1 - The allocation model

Allocations are used to associate individual application elements to individual execution platform elements. The role of
the time constraints in such case is to provide correlations of some sort between the logical/virtual time bases used as
activation conditions on the application side, and the more technical/physical time bases used as processor rates in the
execution platform side.

UML Profile for MARTE, V1.0 121

Allocation as from SysML can map structural to structural, and behavioral to behavioral or structura elements. The
refinement process generally involves the definition of additional constraints to precise links between the general element
and the refined ones. For instance, one may want to specify how the time bases relates, how the bandwidth (or power
consumption ...) is spread among refined elements. The association with some NFPs.:NFP_Annotations::NfpConstraint is
a provision for defining such links.

Allocations
general
Refinement refined AllocationEnd
1
W constraint
NFP:;’;FE—M:mttIm:: Application ExecutionPlatform
Sl EHREEEERT AllocationEnd AllocationEnd

Figure 11.2 - The Refinement model

Refinement can deal with both application models and execution platform model. A single element on the more abstract
side can be associated with a number of elements (a group) in the more refined side. In case a group of (structural)
resources and (behavioral) services are grouped to form a more abstract behaviora element (a higher-level service), then
a collaboration use scenarios or something similar should be introduced to indicate how the cooperation of the more basic
entities form the more abstract service is implemented.

For instance on the application side a “task” call can be refined as its body, or arrange of operations can be parallelized
(or vectorized) as a single instruction. On the execution platform side a service or transaction can be realized by a
sequence of protocol steps.

11.3 UML Representation

The UML view for allocation is strongly inspired from the SysML solution. The SysML solution is satisfactory, but we
wanted to emphasize three important points. First, the allocation is a mechanism aiming at defining a mapping from the
logical parts (the application model elements) of the model to some more physical parts (the execution platform). Second,
there can be several possible allocations and all of them imply a cost that affects the time budget, the power budget or the
budget of any other non functional property. Last, there can be at least two reasons to make an allocation: to perform a
spatial distribution of artifacts onto resources or resource services, or to schedule algorithmic parts onto available
resources.

The allocation package includes all these three points.

122 UML Profile for MARTE, V1.0

11.3.1 Profile Diagrams

The first step is to identify what can be allocated, the logical view -behavior or structure-, and what can serve as a target
of an allocation, the physical view -aresource or a service-. The stereotype Allocated (Figure 11.3) is used for this matter.

Alloc

o enumeration »
AllocationEndKind

astercotypes
Allocated

undef

application
executionPlatform
both

fallocatedTo © Allocated [*]
fallccatedFrom : Allocated [*]
kird : AllocationEndkind

ametaclass»
NamedElement

Figure 11.3 - The stereotype "allocated"

The second step is to identify what is allocated onto what and what are the reasons for such an allocation and what are the

constraints implied by this allocation, hence the definition of the stereotype Allocate.

Alloc

«metaclass»
UML::Abstraction

4

«stereotype»
Allocate

kind : AllocationKind
nature : AllocationNature

«enumeration»
AllocationNature

' spatialDistribution
timeScheduling

«enumeration»
AllocationKind

structural

behavioral
hybrid

impliedConstraint[«stereotype»

=]

NfpConstraint

NFP_Modeling::

Figure 11.4 - The stereotype "allocate"

In addition, we define an alternative UML representation of the Allocation domain view metaclass, via the Assign

stereotype. The Assign stereotype extends a UML metaclass: Comment with neutral semantics (instead of leveraging the
semantics of Abstraction). It defines “from” / “to” attributes to indicate the ends of the assignment. Like an allocation, an

assignment can be characterized by its “nature” (spatial or time distribution) and its “kind” (structural, behavioral, or

hybrid). The optional body property of the Comment meta-class can be used to provide the justification of the assignment.

UML Profile for MARTE, V1.0

123

Alloc

« metaclass »
Comment

A

« stereotype »
Assign

« enumeration »
AssignmentMature

« enumeration »
AssignmentKind

spatialDistribution
timeScheduling

impliedConstraint

structural
behavioral
Fybid

kind : Assignmentiind

« stereotypes
MNFP_Modelling::
NfpConstraint

nature : AssignmentMature

1. UML::Classes: :Kemel::
fa Elemernt

Figure 11.5 - The stereotype Assign

Asin SysML, a special attention is given to activities since the notation is natural to allocate a set of actions to a
structural element (classifier, instance or part). We define the stereotype AllocateActivityGroup (Figure 11.6), which
name is less misleading than AllocateActivityPartition that would suggest an actual partition of activity nodes. We intend
to represent possible alocations; we anticipate several cases where activity nodes will be shared by several allocate
activity groups. In this case, that means the shared activity nodes can be allocated either to one activity partition (an
instance of the classifier, the instance itself or the instance playing the part represented by the activity partition) or to the
other. The isUnique property explicitly prevents an activity node from being allocated to several groups. This does not
mean the node cannot be shared by several groups, it only means that once we have made the final decision of the
allocation, the node is actually allocated to only one group.

Alloc

«stereotype»
AllocateActivityGroup «metaclass»

= UML::ActivityPartition

isUnique : Boolean = false

Figure 11.6 - The stereotype AllocateActivityGroup

For the purpose of specifying refinement, the abstraction mechanism offered by UML and the UML keyword refine are
enough. Defining abstractionsis useful in bottom-up approaches while making refinement is useful in top-down approach.

124 UML Profile for MARTE, V1.0

Alloc

ametaclass»
UML:: Dependency

A

constraint wstersotypes
NFPs::
NfpConstraint

wstereatypes
NipRefine

Figure 11.7 - The stereotype NfpRefine

Concerning the refinement we also think it is important to emphasize the fact that the refinement process implies some
additional constraints. It could be ClockConstraints to relate clocks at the different abstraction level or any other
NfpConstraint.

11.3.2 Profile elements description

11.3.2.1 Allocate (from Alloc)
The Allocate stereotype maps the Allocation domain element denoted in Annex F (section F.5.1).

Allocate is a dependency based on UML::Abstraction. It is a mechanism for associating elements from a logical context,
application model elements, to named elements described in a more physical context, execution platform model elements.

The dependency Allocate can be used either to specify one possible alocation, in which case, a space exploration tool
may determine what the best alocations are, or to specify an actual alocation in the system. The context in which the
allocate dependency is used should be sufficient to know in which case we are.

As a named element, a dependency can be constrained by any kind of UML::Constraint including NfpConstraint. The
purpose of the impliedConstraint association is to explicitly identify what are the constraints that only apply if or when
the allocation is performed. When it is not the case, the kind of the constraints may help in determining whether the
alocation is required, offered, etc.

When the nature is TimeScheduling, the allocate dependency represents a set of timed application model elements (the
supplier)-that may be grouped using the stereotype RefineClock-scheduled on to timed execution platform model
elements. The relation amongst the clocks of the suppliers and the clients-the scheduling-is given by a set of clock
constraints.

Extensions
e Abstraction (from Dependencies)

Associations

e impliedConstraint: NFPs;:NfpConstraint [*]
The set of constraints implied by the allocation. Allocating an application model element on aresource
has a cost. This cost is described using a set of non functional property constraints.

UML Profile for MARTE, V1.0 125

Attributes

e kind: AllocationKind [1]
This differentiates the kind of allocations, whether both allocated el ements on each side are structural, behavioral,
or whether thisis a hybrid allocation.

e nature: AllocationNature [1]
This identifies the purpose of the allocation, whether the allocation is equivalent to a spatial distribution, where
several application model elements are distributed to different resources or whether timed elements are
scheduled according to a given scheduler.

Constraints

[1] When the kind is structural, suppliers and clients must all be structural elements: classes, instance specifications, or
packages. When the kind is behavioral, suppliers must be UML::Behavior or UML::Action and the clients must be
behavioral elements, a UML::Behavioral Feature for example. When the kind is hybrid, suppliers must be behavioral
elements while the clients must be structural elements.

[2] When the nature is TimeScheduling, supplier and the clients must be Time:: TimedElement and the
NFPs::NfpConstraint shall include Time::ClockConstraint.

Notation

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation.
In other words, the directed line points “from” the elements being allocated “to” the elements that are the targets of the
alocation

11.3.2.2 AllocateActivityGroup (from Alloc)

AllocateActivityGroup is used to depict an allocation relationship on an Activity. It is an extension of the metaclass
UML::ActivityPartition.

AllocateActivityGroup is a standard UML ::ActivityPartition, with modified constraints such that any actions within the
partition must result in an “allocate” dependency between the activity used by the action, and the element that the
partition represents.

Since we also intend to represent possible allocations, we anticipate several cases where activity nodes will be shared by
several allocate activity groups (Figure 11.10). In this case, that means the shared activity nodes can be allocated either to
one activity partition (an instance of the classifier, the instance itself or the instance playing the part represented by the
activity partition) or to the other. The isUnique property explicitly prevents an activity node from being allocated to
several groups. This does not mean the node cannot be shared by several groups, it only means that once we have made
the final decision of the allocation, the node is actually allocated to only one group.

Extensions
e ActivityPartition (from IntermediateActivities).

Attributes

e isUnique: Boolean=false
This specifies whether or not the actions contained in the partition can actually be allocated to several partitions
(the default) or can only be allocated to only one.

126 UML Profile for MARTE, V1.0

Constraints

[1] All Actions appearing in an AllocateActivityGroup will be the /suppliers (from) end of a single Allocate dependency.
The element represented by the AllocateActivityGroup will be the /client (to) end of the same Allocate dependency.
This allows for defining non functional property constraints applying to all contained actions.

Notation

For brevity, the keyword used on an AllocateActivityGroup is “alocate,” rather than the stereotype name
(“alocateActivityGroup”).

11.3.2.3 Allocated (from Alloc)
The Allocated stereotype maps the AllocationEnd domain element denoted in Annex F (Section F.5.2).

The stereotype Allocated applies to any named element that has at |east one allocation relationship with another named
element. Allocated named elements may be designated by either the /from or /to end of an “allocate” dependency.

The stereotype Allocated provides a mechanism for a particular model element to conveniently retain and display the
element at the opposite end of any allocation. With this stereotype you can alocate anything on anything. To make it clear
you want to allocate something logical, from the application model, use the meta-attribute kind (application,
executionPlatform).

The attribute kind is not available in SysML.

Extensions
« NamedElement (from Dependencies)

Associations
* None

Atrributes
e [dlocatedTo: Allocated [*]

Named elements that are suppliers of an “allocate” whose client is extended by this stereotype. This property isthe
union of all suppliersto which thisinstance isthe client. This association is derived from any “allocate” dependency.

e [dlocatedFrom: Allocated [*]
Named elements that are clients of an “allocate” whose supplier is extended by this stereotype. The allocatedFrom
elements are not necessarily derived from the same “allocate” dependency. A given element can be the supplier of
several application model elements, each of which is allocated using a separate “allocate” dependency. The
association is derived from any “allocate” dependency.

e kind: AllocationEndKind [1] = undef
Specifies the kind of allocation end.

11.3.2.4 AllocationEndKind (from Alloc)

AllocationEndKind is an enumeration type that differentiates the application allocation end from the execution platform
alocation end.

UML Profile for MARTE, V1.0 127

Literals

e undef
Should be used when no differentiation is to be made on the nature of the allocation end. It could be either an
application allocation end or an execution allocation end or something else (asin SysML, where no distinction is
made).

« application
Identifies an allocation end as being on the application side of the alocation. This allocation end must be the source
(the client) of an allocate dependency.

e executionPlatform
Identifies an allocation end as being on the execution platform side of the allocation. This alocation end must be the
target (the supplier) of an allocate dependency.

e both
Identifies an allocation end as being both on the application and the execution platform side of the allocation. This
alocation must be the source (the client) of an allocate dependency and the target (the supplier) of an (another)
allocate dependency.

11.3.2.5 AllocationNature (from Alloc)

AllocationNature is an enumeration type that defines literals used to specify the purpose of the allocation.

Literals

e gpatiaDistribution
It indicates that the suppliers are distributed on the clients. Spatial distribution is the allocation of computations to
processing elements, of datato memories, and of data/control dependencies to communication resources.

e timeScheduling
It indicates that the allocation consists in a temporal/behavioural ordering of the suppliers, the order being given by
the clients. Scheduling is the temporal/behavioral ordering of the activities (computations, data storage movements or
communication) allocated to each resource.

11.3.2.6 AllocationKind (from Alloc)

AllocationKind is an enumeration type that defines literals used to specify the kind of named elements that are used as
clients and suppliers.

Literals
e structurd

Indicates that the suppliers and the clients are al structural named elements.
e behaviora

Indicates that the suppliers and the clients are all behavioral named elements.
e hybrid

Indicates that the suppliers and the clients are not of the same kind.

11.3.2.7 Assign (from Alloc)

The Assign stereotype maps the Allocation domain element denoted in Annex F (Section F.5.1).

128 UML Profile for MARTE, V1.0

Assign is an alternative UML representation for the Allocation domain element based on semanticly neutral
UML::Comment. It is a mechanism for associating elements from alogical context, application model elements, to named
elements described in a more physical context, execution platform model elements.

The Assign stereotype can be used either to specify one possible allocation, in which case, a space exploration tool may
determine what the best allocations are, or to specify an actual allocation in the system. The context in which the Assign
stereotype is used should be sufficient to know in which case we are.

As a named element, an assignment can be constrained by any kind of UML::Constraint including NfpConstraint. The
purpose of the impliedConstraint association is to explicitly identify what are the constraints that only apply if or when
the allocation is performed. When it is not the case, the kind of the constraints may help in determining whether the
alocation is required, offered, etc.

When the nature is timeScheduling, the Assign stereotype represents a set of timed application model elements (the
supplier)-that may be grouped using the stereotype RefineClock-scheduled on to timed execution platform model
elements. The relation amongst the clocks of the suppliers and the clients-the scheduling-is given by a set of clock
constraints.

Extensions
« Comment

Associations

¢ impliedConstraint: NFPs::NfpConstraint [*]
The set of constraints implied by the assignment. Assighing an application model element on a resource has a cost.
This cost is described using a set of non functional property constraints.

Attributes

e kind: AssignmentKind [1]
This differentiates the kind of assignment, whether both allocated elements on each side are structural, behavioral, or
whether thisis an hybrid assignment.

e nature: AssignmentNature [1]
Thisidentifies the purpose of the assignment, whether the assignment is equivalent to a spatial distribution, where
several application model elements are distributed to different resources or whether timed elements are scheduled
according to a given scheduler.

Associations
e from: Element [*] (from Kernel)
The elements that are assigned.

e to: Element [*] (from Kernel)
The elements to which the assignment is performed.

Constraints

[1] When the kind is structural, suppliers and clients must all be structural elements: classes, instance specifications or
packages. When the kind is behavioral, suppliers must be UML::Behavior or UML::Action and the clients must be
behavioral elements, a UML::Behavioral Feature for example. When the kind is hybrid, suppliers must be behavioral
elements while the clients must be structural elements.

UML Profile for MARTE, V1.0 129

[2] When the nature is TimeScheduling, supplier and the clients must be Time:: TimedElement and the
NFPs::NfpConstraint shall include Time::ClockConstraint.

Notation

The two allowed notations are presented in the following table.

11.3.2.8 NfpRefine (from Alloc)

The stereotype NfpRefine maps the domain element Refinement denoted in Annex F (Section F.5.5).

NfpRefine is a dependency based on UML ::Dependency. It is a mechanism for associating one abstract model element to
refined model elements. It is a provision for grouping elements. The refinement process implies some additional
constraints between the abstract element and the refined elements.

When several application model elements are to be collectively allocated to execution platform elements they should first
be grouped using the dependency NfpRefine. Some NfpConstraints, like for instance ClockConstraint, should be
associated with this dependency to specify relations between the general element and the refined ones.

Extensions
e Dependency (from Dependencies).

Associations

e congtraints; NFPs::NfpConstraint [*]
The set of constraints implied by the refinement.

Constraints
[1] A singledependency NfpRefine shall have only one client (from), but may have one or many suppliers (to).

context NfpRefine
inv: base_Dependency.from->size()=1 and base_Dependency.to->size()>=1

[2] The client and the suppliers must be Time:: TimedElement.

Notation

The relationship NfpRefine is a dashed line with an open arrow head. The arrow points in the direction of the refinement.
In other words, the directed line points “from” the element being refined “to” the elements that are the refined elements.

130 UML Profile for MARTE, V1.0

«allocated» {kind = application} «allocated» {kind = application]
«computingResources wocomputingResourcas
Processor Processor
) |
wassigns & |uassign». .
{nature=timeScheduling} {nature=timeScheduling}

o 'l
wallocateds wallocateds
«computingResources wcomputingResources
CPU CcPU
1. Assignment within note and arrow 2. Assignment as a dashed arrow

(The arrow poaints in the direction of the alocation. In other words, the directed line points "from" the elements being
assigned "to" the elements that are the targets of the assignment)

11.3.2.9 AssignmentKind (from Alloc)

AssignmentKind is an enumeration type that defines literals used to specify the kind of named elements that are used as
clients and suppliers

Literals
e structura

Indicates that the suppliers and the clients are all structural named elements.
e behaviora

Indicates that the suppliers and the clients are all behavioral named e ements.
e hybrid

Indicates that the suppliers and the clients are not of the same kind.

11.3.2.10 AssignmentNature (from Alloc)

AssignmentNature is an enumeration type that defines literals used to specify the purpose of the assignment.

Literals

e gpatiaDistribution
It indicates that the suppliers are distributed on the clients. Spatial distribution is the assignment of computationsto
processing elements, of data to memories, and of data/control dependencies to communication resources.

e timeScheduling
It indicates that the assignment consists in atemporal/behavioural ordering of the suppliers, the order being given by
the clients. Scheduling is the temporal/behaviora ordering of the activities (computations, data storage movements or
communication) allocated to each resource.

UML Profile for MARTE, V1.0 131

11.4 Examples

11.4.1 Unix process
Figure 11.8 shows an example of allocations with three layers. The first layer describes the application point of the view,

the second layer represents the operating system internals and the last layer shows the hardware parts. We use structured

classifiers to represent both hardware and software resources.
The example models the design of a given operating system family, not a particular implementation. It represents a typical

Unix operating system. A VxWorks model or an embedded Unix model would show a different partition of memory (e.g.,
no virtual memory). An Arinc653 OS model would show the explicit “partitions” as both space and time partitioning of

hardware resources.
A refinement down to Posix threads would show further partitioning of the CPU resources without further partitioning of

Memory.
Application
p : Process [256]
sallocateds{kind=application} wapp_allocateds {kind=application}
«computingResources wsiorages
CPU Memory
H |
«allaéal&» «EI“DICETEn
{nature=timeScheduling} {nature=spatialDistribution}
i OperatingSystem
:! sallocateds {kind=executionPlatform) astorages
; VirtualMemory
'.' sallocatads wallocateds wallocated: uallocateds
f {kind=application} {kind=application} {kind=application} {kind=application}
h ustorages ustoragen ustoragen ustoragen
i | ReservedMemory OS_Memory Swap RootFs
i " .allocaies “uallocageh
X {nature=spatialDistribution} {r".--ature=spatiafDistribution)
; Hardware e
K Y Y
callocatedw «allocated» «allocateds «allocated:
{kind=executionPlatform} {kind=executionPlatiorm) {kind=executionPlatform} {kind=executionPlatform)
acomputingResourcas astorages weommunicationhadiaxs wslorages
CPU Memory Bus Disk

Figure 11.8 - Allocation of Unix processes
The diagram shows several resources such as computing resources, communication media and storage (using stereotypes
defined in GRM), and how these resources can be grouped using a structured classifier and how they can be allocated to

more physical resources.
The lower layer in the diagram represents the hardware elements.

UML Profile for MARTE, V1.0

132

The top layer is the view from the application: a (Unix, in this example) process is a group involving a time shared access
to a computing resource, and a “spatial” partition in the virtual memory.

The intermediate layer is the implementation internals. The VirtualMemory is the high-level view as seen from the
application process. Physically, this virtual memory relies on two types of physical storage (the actual physical memory
and a hard disk).

This diagram is for illustration purpose. Often hard real-time application do not need to model the virtual memory and
swap space, since a prior analysis based on a simpler model would have verified that the worst case memory requirement
does not exceed available RAM memory.

11.4.2 System on Chip

To illustrate the use of the stereotype “clockRefine” we take the example of a system on chip (Figure 11.9). We first
decide that we need to have a digital signal processor (e.g., the OAK+) to compute floating point operations and a Risc
processor (e.g., an ARM 7) to control the whole application. The two processors are meant to communicate but we do not
elaborate on the communication itself at this point (Figure 11.9, upper part).

SoC
aclockTypes
wallocated»{kind=application} acomputingResources
comm ARMT
dsp . OAK+ - risc : ARM7
E «clockTypes
i «storages
i DPRAM
| aclockRefine»
H { comm=ram;
i, ram isFinerThan AHB; sclockTypes
7 1 ™ ram isFinerThan GDP; } o e o odine
o OAKZARM
waliccateds 7" i \\\ wallocateds aclockTypes
. {kind=executionPlatform) W {kind="syxecutionPlatform) wcommunicationMedias
OAF_interface b - GI!.P’ it b2 - AH
¥ E F2 {kind=axecutionPlatiorm} 3 }—C
FAm . DERAN AHB_interface

Figure 11.9 - Communication refinement

We then decide to refine the communication (cf. Figure 11.9, lower part). We use a double port Ram for the
communication. The bus coming from the OAK+ is the GDP bus and the bus coming from the ARM7 conforms to the
AMBA High-performance Bus specification. The “clockRefine” dependency specifies that these two connectors (GDP,
AHB) and this part (ram : DPRAM) are refinements of the connector comm. Each named element involved in these
structured classifiers are typed by a class stereotyped “ clockType” (Figure 11.9, right part), which means there is no a
priori assumption on relative rates of each part of this diagram. Additionally, the clock constraints associated with the
dependency constrain these rates by stating that:

» Theclock of theinstance that isto be used to conform to the role ram, is the same than the macroscopic clock perceived
for the global communication between the OAK+ and the ARM7.

UML Profile for MARTE, V1.0 133

» Theclock of thisinstanceisfiner than the clock of the two busses (b1 : GDP and b2 : AHB). Thisis probably an over
specification and the Time Model chapter (Refer to the section entitled “Time Modeling (Time)” on page 59) offers
several clock relations that allows for defining constraints more accurate.

Note that using a single dependency rather than three separate ones gives a stronger specification because the dependency
identifies a common context that gathers all four constrained elements.

11.4.3 Allocate activity group

To illustrate the use of the stereotype AllocateActivityGroup with take the example of a system described using an
activity (Figure 11.10). The activity groups (P1 and P2) represent processors that are the potential clients for the actions
of the activity. Because of the nature of the processor (digital signal processor or general purpose processor) and
because of the physical localization of sensors (used by actions inpC, outW and outZ) some processing elements cannot
be executed by one processor or another. For instance, the operation operl requires a hardware coprocessor not included
on processor P2. However, the operation oper2 can be allocated to both processors even though the cost of the allocation
(not represented here) could be different. An analysis tool could use this information to choose the best allocation
regarding, for instance, to a time budget.

Had we wanted to represent the allocation cost, we would have used the non functional property constraints defined in
NFP chapter. For clarity, we can either draw explicitly dependencies or draw a separate table that would present the cost
of each allocation.

«allocate» R — s oper1 — 5 outW ——
P1 G ;
| . <
_| inpC —p4— r_________| — | —>@
«allocate» [—)' oper2 — L 5 outz ——
P2 \ i |
|

Figure 11.10 - Actions shared between two allocate activity groups

The table below illustrates how to complete the allocation information of Figure 12.9 to represent the cost.

134 UML Profile for MARTE, V1.0

Pl P2
inpC 4 ms 6 ms
operl 10 ms
oper2 10 ms 8 ms
outw 4 ms
outZz 6 ms

We use the standard notation for NFP Constraints, either the simplify version or the full tuple notation. Several constraints
can be put in the same cell or a different table can be done for each different constraint. Any kind of NFP contraints can
be specified (e.g., time, power consumption).

UML Profile for MARTE, V1.0

135

136 UML Profile for MARTE, V1.0

Part Il - MARTE Design Model

This Part contains the following chapters.
e 12 - Generic Component Model (GCM)
e 13- High-Level Application Modeling (HLAM)
e 14 - Detailed Resource Modeling (DRM)

UML Profile for MARTE, V1.0 137

138 UML Profile for MARTE, V1.0

12 Generic Component Model (GCM)

12.1 Overview

The MARTE General ComponentModel presents additional concepts (w.r.t usual component paradigms) that have been
identified as necessary to address the modeling of artifacts in the context of real-time and embedded systems component
based approaches. Figure 12.1 shows the dependencies of this package.

1

MARTE::CoreElements

1

MARTE::GenericComponentModel

Figure 12.1 - Dependencies of the GenericComponentModel package

Additionally, the MARTE generic component model defines shortcut notations that help in simplifying the modeling and
are useful in the application of component base strategies in the real-time and embedded systems domains.

12.2 Domain View

12.2.1 The GenericComponentModel Package

The domain model introduced in this specification for the MARTE Generic Component model is mainly an abstraction of
the UML structured classes. This model provides a common denominator among various component models, which in
principle do not target exclusively the real-time and embedded domain. The purpose is to provide in MARTE a model as
general as possible, that is not tied to specific execution semantics, on which real-time characteristics can be applied later
on. The MARTE generic component model relies mainly on UML structured classes, on top of which a support for
SysML blocks has been added. Providing a support for Lightweight-CCM, AADL and EAST-ADL2 have also influenced
the definition of some features of the MARTE Generic Component Model.

UML Profile for MARTE, V1.0 139

Marte::CoreElements: ‘Foundations:: 'ﬂﬂ

Proparty
Marte:: CoreElaments. :Foundations::
BehavioredClassifier
ownedPoris [*] [o..1]
InteractionPort i StructuredComponent AssemblyPart
awner [1] Iparts [7]
A
endPort [0..1] 1 endPart [0,.1]

ownedConnectors [*]

Connector « enumeration »
ConnectorKind

fkind : Connectorkind [1]

delegation
cwner [1] assambly
ends [2.%]

ConnectorEnd

Marte::CoreElemants: :Foundations::
Multiplicity Elermarnt =

Figure 12.2 - The bulk of the MARTE GenericComponentModel package

A StructuredComponent defines a self-contained entity of a system, which may encapsulate structured data and behavior.
The MARTE structured component specializes the BehavioredClassifier concept
(Marte::CoreElements::Foundations::BehavioredClassifier). It owns properties that can be used as AssemblyParts (within
an internal component description), attributes, or member ends of an association. When used as an assembly part, a
property is indicated in the parts reference. As mentioned in the CoreElements package, Property is similar to the
corresponding UML definition, i.e., it has a multiplicity in terms of upper and lower bounds, an aggregation kind and a
type (as a Classifier). InteractionPorts are a special kind of properties owned by a structured component. An interaction
port defines an explicit interaction point through which components may be connected (linked) through an
AssemblyConnector, and through which they can communicate via message passing. Messages can represent operation
calls, signals or simply data (as described below). One may also directly connect structured component with no ports. In
any case, related ports need to be compatible regarding their provided/required ClientServerFeatures or flow
specifications and directions.

140 UML Profile for MARTE, V1.0

. Marte:: CoreElements: :Foundations::
InteractionPort
Property
% % « enumeration »
FlowPort ownedFlowProperties FlowProperty FlowDirectionKind
fisAtomic : Boolean [1] [@l direction : FlowDirectionkind [1] in
direction : FlowDirectionkind [1] oul
inout

Figure 12.3 - Flow ports of the GenericComponentModel package

One of the main reasons to have refined the UML model of composite structure within this specification is to support both
client-server like and data-flow like communication schemas.

FlowPorts have been introduced to enable data flow-oriented communication between components, where messages that
flow across ports represent data items. A flow port specifies the input and output items that may flow between a
structured component and its environment. The specification of what can flow is achieved by typing the flow port with a
specification of items that may flow along the ports and their connectors. This can include typing an atomic flow port
with a single type representing the items that flow in or out, or associating the FlowPort with a set of FlowProperties
(where each FlowProperty has its own direction, and is a specification of an item that flow).

As stated by Conrad Bock in [Bock], there are traditionally two ways for considering data-flow communications
semantics:
« Thepull form of the data flow semantics with the following characteristics:

« Passive: the arrival of datain the data store does not trigger behaviors per se. It isindeed additional actions, for
example time-triggered actions, that when needed pull the data from the data store.

« Non-depleting: the use of datain the store does not remove it from the store.

» The push form of the data flow semantics, with the following characteristics:
« Active: the arrival of datain the data store triggers execution of some behavior.
« Depleting: the data arriving on the port is not store locally. Dataisindeed conveyed to the triggered behavior.

Both forms are supported by the MARTE generic component model: the push form mainly relies on the UML event
model, while the pull form mainly relies on a particular usage of delegation connectors and properties (see next section
related to the details of the GCM Causality model).

UML Profile for MARTE, V1.0 141

InteractionPort

]

ClientServerPort

fisAtomic : Boolean [1]
kind : ClientServerKind [1]

ownedFeatures

ClientServerFeature

M kind : ClientServerKind [1]

foR

« enumeration »
ClientServerKind

provided
required
proreq

Operation Reception

Figure 12.4 - Message ports of the GeneralComponentModel package

ClientServerPorts support a request/reply communication paradigm (also called client-server model of communication),
where messages that flow across ports represent operation calls or signals. A ClientServerPort owns a set of features,
called the ClientServerFeature. These features may be provided or required or even they may be in the same time
provided and required. When the ClientServerFeature is an Operation, it represents a service that the owning structured
component may provide or/and require via this port. In the case of a Reception, it represents a signal that they may
publish (in this case, we consider the feature is required) or/and consume (in this case, we consider the feature is
provided) via this port. Just like flow ports, a client server port can be atomic (i.e., /isAtomic = true). In this case, the
ClientServerPort has no features, and the port is directly typed (via its attribute type inherited from
Foundations::Property) by the signal it may produce and/or consume (with respect to its attribute kind).

Causality::CommonBehaviors::

Action

1

InvocationAction

onPort

[0--1]

InteractionPort

Q I

SendSignalAction

CallOperationAction

SendDataAction

T

BroadcastSignal Action

targetProperty /¢ [0..1]

FlowPropearty

Figure 12.5 - Possible kinds of InvocationAction in the GenericComponentModel package

142

UML Profile for MARTE, V1.0

GCM also defines particular refinements of the Action concept (from Causality::CommonBehaviors) related to
communication aspects. For client-server communications, the SendSignal Action (and its BroadcastSignal Action variant)
and CallOperationAction are introduced respectively for expressing signal occurrence creations and operation calls. For
the dataflow communications, the SendDataAction is introduced for dealing with modeling of data emission.

12.2.2 On the MARTE Causality Model for GCM

This section provides a description of the MARTE causality model in the context for the GCM. This description is based
on the concepts introduced in the package MARTE::CoreElements::Causality, and let's notice that nNo particular
specializations of the concepts defined in this package have been required for GCM. Note that the package Causality uses
the concept of Request to denote the run-time manifestation of a communication in transit between an emitting instance
and a receiving instance.

The InteractionPorts of a StructuredComponent basically act as relay objects between the internals of the component and
its environment (i.e., when the StructuredComponent is used as an AssemblyPart in the context of a particular assembly).
When arequest is sent by the environment (i.e., it is an incoming request from the perspective of the receiver), the
targeted port is in charge of delegating the request to the component internals, which handle the request by processing the
appropriate behavior. Similarly, when a request is sent by the structured component internals (i.e., it is an outgoing
request from the perspective of the sender), the targeted port is in charge of forwarding the request to the environment,
which must properly handle or process it. More generally, it can be said that GCM InteractionPort semantics is driven by
akind of “request propagation process,” just like standard UML ports.

Of course, the way of handling and processing a request is strongly different if the request is related to a client-server like
communication (i.e., the request represents an operation call or a signal occurrence, and the client-server communication
has been put into action via a GCM CallOperationAction, GCM SendSignal Action or GCM BroadcastSignalAction on a
GCM ClientServerPort) or if the request is related to a data-flow like communication (i.e., the request actually conveys a
data value, and the data-flow communication has been put into action viaa GCM SendDataAction on a GCM FlowPort).
The “message propagation process’ described above however remains the same for both kind of communications. Figure
12.6 (which provides an informal description of the way an incoming message is handled) and Figure 12.7 (related to the
handling of an outgoing message) are thus valid for both client-server and data-flow communications, as described below.

On the semantics aboutincoming requests on ports

The semantics related to incoming requests and defined in GCM is sketched in the following activity diagram shown in
Figure 12.6.

UML Profile for MARTE, V1.0 143

Semantics of Incoming Requests)
Lost Request Samantic Varation Point

ial
[Delagation Connectors]) [Partial Delegation]
Analysis of
dalagation paths [Conflicting Ends of Delagation)]
[else]

Reguest ref J Somantice of
ﬁglil\fdt Fropagation > = Incoming Requests
on & port StepA3a Step Ad.a

. = Step A1
Generation of r Insertion of the ReceiveOccurence in
[No Delegation Connectors] a Receiveloourence /'I\ the event pool of the context object
Step A2 b Sfap A.3.b
Reques! recaived I
% on an AssemblyPart @l Request processed by the AssemblyPart l

Step 8.1 Step 8.2

Figure 12.6 - Schema of the various semantics related to incoming requests on port

When arequest is received on a port (Step A.1 in Figure 12.6) owning delegation connectors, it is propagated to the
internals of the structured component (In UML, this case typically corresponds to a non-behavioral port). In this case, one
processes to an analysis of the possible delegation paths (Step A.2.a). It consists of selecting a delegation connector with
a connector end that is able to handle the request. If the delegation scheme is partial (i.e., no compatible connector is
found), the message is lost (as depicted by the final node Lost Request shown in Figure 12.6). For the particular case of
an operation call on a ClientServerPort, if the StructuredComponent directly realizes the called operation (i.e., in UML,
this fact would typically be captured by an InterfaceRealization relationship between the component and the interface that
is provided on the port), then the message is not lost and directly triggers the execution of the corresponding
StructuredComponent's operation . In the opposite case where the analysis detects several connector ends that are able to
handle the request (i.e., ends are conflicting), the selection of the delegation connector is a semantic variation point (as
depicted by the final node Semantics Variation Point). Otherwise (i.e., one and only one delegation connector has been
detected), the request is propagated via the selected connector (Step A.3.a), and the handling process is recursively
involved (Step A.4.a). The conditions for a connector to be able to handle a request depend on the nature of the port
receiving the request:

- ClientServerPort: For agiven delegation connector outgoing a ClientServerPort, one of the end (i.e., a ClientServerPort
or directly an assembly part) must have a provided or provided/required ClientServerFeature which is compatible with
the request. It means that if the request matches to a given signal occurrence, this feature must be a Reception with an
associated Signal that istype-compatible with the Signal occurrence of the received request. If the request matchesto
an operation call, thisfeature must be an operation which is signature-compatible with the operation associated with the
call. The case where multiple ClientServerFeatures are compatible with the received request falls in the case of
Semantics Variation Point described above (i.e., the case with conflicting connector ends). Note that in the case where
the received request corresponds to a Signal, an alternative and valid delegation scheme concerns the case where the
delegation connector targets an atomic ClientServerPort which is type-compatible with the type of the signal.

» FlowPort: For a given delegation connector from this FlowPort, one of the end (that can be a FlowPort or directly an
assembly part) must have one of the following characteristics:

« Eitheritisanin or inout atomic flow port which type is compatible with the type of the received data.

144 UML Profile for MARTE, V1.0

« Oritisaport owning anin or inout flow property which type is compatible with the type of the received data. The
case where multiple flow properties are compatible with the message falls in the case of the Semantics Variation
Point described above (i.e. conflicting ends of connectors).

« Or itisan assembly part which type is compatible with the type of the received-data (this case matches to the pull
form of data-flow semantics considered by Step B.1 as described below).

If arequest is received on a port that has no delegation connectors, a ReceiveOccurence (see Section 7.2.5 on page 28 on
the Causality::Communication Package) is generated (Step A.2.b) and stored in the event pool of the context structured
component for further usages (Step A.3.b). Typically, these events can be used as Triggers by Behaviors processed in the
context of the receiving object (see description of Behavior, Trigger, Event and BehaviorExecution in Section 7.2.2 on
page 23 and Section 7.2.3 on page 26). Firstly, each ReceiveOccurence is associated with the information related to the
received request (i.e., either, both the operation that has been called and the associated parameters in the case of an
operation call, or the values of the signal properties in the case of a signal occurrence reception, or simply a value in the
case of a data-flow communication). Secondly, each ReceiveOccurence is made available to the Behaviors that use these
events as triggers. Note that in the particular case of a FlowPort, such events are used to support the push form of data-
flow semantics (i.e., the availability of a data, which is the consequence of a request reception, is manifested by the
generation of an event).

The last possible case corresponds to the reception of a request directly on an assembly part (Step B.1). The way the
request is processed (Step B.2) varies according to the communication paradigm:

« Client-server paradigm: Depending on the nature of the request (operation call or signal occurence) and the way the
type of the assembly part has been specified (i.e., if the typing classifier is specified as a BehavioredClassifier or not.
See Section 7.2 on page 22), either the request is stored as a ReceiveOccurence in the event pool of the receiving
element for further usage, or the request triggers directly the processing of a Behavior (e.g., in the case of an operation
cal).

» Data-flow paradigm: Provided what we have described in the previous paragraphs and the fact that the type of the
assembly part is necessarily compatible with the type of the received data, the value of the received datais simply held
by the assembly part, and it will be persistently available for any behavior that need to use it. This case corresponds to
the pull form of data-flow semantics. Indeed, no ReceiveOccurence is generated in this case, and cannot therefore be
used to trigger a behavior.

On the semantics about requests outgoing from ports

The semantics related to incoming requests and defined in GCM is sketched in the following activity diagram shown in
Figure 12.7.

UML Profile for MARTE, V1.0 145

Semantics of Outgoing Requesls)

Semantic Variation Point

[wia delegation connector] ref Semantics of

[Corflicting Ddlegation Ends] Outgeing Requests

Analysis of Step 48

Request . Request
propagation y

reception paths propagation

Step 1 Stap 2 [Partial Delegation] Step 3

| ref J Samantics of
Incoming Requesis

Step 4.6

[wia assembly connector]

Lost Message

Figure 12.7 - Schema of the various semantics related to incoming requests on port

A request sent to port from internals of a structured component, either through a delegation connector, or directly by one
of the behaviors of the owning structured component, (step 1 of Figure 12.7) is propagated to the environment through
connectors (steps 2 and 3 in Figure 12.7). This request is either the consequence of a CallOperationAction or a
SendSignalAction (in the case of client-server communications), or it is the consequence of a SendDataAction (in the case
of data-flow communications). In the propagation process, the situation varies depending on the kind of connector,
delegation or assembly connector. In the case of a delegation connector, the propagation semantics is similar to what is
described above for the semantics of incoming requests (and it is subject to the same semantic variation points: partial
delegation or conflicting connector ends), except that the request propagation takes place in the opposite direction: the
request goes from the internals - parts or ports of these parts - towards the output ports of the owning structured
component, which are recursively in charge of forwarding the request to the environment through either another
delegation connector or an assembly connector (as captured by steps 4.a and 4.b in Figure 12.7).

12.3 UML Representation

The concepts presented in the domain view of the General Component Model are here mapped to concrete UML
stereotypes for implementing in practice the corresponding extensions to UML. The stereotypes proposed extend those
elements of UML that better catch the semantics, expressiveness, and notation of the concepts introduced, but there is not
formal relationship between these UML meta-classes and the concepts used in the domain view for its semantic
definition.

146 UML Profile for MARTE, V1.0

12.3.1 Profile Diagrams

« anumeration »
FlowDirectionkind

in
out
inout

« metaclass »
Part

1

stereotypew
FlowPort

« Starectypes
ClientServerPort

lisAtomic: Boolean [1)
isConjugated: Boolean [0.1]
direction: FlowDirectionKind [1] = inaut

ispecificationKind : PortSpecificationkind [1]= interfaceBased [

isConjugated: Boolean [0..1]

kind: ClientServerKind [1] = prareg

« enumeration »
ClientSarverkind

provided
required
proreq

« enumeration @
PartSpecificationkind

atomic
interfaceBased
featureBased

provinterface, |, [*] reginterface |, [*]
« metactass » « metaciass » « metaclass »
Property Interface BehavioralFeature
I} f r
I featuresSpec
« Slereatype » « sterestype »
FlowProperty « stereotype » w sterectype » ClientServerFeature
— —— - FlawSpecification ClientServerSpecification
direction: FlowDirectionKind [1] = inout pec P kind: ClieniServerkind [1] = proreg

Figure 12.8 - UML2 profile of the MARTE GeneralComponentModel

Figure 12.9 - UML2 profile of the MARTE GeneralComponentModel, event and communication

UML Profile for MARTE, V1.0

« metaclass » part « metaclass » onPort « metaclass »
Trigger El Fort [0.1] ImvocationAction
A A
« stereotype » feature « metaclass » onFeature « slareotype »
GCMTrigger [l Featura &l GCMinvacationAction
« metaclass »
AnyReceiveEvent
A
+ stareotypa » classifier « melaclass »
DataEvent [1] Classifiar

147

« melaclass » « enumeration »
Property DataPoolOrderingkind
FIFO
L] LIFO
UserDefined
« slarectype » insertion
DataPoaol
i i - [0.11 « metaclass »
ordering : DataPoolCrderingkind [1] = FIFG selection Fehaior
[0.1]

Figure 12.10 - UML2 profile of the MARTE GeneralComponentModel, DataPool
12.3.2 Profile Elements Description

This section describes in details each elements introduced in the profile diagram described previously. The following list
is sorted in alphabetical order.

12.3.2.1 ClientServerKind

It is used with atomic ClientServerPorts to specify the direction of a signal that types the port. It can also be used to
specify the direction of ClientServerBFeatures.

Literals

e required
Used to model that an operation or a (signal) reception is required.

e provided
Used to model that an operation or a (signal) reception is provided.

e proreq
Used to model that an operation or a (signal) reception is both provided and required.

12.3.2.2 ClientServerFeature

This ClientServerFeature stereotype maps both Reception and Operation domain elements as described in Section F.6.20
and Section F.6.21.

A ClientServerFeature specifies the nature of a Behaviora Feature owned by interfaces stereotyped as
ClientServerSpecification. If kind is required it is expected to be a required operation or signal reception while if kind is
provided, it is expected to be a provided operation or signal reception.

Extensions
» BehavioraFeature (from UML::Kernel)

Generalizations

« None

148 UML Profile for MARTE, V1.0

Attributes
e kind: ClientServerKind [1] =proreq
Define the nature of the ClientServerFeature.

Associations
* None

Constraints
* None

Notation
When applying the stereotype ClientServerFeature using the iconographical notation, the following icons are used.

Icon Usage
O For a provided behavioral feature (i.e., kind = provided).
C For a required behavioral feature (i.e., kind = required).
<© For for a behavioral feature which is both provided and required (i.e., kind = proreq).

12.3.2.3 ClientServerPort
This stereotype maps the ClientServerPort domain concept defined in Section F.6.8.

The main purpose of the ClientServerPort stereotype is to provide a mechanism for specifying provided and required
behavioral features of standard UML ports, which is more intuitive and direct than the standard UML mechanism (which
relies on derivation rules based on the port type, and the set of Usage and InterfaceRealization relationships associated
with this type). ClientServerPort can be seen as a kind of “syntactic sugar,” and a client-server port is thus semantically
equivalent to a standard UML port. It practically means that a GCM model (i.e., a UML model on which the GCM
subprofile has been applied) can be defined using standard UML ports, on which the ClientServerPort has not been
applied.

We identify three potential usages of ClientServerPort (where a particular usage is technically captured by the
specificationKind:PortSpecificationKind derived property):

» Atomic usage: the designer wants to directly associate a signal with the port (i.e., the port istyped by the signal),
specifying that the component owning the port is either able to send (i.e., ClientServerPort::kind = required) or receive
(i.e., ClientServerPort::kind = provided) the signal viathis port.

« Interface-based usage: the designer wants to directly provide and/or require standard UML interfaces on a port. In this
case, the port is not typed, and the set of provided and required interfaces are specified via properties of the
ClientServerStereotype (i.e., provinterface and reqgl nterface respectively).

 Feature-based usage: the designer wants to associate a ClientServerSpecification (i.e., a consistent set of behavioral
features, some of which may be provided or required) with the port. In this case, the port is not typed, and the
ClientServerSpecification is specified via the property specification of the stereotype ClientServerPort.

UML Profile for MARTE, V1.0 149

Note that in the case of the atomic usage, a ClientServerPort typed by a signal means that emission or reception of the
signal can occur over that port (with respect to the kind of the port). It is equivalent to a standard UML port exposing an
Interface with a Reception for this signal, and does not introduce any new communication paradigm.

The fact that FlowPort enables the same kind of construction (i.e., an atomic FlowPort which is typed by a signal) may be
confusing. It comes from the fact that the FlowPort concept has been defined in the context of SysML, and reused without
changes in the definition of MARTE for compatibility purposes. MARTE thus provides two syntactic means for
specifying atomic ports. They are however semantically equivalent and they can be used jointly in a same model.
Examples of such combined usages of atomics FlowPorts with standard UML ports or ClientServerPorts are illustrated in
Figure 12.12, Figure 12.13, Figure 12.14, and Figure 12.15.

Delegation Connector Reception Semantics

= NO

g

o

5; A MessageEvent (i.e., a CallEvent or a SignalEvent) is raised and stored in the

%’ event pool of the receiving instance.

®

B

= YES

5 In MARTE, we consider such model to be ill-formed.

o

NO . L i _ _

= If the classifier of the receiving instance directly realizes the behavioral feature, the

g reception of the message directly triggers a call to this behavioral feature (and no

? MessageEvent is generated).

f}j If the behavioral feature is not realized by the classifier of the receiving instance,

15 the message is lost.

O

g YES The received message follows one of the available delegation connectors, so that

3 the message is handled by the delegation target.

ESJ If multiple connectors can be followed (i.e., multiple targeted elements are able to

g handle the message), the choice of the connector to be followed is a semantic

pd [ﬂ;@ variation point (for more details, let’s see the “ Conflicting End” semantic variation
point, in Section 12.2.2 on page 143 on the causality model of the MARTE GCM).

Extensions

 Port (from UML::Ports)

Generalizations
« None

Attributes

« /specificationKind : PortSpecificationKind [1] = interfaceBased
A derived property describing the way how the set of provided or required functionalities of the port has been
specified. Cf. the description or PortSpecificationKind for a description of the different ways of specifying the set of
required/provided functionalities (and consequently to derive the value of /specificationKind).

150 UML Profile for MARTE, V1.0

e isConjugated : Boolean [0..1]
If true, the port is said to a conjugated port. In this case, al the directions of the ClientServerFeatures specified by a
ClientServerSpecification that characterizes a featureBased ClientServerPort are exposed in the opposite kind (i.e., a
provided featureis treated as arequired feature by the ClientServerPort). This attribute applies only to featureBased
ports.

e kind: ClientServerKind [1]
In the case where the ClientServerPort is atomic (i.e., specificationKind = atomic), this property enables to directly
specify the kind of the port. In the case where the ClientServerPort is interface-based (i.e., specificationKind =
interfaceBased), then the value of the kind property must be consistent with the set of interfaces associated with the
port (viathe provinterface and reglnterface properties). If provinterface isthe only property to be used, then kind
must be equal to provided. If only reginterface is used, then kind must be equal to required. If both properties are
used, then kind must be equal to proreq. Finaly, in the case where the port is feature-based (i.e., specificationKind =
featureBased), then the value of the kind property must be consistent with the ClientServerSpecification associated
with the port (viathe featuresSpec property) and with the fact that the port is conjugated or not. If the
ClientServerSpecification only owns provided features, kind must be equal to provided (required if the port is
conjugated). If the ClientServerSpecification only owns required features, kind must be equal to required (provided if
the port is conjugated). If it contains provided and required features, kind must be equal to proreq.

Associations
e gpecification : ClientServerSpecification [0..1]
The ClientServerSpecification used to specify the set of ClientServerBFeature provided/required by the port. This

case corresponds to what we call a“featureBased” usage of ClientServerPort (i.e. /specificationKind =
featureBased).

e provinterface: Interface[0..*]
The set of interfaces provided by the ClientServerPort. It isimportant here to notice that this property is not derived,
as opposed to the “provided” property of standard UML ports. “provinterface” can be seen as a shortcut to provide a
set of interfaces on a port, without using the standard UM L mechanism based on port type. This case correspondsto
what we call an “interfaceBased” usage of ClientServerPort (i.e., /specificationKind = interfaceBased). Note that the
“provinterface” property can be used jointly with the “reginterface” property.

* reqinterface : Interface[0..*]
The set of interfaces required by the ClientServerPort. Again, it isimportant to notice that this property isnot derived,
as opposed to the “required” property of standard UML ports. “reqinterface” just provide a shortcut. This case also
corresponds to what we call an “interfaceBase” usage of ClientServerPort (i.e., /specificationKind = interfaceBased).
The “reginterface” property can be used jointly with the “ provinterface” property.

Constraints

[1] A conjugated port may be involved in only bidirectional connector, i.e., connector with exactly two connector ends.
[2] Interfaces contained in ClientServerPort.provinterface cannot be FlowSpecification or ClientServerSpecification.
[3] Interfaces contained in ClientServerPort.reglnterface cannot be FlowSpecification or ClientServerSpecification.

[4] If ClientServerPort.specificationKind = atomic, then: NOT (Port::type.isEmpty) and Port::type instanceof Signal and
provinterface.isEmpty and reglnterface.isEmpty and specification.isEmpty.

[6] If ClientServerPort.specificationKind = interfaceBased, then: Port::type.isEmpty and NOT (provinterface.isEmpty and
reqlnterface.isEmpty) and specification.isEmpty.

[7] If ClientServerPort.specificationKind = featureBased, then: Port::type.isEmpty and NOT (specification.isEmpty) and
provinterface.isEmpty and regl nterface.isEmpty.

UML Profile for MARTE, V1.0 151

[8] The ClientServerPort.kind property is only applicable to atomic ClientServerPorts.
[9] The ClientServerPort.isConjugated property is only applicable to featureBased ClientServerPorts.

Notation
The following graphical notation may be used:

Icon Usage
Q Fora ClientServerPort with kind = provided.
C For a ClientServerPort with kind = required.
C@ For a ClientServerPort with kind = proreq.

Figure 12.11 denotes a UML Component (CarSpeedRegulator) with an atomic ClientServerPort typed by the Start signal.
Figure 12.16 illustrates the usage of the notation for interface-based ClientServerPorts.

« signal = « clientServerPart » €]]
Start on: Start [1] CarSpeedRegulator CarSpeedRegulator
targetSpeed: Integer [1] on: Start [1]
{i} icon + text form (i} icom farm
Figure 12.11 - Example of atomic client-server port
lisAtomic = true
direction = inout
L !ﬁuwF'nrl ®
p:Sig q ! Req_ISig «interface » Signal
: « Signal »
a: CcmpA |$|g s|g
ISig w« signal » Sig
A
r: I5ig Lo use »
Req_lSig

ISig

Figure 12.12 - Combined usage of atomic FlowPorts with standard UML ports

152 UML Profile for MARTE, V1.0

Ispecificationkind = atomic
kind = required

* -
wﬁm.lpor[g clientServerfirt »

P Sig q : Sig
a: ComphA

« clienggerverPort »
RO S

e

IspecificationKind = atomic
kind = provided

b : CompB

Figure 12.13 - Combined usage of atomic FlowPorts with "atomic" ClientServerPorts

provinterface =]

Ispecificationkind = interfaceBasad
reqInterface = [1Sig]

C(?OWFUII wo cIientSewerlﬂ%rt]
p:Sig q:

a: CompA

b: CompB

oc cIienlSewgPorl ®
s, T

N
Y

fspecificationkind = interfaceBasedl™
provinterface = [ISig)
reginterface = [

Figure 12.14 - Combined usage of atomic FlowPorts with "interfaceBased" ClientServerPorts

fspecificationKind = featureBased
spedification = CompBlnterfaceSpec
isConjugated = true

“ !ffm-pon . «clientServerPor »
p: Sig q: « clientServerSpecification »
CompBinterfaceSpec

a: ComphA

b : CompB « signal » Sig

“ clisntSer\raer »
L o

.\
S
.\
e « clientServerBFeature »
Ispecificationkind = featureBased kind = provided

spedification = CompBInterfaceSpec
isConjugated = false

Figure 12.15 - Combined usage of atomic FlowPorts with "featureBased" ClientServerPorts

When a message port is non-atomic, the following icon may be used for the stereotype (Example in Figure 12.4): .

UML Profile for MARTE, V1.0 153

CarSpeedRegulator

(ipicon + text form

« clientServerPort »

o]

rspechcatiankng = inlerfase
reqinbariace = [Reqlmariace]

B

CarSpeedRegulator

(i} icon form

Figure 12.16 - Example of interface-based ClientServerPorts

12.3.2.4 ClientServerSpecification

1]

The ClientServerSpecification stereotype is related to ClientServerFeature domain elements as described in Section F.6.6.

A ClientServerSpecification provides a way to define speciaized interface that allows for defining its nature in terms of

either its ability to receive and send UML signals, or of its provided and required operations.

Extensions

« Interface

Generalizations

* None

Attributes

« None

Associations

« None

Constraints
[1] A ClientServerSpecification can only own ClientServerBFeatures, i.e., Operations and/or Receptions on which the

ClientServerBFeature stereotype has been applied. It cannot own properties.

Notation

When applying the stereotype using its iconographical or shape forms, following icons are used.

Ilcon

Usage

For ClientServerSpecification with kind = required, when all the features contained in the interface are
signal receptions.

154

UML Profile for MARTE, V1.0

For ClientServerSpecification with kind = provided, when all the features contained in the interface are
signal receptions.

For ClientServerSpecification with kind = required, when all the features contained in the interface are

Oy

operations.
For ClientServerSpecification with kind = provided, when all the features contained in the interface are
operations.
“ s;?":' » = interface » winterface s Y ’
a « clientServerSpecification » SpeedSensorFS
targetSpead © Integer [1] {kind = provided}
SpeedSensorFS X star) SpeedSensorfs
B startf) {iv) shape form

Figure 12.17 - Examples of ClientServerSpecification

12.3.2.5 DataEvent

DataEvent extends the AnyReceiveEvent metaclass, which is the most generic kind of concrete MessageEvent of UML.
DataEvents are raised when messages (which have been created as a consequence of a SendObjectAction) are received on
a behavioral FlowPort. They are then stored in the pool of events of the owning object just like any other kind of UML
events would be. It implies that the UML semantic variation points related to the management of eventsin the events pool
also applies to event stereotyped with “DataEvent” (see UML2 Superstructure, Section 13.3.4 BehavioredClassifier for
more details about event management in UML). Particular semantic interpretation on the way data-event are handled
would thus require a specialization of the MARTE Generic Component Model, such as the one discussed in the HLAM
chapter. The definition of “DataEvent” mimics the definition of the UML Signal Event metaclass in the sense that it is
possible to attach a classifier to the event in order to characterize it (just as it is possible to attach a Signal to a
SignalEvent). DataEvents can then be exploited by triggers of StateMachine transitions or triggers of AcceptEventActions
in activity diagrams for example so that it is possible to specify reactions to reception of data of a particular type (i.e.,
datawhich are typed by a classifier compatible with the classifier associated with the DataEvent). Note that in UML such
triggers can natively be related to the port from which the DataEvent has been raised. In order to avoid overlapping with
UML SignalEvent, a constraint imposes that the classifier associated with the DataEvent cannot be a Signal.

Extensions

» AnyReceiveEvent (from UML::Communications)

Generalizations

* None

Attributes

* None
Associations

e classifier : Classifier [1]
The specific classifier that is associated with this event.

UML Profile for MARTE, V1.0 155

Constraints

[1] classifier can be any UML Classifier that can be used to type an atomic FlowPort or a FlowProperty (i.e., DataType
or Class) except a Signal.

12.3.2.6 DataPool

The DataPool stereotype extends the UML Property metaclass. It is used to specify the storing policy of aflow port that
semantics is to be a “pull-semantics.” The stereotype has to be applied on a property of the port owner and the property
must be linked to the flow-port by a delegation connector. The multiplicity of the property is used to define the size of the
store associated to the flow port. Infinite pool may be specified by setting to "*" the upper value of the multiplicity.

When such a DataPool also has a connector targeting an input parameter of a behavior (see 12.3.2.9, 'FlowPort’ about
FlowPort, sub-clause concerning the use of connectors between properties and parameters of behavior), the DataPool also
specify the policy that determines what are the values that will actually be used as input parameters of the targeted
behavior (when this behavior will be called). The property ordering is used to specify the insertion and selection policies.
Two default policies are pre-defined: FIFO and LIFO (see 12.3.2.7, ' DataPool OrderingKind' on DataPool OrderingKind).
It isa MARTE semantics variation point to define what happen in case of the DataPooal is full (i.e., the upper-bound
multiplicity associated with the DataPool has been reached). In MARTE, however we define the following default
semantics: for both predefined policies (FIFO and LIFO) the reception of a new data while the pool is full will not be
blocking. The oldest data contained in the pool is lost to the benefit of the freshest one.

For flexibility purposes, it is possible to specify user-defined policy for managing the data pool. In this case, the property
ordering must be set to UserDefined, and properties, insertion and selection, of the stereotype DataPool must be used to
reference specific behaviors. These behaviors encapsul ate then the explicit user-defined description of how data should be
inserted and selected from the pool (see Example 4 in the notation section below). Finally, as denoted in the following
constraint clause, let's notice that two constraints have been defined in order to model the behaviors describing the user-
defined insertion and selection policy.

Extensions
 Property (from UML::Kernel)

Generalizations

* None

Attributes
e ordering : OrderingKind [1] = FIFO
It denotes how data are to be inserted and selected from the DataPool .

Associations
e insertion: Behavior [0..1]
It references a behavior describing the palicy for the insertion of data in the DataPool.

e sdection: Behavior [0..1]
It references a behavior describing the policy for the selection of data from the DataPoal.

156 UML Profile for MARTE, V1.0

Constraints

[1] If the Property ordering is set to UserDefined, it implies that both properties insertion and selection have to be
specified.
self.ordering = UsedDefined implies (self.insertion.size()=1 and self.selection.size()=1)

[2] The Behavior referenced by the property insertion must have one and only one parameter. Its direction must be in or
inout and its type that is compatible with the type of the FlowPort connected to the DataPool.

[3] The Behavior referenced by the property selection must have one and only one parameter. Its direction must be return
and its type and its multiplicity must be compatible with the type and the multiplicity of the Parameter connected to
the DataPool (see example 4 shown on Figure 12.24).

12.3.2.7 DataPoolOrderingKind

The DataPool OrderingKind is used in the context of a DataPool to specify both insertion/selection policies of data in the
pool.

Literals
« FIFO

The first element inserted in the DataPool is the first element to be selected.
« LIFO

The last element inserted in the DataPool is the first element to be selected.
e UserDefined

Theinsertion and selection policies are user-defined (see 12.3.2.6, ' DataPool).

12.3.2.8 FlowDirectionKind
This enumeration maps the FlowDirectionKind domain concept defined in Annex F (Section F.6.9).

It is used with atomic flow (or message) ports to specify the direction of aflow element or a signal that types the port. It
can be also used with non-atomic flow (or message) ports to specify the direction of a flow specification (or signal
specification), or the direction of its owned properties.

Literals

e in
The direction of the information flow is from outside to inside of the owning entity. When related to asignal, it is
usual to say that the signal is consumed.

e out
The direction of the information flow is from inside to outside of the owning entity. When related to asignal, it is
usual to say that the signal is produced or published.

* inout
Theinformation flow is bidirectional.

12.3.2.9 FlowPort

This stereotype maps the concept of FlowPort defined in Annex F. A FlowPort may relay incoming, outgoing, or
bidirectional flows. The nature of the flow is specified by the type of the port in the case of an atomic flow port. A flow
also can be specified in terms of flow specifications and flow properties, in the case of a hon-atomic flow port.

UML Profile for MARTE, V1.0 157

In the case where a FlowPort (or FlowProperty) is typed by a Signal, the UML SendSignalAction is used to create a
signal instance and transmit it via the port (or FlowProperty). For other kind of types (i.e., DataType or Classes) and as
shown in example 1 of the next notation clause, the designer may use the UML SendObjectAction for sending data on a
port. Since SendObjectAction inherits from InvocationAction, it is natively possible to determine the port on which the
SendObjectAction is applied, via the property onPort of InvocationAction (see “GCMInvocationAction” for the ability to
specify the flow property of a non-atomic flow port that is concerned by SendObjectAction). SendObjectAction is an
action that transmits an object to the target object. In our case, the transmitted object is a message encapsulating the data
that has been put on its input pin denoted by its metaproperty request.

As stated in the domain view, the MARTE Generic Component Model supports the two following main forms of dataflow
communications: the “push” semantics and the “pull” semantics.

For the push semantics, the execution of a SendObjectAction results in the emission of a message encapsulating the sent
object. When such a message is received on atarget behavioral flow port, a “DataEvent” (see 12.3.2.5, ' DataEvent’ for a
deeper description of DataEvent) is raised on the receiving side (In the case of a non-behavioral FlowPort, data are
propagated along associated delegation connectors, and no event is raised at all). DataEvents raised conseguently to data
receptions on behavioral ports are then stored in the event pool of the owning object just like any other kind of UML
events would be. It implies that the UML semantic variation points defined in the UML2 specification and related to
event management also apply to DataEvent. Additional semantics on how DataEvent are handled would thus require a
specialization of the GCM semantics, such as the one discussed in the HLAM sub-profile of MARTE.

DataEvents can be exploited by triggers of transitions within a StateMachine, or by triggers of AcceptEventActions within
an Activity (asillustrated in example 2 of the next notation section). Hence, it is possible to specify reactions to reception
of data of a particular type (i.e., data which are typed by a classifier compatible with the classifier associated with the
DataEvent). Note that such triggers can natively be related to particular ports (i.e., the ports from which the DataEvent
have been raised). The “active” characteristic of the “push” semantics is covered because the reception of a dataon a
behavioral FlowPort raises a DataEvent that can be used as a trigger in a behavior. The “depleting” characteristics of the
“push” semantics is covered because, according to the standard UML semantics, once an event has been consumed by a
behavior, it is no longer available in the event pool to trigger other behaviors.

Concerning the “pull” semantics of MARTE's FlowPorts, no particular extensions are required. A simple modeling pattern
(as suggested by SysML and by Conrad Bock in [Bock], respectively for the usage of delegation connectors and the usage
of properties for persistent data storage and non-depleting data use) is sufficient.

According to the UML 2 superstructure, a non-behavioral port should have delegation connectors, so that incoming
requests can be propagated along these connectors to parts of the composite structure owning the port. In other case, the
messages arriving on a non-behavioral port without out delegation connectors are considered to be lost. If out delegation
connectors exist, the connected parts either delegate the requests to some of their parts, or deal directly with the request
triggering the execution of one of their behaviors. At the end of the delegation chain, a non-behavioral input atomic flow
port should have at least one delegation connector targeting a part which is type-compatible with the port. When adatais
received on such a port and delegated through the connector, no DataEvent is raised (which is in line with the “passive”
characteristics of the “pull” form of the data flow semantics). In this case, the semantics says that the datais written in the
part targeted by the delegation connector, replacing any existing value. The data stored on the targeted property can then
be used when needed by the behavior of the component, typically via a ReadStructural FeatureAction (which has no
depleting effect on the value of the property). This case isillustrated in Example 3 of the next notation section. For more
complex storage policies, the stereotype «dataPool» can be applied to the targeted property, in order to describe how
received data are inserted in the property, and how they are selected when they are needed (see 12.3.2.6, 'DataPool’ for a
precise description of the DataPool concept). This rule can be extended for non-atomic flow ports, where each flow
property should be associated with a delegation connector (by convention and for simplicity, when one of the flow
properties is not associated with a delegation connector, the FlowPort should be behavioral, and then the data received on
this FlowPort and related to this FlowProperty will raise a DataEvent).

158 UML Profile for MARTE, V1.0

parameter (In or Inout) of
the classifier behavior.

e
Iy [} iwparam

inParam

the executing classifier
behavior) targeted by the
delegation connector.

Behavioral | Delegation Connector | Reception Semantics Consumption Semantics
Flowport
True No A Dataevent israised when data | Events in the event pool can be
is received on the port. This used to trigger any behavior
event is then stored in the event | executing in the context of the
pool of the receiving instance. receiving object. Oncethey have
been used as a trigger for one of
these behaviors, they are
removed from the event pool,
— and no longer available for other
@E behaviors (see Example 2
q shown in Figure 12.22).
S True Yes In Marte, this kind of model is considered as ill-formed.
(% False There exists a delegation The data received on the port is | The semantics of token
%—5 connector targeting made available as a data token consumption is those of Uml 2
3 directly an input on the In or Inout parameter (of | activities (i.e., depleting). See

Uml 2 Superstructure, Chapter
11 Actions and Chapter 12
Activities for more details.

For the data passed as a
parameter to be accepted by the
behavior while it is executing,
the parameter must be specified
as a streaming parameter (See
Example 5 shown in Figure
12.25).

UML Profile for MARTE, V1.0

159

Behavioral
Flowport

Delegation Connector

Reception Semantics

Consumption Semantics

"pull” Semnatics

False

There exists a delegation
connector targeting a

property.

« dataPool »
pl: Typel

Data received on the port will be
stored on the property targeted
by the delegation connector, and
replace any value contained in
the property.

If the stereotype «datapool» is
applied on the targeted property,
received data will be inserted in
the property with respect to the
policy specified by the property
‘ordering' of the stereotype
«datapool».

If ordering is set to user defined,
the user-defined insertion
behavior (referenced by the
property insertion of the
sterectype «datapool »)
determines how received data

must be inserted in the property.

Data values held in the property
are persistently available to Any
behavior that is (or will be)
executing in the context of the
receiving instance. These data
can simply be accessed via a
read structural feature action
when needed (See Example 3
shown in Figure 12.23).

A delegation connector between
such a property and an input
parameter of a behavior
(typically owned by the owner
of the property) can be used as
an aternative. When this
behavior is caled (e.g., its
execution is triggered by a
transition on a Statemachine),
values that are passed as input
parameters to this call are those
contained in the property. If the
stereotype «datapool» is applied
on the property, then the values
to be passed as input parameters
are those determined by the
ordering policy (see Example 4
shown in Figure 12.24).

False

No

Incoming data are considered to be lost in this case.

160

UML Profile for MARTE, V1.0

"Push” semantics

connector targeting
directly an input
parameter (in or inout) of
the classifier behavior.

e
Iy [} iparam

inParam

made available as a data token
on the in or inout parameter (of
the executing classifier
behavior) targeted by the
delegation connector.

Behavioral | Delegation Connector | Reception Semantics Consumption Semantics
FlowPort
TRUE NO A DataEvent is raised when a Events in the event pool can be
dataisreceived on the port. This | used to trigger any behavior
event is then stored in the event | executing in the context of the
pool of the receiving instance. receiving object. Oncethey have
been used as a trigger for one of
these behaviors, they are
removed from the event pool,
— and no more available for other
[]E behaviors (see Example 2
shown in Figure 12.22).
TRUE YES In MARTE, we consider this kind of model as ill-formed.
FALSE There exists a delegation The data received on the port is | The semantics of token

consumption is those of UML 2
activities (i.e., depleting. Let's
see UML 2 superstructure,
Chapter 11 Actions and Chapter
12 Activities for more details).
For the data passed as a
parameter to be accepted by the
behavior while it is executing,
the parameter must be specified
as a streaming parameter (let's
see Example 5 shown in Figure
12.25).

UML Profile for MARTE, V1.0

161

Behavioral | Delegation Connector | Reception Semantics Consumption Semantics
FlowPort
FALSE There exists a delegation Datareceived on the port will be | Data values held in the property
connector targeting a stored on the property targeted are persistently available to any
property. by the delegation connector, and | behavior that is (or will be)
replace any value contained in executing in the context of the
the property. receiving instance. These data
If the stereotype «DataPool» is | can simply be accessed via a
« dataPool » applied on the targeted property, | ReadStructural FeatureAction
pL Typel received data will be inserted in | when needed (see example 3
the property with respect to the | shown in Figure 12.23).
policy specified by the property | A delegation connector between
‘ordering' of the stereotype such a property and an input
«DataPool». If orderingissetto | parameter of a behavior
§ UserDefined, the user-defined (typically owned by the owner
e insertion behavior (referenced of the property) can be used as
5 by the property insertion of the | an aternative. When this
= stereotype «DataPool ») behavior is caled (e.g., its
E determines how received data execution is triggered by a
: must be inserted in the property. | transition on a statemachine),
values that are passed as input
parameters to this call are those
contained in the property. If the
stereotype «DataPool» is
applied on the property, then the
values to be passed as input
parameters are those determined
by the ordering policy (see
example 4 shown in Figure
12.24).
FALSE NO Incoming data are considered to be lost in this case.

12.3.2.10 Linking FlowPorts with Activity Parameters

As UML 2 activities naturally behave following a data-flow communication paradigm, we provide modeling patterns to
relate non-behavioral flowports to parameters of an Activity. The two forms of data flow semantics defined in MARTE

are addressed next:

« “pull” semantics: A standard UML connector is expressed between a property (which used to be the target of a
delegation connector, but does not need to be) of the component and an in or inout parameter of a BehaviorFeature
(such as an Operation that would typically belong to the owner of the port, but does not need to be) or a Behavior. It
means that the val ues passed to the parameters of the behavior or Behavioral Feature when they are called are actually
the values of the connected properties. The connectors just prevent from the usage of an explicit
ReadStructural FeatureAction to get the value associated with the properties. Note that this usage of connectorsis
compatible with the abstract syntax of UML, as both Property and Parameter are Connectabl eElements. In the case
where the connected property is stereotyped with “DataPool,” the Behavior referenced by its property selection is used

162

UML Profile for MARTE, V1.0

to determine what are the values to be selected from the property that isthe data pool in this case and then that are to be
passed to the parameter (asillustrated in example 4 of the notation section).

“push” semantics: Connectors are directly expressed between input non-behavioral flow ports (respectively the output

flow ports) and input parameters (respectively the output parameters) of the Activity denoting the classifierBehavi or®
of the composite structure owning the ports. Theideaisthat each data received on aflow port will be propagated to a
parameter of the classifier behavior. The data associated with the input message will be handled as a token on an
ActivityParameterNode corresponding to the parameter. The token will then enter the chain of computation described
by the set of object flows and actions of the activity (with respect to the token propagation semantics of UML
activities). At the end of the computation chain, tokens will be propagated to ActivityParameterNodes corresponding to
output parameters of the Activity. If a delegation connector is expressed between such a parameter and an output flow
port of the component, a message containing the produced data will be emitted through the flow port (just asif a
SendObjectAction with this value would have been applied on the flow port). The standard semantics of UML
activitiesimplies that tokens related to input pins of a CallBehaviorAction must be available for the called activity to
start and that tokens corresponding to output parameters the CallBehaviorAction are then available on its output pins
only once the invoked activity is finished. The execution of an Activity finishes when one of its final node has been
reached by a control token. If final nodes are omitted in the specification of the Activity, the execution finishes when
output values have been produced for each of the required output/return parameters of the Activity (with respect to the
lower bound of their multiplicity).

Let’'s notice that parameters of a behavior may be specified as streamed (see the definition of property isStream in
UML 2 Superstructure, section 12.3.41 Parameter). In that case, the invoked activity may accept tokens on its input
parameter and may also produce results on its output parameters while running. Therefore, if the classifier behavior
of a structured class (described by an Activity) needs to accept / produce data on its parameters while it is
executing (which is probably the most usual case), the usage of streaming parameters on the classifier behavior
may be required, as illustrated in Example 5 shown in Figure 12.25.

Extensions

» Port (from UML.::Ports)

Generalizations

« None

Attributes

isAtomic: Boolean [1] = false

If true, the port is said to be an atomic port, otherwiseit is considered as a non-atomic port. An atomic port istyped by
aClassifier, Signal, a DataType, or a PrimitiveType.

isConjugated: Boolean [0..1]

If true, the port is said to be a conjugated port. In this case, all the directions of the flow properties (FlowProperty)
specified by a FlowSpecification that types a port are relayed in the opposite direction (e.g., an incoming flow
property is treated as an outgoing flow property by the FlowPort). This attribute applies only to non-atomic ports.

In UML, when a BehavioredClassifier isinstantiated, its classifier-behavior is started. When the execution of the classifier-behavior
finishes, the context instance (i.e., the instance of BehavioredClassifier that is hosting the execution of the classifier -behavior) isaso
terminated.

UML Profile for MARTE, V1.0 163

e direction: FlowDirectionKind [0..1] = inout
If the port is atomic, the direction property specifies the direction of the flow. If the port is non-atomic, the direction
property must be consistent with the direction of the FlowProperties owned by the FlowSpecification specifying this
non-atomic FlowPort. If the FlowSpecification only ownsin FlowProperties, then the direction of the FlowPort must
bein (out if the port is conjugated). If the FlowSpecification only owns out FlowProperties, then the direction of the
FlowPort must be out (in if the port is conjugated). If it contains both in and out properties, then the direction of the
FlowPort must be inout.

Associations

* None

Constraints

[1] A conjugated port may be involved in only bidirectional connector, i.e., connector with exactly two connector ends.
[2] A conjugated port cannot be an atomic port.
self.isConjugated = true implies self.isAtomic = false

[3] The type of a non-atomic flow port has to be a flow specification (i.e., an interface stereotyped with
“flowSpecification”).

[4] A behavioral flow port cannot have delegation connectors.

Notation

The following graphical notation may be used:

Icon Usage
, For 'in' flow ports.
. For 'out' flow ports.
<> For ‘inout' flow ports.

Figure 12.18 shows an example of a Speedometer class owning a port called outSpeed. This port is an outgoing flow port
typed by Integer. That means that instances of this Speedometer class can send Integer data to other external elements
connected to outSpeed port (Note that Figure 12.19.i uses the stereotype notation mixing both text and icon forms,
whereas Figure 12.19.ii uses only the icon form).

«flowPort »

outSpeed: Integer [1] outSpeed: Integer [1]
Speedometer ﬁi{\ Speedometer ljﬂ
direction = out
(i)icon + textform (i) iconform

Figure 12.18 - Example of atomic flow port

164 UML Profile for MARTE, V1.0

« interface »

« flowSpecification »
SpeedSensorFS Speedometer < flowPort » Speedometer
[cSpeed | SpeedDT outSpeed : SpeedSensorFS outSpeed : SpeedSensorFS
J cTime : Time (i} text + icon forms (i) icon form

Figure 12.19 - Example of non-atomic flow port

12.3.2.11 FlowProperty

This stereotype maps the FlowProperty domain concept defined in Section F.6.16. A FlowProperty defines the type and
the direction of a single flow element carried through flow ports. It may relate to a Classifier, a Signal, a PrimitiveType
or a DataType. A flow property isused by as part of a flow specification to characterize the type of a hon-atomic flow

port.

Extensions

» Property

Generalizations

+ None

Attributes

e direction: FlowDirectionKind [1] = inout
Direction of the flow property.

Associations

+ None

Constraints

* None

Notation
When applying the stereotype using its iconographical form, following icons are used:

Icon Usage
, For 'in' flow properties.
. For 'out' flow properties.
<> For ‘inout' flow properties.

Figure 12.20 describes an example using both textual and iconographical forms of the stereotype.

UML Profile for MARTE, V1.0

165

a interface » « interface »
« flowSpecification » « flowSpecification »
SpeedSensorFS SpeedSensorFS
w flowProperty » { direction = out } cSpeed : SpeedDT ' cSpeed | SpeedDT
flowProperty » { direction =in } cTime : Time g cTime : Time
(i} text form (ii} icon form

Figure 12.20 - Example of flow properties

12.3.2.12 FlowSpecification

This stereotype has been defined to specialize interfaces used to type flow port (domain concept introduced inSection
F.6.17) in order to enable the description of the different data a flow port may relay.

Extensions

« Interface

Generalizations

* None

Attributes
« None

Associations
« None

Constraints

[1] If the direction of flow specification is “in,” al its owned flow property must be conformed to this direction (i.e.,
only in flow properties).

[2] If the direction of flow specification is “out,” all its owned flow property must be conformed to this direction (i.e.,
only out flow properties).

[3] A flow specification owns only FlowProperties, i.e., Properties on which the FlowProperty stereotype has been
applied. It cannot own operations, or receptions (of signal).

12.3.2.13 GCMInvocationAction

GCMInvocationAction extends UML InvocationAction metaclass with the ability to specify the Feature (i.e.,
FlowProperty or ClientServerFeature) of a FlowPort or ClientServerPort that is concerned by the invocation.

Extensions
« InvocationAction (from UML.::InvocationActions

Generalizations
* None

166 UML Profile for MARTE, V1.0

Attributes
* None

Associations

e onFeature: Feature [1]
The Feature (of a FlowPort or ClientServerPort) that is concerned by the InvocationAction.

Constraints

[1] The InvocationAction must reference (via InvocationAction::onPort) exactly one port.
[2] The referenced port must be a non-atomic FlowPort or a feature-based ClientServerPort.

[3] Inthe case of a FlowPort, ‘onFeature’ must reference a FlowProperty owned by the FlowSpecification specifying the
port.

[4] In the case of a ClientServerPort, ‘onFeature’ must reference a ClientServerFeature owned by the
ClientServerSpecification specifying the port.

[5] In the case of a FlowPort, the ‘direction’ of the FlowProperty referenced by ‘feature’ must be either out, or inout.

[6] In the case of a ClientServerPort, the ‘kind’ of the ClientServerFeature referenced by ‘feature’ must be either
required, or proreq.

12.3.2.14 GCMTrigger

GCMTrigger extends the UML Trigger metaclass. Within UML, triggers can natively be related to a particular port.
Additionally, the GCMTrigger can be related to a particular feature of a FlowPort or ClientServerPort. It is thus possible
to specify reactions that are, for example, related to the occurrence of a specific event on a given non-atomic port. For
example, if we consider a non-atomic flow port proving an interface defining two flow-property (e.g., atime and a speed),
the designer may specify individual reaction to whatever received information.

Extensions

 Trigger (from UML::InvocationExtensions)

Generalizations
* None

Attributes
* None

Associations

e feature: Feature[1]
The Feature (of a ClientServerSpecification or FlowSpecification) to which the Trigger isrelated.

Constraints

[1] The Trigger must reference (via Trigger::port) exactly one port.

[2] The referenced port must be a non-atomic FlowPort or a feature-based ClientServerPort.

UML Profile for MARTE, V1.0 167

[3] In the case of FlowPort, feature must reference a FlowProperty owned by the FlowSpecification specifying the port.

[4] In the case of a ClientServerPort, feature must reference a ClientServerFeature owned by the
ClientServerSpecification specifying the port.

[5] In the case of a FlowPort, the direction of the FlowProperty referenced by feature must be either in, or inout.

[6] In the case of a ClientServerPort, the kind of the ClientServerSpecification referenced by feature must be either
provided, or proreqg.

12.3.2.15 PortSpecificationKind

The PortSpecificationKind is an enumeration whose literals correspond to the way a ClientServerPort can be used.

Literals

e atomic
The ClientServer port is directly typed by a Signal.

e interfaceBased
The port is not typed, and the properties provided and required of the stereotype ClientServerPort are used to
explicitly specify the set of provided and required interfaces of the port.

o featureBased
The port is not typed, and the “ specification” property is used to explicitly specify the ClientServerSpecification that
determines the features that are required or provided by the port.

12.4 Examples

12.4.1 Example of Model Patterns Illustrating the Usage of Flow Ports

Example 1 shown in Figure 12.21 illustrates the use of an action SendObjectAction to put a data on an atomic out
flowport (port outData in the example). The send is encapsulated in the activity Update, owned by the class Sensor.
According to the statemachine SensorBehavior that models the classifier behavior of the class Sensor, the behavior
Update is called each time the Sensor class receives an occurrence of the signal Tick on its behavioral client-server port
tick.

168 UML Profile for MARTE, V1.0

| Classifler behavior of the class Sgnsnrlkl

Sensor
SM SensorBehavior J
Tick / Update()

- acquire () : Integer

o 3 o o 1 }
fick : Tick outData ; Integer ||]

/_ Update \\l
Activity owned by class
- Sensor
Send result
. 3 l a‘:‘q'"“-gB}%':En:irl outData

1 Y
CallOperationAction invoking the SendObjecthction,
operafion acguire of the class Sensor. | | with "onPort = cutData”

Figure 12.21 - Example 1, a sensor emitting a sample through its flow port outData each time the sensor receives
an update message on its input port tick.

Example 2 shown in Figure 12.22, illustrates the “push” form of the flow port semantics. The port inData is a behavioral
input atomic flow port typed as Integer. Thus, each time an integer value is received on this port inData, a DataEvent is
raised and stored in the event pool of the context object of the classifier behavior DataDrivenFilterClassifierBehavior
(i.e., the instance of the class DataDrivenActuator receiving the integer value). The activity
DataDrivenFilterActuatorClassifierBehavior (used as a classifier behavior for the class DataDrivenActuator) specifies a
reaction to the occurrence of a DataEvent on its flowport inData, as described by its AcceptEventAction. The output pin
of the AcceptEventAction represents the data associated with the DataEvent, which is provided as an input to the next
action, the CallOperationAction compute.

DataDrivenActuator

Classlifier behavior of the
class DataDrivenActuator

o

(DataDrivenFilterClassifierBehavior \
Intesger N
from inData
\

AccaptEventAction with a trigger based on a « DataEvent », j

- compute (in p1: Integer [1])

inData : Integer

i.e., an AnyReceiveEvant on which the « DataEvent »
sterectype has been applied, and the ‘classifier property set
to ‘Integer’.

Figure 12.22 - Example 2, on the "push” form of the flow port semantics. Reactions of the actuator are triggered by
data receptions, through an AcceptEventAction using a "DataEvent" as a trigger.

UML Profile for MARTE, V1.0 169

Example 3 shown in Figure 12.22 illustrates the “pull” variant of flow port semantics. The input port inData, a non-
behavioral port, of the class SamplingActuator has a delegation connector towards the part i_value. This property is typed
by the Integer primitive type accordingly to the type of the port. As described in section 12.3.2.9, 'FlowPort’ on the
semantics of FlowPort, this modeling pattern means that data received on port inData are holded by the property i_value.
In this case, as the stereotype «dataPool» is not applied on the property i _value, the data hold by the property is replaced
each time a new data is received on port inData. This datais then available for the activity Update (which is owned by the
class SamplingActuator). With respect to the classifier behavior SensorBehavior, each time an instance of the class
SamplingA ctuator receives an instance of the signal Tick on its client-server port tick, the outgoing transition from state
On is triggered and its effect behavior is ran. In this case, the effect behavior is modelled by the activity Update. This
latter reads the value hold on the property i_value and passes the value as input parameter to the Call OperationAction
compute.

SamplingActuator

SM SensorBehavior J -
- compute (in p1; Integer [1]) Tick / Update()

tick : Tick

S

inData - Integer

i_value : Integer [0..1]
.\

[

(Update w Classifier bahavior of
class SamplingBehavior
.{ Read |_value }%[Ecompute}%@

¥ . _ - J Activity owned by class
i S
E{eadStmcturalFeaiulreHcimn where CallOparationActia ENS0Or
structuralFeature = i_value

Figure 12.23 - Example 3, on the "pull" form of the flow port semantics. Reactions of the sampling actuator are
triggered by reception of Tick signal instances

In addition to Example 3 shown in Figure 12.23, Example 4 depicted in Figure 12.24 illustrates the use the stereotype
«dataPool» applied here on the property buffer of the class SamplingActuator. The activity Replace (see top left corner of
Figure 12.24) is used as a specification of how data must be inserted in the property buffer when they are received on the
flow port inData. Moreover, this example also illustrates the use of connectors between the input parameter of the activity
Update (owned by the class SamplingActuator) and the property buffer, and the use of connectors between the output
parameter of the activity updateMethod and the flow port outData of class SamplingActuator. These connectors mean that
each time the activity Update is called (here, as a consequence of Tick signal occurrences), the input values to activity
Update are read from the data pool buffer, with respect to the 'selection’ policy specified by the activity LastlsBest (see
top right corner in Figure 12.24). When an execution of activity Update finishes, data available on its output parameter
are propagated via the delegation connector between its ouput parameter and the flow port outData of the actuator.

170 UML Profile for MARTE, V1.0

inData : Integer

/ Replace ‘\ LastisBest \\
input write input on buffer H read buffer outpul ‘

g

H
addStructuralFeatureValueAction, with:
isReplacesll = true

structuralFeature = buffer

]

N

1
readStructuralFeaturedction, with:
structural Feature = buffer

Behavior {owned by the SamplingActuator class) used to
describe the insertion policy of tha buffer DataPool

Beh

avior {owned by the SampllngAcluamr class) used to

describe the selection policy of the buffer DataPool

SamplingActuator

[®]
tick : Tick

D |

« dataPool »
buffer : Integer [1] =0

« dataPool #
- | ordering = UserDefined
insertion = Replace
selection = LastlsBast

Classifier behavior of the
SamplingActuater Class

SM SensorBehavior / Tick / Update()

e

>

outData : Integer

PR

Fartial view of the coresponding model repository

‘ & dataPool » ownedConnecior ‘
i Class Jpart iEroperty role end
name = "SamplingActuator’ name = "buffer”
{ } ‘ type = Integer
: Parameter end
+ Activity ownedParameter | name = "input’ role
name = "UpdateMethod" direction = In eonnegtorEnd
Iype = Integear
: Parameter
- ownedParameter| name = "output’ [I8 : ConnectorEnd
owmedBehavior direction = return
type = Integer
e end
method
—
1 Operation
name = "Update” « FlowPort »
ownedOperation {direction = out} | role + Connector
: i.ConnectorEnd
fownedPort iPort and
name = "outData" ownedConnector

Figure 12.24 - Example 4, on the usage of the stereotype "DataPool" in the context of the "pull" form of the flow

port semantics

Example 5 shown in Figure 12.25 illustrates the use of an Activity as a classifier behavior (i.e.,
DataDrivenFilterBehavior) for putting into action the 'push’ form of flow port semantics. Data received on the flow port
inData are made available as tokens to the streaming parameter input of the activity DataDrivenFilterBehavior via a
delegation connector. As UML activities behave naturally according to the push form of flow port semantics, the tokens
available on the parameter input will be proposed to the CallOperationAction filter. This latter will consume incoming
token one per one and produce output tokens on its streaming parameter labeled output. The delegation connector

UML Profile for MARTE, V1.0

171

between the parameter output of DataDrivenFilterBehavior and the flow port outData of DataDrivenFilter is used to mean
that the data produced by the activity is conveyed to the port outData. Note that the use of streaming parametersis
essential so that the execution of DataDrivenFilterBehavior can accept and produce data in a pipeline manner.

DataDrivenFilter

= filter {input :Integer[1]) : Integer [1]

/ DataDrivenFilterBehavior I

o
@ input m output [b]

inData : Integer ustreamlng} {slreamlngy outDiata : Integer

i [Partial view of the comesponding model repository

v
« flowPort »
{direction = in} : Parameter |parameter ActivityParameterNode
. : ity
- name = input
: Class fownedPort | Name = Inlzata direction = in ownedParametar node
name = "DataDrivenFiltar" |sBah_awm = false type = Integer
type = Integer isSiream = rue
rale T‘ role 1\
‘ : ConnectorEnd ‘ | : ConnectorEnd |
end ‘and
’ 4

cwnedConnect .
on 2 : Connector | Loctivit - .
faime = classifierBehavior
owned nect
1 Cannectar : Connector |

"DataDrivenFilterBehavior™
] [

and end

: ConnectorEnd : ConnectorEnd

role ‘JI e 4{

fownedPort | & flowPort » : Parameter
{direction = out}
. Port name = output | OWnedParameler nede
direction = in
name = "outDala" type = Integer pErrametar : ActivityParameterNode
isBehavior = false jsSiream = true
type = Integer

Figure 12.25 - Example 5, on the "push" form of the flow port semantics
12.4.2 Automotive Example

The example shown in Figure 12.26 denotes the interface description for the example of a component model depicted
previously. The package SpeedRegulatorlnterfaces consists of two definitions of interface and one signal declaration.
Reglnterface is a UML2 interface stereotyped with “clientServerSpecification.” It specifies a provided reception for the
Start signal (i.e., a reception stereotyped with “clientServerFeature” with kind = 'provided.' It is modeled in this example
using the iconographical notation) and a required controlEngine service (i.e., an operation stereotyped as
“clientServerFeature,” with kind = 'required.’ It is also represented using the iconographical notation). The interface
ECInterface is a classical UML interface, with a single operation named control Engine.

172 UML Profile for MARTE, V1.0

SpeedRegulatorinterfaces

SignalDeclarations
a interface » « interface »
[wsignal» | ECInterface « clientServerSpecification »
Start controlEngine {in torque - Real [1]) Reglnterface
targetSpeed : Integer [1] O « signal » Start
(controlEnging (in torque © Real [1])

Figure 12.26 - Interfaces definition for a speed regulator example

The example shown in Figure 12.27 denotes a CarSpeedRegulator composite class including its ports and its internal
parts. This class has two ports, regOn and engineCmd, stereotyped as “ClientServerPort.” The port regOn is a required
atomic port (i.e., /specificationKind = atomic, and kind = required, as depicted by the comment symbol attached to the
stereotyped port). This port is typed with the Start signal (see previous definition of this signal in the package named
SignalDeclarations as shown in Figure 12.26). The class CarSpeedRegulator exposes then to its environment a port
through which it can consume occurrences of the signal Start. The second port exposed by the class CarSpeedRegulator is
the port labeled engineCmd. It is an interface-based ClientServerPort (/specificationKind = interfaceBased) requiring the
interface EClnterface (reginterface = [EClnterface], implying that kind = required).

In addition, the class CarSpeedRegulator also owns also two parts, spm and rgm. The part spm specifies an output atomic
flow port labeled outSpeed relaying integer output data to its environment. The part rgm defines firstly an atomic input
flow port labeled inSpeed conveying integer data received from its environment. The second port owned by the part rgm,
the port startAndControl, is a feature-based ClientServerPort (/specificationKind = featureBased). Its provided and
required features are then specified using the client-server specification Reglnterface (featuresSpec = Reglnterface). The
port startAndControl is not conjugated (isConjugated = false). As specified by the client-server specification Reglnterface
shown in Figure 12.25, the port startAndControl provides a Reception for the Start signal and requires the operation
controlEngine. As the client-server specification Reglnterface owns both a provided (reception to signal Start) and a
required (operation controlEngine) client-server feature, the kind of this port is both provided and required (i.e., its kind
property is setup to proreq).

The delegation connector between both ports, regOn and startAndControl, means that signal occurrences of the signal
Start received on the port regOn will be propagated through this connector towards the port startAndControl. This
delegation connector is valid because the port startAndControl provides a reception for the signal Start. The delegation
connector between ports startAndControl and engineCmd means that request to the operation control Engine emitted from
the port startAndControl will be propagated through the connector towards the port engineCmd. This latter will in turn
propagate the request to its environment. This connector is valid firstly because both ports, startAndControl and
engineCmd, require the operation controlEngine, but also because the operation required by the port startAndControl is
compatible with respect to its signature with the operation also required by the port engineCmd.

UML Profile for MARTE, V1.0 173

CarWithSpeedRegulator

CarSpeedRegulator

u flowPort » u flowPart »
utSpeed: Integer [1] inSpead: Integer [1]

o
spm; Speedometer [1] I_Jl;,

i clientServerPort » « clientSarverPort
K regOn; Start [1] @ startAndControl [1
) i

rspecicationkind = featuraBasad
specification = Reginterace

rgm:Regulator [1]

ECInterface

« clientServerPort »
engineCmd [1] F?J
.

TepmtMatonking = IWereabased 15
ragintedace = |ECInerksce]

Con|ugated = false

Figure 12.27 - Example of UML composite classes and parts with specialized MARTE ports

« clientSarvarPort » 2]| « clientServerPort »
regOn: Start [1] engineCmd[1]
CarSpeadRegulator
izpacificatianking = atamic tapeciicalionkind = intaracebasad
kind = prowided | reqinterface = [ECImaracs|

T I

Figure 12.28 - Example of UML component with specialized MARTE ports
12.4.3 Avionics Example

Figure 12.29 illustrates a Trajectory component used in a Flight Management System inspired from an avionics textbook.
This component computes a trajectory and generates continuous navigation commands to other equipment. Trajectory
depends on three components, defined in related packages, to perform its tasks: FlightPlan, Location, and Database.

Trajectory makes use of flight plan data, as well as the current plane location to perform computations. It explicitly calls
the getLocation and getFlightPlan required services, to access these data when needed. These services are defined in the
LocationAccess and FlightPlanAccess interfaces, bound to two dedicated message ports.

Trajectory also makes use of performance and fuel consummation parameters stored in its cache. It happens that a pilot
changes these parameters, initialy stored in the database, when the FM S is in operation. If so, the Database component
notifies Trajectory that new parameters need to be taken into account. This information is pushed through an atomic flow
port to the Trajectory component. The 3 icon indicates that the direction of the Trajectory flow port is“in.” The flow
port is typed by a ParameterUpdated signal that contains new parameter data.

When computations are completed, Trajectory generates navigation commands as a data flow specified by the
NavCommand flow specification. The data flow is transmitted to external equipment through a dedicated flow port. The
<> icon indicates that the port is typed by a flow specification and therefore it is not atomic.

174 UML Profile for MARTE, V1.0

Database

« signal »
ParameterUpdated

newParam: ParameterData

M
LCacallon Trajactory | i
« interface » « interface »
LocationAccess - « BowSpecification »
1| MavCommand
Lacationllata: getl.ocation() « flowProperty » {direction = out} vhav: Command
« flowProperty » {[directicn = cut} Inav: Command

R « FlowPort »
update: ParameterUpdated

(=]
.

lons:

FlightPlan

PlanAccess

o interface »
FlanAccess hez -

« FlowPort »
nav: NawCommand

FlightFlanData: getFlightPlan()

LocationAccess

Figure 12.29 - Trajectory component definition

Figure 12.30 illustrates the internal structure of the simple FMS. It shows how the Trajectory component, along with
FlightPlan, Location and Database, is used as a part of the FlightMangementSystem composite structure. One can
distinguish boundary ports, owned by FlightManagementSystem and defined at the component boundaries. These ports
relay incoming data inside a component (e.g., cdsCom, cdsDisplay, irs, radio) or outgoing data to other connected
components (e.g., extNav). The other ports indicated in the composite structure relate to component parts (e.g., fp, loc,
update, nav, owned by the :Trajectory part). These ports are used to tie parts together using connectors and define a
component assembly. Within a component assembly, connected ports need to define compatible types and directions.
Message ports need to be typed by a common interface (e.g., PlanAccess), a left-hand port providing this interface (e.g.,
traj) and a right-hand port requiring this interface (e.g., fp). Flow ports need to be typed by a common flow element or
flow-specification (e.g., ParameterUpdated), with opposite directions on the left-hand and right-hand ports (e.g., src and
handler).

A boundary port can be connected to a port owned by a part in order to relay a service invocation or a data flow to the
component assembly (e.g., cdsDisplay and cds). In that case, port directions are relayed as well.

UML Profile for MARTE, V1.0 175

nav: NavCommand
d

LocationAccess

FlightManagementSystem
CDSCommand
v% cds: src: ParameterUptated
cdsCom: :Database »
CDSCommand ; 1]
p: DBAccess
handler: ParameterUpdated
CDSDisplay DBAccess db: 3
LT
. PlanAccess
cds: traj:
cdsDisplay: :FlightPlan :Trajectory =
PlanAccess fp:
CDSDisplay !
loc:
irs: IRSInterface LocationAccess
:Location
irs: IRSInterface loc:
b
radio: Radiolnterface
b

extNav: NavCommand

radio: Radiolnterface

Figure 12.30 - FlightManagementSystem internal structure

Note — Both Figure 12.29 and Figure 12.30 are compatible with the SysML block definition diagrams and internal block

diagrams.

176

UML Profile for MARTE, V1.0

13 High-Level Application Modeling (HLAM)

13.1 Overview

1 |
MARTE::GRM MARTE::CoreElemeants
I [}
1
HLAM

Figure 13.1 - Dependencies of the HLAM package

Asiillustrated by Figure 13.1, the HLAM package of MARTE is depending of both GRM and CoreElements packages.
The concern of the HLAM package is to provide high-level modeling concepts to deal with real-time and embedded
features modeling. In comparison with usual application domains, RT systems (in short RTS) development requires
possihilities of modeling on one hand quantitative features such as deadline and period and, in other the hand, qualitative
features that are related to behavior, communication and concurrency. The next section will describe a domain model
defining the MARTE concepts for RT/E high-level modeling constructs to support both aspects.

13.2 Domain View

One first important issue to deal with when modeling RTE applications is concurrency. In order to handle that feature, this
specification uses the concept of RtUnit as depicted in Figure 13.2. It provides high-level constructs for real-time and
embedded application modeling based on the MARTE foundations introduced in Part | (within both CoreElements and
GRM packages) and in the Generic Component Model. An RtUnit is similar to the active object of UML but with a more
detailed semantics description. It owns one or several schedulable resources (GRM::Scheduling::SchedulableResource). If
its dynamic attribute is set to true, the schedulable resources are created dynamically when required. In other case, the
real-time unit has a pool of schedulable resources. When no schedulable resource is available , the real-time unit may
either wait indefinitely for a resource to be released, wait for only a given amount of time (specified by its

pool WaitingTime attribute), and increase its pool thread dynamically to adapt to the demand, or generate an exception.

Hence, a real-time unit may be seen as an autonomous execution resource, able to handle different messages at the same
time. It can manage concurrency and real-time constraints attached to incoming messages. An RtUnit is a unit of
concurrency that encapsulates in a single entity both the object and the process paradigms, which means that concurrency
control is encapsulated within the unit. Any real-time unit can invoke services of other real-time units, send signals or
data (see the GCM chapter for details on datafl ow-oriented communications), without worrying about concurrency issues.
Real-time units are some kind of tasks servers that can satisfy several requests from several real-time units at the same
time, enabling intra-unit parallelism if necessary. An RtUnit owns also a concurrency and behavior controller for
managing message constraints according to its current state and the concurrent execution constraints attached to the

messages.
An application owns at least one main RtUnit. Following creation, each real-time unit that has a main (which is indicated
by setting the isMain attribute to true) starts invoking a main real-time service, which executes until the real-time unit is

terminated. Like any other real-time units, the main service of a main unit may perform explicit receive actions during its
execution, in order to accept any received events. A receive action by a real-time unit leads to a direct activation of the

UML Profile for MARTE, V1.0 177

appropriate service specification. During the execution of the service, triggered by the receipt of the message, the main
service may either be blocked (the so-called “run-to-completion” paradigm), or it may proceed executing concurrently to
other real-time service. In this latter case, intra-concurrency is to be available within a real-time unit.

An RtUnit may own one or severa behaviors (see GCM::StructuredComponent and
CoreElements::Causality::CommonBehavior::BehavioredClassifier). An RtUnit also owns a single message queue for
saving the messages it receives once its execution has started. This message queue is equivalent to the event pool of a
UML active object, except that the semantic variation point related to event selection is resolved via the possibility of
specifying a scheduling policy for the queue (see Figure 13.4). Messages contained in the queue can represent operation
calls, signal occurrences or data receptions. Each message can be used to trigger the execution of a behavior owned by the
unit (i.e., as described by its main service). It can also be used as a trigger by any behavior executing in the context of the
unit, and expecting such a message in the course of its execution. The size of the message queue may be infinite or
limited. In this latter case, the queue size is specified by its maxSize attribute. In addition, an RtUnit owns a specific
behavior, called operational mode. This behavior usually takes the form of a state-based behavior where states represents
a configuration of the RtUnit and transitions denotes reconfigurations of the unit.

GRM: ResourceTypes::
ResourceManager

GRM::ResourceCore:: CcreElemems::Ca_usallty::
Service CommonBehaviors::
BehavioredClassifiar

T T | T

services RtUni
{subsals pServicas} nit

GRM::RescurceTypas::
ConcurrencyResource

rd I i laperationalMades. CoreElaments::
isDynamic: Boolean =
RtService ! isMBEriin: Boolean owner {subsets ownedBehavior} Causality::
memarySize | MFP_DataSize 1 0.1 CommonBehavior:
0.1 1@ srPoolPalicy: PoolfigtPolicy Behavior
JSmain srPocl\WaitingTime: MFP_Duration

{subsets pServices}

« enumeration » awner 1 CWNET 1
PoolMgtPoli =
g o oy exaRes queus 1

infiniteWWait

timedyVait GRM: RescurceTypeas::

create ComputingResource InMsgQueue
exception

other

Figure 13.2 - RtUnit of the HLAM package

When modeling for concurrency, it is mandatory to be able to model shared information. For that purpose, it has been
introduced the concept of protected passive unit (PpUnit) as denoted in Figure 13.3. Protected passive units specify their
concurrency policy either globally for all of their provided services (concPolicy attribute), or locally through the
concPolicy attribute of an RtService. The execution kind of a protected passive unit is either immediateRemote or
deferred. In both cases, the execution is remote, i.e., it uses a schedulable resource of the real-time unit that invokes the
service provided by the protected passive unit.

178 UML Profile for MARTE, V1.0

CoreElements:: Causality:: CoreElements::
CommuonBehaviors: Causality::CommonBehavior:
BehavioredClassifiar SynchResource
cervines PpUnit « @numeration »
{subsels pServices} concPalicy: CallConcumencyKind CallConcurrencyKind
RtService - ;
*] sequential
guarded
concurrent

Figure 13.3 - PpUnit of the HLAM package

The incoming message queue of areal-time unit plays the role of the broker for its schedulable resources. The possible
scheduling policies defined within MARTE are specified by the MARTE::GRM :: Scheduling::SchedPolicyKind
enumeration. The selected policy actually determines the order in which messages will be extracted from the queue. The
size of the message queue may be either infinite or limited. In the latter case, its size is specified through its queueSize
attribute. Additionally, a message queue can also specify the maximal size of the message (msgMaxSize attribute) that
may be received.

GRM::ResourceTypes:: GRM::ResocurceTypes:
StorageResource ResourceBroker
InMsgQueue 1 (Cce | CoreElements::Causality::
ner S Communication::
queueSchedPolicy: SchedulingPolicyKind RecenaOccumance
queueSize : Integer jexeRes
msghMaxSize : NFP_DataSize 1 {subsets managedResource} GRM:RecourceTypes:
broker . ComputingResource
[
« enumeration »
SchedulingPolicyKind
schedulingPolicy
: FIFO
{subset accCtriPolicy} LIFO
CompResPolicy FixedPriorily
EDF
kind : SchedulingPolicyKind ELF
RoundRaobin
Synchronous
Crther

Figure 13.4 - InMsgQueue of the HLAM package

As shown in Figure 13.2 and Figure 13.3, real-time units and protected passive units may provide real-time services. In
the case of the protected passive units, as they use the schedulable resource of invoking real-time units, it has to be
specified the concurrency policy of the service (concPolicy attribute). The execution of a real-time service may be
declared as atomic and it is al'so possible to specify how the execution is handled by the unit through the exeKind
attribute. The service execution may be deferred (i.e., save in a queue of a behaviour of the unit) or immediate. In this
case, in a real-time unit, the execution may be done in the context of the calling unit (i.e., remote execution) or in the
context of the unit receiving the message (i.e., local execution). In case of a protected passive unit, the remote case does

UML Profile for MARTE, V1.0 179

not apply. Finally, a real-time service may specify a real-time feature and a concurrency policy. Both these information
may be used by the internal controllers of real-time units and protected passive units to control the execution of their
services.

GRM: ResourceCore::

Service RealTimeFeature
utility: UtilityType
occKind: ArmvalPattern
Ref: TimedInstantObservation
relDl NFP_Duration

RiService absDl; NFP_DateTima
boundDl: NFP_Duration
concPolicy: ConcurrencyKind pRTFE | rdTime: NFP_Duration
exeKind: ExecutionKind ‘—0_1:. miss: NFP_Percentage
tsAtomic: Boolean [1] = false priority : NFP_Integer
synchiind: Synchronizationkind

« enumeration » « erumeration » « enumeration » « flatﬁTvP'E » B
SynchranisationKind ConcurrencyKind ExecutionKind MRTEUE:&%TE_D&.; Type::
synchronaus reader deferred !
asynchranous writer remotelmmediate =={u: UilityType i Boolean
delayedSynchronaus parallel locallmmediate <z Utility T yvpie): Bool ean
> =8 p
rendezVous Sl LT oepSonienn
other =={u; UtilityTypa ;Boolean
>={u: Lty Tvpe i Boalean

Figure 13.5 - RtService of the HLAM package

One other important qualitative feature to handle in this domain concerns the communication aspects. In UML,
communications are initiated by executing specific actions such as call actions. Here it is introduced the concept of
realtime action (specialization of the InvocationAction concept introduced in the MARTE::GCM package). Real-time
action can specify real-time features such as a deadline or period (see details of the ArrivalPattern data type introduced in
the MARTE Model Library). It can also describe the size of the message generated when executing or the kind of
synchronization (synchKind attribute). Finally, a real-time action execution may be defined as atomic.

GCM:
InvocationAction

i

RtAction

pRTE
synchKind: SynchranizationKind ~ [¥———== RealTimeFeature

isAtomic: Boolean [1] = false 0.1
msgSize | NFP_DataSize

Figure 13.6 - RtAction of the HLAM package

This section formalizes a specific model of computation aligned on the notion of active object defined in UML. It is
applicable for asynchronous / event-based approaches to real-time and embedded application design.

Other approaches and models of computation exist in the real-time and embedded domain (e.g., synchronous objects).
The MARTE specification does not explicitly address these models at this time. However, the framework introduced in
Part | provides the foundations to specify alternative models of computation as an extension to the specification. Making

180 UML Profile for MARTE, V1.0

use of the NFP, Time and GRM packages, interested parties are able to formalize user-defined models of computation that
rely on the same semantics foundation. It provides the ability to leverage existing MARTE capabilities along with this

specific model.

13.3 UML Representation

This section describes the MARTE HLAM sub-profile. This latter contains all required UML extensions to support the
concepts denoted in the previous domain model.

1

o profile »
HLAM

Figure 13.7 - The MARTE HLAM sub-profile

13.3.1 Profile Diagrams

Figure 13.8 - RtUnit and PpUnit stereotype of the MARTE::HLAM sub-profile

UML Profile for MARTE, V1.0

« enumeration »
PoolMgtPolicyKind CallConcurrencyKind
:in;:'dlﬁ't « metaclass » sequential
dynamic ‘CommonBehavior: guarded
exception BasicBehaviors:: concumant
ather BehavioredClassifier
« sterectype » « stereotype » :&g‘#g‘?_’;?:“ .’f

RtUnit PpUnit SRM Bagicwp";__
isDynamic: Boolean [1] = true concPolicy: CallConcurrencykind SchedPalicykind
isMain: Boolean memorySize: NFP_DataSize EarliestDeadiineFirst
srPoolSize: Integer LIEQ
srPoolPolicy: PoolMgtPolicykind FixedPriotity
srPoolWaitingTime: NFP_Duration Leastl axityFirst
queugg:hetfPoliw: SchedPolicyKind RoundRobin
gueuedize: Integer + :
msgMaxSiza: NFP_DataSize il'.'lnmdgableDrlven
operatiocnalMode: Behavior Other
main: Operation
memorySize: NFP_DataSize

181

« metaclass »
Kemel:BehavioralFeature

« metaclass »
CommonBehavior:
BasicBehaviors:

« mataclass »
Basicinteractions::Message

« metaclass »
Communication::Signal

« metaclass »
Ports:Port

InvecationAction

feontext | [0..1] 1 T T f +

{subsats annotatedElemeant} I
« stereotyps » « sterectype »
RiFeature RtSpecification

Ispacification utility: LHilfy Typa
occkind: AmmivalPattern
{subsets ownedCommentl o ... runedinstantobseration
1.4 rall¥: NFP_Duration

absDl: NFP_DataTime
BoundDil: MFP_Duration
rdTime: NFP_Duration
miss: NFP_Percentage
priority : NFF_Integer

l

« mataclass »
Kearnel::Commant

Figure 13.9 - RtFeature stereotype of the MARTE::HLAM sub-profile

« melaclass »
CommonBehavior:
BasicBehaviors:invocationAction

t f

« metaclass »
Kemel::BehavioralFeature

I « enumeration »
+ stere " SynchronisationKind
RtAction synchronous
synehkind: Synchronizationkind 327:?&%;@;;“
isftomic: Boolean [1] = false rendiz\."ous
msgSize: NFP_DataSize other

Figure 13.10 - RtAction of the MARTE::HLAM sub-profile

« dataType »
MARTELIib::MARTE _DataType::
Utitity Type

=={u: UtiliteType):Boolean

« enumeration »
SynchronisationKind

« metaclass »
synchronous 2 "
UML2::BehavioralFeature a);ynchmnnus Eﬂ"-u‘!'!‘:__r'_!ww
2iu; Lility Type :Boolean.
delayedSynchronaus ==(u; UtiiyType);Boolean
? rendezVous =={u: UtilityTypa):Boolean
other =={u: Uitilite T :Boolean
RtService
« anumeration » « enumeration »
concPolicy; ConcurrencyKind ExecutionKind ConcurrencyKind
exeKind: Executionkind dofored ney
isAlomic: Boolean [1] = false reader
synchKind: SynchronizationKind Ec”:;::_r'?:;ia;:ggm wiiter
parallel

Figure 13.11 - RtService of the MARTE

182

::HLAM sub-profile

UML Profile for MARTE, V1.0

13.3.2 Profile Elements Description

13.3.2.1 CallConcurrencyKind

The CallConcurrencyKind enumeration maps the CallConcurrencyKind domain element denoted in Annex F (Section
F.7.1).

This enumeration defines the kind of concurrency policy applied to a protected passive unit.

Literals

e seguentia
Only one schedulable resource at atime can access a feature of a PpUnit. The PpUnit do not
provide in this case access control mechanism,; it is up to the client to deal with potential
concurrent conflicts.

e guarded
A schedulable resource at atime can access a feature of a PpUnit while concurrent ones are suspended.

e concurrent
Multiple schedulable resources at a time can access a PpUnit.

13.3.2.2 ConcurrencyKind
The ConcurrencyKind enumeration maps the ConcurrencyKind domain element denoted in Annex F (Section F.7.3).

This enumeration defines the kinds of concurrency of a behavioral feature.

Literals

e reader
The behavioral feature execution has no side effects (i.e. it does not modify the state of the object,
or the values of its properties).

e writer
The behavioral feature execution may have side effects.

e padld
The behavioral feature execution may be done in parallel of any kind of service.
13.3.2.3 ExecutionKind

The ExecutionKind enumeration maps the ExecutionKind domain element denoted in Annex F (Section F.7.4).

This enumeration defines the kind of execution of a behavioral feature.

Literals

e deferred
Event occurrence matching the service invocation is saved in the queue of bahavior attached to the object.

e remotelmmediate
The execution is performed immediately with schedul able resource of the calling object.

e localmmediate
The execution is performed immediately with a schedulable resource of the called object.

UML Profile for MARTE, V1.0 183

13.3.2.4 PoolMgtPolicyKind
The PoolMgtPolicyKind ennumeration maps the PoolMgtPolicy domain element denoted in Annex F (Section F.7.4).

This enumeration has been introduced in the profile to define the concurrency pool management policy of the real-time
units.

Literals
e infiniteWait
If the pool is empty, the real-time unit waits indefinitely until a schedulable resource will be rel eased.

+ timedWait
If the poal is empty, the real-time unit waits for bound time until a schedulable resource will be released. At the end of
the waiting time, if no schedulable resource have released, an exception is raised.

e dynamic
If the pool is empty, the real-time unit creates a new schedul able resource and adds it to the pool.

e exception
If the pool is empty, the real-time unit raise an exception.

e other

13.3.2.5 PpUnit
The PpUnit stereotype maps the PpUnit domain element denoted in Annex F (Section F.7.7).

Protected passive units specify their concurrency policy either globally for all of their provided services (concPolicy
attribute), or locally through the concPolicy attribute of the RtService. The execution kind of a protected passive unit is
either immediateRemote or deferred. In this latter case, the execution is also remote, i.e., it uses the schedulable resource
of the real-time unit invoking the service to the protected passive unit.

Extensions

« BehavioredClassifier (from UML ::CommonBehavior::BasicBehaviors).

Attributes

e concPalicy: CallConurrencyKind [0..1]
Kind of concurrency policy applied to the behavioral feature of the PpUnit. CallConcurrencyKind
is the enumeration defined in the UML2. Itsliteral values may be as defined in UML: sequential, guarded, or
concurrent.

e memorySize: NFP_DataSize
Amount of static memory required for each instance of the protected passive unit to be placed in an application.

13.3.2.6 RtAction
The RtAction stereotype maps the RtAction domain element denoted in Annex F (Section F.7.8).

InvocationActions and Behavioral Features, stereotyped with RtAction, gain the additional following attributes of “real-
time” constraints.

Extensions

« InvocationAction (from UML::BasicBehaviors)

184 UML Profile for MARTE, V1.0

« Behavioral Feature (from UML ::Kernel)

Attributes

e synchKind: SynchronizationKind
Synchronization mechanism associated to the communication action.

e isAtomic: Boolean [1] = false
When true, implies that the RtAction executes as one indivisible unit, non-interleaved with other RtActions.

« msgSize: NFP_DataSize
Size of amessage generated when executing an action.

13.3.2.7 RtFeature
The RtFeature stereotype maps the Real TimeFeature domain element denoted in Annex F (Section F.7.10).

The RtFeature stereotype is used to annotate model elements with real-time features according to set of RtSpecification
associated with this stereotype. This stereotype may be also used in other contexts than RtUnit and PpUnit.

The stereotype «RtFeature» can be applied to multiple kinds of modeling elements (i.e., behavioral features, actions,
messages, signals, and ports). Whatever the element on which the stereotype is applied, there is a common run-time
interpretation for real-time specifications associated with a real-time feature. The stereotype «RtSpecification» enables
indeed to capture information concerning messages in transit between two (or more) communicating instances. This
information is used by the receiving instances as constraints on behavior executions triggered by incoming messages.

The run-time moment at which the values for this information are fixed depends on the design-time element on which the
stereotype «RtFeature» has been applied. It can be easily understood in terms of priority rules, as described in the
following paragraph.

The most basic model elements on which the stereotype «RtFeature» can be applied are instances of InvocationAction.
When such action is executed at run-time, a message carrying run-time values (consistent with the corresponding values
of the properties of the instance of the stereotype «RtSpecification» applied on the executed action) will be sent. The
instance receiving the message will then handle it a priori by launching the execution of a behavior. This execution will
then be constrained by the real-time information associated with the message. Applying the stereotype «RtFeature» on a
modeling element that is not an instance of InvocationAction can be seen as a means for defining a default real-time
constraint specification if an invocation action has no associated real-time specification. In the case where the stereotype
«RtFeature» is applied on several modeling elements, the HLAM profile provides priority rules between the different
modeling elements on which the stereotype can be applied, as illustrated in Figure 13.12.

For example, if the design-time model is object-oriented (i.e., corresponding run-time instances do not communicate via
ports), the stereotype RtFeature can also be applied on a Behavioral Feature of a classifier involved in the model. At run-
time, when an instance of this classifier receives a message (i.e., operation call event or signal occurrence) related to an
«RtFeature» behavioral feature and in the case where the invocation action (whose execution resulted in the emission of
this message) was not stereotyped with «RtFeature», real-time information associated with the «RtFeature» behavioral
feature are used to determine the real-time information associated with the message itself. In the case where the
stereotype «RtFeature» is applied on both the invocation action and the invoked behavioral feature, the real-time
specification associated with the action has priority on the real-time specification associated with the behavioral feature.
In Figure 13.12, green circles represent the different places where the stereotype «RtFeature» can be applied within a
UML model. The number associated with each circle represents the priority of the modeling element (i.e., real-time
information associated with an invocation action has the strongest priority).

UML Profile for MARTE, V1.0 185

Comp3
AA
¢l : Comp c2 : Comp2

« interface »
s A
Invation
. opAl)
&dlol'l@ w signal » 5
e

> :

Comp1 Comp2
A 2
0]
- o - B
« signal »

s

Figure 13.12 - RtFeature annotation possibilities and priority rules for interpretation of these annotations

The interpretation of each rule is then as follows:

Case 1. The stereotype «RtFeature» is applied to an invocation action. When such an action is executed, a message
associated with real-time information (based on the real-time specification associated with the action) is sent.

Case 2. The stereotype «RtFeature» is applied to a port with a real-time specification concerning a required feature (i.e.,
in the example, the attribute context of the RtSpecification associated with the port p would be equal to opA). At run-
time, if no real-time information can be determined from rule 1, real-time information associated with a message emitted
through the port will be determined with respect to the real-time specifications associated with the port.

Case 3. The stereotype «RtFeature» is applied to a port with a real-time specification concerning a provided feature (i.e.,
in the example, the attribute ‘context’ of the RtSpecification associated with port 'q' would be equal to 'opA’). At run-time,
if no real-time information can be determined from rules 1 or 2, real-time information associated with a message emitted
through the port will be determined with respect to the real-time specifications associated with the port.

Case 4. The stereotype «RtFeature» is applied to a behavioral feature of a class. At run-time, if no real-time information
can be determined from rules 1, 2, or 3, real-time information associated with a message invoking this behavioral feature
will be determined according to the real-time specification associated with the behavioral feature.

Case 5. The stereotype «RtFeature» is applied to a behavioral feature of an interface. At run-time, if no real-time
information can be determined from rules 1, 2, 3, or 4, real-time information associated with a message invoking this
behavioral feature (i.e., typically a message targeting an instance whose classifier realizes this interface) will be
determined with respect to the real-time specification associated with the behavioral feature of the interface.

Case 6. The stereotype «RtFeature» is applied to a signal definition. At run-time, if no real-time information can be
determined from rules 1, 2, 3, 4, or 5, real-time information associated with a signal occurrence typed this signal will be
determined according to real-time information associated with the signal.

186 UML Profile for MARTE, V1.0

Extensions
« Action (from UML::Kernel)

« Behavioral Feature (from UML ::Kernel)
» Message (from UML ::Basiclnteractions)
« Signal (from UML::Communication)

« Behavior (from UML::BasicBehaviors)

Associations

» /specification : RtSpecification [1..*] { subsets ownedComment}
Thisisaderived property. It references the set of comments owned by this “ RtFeature” on which the stereotype
“RtSpecification” is applied.

Constraints

[1] The set of comments (i.e., property ownedComment) owned by the element on which the stereotype «RtFeature» is
applied contains at least one «RtSpecification».

[2] If the stereotype «RtFeature» is not applied to a port, the property specification must reference exactly one
«RtSpecification.

13.3.2.8 RtService
The RtService stereotype maps the RtService domain element denoted in Annex F (Section F.7.12).

BehavioralFeatures, stereotyped with RtService, gain the additional following attributes of “real-time” constraints. The
RtService stereotype may be applied on one Behavioral Feature independently of the fact that the containing classifier to
be either a RtUnit or a PpUnit.

Extensions
« Behavioral Feature (from UML ::Kernel)

Attributes

e concPalicy: ConcurrencyKind [0..1]
Concurrency property of the service.

e exeKind: ExecutionKind [0..1]
Execution nature property of the service.

e isAtomic: Boolean [1] = fase
When true, implies that the RtService executes as one indivisible unit, non-interleaved with other RtService.

e synchKind: SynchronizationKind [0..1]
Synchronization mechanism of the service.

13.3.2.9 RtSpecification

The stereotype RtSpecification enables capturing information (with real-time concerns) concerning messages in transit
between two (or more) communicating instances. This information is used by the receiving instances as constraints on
behavior executions triggered by the reception of the message.

UML Profile for MARTE, V1.0 187

Extensions
» Comment (from UML::Kernel)

Attributes

e utility: UtilityType[0..1]
Specification of the importance features. This property is typed by the UtilityType data type defined in the
MARTE_Library. Thistypeisabstract and it is up to the user to define its own specialized utility type according to its
needs.

e occKind: ArrivalPattern [0..1]
Specification of the arrival pattern.

« tRef: TimedinstantObservation [0..1]
Time reference used for relative timing properties.

e relDIl: NFP_Duration [0..1]
specification of the relative deadline.

e absDI: NFP_DateTime[0..1]
Specification of the absolute deadline.

e boundDl: NFP_Duration [0..1]
Specifies the relative deadline.

e rdTime: NFP_Duration [0..1]
Specifies the minimal ready time.
¢ miss. NFP_Percentage [0..1]
Specifies the percentage of acceptance for missing the deadline.
e priority : NFP_Integer [0..1]
Specification of the priority.
e context : Behavioral Feature [0..1]
Specification of the 'context' behavioral feature, in the case where the owning RtFeature is a port.

Associations

e /context: Behavioral Feature [0..1] { subsets annotatedElement}
Thisisaderived property. It references the Behavioral Feature on which the information contained in this
«RtSpecification» applies (in the case where the owning “ RtFeature” is a port).

Constraints

[1] The element owning this «RtSpecification» must be an element on which the stereotype «RtFeature» is applied.

[2] If the owning «RtFeature» is not a port, the property annotatedElement (from Comment) must contain a reference to
exactly one element (i.e., the «RtFeature» owning this «RtSpecification»)

[3] If the owning «RtFeature» is a port, the property annotatedElement (from Comment) must not contain more than two
references (i.e., the «RtFeature» owning this «RtSpecification», and the Behavioral Feature which is used as a context for
the «RtSpecification).

[4] If the «RtFeature» owning this «RtSpecification» is a port, the property context of the «RtSpecification» associated
with the «RtFeature» must be a feature that is provided or required by the port (see GCM chapter for details about
different means of providing/requiring a feature).

188 UML Profile for MARTE, V1.0

[3] If the stereotype «RtFeature» is applied to a port, the property context of the «RtSpecification» associated to the
«RtFeature» can be empty only if the port is atomic (see GCM chapter).

13.3.2.10 RtUnit
The RtUnit stereotype maps the RtUnit domain element (Section F.7.11)

An RtUnit is similar to the active object of UML but with a more detailed semantics description. It owns at least one
schedulable resource, but can also have several ones. If its dynamic attribute is set to true, the schedulable resources are
created dynamically when required. In other case, the real-time unit has a pool of schedulable resources. When no
schedulable resources are available in the possible, the real-time unit may either wait indefinitely for a resource to be
released, or wait only a given amount of time (specified by its poolWaitingTime attribute), or increase its pool thread
dynamically to adapt to the demand, or generate an exception. An RtUnit may own behaviors that have one message
queue for saving the messages received by the unit. The size of this message queue may be infinite or finite. In this latter
case, the queue size is specified by its maxSize attribute. In addition, an RtUnit owns a specific behavior, called
operational mode. This behavior take usually the form of a state-based behavior where states represents a configuration of
the RtUnit and transitions denotes reconfigurations of the unit.

Extensions
« BehavioredClassifier (from UML ::CommonBehavior::BasicBehaviors)

Attributes

¢ isDynamic: Boolean [1] = true
If true, it denotes that the real-time unit creates dynamically the schedulable resource required to execute its services.
If false, the real-time unit owns a pool of schedulable resourcesto execute its services.

e isMain: Boolean [0..1]
If true, the real-time unit is amain unit of the application.

e srPoolSize: Integer [0..1]
Size of the schedulable resource pool of areal-time unit.

e srPoolPolicy: PoolMgtPolicyKind [0..1]
Kind of pool policy adopted by areal-time unit.

e srPoolWaitingTime: NFP_Duration [0..1]
Maximal time areal-time unit waits for a schedul able resource to be released in case of pool management policy
set to timedWait.

* queueSchedPolicy: SchedPolicyKind [0..1]
Queue scheduling policy of the RtUnit.

e queueSize: Integer [0..1]
queue size

« msgMaxSize: NFP_DataSize [0..1]
Maximal size of the messages acceptable in the queue.

e operationaMode: Behavior [0..1]
Behavior owned by the real-time unit and denoting the operational modes of the real-time unit.

e main: Operation [0..1]
Main operation of the real-time unit.

UML Profile for MARTE, V1.0 189

« memorySize: NFP_DataSize [0..1]
Amount of static memory required for each instance of the real-time unit to be placed in an application.

Constraints

[1] If isDynamic is true, the real-time unit do not owns a pool of schedulable resources. Hence, srPool Size, srPoolPoalicy,
and srPoolWatingPolicy are not applicable.

[2] A main real-time unit has to own a main operation.

13.3.2.11 SynchronizationKind

The SynchronizationKind stereotype maps the SynchronizationKind domain element denoted in Annex F
(Section F.7.12).

This enumeration defines the kinds of synchronization mechanism for real-time actions.

Literals

e synchronous
The action waits the end of the client execution before continuing to execute.

« asynchronous
The action does not wait the end of the client execution before continuing to execute.

e delayedSynchronous
The client action continues to execute and synchronize later when the client will return avalue.

e rendez\Vous
The client waits for the client to start executing.

13.4 Examples

13.4.1 Notational Examples

Figure 13.13 describes a class diagram of a very simple cruise control system that is used to illustrate the usage of
MARTE::HLAM sub-profile. Both CruiseController and ObstacleDetector are real-time units. The former creates
dynamically schedulable resources to handle the execution of its services, and the latter has a pool of 10 schedulable
resources.

190 UML Profile for MARTE, V1.0

CruiseControlSystem /™, |

- isDynamic = false
- « rtlnit = a rtlnit = isMain = false
isMain = rue D% L CruiseControler ObstacleDetector 7 poalSize = 10
main = start e
1gSpeed: Speed startDetection() pociBliey = craaty
stopDetection
artServices {exekind=defarrad} start() e

artServicar {exekind=defarrad} stopi)
! spm « ppUnit = spm
{concPolicy=guarded}

1 1
Speedometer

« dataType »
getSpead(): Spead Speed

Figure 13.13 - A very simple cruise control model

Figure 13.14 shows an example of call action with a deadline real-time feature specification. The generated message is
aperiodic. Its time reference is denoted by the instant observation to. This latter denotes the start execution time of the
action. The specified deadline is 10 ms and the acceptable rate of deadline missing is 1%.

act start J
? ______ @@td kind=startAction}
H
« rtFeature » P - -
gSpeed = spm->getSpeed() occKind = aperiodic {}
wvalue = (iRef=t0, relDi=(10, ms). miss=(1, %. max})
|

Figure 13.14 - An example of call action with a deadline real-time feature

Figure 13.15 shows an example of call action with a priority real-time feature specification.

act start J

? poem— &0 {kind=startAction} J\
= e e Y

.} aecKind = apeariodic .[}.T;.I
i value = (priority=4)]

_________________ [

Figure 13.15 - An example of call action with a priority real-time feature

arFeaturas
tgSpeed = spm->getSpeed()

Figure 13.16 shows an example of real-time feature specification within a sequence diagram.

UML Profile for MARTE, V1.0 191

sd CruiseControlStart .J
value = (tRef=1t0, relDI={10, ms},

occKind = aperiodic ()
“CruiseControl miss={1, %, max)) :Speedometer

start()) l i |

startdcquisitiond) |
@10 I' __ _fs_‘_
O ==k ==} peeKind = perodic (perod=10, ms), |itter={2, us)) l_‘:
E value = (tRef=t0, relDi=(10, ms). miss={1, %, max))

getSpeed() :
)

e - m e —————— ‘.:“'.".n.,.._\/LJ
i e e e e o e s

! oocking = periodic (period=(10, ms), jitter=(2, us)) i
i value = {tRef=t0, ralDI=(10, ms), miss=(1, %, max)) !
i

Figure 13.16 - Examples of real-time feature within sequence diagrams
13.4.2 Avionics Example

In this example, we make use of components introduced in the avionics example of the General Component Model
chapter. We refine these components by applying the real-time characteristics introduced in this chapter. We consider
Trajectory, Location, FlightPlan, and Database as passive components that require to be allocated on execution resources
to be set in operation. Figure 13.17 illustrates elements of the Location package used for communicating with Trajectory.
Location is a passive component (e.g., Lw-CCM), which provides a real-time service called getL ocation through its
LocationAccess interface. The operation carries an “rtService” stereotype that indicates the concurrency kind (reader), the
execution kind (deferred), and the synchronization kind (delayedSynchronous). The operation also carries an “rtFeature’
stereotype that indicates additional real-time features, such as the priority (P1), the occurrence kind (10 ms period, 2 ms
jitter), the relative deadline (3 ms), as well as the acceptable deadline miss ratio (1% i.e., a hard deadline). Defining these
features at a service level is used as a contract defined between ports that provide and require the service. The
characteristics are applicable whatever the service invocation context or action.

The Location package also introduces a protected passive unit, called LocationData and stereotyped “ppUnit.” It is used
to transmit data from the Location to the Trajectory component. When initialized, Location instantiates a L ocationData
object and keeps it periodically updated, based on the IRS and radio signal received. Trajectory concurrently accesses to
the same object as a reader, invoking the getL ocation real-time service every 10 ms. LocationData implements a
sequential access policy that ensures integrity by preventing readers and writers to concurrently access to the same data.

192 UML Profile for MARTE, V1.0

priority=1

occKind = periodic (period=(10,ms), jitter=(2,us))

relDI=(3,ms)

tRef=t0

Location miss=(1, %, max)

concPolicy=reader

exeKind=deferred

syncKind=delayedSynchronous
7

« ppUnit » « interface » ,,,f"'
LocationData LocationAccess /

. : a .
« rtService, rtf » LocationData: getLocation()

latitude: Degree
longitude: Degree

-
L

concPolicy=sequential % L tionA
« FlowPort » . ocationAccess
. Location
irs: IRSInterface loc:
bl

« FlowPort »
radio: Radiolnterface

Figure 13.17 - Real-time characteristics defined on elements of the Location package

Figure 13.18 illustrates the main behavior of the Trajectory component, called computeTrajectory. This activity defines a
series of four periodic actions triggered every 10 ms. At the beginning of the period, two actions are concurrently
activated: a CallServiceAction invokes the getL ocation real-time service, while another Call ServiceAction invokes the
getFlightPlan real-time service. Real-time features defined on getL ocation apply here and there is no need to redefine
these. Real-time features can be also defined at an action level, using the “rtAction” and “rtFeature” stereotypes, as
illustrated by the getFlightPlan, performComputation, and generateCommand service call actions.

Both getLocation and getFlightPlan service calls are delayed synchronous. Results shall be received and control flows
need to be synchronized (with a 3 ms deadline constraint) before the trajectory computation begins with the invocation of
the internal performComputation operation (synchronous, with a 4ms deadline constraint). Resulting commands can be
generated and relayed through the nav flow port owned by Trajectory, with the invocation of the internal
generateCommand operation (synchronous, with a 1ms deadline constraint).

UML Profile for MARTE, V1.0 193

computeTrajectory J
@?ZI

pricrity=1

occKind = penodic (perod=(10,ms), jitter=(Z,us))
relDi={3,ms)

tRef=tD

miss={1, %, max)
syncKind=delayedSynchronous

arthction, riFeaturas
getFlightPlan

priority=1 ™y
occkind = periodic (period={10,ms}, jiter=(2 us))
relDl=(4 ms)

tRef=1l

miss=(1, %, max)

syncKind=synchronaus

arthction, riFeatures
performComputation

« rtAction, riFeatures

genarateCommand priogty=1 >

oockind = paricdic (period=(10,ms), jitter={2us))
refDi=(1.ms)

tRef=t0

miss=(1, %, max}

synekind=synchranous

Figure 13.18 - Main behavior of the Trajectory component

Figure 13.19 illustrates another behavior owned by the Trajectory component. This activity is composed of aperiodic
action triggered upon a reception of a ParameterUpdated signal, sent by the Database component. When the signal is
received, the deadline to handle parameter change is 1Ims with amiss ratio of 20% (i.e., a soft deadline). The updateParam
service call action is assigned priority P2. As a consequence, this operation will be invoked when the computeTrajectory

activity is completed.

handleFaramaterChangeQ

ocokind = aperiodic()] Qs

i
'
|
|
|
|
|
H

handleEvent

> wrtAction, tFeaturas

priority=2

acckind = aperiadic ()
1Ref=1Event
relDi=(1,ms)
miss=(20, %, max)

artAction, mFeatunas
updateParam

Figure 13.19 - A trajectory behavior that handles events from Database

Figure 13.20 illustrates a particular execution of the Trajectory behaviors within a period, based on information presented
in previous figures. It shows a possible series of interactions between components in that context. The period starts at
tO[i]. A message is sent from Trajectory to Location, representing the getL ocation service call in this sequence diagram.
The message is be stereotyped as a real-time feature, indicating information such as period and deadline. Other
characteristics (e.g., synchronization kind) are implied from real-time features defined on real-time actions or services. A

message is also sent from Trajectory to FlightPlan, representing the getFlightPlan service call.

194 UML Profile for MARTE, V1.0

Trajectory computation begins when both LocationData and FlightPlanData objects are returned (this internal behavior is

not shown in this diagram). The sequence of actions used to compute the trajectory and generate the navigation

commands shall end by t1]i], 8 ms after the beginning of the period. This allows 2 msin order to handle aperiodic signals.
An aperiodic signal arriving before t1[i] implies that its resulting processing will be delayed. The updateParam service
call action has a lower priority than the other actions. In this execution scenario, the signal ParamUpdated is received

after the Trajectory component completed its computation. Therefore, the parameter update can be immediately

processed.

Trajectory execution scenario)

Locationfcoess

PlanAccess

==TImasConsran==

H14] — 100] < {3, ms)

[resl D=3, s

aoking = parkeac (panca=(10,mel)

: o iFeafain
@10 /.‘/Jr’ « rif » getLocation() b

LocationData |

« rtf » gatFlightPlan()
1

:Database

aeckind = parodc (peiod=(10,ms1)

refi=[3.ms)
Ref=10

i

o
= FlightPlanData
1

ok o

acekind = speriadiol]

« rtf » paramlpdated{paramyalus)

Figure 13.20 - A Trajectory execution scenario within a period

Note: We assume here that all the components rely on the same global clock.

UML Profile for MARTE, V1.0

195

196 UML Profile for MARTE, V1.0

14 Detailed Resource Modeling (DRM)

The objective of this chapter is to provide a set of detailed resources for modeling both software and hardware platforms
by specializing the concepts defined within the General Resource Modeling (GRM) chapter. The chapter is split into two
sections:

» The Software Resource Modeling (SRM) section: focuses on modeling of application programming interfaces of
software multi-tasking platform.

» The Hardware Resource Modeling (HRM) section: focuses on modeling hardware platform through different views
and detail levels.

14.1 Software Resource Modeling (SRM)

14.1.1 Overview

There are mainly two approaches to designing software real-time and embedded (RTE) applications: the sequential-based
design approach (also called loop-design) and the multitask-based design approach. The former approach consists in
designing applications as a set of ordered sequential actions, whose order is pre-calculated in order to satisfy the real-time
features. The multitask-based method aims at designing applications as a set of units executing concurrently and
interacting (i.e., communicating and synchronizing) via specific mechanisms provided by a specific execution support.
That support is in charge of real-time and embedded features (e.g., time constraints, determinism, and memory footprint).
It provides a set of resources and services through its application programming interface (API). That APl may be either
standard or specific (proprietary or commercial).

The widespread approach used to design software RTE applications is the multi-tasking-based approach built upon a real-
time operating system (RTOS) as the execution support. Hence, the Software Resource Modeling (SRM) chapter specifies
a set of modeling artifacts that can be used to describe the structure of such support. More specifically, it is looking to
depict software resources and software services described in multi-tasking (API). Thus, it provides:

» Modeling artifactsto design in a unified way RTOS-like software execution support API through the definition of
specific UML profile: the SRM (Software Resource Model) sub-profile.

» Examples of specific UML model libraries using the SRM profile to describe parts of standardized RTOS APIs, such as
OSEK/VDX (0S 2.2.2) and ARINC (653-1) standards.

The typical use of the SRM UML profile is the description in a unified way of software multi-tasking APl in order to
integrate explicitly the execution supports in the design flow (e.g., model library description and model transformation
description). The SRM profile is not a new multi-tasking APl standard. It provides modeling artifacts to describe such
API. Moreover, even if this chapter focuses on RTOS APIs, it is useful not only to describe such support but also to depict
specific multi-tasking libraries and more generally multi-tasking framework API (e.g., RTE middleware and RTE virtual
machine).

This chapter is structured around a domain model description and its UML representation. The domain model section
describes domain concepts. That domain model has been built based on a deep analysis of the main RTOS API standards
(SCEPTRE 2, POSIX Issue 6 IEEE std 1003.1, OSEK/VDX 2.2.2, ARINC 653-1), and of some RTOS (e.g., VxWorks
5.5, RTAI 3.1, QNX). The UML representation defines the UML extensions required to manipulate the concepts as
defined in the domain model and then be able to describe UML model libraries.

UML Profile for MARTE, V1.0 197

14.1.2 Domain View

This domain view is a specialization of the Generic Resource domain model for the purpose of software modeling. Hence,
the SRM model specializes resources and services defined in that previous chapter. Commonly, multi-tasking software
resources relate to:

« Concurrent execution contexts (i.e., parallel execution).

« Interactions between concurrent context both to communicate and to synchronize themselves.

» Brokering of hardware and software resources (e.g., device management and memory management).
Hence, the domain model is organized in four packages:

» SW_ResourceCore provides the basic software resource concepts.

« SW_Concurrency classifies concurrent execution contexts.

« SW._Interaction sorts communication and synchronization resources.

» SW_Brokering refers to hardware and software resources management.

Figure 14.1 shows the overall package structure.

— — I—
« modelLibrary »
GRM CoreElements MARTE::Library:BasicNFP_Types
; L)
W import » i {?\
1 w import » « impart »
SRM |
: h
1
=== IMIPOT == mm e = SW_ResourceCore fc------ ¢ impart
, \
. i
. 1
E et a import p-=====~ “ irn'gu‘orl » i
—— — :
1 |
SW_Concurrency SW_Interaction SW_Brokering

Figure 14.1 - Structure of the SRM modeling framework

The purpose and the content of each package is described briefly in subsequent sections. For more formal semantic
details, refer to the class description (Annex F).

14.1.2.1 The SW_ResourceCore Package
Figure 14.2 shows the structure of the SW_ResourceCore package.

As arule, execution supports APIs fulfill real-time and embedded concepts as both a set of types and a set of operations.
For example, a kind of concurrency implementation in the POSIX standard is the concept of “thread.” Hence, atype
named “pthread_t” and an operation named “pthread_create” (i.e., operation that implements the creation of a thread)
fulfill POSIX threads. Users make use of those types and operations to implement their applications on the execution

198 UML Profile for MARTE, V1.0

support. The SW_ResourceCore package supplies the framework to model both those types and those operations. Types
are modeled as SwResource. SwResource inherits from the generic resource concept of the GRM::ResourceCore package.
Hence, a SwResource provides by inheritance a set of ResourceServices provided by the GRM package (Section 10.2).

In this domain model, there is no distinction between services provided by software resources to the application (for
example: a mailbox mechanism allows users to communicate messages) and services provided to manage those resources
(for example: the creation and the deletion of a mailbox). An SwResource concept gathers both the resource as such and
the manager of that resource. Hence, an SwResource inherits not only from the GRM::ResoureCore::Resource, but also
from the GRM::ResourceM anagement::ResourceM anager.

pSaemvices

EALL L I R E OWNET {subset ownedBehaviort GRM:RasourcaCong:: CoreElements:: Foundation::

maxRIS: NFP_Integer [0..1] 1 1. ResourcaeSenica ModelElement

n | —

0. | CoreElements:Causality::
GFRM::ResourceManagemant:: CommonBehavior:
ResourcelManager parameters Parameter

A

Swhasourca creaieServices
0.
deletaServices GRM:Resource Corg::
identifierElements - ModelElement [0..%] 0. ResourceService
stateElements : ModelElement [0.."] initializeServices

memarySizeFootprint : ModelElament [0..1] 0

Figure 14.2 - The SW_ResourceCore package overview

A specific software service is the SwAccessService used to access elements. In fact, software resources provide some
services to access their characteristics: get and set. Those services may be considered as SwA ccessServices. In case of the
“set” one, the Boolean attribute “isModifier” may be true.

GRM::RasourceCona::
ResourceService

accessedElement SwhccessService
CoreElements::Foundation: Property }.I_ P E———

Figure 14.3 - The SwAccessService

14.1.2.2 The SW_Concurrency Package

Figure 14.5, Figure 14.6, Figure 14.7, Figure 14.8, Figure 14.9, and Figure 14.10 show the structure of the
SW_Concurrency package.

The SW_Concurrency package defines SwConcurrentResource that represents entities that compete for computing
resources in order to execute sequential part of instructions. They provide an execution context (e.g., stack, interrupts
enable/disable and registers) for an execution flow (i.e., sequence of actions). The execution context may be confined to
specific memory partition (i.e., virtual address space). Kinds of SwConcurrentResource are interrupt resources and
schedulable resources.

UML Profile for MARTE, V1.0 199

An entry point specifies the execution flow associated to a SwConcurrentResource. That entry point is re-entrant whether
it can be invoked while it is still executing from a previous invocation.

‘ GRM::ResourcelManagement:: | [SRM:SW _RescurceCorac: ‘ ‘ GRM::RasowrcaTypa:! |

‘ Allocations::Allocation

RescurceBroker SwiResource ConcurmencyResource
? | +activate Services
3 . =
EntryPoint entryPoints ShLencuranilosoute +resumeServices
isReentrant ; Boolean 0.* type : ArrivalPattarn 0.
routine 1 activationCapacily ; Integer +suspendServices G’?q”-'-ﬁawgﬂaqﬂfe:
o Reso | percdElements : ModelElement [0_*] In i EEAUCEEVICE
CoreElements::Causality:: MemoryPartition Aaddress.Spaoe rancumAnt urees priorityElements : ModelElement [0..%] [+enableConcurrencyServices
CommaonBehavior s 0.1 1_* | stackSizeElements - ModelElement [0.%)] [
Behawvior heapSizeElements : ModelElement [0..*] [tdisableConcurrencyServices.
["3 | 0-* M
I 1 terminateServices 0.°
InterruptResource | SwSchedulableResource
Figure 14.4 - The SwConcurrentResource overview
sharedDataResources SRM::SW_Interaction:
0.* SharedDataComResource
SwConcurrentResource
messageResources .. o
type : ArrivalPatiem SRM: :SW_Interaction::
o o 0.* Message ComResource
adivationCapacity : Integer B
periodElements: ModelElement [0..]
priorityElements : ModelElement [0..%] . - o
! . « |mutualExclusionResources SRM::SW_Interaction:
stackSizeElements : ModelElement [0..%] 0> SMUtLAExCSoNResOTce
T notificationResources SRM::SW_Interaction:
0.* NotificationResource

Figure 14.5 - The SwConcurrentResource interactions

Interrupt resources match to the physical processing level. In that execution context, the competition for the processing
unit is managed at the physical level by a controller and bypasses the scheduler. Many execution supports provide specific
services to manage context of interrupt service routine (I1SR) execution (i.e., interrupt entry point). The Interrupt resource
deals with both hardware interrupts and exceptions (i.e., software interrupts produced by the control processing unit
(CPU) while executing instructions). Exceptions can either be “ Processor-detected” exceptions when the CPU detects an
anomalous condition while executing an instruction or “Programmed” exceptions (also called software interrupts) when
they occur at the request of the programmer. Some examples of “Processor-detected” exceptions are faults (divide error,
device not ready), traps (breakpoints, debug), and aborts (double fault).

200 UML Profile for MARTE, V1.0

SwConcurrentResource
A « enumer ation »
" - Interruptikind
Pl InterruptResource routineConnedServices P
ryPoints i
{redefines entryPoint} : : 0% Hardwareinterruption
EntryPoint kind:Interruptkind : GRM:ResourceCore: Processor DetectedExce ption
yPol isMaskable : Boolean _—) ResourceService ProgrammedException
0.* routineDisconnedSenvices d
- vedorBlements : ModelElerent [0..%] Undef
maskElements : ModelElement [0. 4] 0.* Cher

Figure 14.6 - The Interrupt Resource

A specific class of interruptResource is the alarm one which allows the interrupt service routines (i.e., the alarm entry
points) to be connected to a timer and invoked after a one-shot or periodically. A particular software alarm is the
watchdog. If the application doesn’t succeed in resetting the watchdog, that means that the system is not functioning
properly and the alarm occurs, forcing application to execute the watchdog entry point or to reset the processor.

GRM::ResourceType::

TimerResource InterruptRe sour ce
SwTimerResource . Z%
timers Alarm
duration Elements : ModelElement {redefines duration} 0.* isWatchdog : Boolean

Figure 14.7 - The Alarm resource

SwSchedulableResources match to the logical processing context. In that context, the competition for the CPU is
brokered at the logical level by a software scheduler. Hence, SwSchedul ableResources are linked to an explicit software
scheduler that determines the order and the timing (i.e., the “schedule”) in which those should be executed. Typical
examples of SwSchedulableResource are the POSIX Thread, the ARINC-653 Process and the OSEK/VDX Task.

GRM::Scheduling:
SwConaurrentResource SchedulableResource

SwSched ulableResource joinServices

OI .*
. scheduler scheduledResource| isStaticSchedulingFeature : Bookean ; ; GRM::ResourceCore::
L % ; . | vieldServices - | o3 _Ore:

GRM::Scheduling::Scheduler 1 o isPreerptable : Boolean 0. ResourceService
" | deadlineElements : ModelEement [0..¥])
deadineTypeElements : Mode Element [0. *] Mﬂ%ﬂ%
timeSliceElements : ModelElement [0. *] a

Figure 14.8 - The SwSchedulable resource overview

As explained above, software computing resources may be confined in specific MemoryPartitions. A MemoryPartition
represents a virtual address space which insures that each concurrent resource associated to a specific memory partition

can only access and change its own memory space.

UML Profile for MARTE, V1.0 201

SwConcurrentResource

concurrentResources addressSpace

SRM::SwResource

Figure 14.9 - The MemoryPartition resource

StorageResource

‘ 1.*
GRM:ResourceType::

memorySpaces

0.1

1

0.*

14.1.2.3 The SW_Interaction Package

MemoryPartition

| forkServces)

0”*
exitServices

0.*

GRM::ResourceCore::ResourceService

Figure 14.11, Figure 14.12, Figure 14.13, Figure 14.14, Figure 14.15, Figure 14.16, and Figure 14.17 show the structure
of the SW_Interaction package.

In concurrent execution contexts, resources need to interact both to synchronize their actions and to communicate data.
Hence, SwSynchronizationResources control execution flows whereas SwCommunicationResources manage data flows.

In any case, resources interact according to a waiting policy. For example, considering a blocked WaitingPolicy, the
acquire call part of amutual exclusion synchronization involves that the caller is blocked in a waiting state (non available
for scheduling) until someone release the shared resource. The waiting resources are queued in a waiting queue
characterized by a policy and a capacity. Those interactions may be limited to a certain partition of the memory (i.e.,
islntraM emoryPartitionlnteraction property).

SRM:

:SW_Resource Core:: SwRe sour ce

GRM::ResourceManagement:
Resource Broker

GRM::ResourceType::
Communication EndPoint

A

£

« enumeration »

QueuePolicyKind

FIFO
LIFO
Priority
Undef

SwinteractionResour ce

islntraMemoryPartitionlnteraction : Boolean
waitingQue uePolicy : QueuePolicyKind
waitingQue ueCapacity : Integer
waitingPolicyElements : ModelElement [0..%]

B

Other

SwCommu nication Re sour ce

SwSynchronizationResource

Figure 14.10 - The SW_InteractionResource package overview

To control execution flow, real-time execution supports provide several kinds of synchronization mechanisms: ones to
notify event and others to control shared data mutual access. The two corresponding resources are
SwM utual ExclusionResource and NotificationResource.

202

UML Profile for MARTE, V1.0

SwinteractionResour ce

GRM::Resource Type:
SynchronizationResource

A

h

SwSynchronization Re sour ce

A

SwMutualExclusionResour ce

NotificationResource

Figure 14.11 - The SwSynchronizationResource overview

SwM utual ExclusionResource describes resources commonly used to synchronize mutual access to shared data. As
examples, Boolean semaphore (one token that anybody can release even if it does not get it), mutex (a Boolean
semaphore associated with a concept of ownership : only resource that owns the mutex can release it) and counting

semaphore (several token may be got and released) are kind of SwM utual ExclusionResource.

SwSynchronizationResource

GRM::Scheduling::
MutualExclusionResource

MutualExclusionResourceKind

« enumeration »
ConcurrentAccessProtocolKind

BooleanSemaphore
CountSemaphore
Mutex

Undef

Other

PIP

PCP
NoPreemption
Undef

Other

1

1

SwMutualExclusionResource acquireServices
0.*
concurrentAccessProtocol : ConcurrentAccessProtocolKind .
accessTokenElements : ModelElement [0..4] releaseServices
mechanism : MutualExclusionResourceKind 0.%

Figure 14.12 - The MutualExclusionResource Overview

GRM::ResourceCore::
ResourceService

NotificationResource supports control flow by notifying occurrences of conditions to awaiting concurrent resource. As

examples POSIX Signal, OSEK\VDX Event and ARINC-653 Event are NotificationResources. The notified occurrence
can be memorized (i.e., memorized in a buffer), bounded (i.e., each occurrence increments a counter) or memoryless (i.e.,
not memorized in a buffer, hence multiple occurrences are lost).

‘ SwSynchronizationResource ‘

e

« enumeration »
NotificationResourceKind

Barrier
Event
Undef
Other

NotificationResour ce

flushServices

policy : Occurence PolicyKind
occurenceCountElements : ModelElement [0..*]
maskElements : ModelElement [0..%]

mechanism : NotificationResour ceKind

0.*
signalSenvice

O“*
waitSer vice

GRM::ResourceCore:

0.* ResourceService

clearService

Figure 14.13 - The NotificationResource overview

0.*

Commonly, to manage data flows, users can manipulate both shared data and message.

UML Profile for MARTE, V1.0

«enumeration »
OccurencePolicyKind

Memorized
Bounded
Memoryless
Undef
Other

203

GRM::ResourceType:
CommunicationMedia

2}

SwinteractionResource

A

SwCommunicationResource

[

SharedDataComResource MessageComResource

Figure 14.14 - The MessageComResource overview

M essageComResource are artifacts to communicate messages (i.e., a structure of data characterized by, for example,
either a fixed or adynamic size, a priority, a type of data.) among concurrent resources. Messages may be queued.

Common mechanisms are M essageQueue, Blackboard, POSIX Pipe.

SwCommunicationResour ce

«enumeration » «enumeration » MessageComResource ;
QueuePolicyKind MessageRessour ceKind 9 sendServices

Me isFixedMessageSize : Boolean 0. .)
E:Eg P_pzsageQJ eue messageSizeElements : ModelElement [0..*] G%“gggﬁﬂggﬁ%ge :
Priority Blackboard mechanism : Messe_lgeRessouroe Knd_[O. 1] receiveServices
Undef Undef messageQueuePolicy : QueuePolicyKind [0..1] .
01?1 e theer me ssageQueueCapacityElements : ModelElement [0..%] 0.

er

Figure 14.15 - The Messaging Communication resource

SharedDataComResource define specific resources used to share the same area of memory among concurrent resources.
They allow concurrent resources to exchange safely information by reading and writing the same area in memory.

SwCommunicationResour ce

i

readSenvices
0. GRM::ResourceCore::
SharedDataConmResource wrieSenice S
0.*

Figure 14.16 - The shared data communication resource

204 UML Profile for MARTE, V1.0

14.1.2.4 The SW_Brokering package
Figure 14.17 show the structure of the SW_Brokering package.

The SW_Brokering package gathers resources that broke hardware as well as software resources. For example, kind of
brokering actions are allocation, hardware device access, and so on.

GRM: ResourceType:: SRM::SW._Resour ceCor e :SwResource
ResourceBroker
DeviceBroker MemoryBroker

Figure 14.17 - The SW_BrokerResource Package Model

A DeviceBroker (i.e., driver) interfaces peripheral devices to the software execution support. By initializing that resource,
user makes devices accessible for software. Commonly, deviceBroker resources are based on file mechanisms.
DeviceBroker may be buffered (i.e., in which datais read and written in large chunks and buffered privately).

« enumeration» GRM::ResourceManagement:
b @ " SRM::SW_ResourceCore:SwResource
Acce ssPolicyKind ResourceBroker -
Read
Write
ReadWiite
Undef
Other
DeviceBroker clseServices
*
accessPolicy : AccessPolicyKind controlServices GRM::ResourceCore:
isBuffered : Boolean 0.* ResourceService
GRM::ResourceType:: |devices openServices
DeviceResource 0..* ' 0..*

readServices /{\ 0..*
writeServices | 0..*

Figure 14.18 - The DeviceBroker overview

MemoryBroker gathers allocation, mapping (map real memory onto the virtual address ranges used in memory partition)
and protection of memory. For example, memory paging and memory swapping techniques impose severe and
unpredictable delays in execution time. Thus, applications can use page-locking facilities, such as Lock and UnLock
services, to declare that certain blocks of memory must not be paged or swapped.

UML Profile for MARTE, V1.0 205

GRM::ResourceManagement.: SRM::SW_ResourceCore:SwResource

Resour ceBroker

‘ lockServices

MemoryBroker 0.%

unLockServices

P A 0..*

: accessPolicy : AccessPolicyKind
be . |memories . " ;
GRM::ResourceType: memoryBlockAd dressElements : Mode [Element [0..*] map Services GRM:ResourceCore::
Storage 0.* memoryBlockSize Elements : ModelElement [0..4] 0.* Resource Service
unmap Services
0..*

Figure 14.19 - The MemoryBroker overview
14.1.3 UML Representation

This section contains a definition of each stereotype that is defined for the software resource modeling profile (SRM). The
first sub-section describes rationales for matching domain model concepts to UML profile concepts (i.e., sub-profile,
stereotypes, tag, and constraints). Then, the purpose and the content of each sub-profile are briefly described in a second
sub-section. Finally, a third section is dedicated to a detailed description of each stereotype.

As the SRM profile is intended to provide modeling artifacts to describe APIs of multi-tasking execution support,
rationales have been made to implement domain model conceptsin a UML profile:

» The MARTE::CoreElements::Model Element metaclass is matched to the UML::Kernel:: Classes:: TypedElement
metaclass. This matched rule allows users to reference as well structural features (for example,
UML::Kernel::Classes::Property) as behavioral features (for example, UML::Kernel::Classes::Parameter). Figure
14.20 shows one example of the SwResource matching.

«metaclass »
Classifier
SwResource

&> .

«stereotype»
SwResource

identifierElements : ModelElement [0..*]

identifierElements : TypedElement [0..*]

(i) domain model (i) UML profile
Figure 14.20 - SRM Matched rule on ModelElement metaclass

» As Associations between ResourceService and SwResource are navigable in one way, the association ends relative to
the SwResource metaclass are matched to SwResource stereotype tags. Moreover, the ResourceService metaclass is
matched to the UML ::Kernel::Classes::Behavioral Feature. In UML, abehavioral feature specifies that an instance of a
classifier will respond to a designated request by invoking a behavior. Hence, services described in APIs are kind of
behavioral features (i.e., behavior signature). Figure 14.21 shows one example of the SwResource matching.

206 UML Profile for MARTE, V1.0

« metaclass »
Classifier

createServices .
SwResource o ResourceService *

« stereotype»
SwResource

create Services : BehavioralFeature [0..%]

(i) domain model (i) UML profile
Figure 14.21 - SRM Matched rule on Association between ResourceService and SwResource

» Associations between domain model concepts are matched both to specific stereotype tags and profile constraints.
Figure 14.22 shows one example of the SwConcurrentResource matching.

SwConcurrentResource «metaclass » « metaclass »
j E Classifier Classifier
addressSpace 0..1 * %
« stereotype» « stereotype»
MemoryPartition SwConcurrentResource MemoryPartition
addressSpace : TypeElement [0.1]

Constraint : Type of the addressSpace value must be
stereotyped as “MemoryPartition”

(i) UML profile

Figure 14.22 - SRM Matched rule on Associations

14.1.4 Profile Diagrams

Figure 14.23 shows the overall profile structure. The purpose and the content of each sub-profile are described in
subsequent sections.

UML Profile for MARTE, V1.0 207

1 1 1
a modelLibrary »
ST EosEs e MARTE::Library::BasicNFP_Types
M
@ Imp'aor[® i "?‘
! & import » « import »
SRM ! i
! :
|
y== =it IMPOrt # === e a s = SW_ResourceCore pE-===== o imiport o
! |
H :
] 1
i . I 1
) pemm——— 4t PPt e e = mm o . i
! L g kmport» i
1 |
SW_Concumancy SW_Interaction SW._Brokering

Figure 14.23 - The SRM profile overview

The SW_ResourceCore sub-profile aims to describe foundations of the SRM profile. It matches to the SW_ResourceCore
package (section 14.1.2.1).

« profile »
SW_ResourceCore

« Slareclype »
GRM::Resource

7

« steraotype »
GRM::GrSendce

)

starofype »
SwiResource

« slerolype »
SwhAccessServica

identifierElements : TypedElement [0..*]
stateElements : TypedElemant [0..%]
meamorySizeFootprint ; TypedElement [0..1]
creataServices | BehavioralFeatura [0..7]
deleteServices : BehavioralFeature [0..%]
initializeServices - BehavioralFeature [0..%]

isModifier - Boolean

accassedElament : Property [1]

Figure 14.24 - The SW_ResourceCore profile overview

The SW_Concurrency sub-profile matches to the SW_Concurrency package (section 14.1.2.2). It aims to provide

modeling artifacts to describe software concurrent execution contexts.

208

UML Profile for MARTE, V1.0

« pI’Ofi|€ »
SW_Concurrency

" « stereotype »
« SEEARE » SRM::SW._ResourceCore::SwResource
Alloc::Allocate

f 4

« stereotype» « stereotype»
EntryPoint SwConcurrentResource
isReentrant : Boolean type : ArrivalPattern
routine : BehavioralFeature [1] activationCapacity : Integer

entryPoints : Element [*]
addressSpace : TypedElement [*]

« metaclass »

UML2::Classes::Kernel::NameSpace periodElements : TypedElement [*]
priorityElements : TypedElement [*]
A heapSizeElements : TypedElement [*]
« stereotype » stackSizeElements : TypedElement [¥]
SRM::SW_ResourceCore::SwResource activateServices : BehavioralFeature [¥]
enableConcurrencyServices : BehavioralFeature [*] « stereotype »
Z} resumeServices : BehavioralFeature [*] GRM::SchedulableResource
suspendServices : BehavioralFeature [*]
‘ « stereotype » terminateServices : BehavioralFeature [*]
MemoryPartition disableConcurrencyServices : BehavioralFeature [*]
concurrentResources : TypedElement [*] shareDataResources : TypedElement[*]
memorySpaces : TypedElement [*] messageResources : TypedElement[*]
fork : BehavioralFeature [*] mutualExclusionResources : TypedElement[*]
exit : BehavioralFeature [*] notificationResources : TypedElement[*]
« enumeration » Z}
InterruptKind ‘
Hardwarelnterruption « stereotype»
ProcessorDetectedException InterruptResource
ProgrammedException kind:InterruptKind « stereotype»
Undef isMaskable : Boolean SwSchedulableResource
Other vectorElements : TypedElement [*]
maskElements : TypedElement [*] ?sStaticScheduIingFeature : Boolean
GRM:: routineConnectServices : BehavioralFeature [*] isPreemptable : Boolean
TimerResource routineDisconnectServices : BehavioralFeature [*] schedulers : NamedElement [1]
deadlineElements : TypedElement [*]
deadlineTypeElements : TypedElement [*]
timeSliceElements : TypedElement [*]
SwTimerResource « stereotype» delayServices : BehavioralFeature [*]
Alarm joinServices : BehavioralFeature [*¥]
durationElements : TypedElement {redefines duration} isWatchdog : Boolean yieldServices : BehavioralFeature [*]

timers : TypedElement [*]

Figure 14.25 - The SW_Concurrency profile overview

The SW_Interaction sub-profile describes communications and synchronizations among concurrent execution contexts. It
matches to the SW_Interaction package (Section 14.1.2.3).

UML Profile for MARTE, V1.0 209

« profile »
SW_Interaction

« stereotype»
SRM::SW_ResourceCore::SwResource

« stereotype »
SwinteractionResource

« stereotype»
GRM::CommunicationMedia

« enumeration »
QueuePolicyKind

FIFO
LIFO
Priority

isintraMemoryPartitioninteraction : Boolean
waitingQueuePolicy : QueuePolicyKind
waitingQueueCapacity : Integer

« stereotype»
GRM::SynchronizationResource

Undef
Other

waitingPolicyElements : TypedIElement [*]

8

p ?

« stereotype »
SwCommunicationResource

« stereotype »
SharedDataComResource

« stereotype»
GRM:MutualExclusionResource

« stereotype »
SwSynchronizationResource

L

« stereotype »
MessageComResource

« stereotype »

readServices : BehavioralFeature [0..*]
writeServices : BehavioralFeature [0..%]

isFixedMessageSize : Boolean
mechanism : MessageResourceKind

messageSizeElements :TypedElement [*]
messageQueueCapacityElements: Typed|Element [¥]
messageQueuePolicy : QueuePolicyKind [0..1]

sendServices : BehavioralFeature [0..*]

receiveServices : BehavioralFeature [0..¥]

NotificationResource

« stereotype »
SwMutualExclusionResource

occurence : NotificationKind
mechanism : NotificationResourceKind

maskElements : TypedElement [¥]
flushServices : BehavioralFeature [*]
signalServices : BehavioralFeature [*]

waitServices : BehavioralFeature [*]
clearServices : BehavioralFeature [*]

occurenceCountElements : TypedElement [*]

mechanism : MutualExclusionResourceKind
concurrentAccessProtocol : ConcurrentAccessProtocolKind
accessTokenElements : TypedElement [*]

releaseServices : BehavioralFeature [*]

acquireServices : BehavioralFeature [*]

« enumeration » « enumeration » « enumeration » «enumeration » « enumeration »
i e . . ConcurrentAccessProtocolKind
MessageResourceKind NotificationKind NotificationResourceKind MutualExclusionResourceKind
- PIP
:;AessageQueue Memorized Event BooleanSemaphore pCP
ipe Bounded Barrier CountSemaphore :
Blackboard Memoryless Undef Mutex Sﬁz’;empllon
Undef Undef Other Undef Other
Other Other Other

Figure 14.26 - The SW_Interaction profile overview

The SW_Brokering sub-profile matches to the SW_Brokering package (Section 14.1.2.4). The SW_Brokering sub-profile
describes stereotypes to annotate hardware and software resource management.

« profile»
SW_Brokering

« stereotype»
SRM::SW_ResourceCore:SwResource

I}

« stereotype »

« stereotype » « enumeration »

DeviceBroker Me moryBr oker AccessPolicyKind
accessPolicy : AccessPolicyKind accessPolicy : AccessPolicyKind Read
isBuffered : Boolean memories : TypedElement [¥] Write
devices : TypedElement [0..*] me moryBlockAddr essElements : Typed Ekement [*] Readwrite
closeServices : BehavioralFeature[] memoryBlockSizeElements : TypedElement [¥] Undef
controlServices : BehavioralFeature[*] lockServices : BehavioralFeature [¥] Other

openServices : BehavioralFeature [*]
readServices : BehavioralFeature [*]
writeServices : BehavioralFeature [*]

unlockServices : BehavioralF eature [*]
mapServices : BehavioralFeature [*]
unMapServices : BehavioralFeature [*]

Figure 14.27 - The SW_Brokering profile overview

210 UML Profile for MARTE, V1.0

14.1.5 Profile Elements Descriptions

14.1.5.1 Alarm (from MARTE::SRM::SW_Concurrency)

This stereotype matches to the domain concept Alarm denoted in Annex F (Section F.8.1).

Alarm resource provides executing context to a user routine, which must be connected to a timer invoked after a one-shot

or periodically.

Extensions

* None

Generalizations
« InterruptResource (from SW_Concurrency)

Associations

* None

Attributes

e isWatchdog: Boolean [0..1]
Specifiesif the alarm is awatchdog.

e timers: TypedElement [0..1]

Specifies the timer that raises the signal to execute the entry-point of the alarm resource.

Constraints

[1] Types of timers values must be stereotyped either as “ SwTimerResource.”

Notations
The image associated with that stereotype is shown below:

Figure 14.28 - The alarm notation

14.1.5.2 AccessPolicyKind (from MARTE::SRM::SW_Brokering)

The AccessPolicyKind enumerates common policy to access a resource.

Description
* Read

Read access only.
e ReadWrite

Read and write access are allowed.

UML Profile for MARTE, V1.0

211

* Write
Write access only.

e Undef
Undefined policy.
e Other

Other user's specific palicy.
14.1.5.3 ConcurrentAccessProtocolKind (from MARTE::SRM::SW_Interaction)
The ConcurrentA ccessProtocol Kind enumerates common protocol to access mutually a shared resource.

Description

¢ NoPreemption
L ock the concurrency to avoid preemption when aresource is accessing a shared variable.

- PCP
Priority Ceiling protocol.
« PIP
Priority Inheritance Protocol.
e Undef
Undefined policy.
e Other

Other user's specific palicy.

14.1.5.4 DeviceBroker (from MARTE::SRM::SW_Brokering)
This stereotype matches the domain concept DeviceBroker denoted in Annex F (Section F.8.4).

A DeviceBroker (i.e., driver) interfaces peripheral devices to the software execution support.

Extensions

* None

Generalizations
» SwResource (from SRM::SW_ResourceCore) on page 196

Associations

* None

Attributes

e accessPolicy: AccessPolicyKind [0..1]
Access policy of the device (read, write).

e closeServices: Behavioral Feature [0..*]
Services that make the hardware device unavailable from software resources.

e control Services: Behavioral Feature [0..*]
Servicesthat initialize and broker the device.

212 UML Profile for MARTE, V1.0

e devices: TypedElement [0..*]
Hardware device brokered by the driver.

« isBuffered: Boolean[0..1]
If true, datais read and written in large chunks and buffered privately.

e openServices. BehavioralFeature [0..*]
Services that establish the connection between a device and the resource. This service makes
available the device to software resources.

e readServices. Behaviora Feature [0..*]
Services which read data from the device.

e writeServices: Behavioral Feature [0..*]
Services which write data to the device.

Constraints

[1] Types of device values must be stereotyped either as “DeviceResource” or as “DeviceBroker” sub-Stereotype.

Notations

The icon associated with that stereotype is:

Figure 14.29 - The deviceBroker notation

14.1.5.5 EntryPoint (from MARTE::SRM::SW_Concurrency)
This stereotype matches the domain concept EntryPoint denoted in Annex F (Section F.8.5).

The EntryPoint supplies the routine (i.e., operations) executed in the context of the Sw ComputingResource.

Extensions
« Allocate (from Alloc)

Generalizations

* None

Associations
* None

Attributes

e isReentrant: Boolean [0..1]
Specifiesif asingle copy of the routine instructions in memory can be shared by multiple concurrent
resource. If true, instructions described in the routine could be called from multiple concurrent resource
contexts simultaneously without conflict.

UML Profile for MARTE, V1.0 213

e routine: Behavioral Feature [1]
Specifies the routine that has to be executed in the context of the software computing resource.

Constraints

* None

14.1.5.6 InterruptResource (from MARTE::SRM::SW_Concurrency)
This stereotype matches the domain concept InterruptResource denoted in Annex F (Section F.8.6).

InterruptResource defines an executing context to execute user-delivered routines (i.e., entry point) further to hardware or
software asynchronous signals.

Extensions

* None

Generalizations

» SwConcurrentResource (from SRM::SW_Concurrency) on page 193

Associations

* None

Attributes

e kind: InterruptKind [0..1]
Specifies the kind of interrupt.

e isMaskable: Boolean [0..1]
Interrupts can either be maskable or not. Only few critical signals raise non maskable interrupts.
The control processor unit (CPU) always recognizes those. Maskable interrupts can be in two
states: unmasked (i.e., recognized by the CPU) or masked (i.e., ignored by the control unit). For
example, a schedulable resource can explicitly mask maskable interrupts to avoid its pre-emption
in some code sections.

¢ maskElements: TypedElement [0..*]
Specifies elements that map the semantics of the interrupt mask.

e routineConnect: BehavioralFeature [0..*]
Servicesthat connect the routine to the interrupt vector.

e routineDisConnect: Behavioral Feature [0..*]
I dentifies services that disconnect the routine to the interrupt vector.

e vectorElements: TypedElement [0..*]
Specifies elements that map the semantics of the interrupt vector.

Constraints

* None

Notations
The image associated with that stereotypeis:

214 UML Profile for MARTE, V1.0

vl

Figure 14.30 - The interrupt notation

14.1.5.7 InterruptKind (from MARTE::SRM::SW_Concurrency)

The InterruptKind enumerates different kinds of interrupt.

Description

e Hardwarelnterrupt
Theinterrupt source is a hardware one.

¢ ProcessorDetectedException
Software interrupts produced by the CPU control unit while it detects an anomal ous condition in
executing an instruction. Some examples of “Processor-detected” exceptions are faults (divide
error, device not ready) and aborts (double fault).

¢ ProgrammedException
Software interrupts produced by an explicit request of the programmer. Some exampl es of
“ProgrammedException” exceptions are traps (breakpoints, debug).

e Undef
Undefined mechanism.
¢ Other:

Others mechanisms.

MemoryBroker (from MARTE::SRM::SW_Brokering)
This stereotype matches the domain concept MemoryBroker denoted in Annex F (Section F.8.8).

MemoryBroker resources provide primarily services to manage the memory allocation, the memory protection, and the
Mmemory access.

Extensions

* None

Generalizations
» SwResource (from SW_ResourceCore) on page 196

Associations
* None

Attributes

e accessPolicy : AccessPolicyKind [0..1]
Defines the access policy to the memory (read, write).

UML Profile for MARTE, V1.0 215

* memories: TypedElement [0..*]
Specifies the hardware device type brokered by the driver.

e memoryBlockAddressElements. TypedElement [0..*]
Specifies elements that map the semantic of the memory block address.

« memoryBlockSizeElements: TypedElement [0..*]
Specifies elements that map the semantic of the memory block size.

« lockServices. BehavioralFeature[0..*]
Services that lock the paging or the swapping.

e mapServices. Behavioral Feature [0..*]
Services that map real memory onto the virtual address ranges used in memory partition.

e unlockServices: Behavioral Feature [0..*]
Servicesthat unlock the paging or the swapping.

e unMapServices: BehavioralFeature [0..*]
Services that unmap real memory onto the virtual address ranges used in memory partition.

Constraints

[1] Types of memory values must be stereotyped either as “ StorageResource” or as “ StorageResource” sub-Stereotype.

Notations

The image associated with that stereotype is:

=

Figure 14.31 - The memoryBroker notation

14.1.5.8 MemoryPartition (from MARTE::SRM::SW_Concurrency)
This stereotype matches the domain concept MemoryPartition denoted in Annex F (Section F.8.9).

MemoryPartition represents a virtual address space and insures that each concurrent resource associated to a specific
memory partition can only access and change its own memory space.

Extensions
» NameSpace (from UML::Kernel::Classes)

Generalizations
» SwResource (from SRM::SW_ResourceCore) on page 196

Associations

* None

216 UML Profile for MARTE, V1.0

Attributes

e concurrentResources. TypedElement [0..*]
Specifies concurrent resource executing in that address space.

e exitServices: BehavioralFeature[0..*]
Releases an address space.

o forkServices: Behavioral Feature [0..*]
Spawns a new address space.

e memorySpaces: TypedElement [0..*]
Specifies parts of the memory linked to this address space.

Constraints

[1] Types of concurrentResources values must be stereotyped either as “ SwConcurrentResource” or as
“SwConcurrentResource” sub-Stereotype.

[2] Types of memorySpaces values must be stereotyped either as “ StorageResource” or as “ StorageResource’

sub-Stereotype.

Notations

The image linked to that stereotypeis:

Figure 14.32 - The memoryPartition notation

14.1.5.9 MessageComResource (from MARTE::SRM::SW_Interaction)

This stereotype matches the domain concept MessageComResource denoted in Annex F (Section F.8.10).

M essageComResource defines communication resource to exchange message.

Extensions
* None

Generalizations

» SwCommunicationResource (from SRM ::SW_Interaction) on page 193

Associations

* None
Attributes

e isFixedMessageSize : Boolean
Specifies whether all messages managed by the resource have the same size.

UML Profile for MARTE, V1.0

217

¢ mechanism: MessageResourceKind [0..1]
Specifies the kind of mechanism used to exchange messages.

* messageQueueCapacityElements: TypedElement [0..1]
Specifies the upper limit of message number allowed in a queue.

* messageQueuePolicy: QueuePolicyKind [0..1]
Defines the algorithm to manage the outgoing message queue.

* messageSizeElements : TypedElement [0..*]
Specifies the parameter used in message exchange services to define the size of the message.

e receiveServices: BehavioralFeature [0..*]
Identifies services that get a message.

e sendServices: BehavioralFeature [0..*]
Identifies services that set a message.

Constraints

* None

Notations
The image associated with that stereotype is:

=)

Figure 14.33 - The MessageComResource notation

14.1.5.10 MessageResourceKind (from MARTE::SRM::SW_Interaction)

The MessageResourceKind enumerates common mechanisms provided by platform to exchange data.

Literals

» Blackboard
Defines a one message buffer.

¢ MessageQueue
Defines a multiple message buffer.

+ Pipe

Defines POSIX Pipe mechanism, which allows data flow among separate memory partitions.
e Undef

Undefined mechanism.
e Other

Other mechanisms.

14.1.5.11 MutualExclusionResourceKind (from SW_Interaction)

The Mutual ExlusionResourceKind enumerates common mechanisms provided by platform to synchronize resource.

218 UML Profile for MARTE, V1.0

Literals

* BooleanSemaphore
Defines a binary semaphore. It is aflag available or unavailable. There is no proprietary
purpose. Anybody can give the semaphore even if it does not take it.

e CountSemaphore
Defines a counting semaphore for which every time the semaphore is given the count is
incremented; every time the semaphore is given the count is decremented.

* Mutex
Defines a binary semaphore associated with a propriety concept, resource can give the
semaphore if and only if the resource takesiit.

¢ Undef
Undefined mechanisms.
*« Other

Other mechanisms.

14.1.5.12 NotificationKind (from MARTE::SRM::SW_Interaction)

The NotificationKind enumerates common policy to access a resource.

Literals

¢ Bounded
Each occurrence increments a counter.

¢ Memorized
Occurrences are memorized in a buffer.

¢ Memoryless
Occurrences are not memorized in a buffer, hence multiple occurrences are lost.

e Undef
Undefined.
e Other

User's specific policy.
14.1.5.13 NotificationResourceKind (from MARTE::SRM::SW __Interaction)
The NotificationResourceKind enumerates common mechanisms provide by support to notify occurrence.

Literals

* Barier
barrier mechanism.

¢ Event

event mechanism.
e Undef

undefined mechanisms.
e Other

other mechanisms.

UML Profile for MARTE, V1.0

219

14.1.5.14 NotificationResource (from MARTE::SRM::SW_Interaction)

This stereotype matches the domain concept NotificationResource denoted in Annex F (Section F.8.15).

NotificationResource supports control flow by notifying the occurrences of conditions to awaiting concurrent resources.

Extensions

* None

Generalizations

» SwSynchronizationResource on page 198

Associations
« None

Attributes

e clearServices: BehavioralFeature [0..*]
Services that erase one or several occurrences.

e flushServices: Behavioral Feature [0..*]
Servicesto release any resource that waits for an occurrence.

¢ maskElements: TypedElement [0..*]
Elements that map the semantic of the mechanism to mask occurrence.

* mechanism : NotificationResourceKind
|dentifies notification mechanism.

« occurenceCountElements: TypedElement [0..*]
Elements that map the semantic of the occurrence number.

* occurenceKind : NotificationKind
Specifies the kind of notification.

e signalServices. Behavioral Feature [0..*]
Services that send one or severa occurrences.

e waitServices: BehavioralFeature [0..*]
Services to wait one or several occurrences.

Constraints
* None

Notations
The image associated with that stereotypeis:

220

UML Profile for MARTE, V1.0

3P

Figure 14.34 - The NotificationSynchronization notation

14.1.5.15 QueuePolicyKind (from MARTE::SRM::SW_Interaction)

The QueuePolicyKind enumerates algorithms provided by resources to order a queue.

Literals
« FFO

Thefirst eement put in the queueis the first outgoing.
« LIFO

The last element put in the queue is the first outgoing.
e Priority

Each element is annotated with a priority.
e Undef

Undefined.
e Other

Other algorithms.

14.1.5.16 SharedDataComResource (from MARTE::SRM::SW_Interaction)

This stereotype matches the domain concept SharedDataComResource denoted in Annex F (Section F.8.17).

SharedDataComResource defines specific resources used to share the same area of memory among concurrent resources.

Extensions

* None

Generalizations
« SwCommunicationResource (from SRM:SW_Interaction) on page 193

Associations

* None
Attributes
e readServices: BehavioralFeature [0..*]
Services that read the shared data.

e writeServices: Behavioral Feature [0..*]
Services that write the shared data.

UML Profile for MARTE, V1.0

221

Constraints
* None

Notations

The image associated with that stereotypeis:

(o

Figure 14.35 - The SharedDataComResource notation

14.1.5.17 SwAccessService (from MARTE::SRM::SW_ResourceCore)
This stereotype matches the domain concept SwA ccessService denoted in Annex F (Section F.8.18).

The services provided by a software resource to access its characteristics: the accessor and the setter.

Extensions

* None

Generalizations
» GrService (from GRM)

Associations
« None

Attributes

e accessedElement: Property [1]
The property that is accessed by this service.

e isModifier: Boolean
Specifiesif the access modify the resource feature pass by parameters of this service.

Constraints
+ None.

14.1.5.18 SwCommunicationResource (abstract) (from MARTE::SRM::SW _Interaction)

This abstract stereotype matches the domain concept SwCommunicationResource denoted in Annex F
(Section F.8.19).

SwCommunicationResource defines data exchange interaction among concurrent resources.

Extensions
* None

222 UML Profile for MARTE, V1.0

Generalizations
» SwinteractionResource (from SRM ::SW_Interaction) on page 195.

« CommunicationMedia (from GRM) on page 102.

Associations

+ None

Attributes

* None

Constraints
* None

14.1.5.19 SwConcurrentResource (abstract) (from MARTE::SRM::SW_Concurrency)

This abstract stereotype matches the domain concept SwConcurrentResource denoted in Annex F (Section F.8.20).

This resource defines entities that may execute concurrently sequential parts of instructions.

Extensions

* None

Generalizations
» SwResource (from SRM::SW_ResourceCore) on page 196

Associations

* None

Attributes

e activateServices: BehavioralFeature [0..*]
Services that make available aresource to execute. As aresult, activated resources are ready to
compete for the computing resource. In case of interruption, it resultsin explicitly raised the
interrupt (i.e., to set of the interrupt).

e activationCapacity: Integer [0..1]
Specifies the activation number allowed in the system.

e addressSpace: TypedElement [0..1]
Defines the address space in which the flow is executed.

« disableConcurrencyServices : BehavioralFeature [0..*]
Services that lock the competition for a computing resource. As aresult, any concurrent resource
cannot pre-empt the executing resource.

¢ enableConcurrencyServices: Behavioral Feature [0..*]
Services that unlock the competition for a computing resource. As aresult, any concurrent resource
can preempt the executing resource.

UML Profile for MARTE, V1.0

223

e entryPoints. Elements[0..*]
Defines entry points of the resource.

e heapSizeElements : TypedElement [0..*]
Elements that map the semantic of the resource heap size in case of dynamic memory allocation.

e periodElements: TypedElement [0..*]
Elements that map the semantic of the resource period in case of a periodic concurrent resource.

e priorityElements: TypedElement [0..*]
Elements that map the semantic of the resource priority.

e stackSizeElements: TypedElement [0..*]
Elements that map the semantic of the resource stack size.

e type: ArrivalPattern (from MARTE_Library::BasicNFP_Types::Arrival Pattern)
I dentifies the occurrence execution pattern.

e resumeServices: BehavioralFeature [0..*]
Services that make available a resource to compete with either ready or pended concurrent
resource. Pended resources are blocked due to the unavailability of some other resources. In case
of interrupt, resume service is equivalent to an enable service.

e suspendServices: Behavioral Feature [0..*]
Services that make unavailable a resource to execute. In case of interrupt, suspend serviceis
equivalent to disable service.

* terminateServices: Behavioral Feature [0..*]
Servicesthat stop definitively resource execution.

e sharedDataResources: TypedElement [0..*]
Resources used to share data among computing resources. Those resource types must be stereotyped
as“SRM::SW_ Interaction:: SharedDataComResource.”

¢ messageResources: TypedElement [0..*]
Resources used to communi cate messages among computing resources. Those resource types must
be stereotyped as “ SRM::SW_|nteraction::MessageComResource.”

« mutual ExclusionResources: TypedElement [0..*]
Resources used to synchronize mutual accesses. Those resource types must be stereotyped as
“SRM::SW_Interaction::SwM utual ExclusionResource.”

« notificationResources: TypedElement [0..*]
Defines resources used to synchronize computing resources. Those resource types must be
stereotyped as “ SRM::SW_Interaction::NotificationResource.”

Constraints

[1] Type of the addressSpace value must be stereotyped as “MemoryPartition.”

[2] entryPoints values must be stereotyped as “EntryPoint.”

[3] sharedDataResources values must be stereotyped as “ SRM::SW_Interaction::SharedDataComResource.”

[4] messageResources values must be stereotyped as “ SRM::SW_Interaction:: SwM utual ExclusionResource.”

[5] mutual ExclusionResources values must be stereotyped as “ SRM::SW_Interaction:: SwMutual ExclusionResource.”

[6] notificationResources values must be stereotyped as “SRM::SW_Interaction::NotificationResource.”

224 UML Profile for MARTE, V1.0

14.1.5.20 SwinteractionResource (abstract) (from MARTE::SRM::SW _Interaction)

This stereotype matches to the domain concept SwinteractionResource denoted in Annex F (Section F.8.21).

InteractionResource is an abstract concept that denotes generic mechanism to interact among concurrent executing

resources. Synchronization and Communication are specific kinds of interaction.

Extensions
* None

Generalizations
» SwResource (from SRM::SW_ResourceCore) on page 196

Associations

* None

Attributes

« isintraMemoryPartitionl nteraction: Boolean [0..1]
Specifiesif the mechanism can be accessed from different memory partitions (i.e., namespace,
address space).

« waitingPolicyElements: TypedElement [0..*]
Elements by which the communication waiting policy is specified: waiting, ready, waiting with a
time out, conditional waiting.

 waitingQueuePolicy: QueuePolicyKind [0..*]
Defines the algorithm to manage the resource waiting queue.

 waitingQueueCapacity: Integer [0..1]
The number of resources allowed in the waiting queue.

Constraints
* None

14.1.5.21 SwMutualExclusionResource (from MARTE::SRM::SW_Interaction)

This stereotype matches the domain concept SwM utual ExclusionResource denoted in Annex F (Section F.8.22).

Mutual ExclusionResource describes resources commonly used for synchronize access to shared variables.

Extensions
* None

Generalizations
» Mutual ExclusionResource (from GRM) on page 107

» SwSynchronizationResource on page 198

UML Profile for MARTE, V1.0

225

Associations
* None

Attributes

» accessTokenElements : TypedElement [0..*]
Elements that map the semantics of the token used to access a shared information.

 acquireServices: Behaviora Feature [0..*]
Servicesthat get an access token to a shared information.

« concurrentAccessProtocol : ConcurrentA ccessProtocol Kind
Specifies the protocol applied in concurrent access.

mechanism : Mutual ExclusionResourceKind
Specifies the kind of mechanism used to mutual exclusion synchronization.

« releaseServices: Behaviora Feature [0..*]
Services that rel ease an access token to a shared information.

Constraints
« None

Notations
The image associated with that stereotypeis:

Figure 14.36 - The SwMutualExclusionResource notation

14.1.5.22 SwResource (abstract) (from MARTE::SRM::SW_ResourceCore)
This stereotype matches the domain concept SwResource denoted in Annex F (Section F.8.23).

SwResource model software structural entities provided to the user by execution supports.

Extensions

* None

Generalizations
» Resource (from GRM on page 117)

Associations
* None

226 UML Profile for MARTE, V1.0

Attributes

e createServices. Behavioral Feature [0..*]
Servicesthat allocate and declare the resource to the system.

e deleteServices: BehavioralFeature [0..*]
Servicesthat free and delete the resource from the system.

* identifierElements: TypedElement [0..*]
Elements that map the semantic of a resource identifier.

« initializeServices: Behavioral Feature [0..*]
Services that initialize the resource.

e memorySizeFootprintElements: TypedElement [0..1]
Elements that map the memory size footprint of the resource.

e stateElements: TypedElement [0..*]
Elements that map the semantic of the resource state.

Constraints
* None

14.1.5.23 SwSchedulableResource (from MARTE::SRM::SW_Concurrency)

This stereotype matches the domain concept SwSchedulableResource denoted in Annex F (Section F.8.24).

Schedul ableResource are resources that execute concurrently to other concurrent resource.

Extensions

* None

Generalizations
« Schedul ableResource (from GRM) on page 111.

» SwConcurrentResource (from SRM::SW_Concurrency) on page 193.

Associations
* None

Attributes
¢ deadlineElements: TypedElement [0..*]
Elements that map the semantic of the deadline feature.

e deadlineTypeElements : TypedElement [0..*]
Elements that map the semantic of the deadline criticality degree (e.g., soft and hard).

e delayServices: BehavioralFeature [0..*]
Servicesthat delay for alapse of time the execution. The resource isin a dormant state during
thislapse.

e isPreemptable: Boolean [0..1]
Specifiesif the scheduler can preempt that kind of resource.

UML Profile for MARTE, V1.0

227

e isStaticSchedulingFeature: Boolean [0..1]
Specifiesif the scheduling parameters (priority, deadline, timedlice) are static (i.e., constants define off-line).

e joinServices. BehavioralFeature [0..*]
Services that suspend the execution of set of concurrent resource until other concurrent resources terminates.

e scheduler: TypedElement [1]
Specifies the scheduler that orchestrates the concurrent execution of this kind of resource.

e timeSliceElements: TypedElement [0..*]
Elements that map the semantic of the timeSlice in case of round robin scheduling.

e vyieldServices: Behavioral Feature [0..*]
Services that explicitly relinquish the computing resource. They explicitly ask scheduler to reschedule.

Constraints

[1] The type of scheduler value must be stereotyped either as “ Scheduler” or as “ Scheduler” sub-Stereotype.

Notations

The image associated with that stereotype is:

L

Figure 14.37 - The SwSchedulableResource notation

14.1.5.24 SwSynchronizationResource (abstract) (from MARTE::SRM::SW_Interaction)
This stereotype matches the domain concept SwSynchronizationResource denoted in Annex F (Section F.8.25).

This resource defines interaction mechanisms to synchronize concurrent execution flow.

Extensions

* None

Generalizations

» SwinteractionResource (from SRM::SW_Interaction) on page 195.
« SynchronizationResource (from GRM) on page 102.

Associations
« None

Attributes

* None

Constraints

* None

228 UML Profile for MARTE, V1.0

14.1.5.25 SwTimerResource (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept SwTimerResource denoted in Annex F (Section F.8.26).

A SwTimerResource represents an entity that is capable of following and evidencing the pace of time upon demand with
a prefixed maximum resolution, at programmable time intervals.

Extensions
* None

Generalizations

» TimerResource (from GRM ::ResourceTypes) on page 104

Associations

* None

Attributes

e DurationElements : TypedElement [0..*] { redefines GRM:: TimerResource::duration}
Elements that map the semantic of the interval after which the timer will make evident the elapsed time.

Constraints

+ None

Notations
The image associated with that stereotype is:

N

Figure 14.38 - The SwTimerResource notation
14.1.6 Examples

The following examples illustrate how the SRM sub-profile stereotypes may be used in practice. Several brief case studies
are described for each sub-profile. In afirst section, modeling possibilities are exhaustively described. In a second
section, some concrete RTOS concepts are modeling. In addition, Section D.5 provides two examples of RTOS APl model
library, for OSEK VDX and ARINC-653, build with the SRM profile.

14.1.6.1 Modeling possibilities

The idea of this section is to describe common use of SRM sub-Profile stereotypes. It aims to give an overview of typical
modeling possibilities. The list of examples is by no means exhaustive.

UML Profile for MARTE, V1.0 229

Applying SwResource stereotypes on classifiers

All stereotypes of the SRM sub-profile extend the UML ::Classes::Kernel::Classifier metaclass. Thus, any UML Classifier
sub-metaclass may be extended by those stereotypes (e.g., Class, Interface, Component, and AssociationClass). Figure
14.40 and Figure 14.41 illustrate UML Class and UML Component extension.

« SwSchedulable Resource » « SwSchedulableResource » =
deadineElements =Task :Deadine g deadlineElements = Task :Deadline « interface »
yieldService = Task::yield() «swSchedulableResource » yieldSenice = TaskService::yield () «swSchedulableResource » TaskService
- Task ~ Task pomaaad ™
~. +yield()
~~y, Deadline : Integer - Deadiine : Integer
+yield ()
(i) Class (i) Class and Interface
Figure 14.39 - Class extension example
« SWScht_edu lable Re source » « interface»
yieldService = TaskService::yield() 7%] TaskService
~<p « swSchedulableResource » p====wrg
Task +yield ()

Figure 14.40 - Component extension example

Figure 14.41 illustrates the use of an AssociationClass (from UML::CompositesStructures::Internal Structures) to describe
interaction between concurrent computing resources. As the SwinteractionResource stereotype extends the UML
Classifier metaclass, a UML AssociationClass may be stereotyped as any SwinteractionResource sub-stereotype (for
example: NotificationResource, MessageComResource, SwM utual ExclusionResource). In this example, the execution
support provides concurrent resource to compute instructions: “Alarm” and “Task.” They are described as UML classes
and respectively stereotyped as “Alarm” and as “ SwSchedulableRessource.” In this example, an “Alarm” resource may
interact with a “ SwSchedulbaleResource” (i.e., a task) by means of an event mechanism stereotyped
“NotificationResource.”

O

« Notification Re source »
Event

O= :
3 i task
«Alarm » « SwSchedulableResource »
Alarm Task

Figure 14.41 - AssociationClass extension example

Applying SwResource stereotypes on properties

All stereotypes of the SRM sub-profile extend the UML::ConnectableElement meta class (from
UML::CompositeStructures::Internal Structures). Figure 14.42 illustrates the use of such extension to describe interactions
between concurrent computing resources in a memory partition.

230 UML Profile for MARTE, V1.0

« memoryPartition »

L

Partition
—
i =13 2
« interruptResource » «messageComResource » «swSchedulableResource »
its : Interrupt[0..7] mbx : MaiBox [0..*] tasks : Task [1..*]

Figure 14.42 - ConnectableElement extension example

Applying the EntryPoint stereotype on dependencies

Figure 14.43 denotes a use of the entryPoint stereotype on a UML ::Dependency. This example illustrates a robotic

application build upon a generic API. This design is a part of arobot controller in charge of the motion control. On the
left side, the software designer describes the logical “RobotController” model. On the right side, the SRM profile is used
to describe the MemoryPartiton and the Schedul ableResource provided by a generic real-time and embedded API. Then,
amodel is described as instances of the MemoryPartition and Schedul able resources. Hence, the Task instances are bound

with their entryPoint by means of UML 2.0 dependency In case of the “t2” instanceSpecification, the stereotype

“entryPoint” is used to specify that the “trajectoryControl” operation of a specific MotionController instanceSpecification
is the routine that has to be executed in the context of that schedulable resource.

« model»
RobotControllerLogicalModel

MotionController

+maxSpeed : Integer

trajectoryControl()
odometry()

: MotionController ‘

~

N

« modelLibrary»
GenericAPI

1

« Profile »
SRM

A
« apply »
1

« MemoryPartition »
Partition

+asks
1.*

+owner
0..1

« SwSchedulableResource »

Task

«import »
1

«import »
N

« entryPoint » N

«model»
RobotControllerTaskModel

isReentrant = true

routine = odometry

« entryPoint »

pl : Partition

isReentrant = true i
routine = trajectoryControl « entryPB'nt S —

S

- t1: Task '—1

\—{ 2 : Task

o .
« entryPoint »
L

Figure 14.43 - EntryPoints examples

UML Profile for MARTE, V1.0

231

Applying the SwAccessService stereotype on services

“Get” and “Set” services may be formally clarified with the SwA ccessService stereotype. In the example depicted in
Figure 14.44, the “sem_getValue” service returns the semaphore value. Hence, it is stereotyped as “ SwA ccessService.”
The tag “accessedElement” specifies that the feature accessed is the property named “value.” Therefore, the boolean tag
“isModifier” indicates that this service does not modify the value.

Semaphore « SwAccessService »
accessedElement =value
. isModifier = false

-value : Integer

« swAccessService » +sem_getValue() :Integer el

Figure 14.44 - SwAccessService example

Tagged values examples

Stereotype properties alow users to precise semantics of elements. For example, in Figure 14.40, the “ Deadline” property
is tagged to clarify its semantic. It denotes explicitly in the model that among all attributes of this class, one refers to the
task deadline. That is named “Deadline.” Thus, it allows tools to distinguish properties and to permit automatic model
transformations (code generation for example).

In the second part of Figure 14.45, the “ TaskService” interface owns a “yield” operation. This operation is tagged as a
“yieldServices’ by the “ SwSchedulableResource” stereotype, whereas this stereotype is not applied to the interface. It
means that in the context of a “task,” the service to call in order to release the computing resource is the operation “yield”
of the interface “ TaskService.”

Multiple tagged values for the same tag and multiple tags for the same feature are allowed. On the one hand user can
express formally multiple semantics for the same feature through multiple tags. On the other hand, user can express the
same semantic for multiple features through the same tag. Figure 14.46 describes a “taskSpawn()” service as both task
creating and task activating. In the same way, to activate a task, you can either call the “taskSpawn()” service or the
“taskActivate()” one. Figure 14.47 illustrates that user may reference UML properties as well as UML parameters to the
same tag.

« SwSchedulable Re source »

createServices =Task taskSpawn()

activateServices =Task taskSpawn(), Task :taskActivate () « swSchedulableResource »

‘.\ Tag(
h.\-\
.
.
0 +taskSpawn ()
+askActivate ()

Figure 14.45 - Multiple tags and multiple tagged services

232 UML Profile for MARTE, V1.0

« SwSchedulable Resource »
priorityElements = Task::Priority, Task::taskSpawn::prio

« swSchedulableResource »
Task

'«
s
'~
-
\‘~
-
.,

'~

. Priority : Integer

'“~a

+taskSpawn(prio : Integer)
+taskActivate ()

Figure 14.46 - Multiple tagged features

14.1.6.2 Specific RTOS APl examples

The idea of this section is to describe concrete use of SRM sub-Profile stereotypes. Those stereotypes are applied to
specific RTOS concepts. Some explanations are given for each case study. In addition, large examples of specific UML
model libraries using the SRM profile are described in the Section D.4. Thus, some parts of OSEK/VDX (OS 2.2.2) and
ARINC (653-1) APIs are described as examples.

SwSchedulableResource and MemoryPartition example

To illustrate the use of the “ SwSchedul ableResource” and “MemoryPartition” stereotypes, Figure 14.47 aims to represent
the POSIX Process and Pthread concepts modeled as UML classes. POSIX process is an address space with one or more
threads executing within that address space, and the required system resources for those threads. Each process shall be
controlled by a priority. Hence, POSIX Process is conforms to both a “MemoryPartition” and a
“SwSchedulableResource.” The PID attribute is the process identifier. Hence, this attribute is assigned to the
“identifierElements’ inherited tagged value of the “SwResource” stereotype. That tagged value clarifies the semantic of
the PID attribute. It explains explicitly in the model that the attribute named “PID” refers to the process identifier. POSIX
thread (i.e., pthread) is a single flow of control within a process. Anything whose address may be determined by a thread
is accessible to all threads in the same process. Each thread shall be controlled by an associated priority. Hence, a POSIX
Thread is a conformed to a “ SwSchedulableResource” and associated with the “Process’ classifier.

@ NHTDI’)PHTHG"I »
e e reas «memonyParttion » « SwSthedulalieRescure »
« SeResouree » « SwScheduiaieResource » M « SvSchedulabieResorce » El' addressSpace = owner
iderfifierSements =FID _— Process +oaner +ihread Pifread o .
K 1+ « SwComputingResouree s

i +FID - pid ¢ ' ~ | +sched prioity - Integer pricrityBlemeris = sched_priorty
¢ Capngesarces +sched_pricrty - Irfeger
priofityBements = sched_priarity

Figure 14.47 - POSIX Process and Pthread example

InterruptResource example

Figure 14.48 illustrates the OSEK/VDX interrupt resource modeled as a UML class. OSEK interrupts are scheduled by
hardware while tasks (i.e., OSEK schedulableResource) are scheduled by the scheduler. Interrupts can interrupt tasks
(preemptable and non preemptable tasks). OSEK offers fast functions to suspend (i.e., disable) and resume (i.e., enable)
interrupts.

UML Profile for MARTE, V1.0 233

« SwComputingResource »

Type = Aper_ncic « interruptResource I .
resumeSenvices = EnableAllnterrupts, Resume Allnterrups, ResumeOSints mupts Interrupt
suspendSenices = DisableAllinterrupts, SuspendAliinterrupts, Suspend CSinterrupts |re==eea- -

+EnableAllinterrupts()

« InterruptResource » +DisableAll nterruptsi()
kind = hardware +ResumeAllinterrupts)
+SuspendAallinterrupts()
+SuspendOSinterrupts)
+ResumeOSinterrupts()

Figure 14.48 - OSEK/VDX Interrupt example

Alarm example

Figure 14.49 illustrates the use of the “Alarm” stereotype. The OSEK operating system provides services for processing
recurring events. Such events may be for example timers that provide an interrupt at regular intervals, or encoders at axles
that generate an interrupt in case of a constant change of a (camshaft or crankshaft) angle, or other regular application
specific triggers. The OSEK operating system provides a two-stage concept to process such events. The recurring events
(sources) are registered by implementation specific counters. Based on counters, the OSEK operating system software
offers alarm mechanisms to the application software, such as services to activate tasks, set events or call an alarm-
callback routine (i.e., the alarm entry point) when an alarm expires. Note that the SwTimerResource is directly used to
stereotype OSEK/VDX Counter.

o alammis 'f}z.._,(_—r' I\
Alam ! !
« SwiConcurrentFescurces . . « SwTmerResource »
suspendSenices : Cancelam :ma‘“i;:mmmrﬂ freacCrly} « swTimerResouroe » @ | _J durafionEkments = minCyck
/ i2an {read Oniy |} Courer : :
| dimer
.x.AI.:r-n» R +0edaredlarm (AsrmiD : AlamiType) 1_‘ +maxtlowedalue : LINTI2 « enumeraton »
isiaichdog = flse +GettlarmBase(NarmiD: slarnTyps Info- abrmBasRefType) : statisTyee +minCyde : LINT22 Alarmfciontind
timers =timer +Getilarm AarmiD : darniType, Tidk : tiReTyos) © satsTyoe +HidksPerSase : UINT22 - -
+SetReliam (MarmiD: damiTyee, Sart - tikType, Cyds ; fickType - statusType MTMTBT\?!R\
+Zanoeldlamn (MamlD: alarmiType) | stansType MSE_E; —

Figure 14.49 - OSEK/VDX Alarm example

SwMutualExclusionResource example

Figure 14.50 illustrates one use of the “SwMutual ExclusionResource” stereotype to clarify the semantic of the POSIX
semaphore type, named Sem_t. POSIX semaphore may be used to guard access to any resource accessible by more than
one schedulable resource in the system. A concurrent resource that wants access to a critical resource (section) has to wait
for (i.e., to acquire) the semaphore that guards that resource. When the semaphore is locked on behalf of a concurrent
resource, it knows that it can use the resource without interference by any other cooperating concurrent resource in the
system. When the concurrent resource finishes its operation on the critical resource, leaving it in a well-defined state, it
rel eases the semaphore, indicating that some other concurrent resource may now obtain the resource protected by that
semaphore.

234 UML Profile for MARTE, V1.0

« swMutualExdusionResource » 7] | « SwResource » AN « SwResource » N
Sem t createServices =sem_init createServices = sem_init
| deleteServices =sem_destroy deleteSenvices =fem_de_g_r oy
-value : Integer iniialzeServices = sem_init b initalizeSenices = sem_init
+sem_iit() « SWMutualExclisionResource » « SwMutualExdusionResource »
+sem_dose() i « swMutualExdusionResource » | mechanism = CountSemaphore
mechansm = CountSemaphore
+sem_destroy() TokenElements = valu Sem t accessTokenElements = value
+sem_open() accessl oken=lements = vale . . . - jreSenvicas = . imedWai Wai
*59’“_130510 acqureServices = sem_wait, sem_timedWait, sem_tryWait ?&gszmiz = :mj/:g\lst sem_timex it, sem_tryWait
+sem_tmedWait () releaseServices = sem_post
+sem_tryWai()
+sem_wait()
(i) icon + text form (i7) shape form

Figure 14.50 - POSIX semaphore example

MessageComResource example

Figure 14.51 shows a representation of the ARINC-653 Buffer and Event mechanism. ARINC-653 Buffer is stereotyped
M essageComResource. That mechanism is a communication object used by schedulable resources (i.e., ARINC-653
process) of a same memory partition (i.e., ARINC-653 partition) to send or receive message.

ARINC-653 Event is a communication object used to notify of a condition to schedulable resources (i.e., ARINC-653
processes) that may wait for it. Hence, it is stereotyped “NotificationResource.”

« SwResource » B B
o createServices = createEvent @ « SwResource »
« NotificationResource » «MessageComResource» |[= createServices = createBuffer
Event « SwinteractionResour ce » Buffer
L isintraMemoryPartitionInteraction=true bame | € Swinteraction Resource »
createEvent(...) ~e——raa createBuffer(..) islntraMemoryPartitioninteraction=true
resetEvent(...) o receiveBuffer(...)
setEvent(...) « NotificationResource » sendBuffer(...) « S_WMessageComResource »
waitEvent(...) oocurrer_me = Memoryless |sF|xedMessageS|ze = false
mechanism = Event mechanism = Buffer
clearServices =resetEvent receiveServices = receiveBuffer
signalServices = setEvent sendServices = sendBuffer
waitServices = waitEvent

Figure 14.51 - ARINC-653 Event and Buffer example

14.2 Hardware Resource Modeling (HRM)

14.2.1 Overview

This section provides mechanisms to model the hardware (HW) part of embedded systems, which is essential to fulfill the
application specification. When interfacing hardware and software design flows, it is a common practice to specify
abstracted and understandable models in order to communicate design intends and to study interdependencies affecting
design decisions. At the end, the hardware modeled resources are combined with the software (SW) ones to support the
whole application execution.

Hardware has severa various architectures and a huge amount of hardware components exist. It is also continuously
varying with many new emerging technologies. Therefore, modeling such a domain requires a highly expressive
language. The UML mechanisms like generalization, composition, encapsulation, separation of concerns (structure/

UML Profile for MARTE, V1.0 235

behavior), abstraction (different views), and refinement, are well adapted for that dilemma. The Deployments package of
UML specifies constructs like DeploymentTarget, Node, or Device, which can be used to define roughly a hardware
architecture that is to serve as the target of software artifacts. Our scope is larger, we aim to cover many aspects:

 Software design and allocation using a high level hardware description model of the targeted hardware architecture,
with some details about available resources, instruction set family, memory size. Such model isaformal alternative to
block diagrams.

» Analysisand simulation of a specialized hardware description model:

» The nature of details depends on the analysis focus and the simulated resources. For example, schedulability
analysis requires details on the processor throughput, memory organization, and communication bandwidth;
whereas, power analysis will focus on power consumption, heat dissipation, and the layout of the hardware
components.

» Therequired level of detail depends on the analysis and simulation accuracy. The performance simulation needs a
fine description of the processor microarchitecture and memory timings, whereas, many functional simulators
simply require entering the instruction set family.

» Hardware constructors can describe their products with akind of model-based datasheets. They must provide a detailed
hardware design model refined with specific details.

To support all use cases enumerated above, the authors extend UML using a profile based on a detailed Hardware
Resource Model. This latter is intended to serve for description of existing and conception of new hardware platforms,
through different views and detail levels. In a few words, the Hardware Resource Model is grouping most hardware
concepts under a hierarchical taxonomy with several categories depending on their nature, functionality, technology, and
form.

Separation of concerns and abstraction are the main qualites of this profile. It eases adaptation to many orthogonal
activities. The Hardware Resource Model is composed of two views: a logical view that classifies hardware resources
depending on their functional properties, and a physical view that concentrates on their physical properties. Both are
specializations of the general model. The logical and physical views are complementary. They provide two different
abstractions of hardware and they could be simply merged (example 14.2.4.3). In turn, each view is composed of many
models differentiated by other criteria.

Stereotypes introduced within this chapter are organized under a tree of successive inheritances from generic stereotypes
to specific ones, no stereotype is orphan. This is the main reason behind the ability of the hardware resource profile to
cover many detail levels. Optional tagged values and the composite structure of stereotypes are strengthening this ability
as well.

Another feature of the Hardware Resource Model is support of most hardware concepts thanks to a big range of
stereotypes and once more its layered architecture. If no specific stereotype corresponds to a particular hardware
component, a generic stereotype may match. This is also appropriate to support new hardware concepts of new nature or
new technologies.

236 UML Profile for MARTE, V1.0

NonFunctional PropertyModel TimeModel

% Vi

\ ,
)

GeneralResourceMo del

A N
l' ‘\
'l‘ « Import » S« import »
ll' \\
N
] ,"’ IR
HardwareResourceModel SoftwareResourceModel
HW_General
" ‘ﬁ\
«merge »,¢ & merge »
s — ™

HW_Lo gical HW_Physical

Figure 14.52 - Hardware Resource Model dependencies

Both Hardware Resource Model and Software Resource Model (SRM: 14.1, ' Software Resource Modeling (SRM)’) are
specializations of the General Resource Model (GRM: Chapter 10). Therefore, hardware/software allocation model
(Alloc: Chapter 12) benefits from the unified structure of these models.

This section contains al information about Hardware Resource Modeling profile. Section 14.2.2 describes the domain
model, which is separated into general, logical, and physical parts. In Section 14.2.3, the UML representation contains the
profile diagrams and the stereotype descriptions. Section 14.2.4 assembles illustrative examples.

14.2.2 Domain View
In this section, the hardware (HW) concepts are introduced category by category through several metamodel diagrams.
Each metaclass has a detailed description in the Annex F and modeling examples are given in Section 14.2.4.

To ease the use of the Hardware Resource Model (HRM), names of stereotypes and their attributes are rigorously chosen
in accord with conventional hardware terminology. In addition, they are prefixed by the "HW " label to save from
ambiguity. For example, HW_Timer denotes the hardware counter device and it is not a software timer.

Each metaclass attribute is chosen only if it verifies many criteria. First, it denotes a characteristic property of the
metaclass that is common to all represented hardware resources. Then, it complies with the level of abstraction of the
concept and the modeled view. Finally, it must be essential for at least one of the profile use cases enumerated in the
introduction.

Last, many OCL rules are specified to ensure the coherency of the hardware platform model.

14.2.2.1 The Hardware General model

The HW_General model defines atypical structure of execution platforms. It is inferred from the GRM and it isa
common basis for both logical and physical models.

UML Profile for MARTE, V1.0 237

MARTE: :Causality::CoreBehavior::
Behavior

i

MARTE::GRM::Resource MARTE :GRM::ResourceService

Z% p_HW_Services Z%

{subsets pServices}
HW _Resource > 1..*
. HW _ResourceService
r HW_Serices
description ; NFP_String 0.%

owned HW 0.* 0.1
{subsets ownedElement} | "

Figure 14.53 - HW_General model details

The concept of HW_Resource is generic; it denotes a generic hardware entity. It may encapsulate other ownedhardware
resources. This composition mechanism allows successive refinements with different granularities. From a structural point
of view the HW_Resource concept is similar to UML Components but semantically an HW_Resource defines a hardware
execution entity for which the services can be qualified by one or more quality-of-service characteristics.

One example of composite hardware resources is FPGA, which often contains many embedded processors, some amount
of RAM, and it can also be configured into many units with different functions (SMP example 14.2.4.3).

Typically, an HW_Resource provides at least one HW_ResourceService, and may require some services from other
resources. Each HW_ResourceService could be detailed by many views to describe its behaviors.

Collaborations of resources by means of their services characterize the execution platform.

Most of the metaclasses introduced below are inheriting from HW_Resource and in consequence from its structure. Thus,
they are associated with the HW_ResourceServices that they are offering. In order to lighten metamodels and improve
their flexibility, services would not be explicitly specified if they are inherited from the GRM or intuitively deduced from
the HW_Resource type (example 14.2.4.1).

14.2.2.2 The Hardware Logical model

The objective of the logical modeling is to provide a functional classification of hardware entities, whether they are
computing, storage, communication, timing, or device resources. Such a classification is mainly based on services that
each resource offers and optionally influenced by the resources nature (example 14.2.4.1).

The logical taxonomy is common to many previous works. It is not categorical, and the following concepts are not
necessarily incompatible. One hardware resource could have many functions within the same hardware platform.

238 UML Profile for MARTE, V1.0

HW_General
« merge »
\
HW_Logical
HW_Computing HW_Timing
HW_Storage HW_Device
HW_Commu nication

Figure 14.54 - HW_Logical model structure

HW_L ogical package merges the HW_General and it is composed of five subpackages, each one for a particular
resource's type. There are several dependencies between these subpackages.

HW_Computing package

The HW_Computing package defines a set of active processing resources that are central to execution platforms.
HW_ComputingResources are often complex and composite; they may contain many other subresources from different
HW _Logica packages (14.2.4.3).

UML Profile for MARTE, V1.0 239

MARTE:: GRM:: ComputingResource

HW_Logical::HW_Resource

« enumeration »

1SA_Type

T 1

HW_ComputingResource

blocksComguting
{subsets ownedHWW}

op_Frequencies : Interval<NFP_Freqguency=>

L1

RISC
cisc
WLIW
SiMD
other
undef

1

HW_Processor

HW_ASIC

HW_PLD

caches
{subsets ownedHW) |D..'
HW_Logical::HW_Storage::
Cache

ownedMMUs
{subsats awnedHW) |U--'

farchitecture : MFP_DataSize
mips : NFP_Matural

fipc : NFP_Real

nbhCores : NFP_Matural
nbPipelines : NFP_Natural
nbSiages : NFP_Natural
nbALUs : NFP_Natural
nbFPUs - NFP_Natoral

HW_Logical::HW_ Storage:
HW_MMU

T owned|SAs

prediclors .
{subsets awnedHW] | 0.

HW_BranchPredictor

1..* | {subsets ownedHW)}

technology : PLD_ Technology
organization FLD_Organization
nbLUTs: NFF_Natural

nbLUT Inputs : NFP_Natural
nbFlipFlops : NFP_MNatural

& enumeration »
PLD_Technology

SRAM

HW_ISA

antifuse
flash
other

family : NFP_String
inst_Width : NFP_DataSize
type : ISA_Type

undef

o twpleType »

v

HW_Logical::HW_Resource

Figure 14.55 - HW_Computing package details

HW_ComputingResource is a generic resource. It could be specialized (HW_ASIC), such resources are known to be
efficient but not flexible. It could be configurable (HW_PLD), there are many technol ogies that have different capabilities
like dynamic reconfiguration (SRAM). And it could be programmable (HW_Processor), which typically implements some
instruction sets, owns caches, corresponding memory management units, and adopts branch prediction policies.

HW_Storage package

The metamodel of the HW_Storage package includes two diagrams, one for the HW_Memory resource and the other for

the HW_StorageManager resource.

240

FPLD_Organization

nbRows : NFP_Natural
nbColumns : MFP_Matural
class : PLD_Class

blocksRAM

0.7 | {subsets cwnedHW]}

HW_Logical::HW_Storage::
HW_RAM

o enumeraton »
PLD_Class

symetricalArray
rowBased
sealiGates
hierarchicalPLD
ather

undef

UML Profile for MARTE, V1.0

o enumeration »
Repl_Policy

LRU
MNFU
FIFO
random
other
undef

MARTE::GRM::StorageResource

HW_Logical::HW_Resource

HW_Memory

memorySize | NFP_DataSize
addressSize : NFP_DataSize

timings : Timing [*]

Thraughput : MFP_DataTxRate

A

|

« tupleType »
Timing

natation : NFP_String
description : NFP_String
value : NFP_Duraticn

M EnUmeratciyy HW_ProcassingMemory buffer
WritePolicy B {subsets ownedHW)
= N] - HW _SforageMemory
writeBack repl_Policy | Repl_Policy 3
wiiteThrough writePolicy : WritePolicy
ather
undef [f}. [‘t\‘
HW_Cache HW_RAM HW_ROM HW_Drive

level : MNFP_Matural
type - CacheType

organization | MemoryOrganization
isSynchronous : NFP_Boolean

type : ROM_Type
organization | MemoryCrganization

sectorSize | NFP_DataSize

structure | CacheStructure

isStatic {NFP_Boolean
isMontolatile : NFP_Boolean

« anumeration » @ lupleType » @ upleType = @ anumeration »
CacheType CacheStructure MemoryOrganization ROM_Type

data nbSets | NFP_Matural nbRows : NFP_Matural maskedROM
instruction blocSize : NFP_DataSize nbCaolumns : NFP_Matural EPROM
unified associativity - MNFP_MNatural nbBanks : MFP_Matural OTP_EPROM
other wordSize - MFP_DataSize EEFROM
undef flash

ather

undaf

Figure 14.56 - HW_Storage package details (HW_Memory)

HW_Memory denotes a given amount of memory. It could be an HW_ProcessingMemory or HW_StorageMemory.
HW_ProcessingMemory is an abstract metaclass that symbolizes a fast and volatile working memory, while
HW_StorageMemory is an abstract metaclass for permanent and relatively time consuming storage devices.

Inreal world, RAM (Random Access Memory) take many forms, SRAM for Static RAM is often used as cache, SDRAM
for Synchronous Dynamic RAM is enough fast to be used as main memory (example 14.2.4.2). But as the logical model
focuses on the functionality rather than the technology, we distinguish HW_RAM for main memories and HW_Cache for

cache memories.

UML Profile for MARTE, V1.0

241

MARTE :GRM::StorageResource MARTE :GRM::Reso urceBroker HW_Logical::HW_Resource

1 T

managedMemories

{subsets brokedResource}

HW_StorageManager

HW_L ogical:HW_Communicatiorn: 1.

HW_Memory

HW_Arbiter Z%

HW_MMU
HW_DMA
vitualAddrSpace : NFP_DataSize
nbChannels : NFP_Natural physicalAddrSpace : NF P_DataSize
transferWidth : NFP_DataSize memoryProtection: NFP_Boolean
InbEntriesTLB : NFP_Natural
: ownedTLBs
drivenBy | 0. {subsets ownedHW} 0.

HW_Logical:HW_Computing:

HW_Processor HW_Cache

Figure 14.57 - HW_Storage package details (HW_StorageManager)

HW_StorageManager denotes memory brokers. HW_MMU for Management Memory Unit manages addresses and the
content of memories. It might own TLBs (Translation Lookaside Buffer) to translate virtual into physical addresses.
Whereas, HW_DMA for Direct Memory Access, combines memory management and communication control. It may be
driven by an HW_Processor, and it allows devices to transfer data without subjecting the HW_Processor.

HW_Communication package

The objective of the HW_Communication package is to group all communication participants within a functional
taxonomy. It offers a stand-alone communication view that supplies the skeleton of the hardware platform architecture.

242

UML Profile for MARTE, V1.0

MARTE::GRM::
CommunicationResource

HW_Logical::HW_Resource

MARTE::GRM::ResourceBroker

L1

HW_CommunicationResource

| .| endPaints
0.7 {subsets ownedHW}
HW_Arbiter

i cladT,

prereey e Sl HW_EndPoint

. controlledMedias 0.
{subsets brokedRasourca}
o HW_Media
MARTE::GRM:: 1 sides MARTE::GRM::
CommunicationMedia 2. CommunicationEndPoint
HW _Bus

HW_Bridge

adressWidth : NFFP_DataSize
wordWidth : NFP_DataSize
isSynchronous ; NFFP_Boolean
|sSerial - NFP_Baaolean

Figure 14.58 - HW_Communication package details

The HW_Media is a central concept that denotes a communication resource able to transfer data with a theoretical

bandwidth. It may link many HW_EndPoint(s). It could be controlled by many HW_Arbiters and it may be connected to
other HW_Medias by means of HW_Bridges. An HW_EndPoint is an identified connection point of an HW_Resource

(e.g., pin, port, or slot).

If HW_Media is generic and symbolizes any kind of connections, HW_Bus is a particular wired channel with specific
functional properties (example 14.2.4.3).

UML Profile for MARTE, V1.0

243

HW_Timing package

MARTE::GRM::Timin gResource

HW_Logical:HW_Resource] HW_TimingResource

1

clock | 0..1 ‘

inputClock HW Timer
HW_Clock {redefines clock} -

1 nbCounters: NFP_Natural

frequency - NFP_Frequency ocounterWidth : NFP_Datasize

HW_Watchdog

Figure 14.59 - HW_Timing package details

Figure 14.60 defines timing resources. The HW_Clock is a basic periodic pulse with a definite frequency. Every
HW_Resource can be clocked.

HW_Timer is a set of counters. The counter width determines the maximum measurement of time in terms of clock
periods (2counterWidth -1). HW_Watchdog is typically a count-down timer, which sends an alarm when the zero count is
reached (example 14.2.4.1).

HW_Device package

MARTE::GRM::
DeviceResource

T 7

HW_Device

HW_Logical;:HW_Resource

HW_IiO HW_Support

HW_Actuator ‘ HW_Sensor

Figure 14.60 - HW_Device package details

244 UML Profile for MARTE, V1.0

From afunctional point of view, an HW_Device is an auxiliary resource that is not as fundamental as computing, storage,
and communication resources are, but it expands the functionality of the hardware platform. It has two subcategories. The
HW_10 denotes resources that interact with the environment, like sensors, actuators, peripherals, displays, external port,
and so on. Whereas, the HW_Support is a support resource like power suppliers (batteries), power regulators, cooling
fans, or miscellaneous electronic devices. Because of their nature, some support devices are detailed in the physical model
(example 14.2.4.3).

14.2.2.3 The Hardware Physical model

The HW_Physical model represents hardware resources as physical components with details on their shape, size, position
within platform, power consumption, heat dissipation, and many other physical properties.

As most embedded systems have limited area and weight, hard environmental conditions and a predetermined autonomy,
this view helps the hardware design and mapping components on the physical platform.

HW_General

i «merge »
:
HW_Physical

HW_Layout

H

i« merge »
[4
A

HW_Power

Figure 14.61 - HW_Physical model structure

Same as the functional view introduced above, the HW_Physical package merges the HW_General and contains two
subpackages. The HW_L ayout package that focuses on the layout architecture and the HW_Power package that provides
mechanisms to annotate the model with power properties.

HW_Layout package

The HW_Layout package provides mechanisms to make UML graphical diagrams as close as possible to the rea
hardware platform layout. It classifies hardware components depending on their forms and offers arrangement constructs
using rectilinear grids (example 14.2.4.3).

UML Profile for MARTE, V1.0 245

HRM::HW_General::HW_Resource

« enumerstion »

ConditionType
« upleType » tempearature
Env_Condition hurmidity
altiude
type : CondiionType vibration
HW_Component status : ComponentState shock
0.1 - descrption : NFP_String ather
dimensions | NFP_Length [0..3] Teinge : Inloivel] rhval undet
Jarea : MFP_Area
position : Interval<NFP_MNatural= [0..2] w enumeration » « enumeration »
grid : NFP_MNatural [D.. 2] CompeonentState PortType
o nbPins - MFP_Matural [0..1]
- wight : NFP_Weight operating male
subCamponeants price : NFP_Price storage female
{subsets ownedHW} | r Conditions : Env_Condition [] other other
[P undef undef
HW_Chip HW_Channeal HW_Port
technology : NFP_Length nb\Wires : NFP_Natural type : PortType
¢ R
HW_Unit HW_Card
ownedUnits

{subsets subComponenis)

sublUnits

0. {subsets subComponents}

Figure 14.62 - HW_Layout package details

HW_Component denotes a generic physical component that can be refined into a grid of subcomponents. It has
dimensions, a resulting area, a particular weight, and optionally a number of pins and a position within a potential
container. Each HW_Component requires some environmental conditions whether if it isin use or not.

HW_Power package

The HW_Power package comes with a detailed description of HW_Component power consumption and heat dissipation.
It enables advanced power analysis and autonomy optimization that are crucial for embedded systems. Notice that the
HW_Layout may also influence the power analysis.

246

UML Profile for MARTE, V1.0

poweredServices

HW_Physical:: {redefines p_HW_Services} -
HW_ResourceService 0.*
HW_Component
@
consumption | 0..1 Z%
HW_PowerDescriptor
ealage HW_PowerSupply HW_CoolingSupply
consumption: NFP_Power 0.1
dissipation : NFP_Power suppliedPower : NFP_Power coolingPower : NFP_Power
HW_Battery

capacity : NFP_Energy

Figure 14.63 - HW_Power package details

HW_PowerDescriptor is a key metaclass that provides instantaneous power descriptions. It annotates each provided
service with its corresponding consumption and each HW_Component with a description of its leakage at non-operating
time.

HW_PowerSupply and HW_Battery are energy suppliers, whereas HW_CoolingSupply is a heat reducer.

14.2.3 UML Representation

This section depicts the Hardware Resource Model profile. It first groups al hardware stereotypes under severa profile
diagrams, and then it provides the detailed description of each hardware stereotype. The Hardware Resource Model
profile is based on the hardware resource domain model. Therefore most stereotype descriptions refer to the
corresponding domain concepts. All cases where stereotypes are different from the mapped domain concepts are justified.

As shown in Figure 14.65, the Hardware Resource Model profile keeps the structure of the domain model. It is composed
of logical and physical profiles. Both have alocal general model of hardware platforms, in order to ensure their total
independency. The logical profile isin turn composed of many other packages representing many functions of hardware,
whereas the physical profile is also composed of layout and power packages. Note that these packages are not sub-
profiles, they only improve the organization of the HwLogical and HwPhysical profiles.

To leave a large modeling flexibility, HwResource of both HwGeneral packages (Figure 14.66, Figure 14.73) inherits
from the Resource stereotype (from the General Resource Model, Chapter 10) that extends the Classifier and

I nstanceSpecification metaclasses from the UML kernel package. This allows using the Hardware Resource Model profile
within all structural UML diagrams (Class, Component, Composite Structure - examples 14.2.4.2, 14.2.4.3). The same
principle applies to the HwResourceService that extends the Operation metaclass and could be associated with many
UML behavior views.

All hardware resource stereotypes have the same extensions. However some of them also are particularly extending other
appropriate UML metaclasses (e.g., HwMedia from the HwCommunication package also extends Association).

UML Profile for MARTE, V1.0 247

Within MARTE, stereotypes tag definitions are optional and they should be specified only if needed. In addition, because
of extending both Classifier and InstanceSpecification, they could be fixed either at model or instance level. This

variation point enlarges the semantics of tag definitions (battery within example 14.2.4.3).

The Hardware Resource Model profile includes many notations. There is an appropriate icon for each logical stereotype
and a shape for each physical one. Also, the HwL ayout package from the HwPhysical profile provides arrangement
mechanisms with rectilinear grids to make UML graphical diagrams as close as possible to the rea hardware platform
architecture.

14.2.3.1 Profile diagrams

The Hardware Resource Model profile (HRM profile) has similar structure to the HRM domain model. It is composed of
logical and physical sub-profiles that contain a local general model and other different packages.

— —
« profile » « modelLibrary »
MARTE: . GRM MARTE::Library:: BasichNFF_Types
n M
| i
« Impart » i :
])« import o
i i
« profile »
HRM
1
« Impart » w profile » w import »
TR HwGeneral [~ 77777 i
i i
] ;
] ;
' ;
! i
« profile » ! « profile » [
Hwlogical ! HwPhysical .
1 w profile »
« profile » HwStorage « profile »
HwComputing HwlLayout
« profile »
— HwMemory
« profile »
. N o profike »
HwCommunication i profile » HwPower
HwStorageManager

1 1
« profile » i« profile »
HwTiming HwDevice

Figure 14.64 - Hardware Resource Model profile structure

248

UML Profile for MARTE, V1.0

HwGeneral pro

file

« profile »
HwGeneral
« metaclass » « metaclass » « metaciass »
Classifiar InstanceSpacification Opearation
W j T
« stereotype » « Sterectype »
MARTE::GRM: Resource MARTE: :GRM::GrService
0.1 p_HW_Services
—— - « sleraolype » - T
HwResource - « sterectype »
0 r_HW_Services HwResourceService
wnadHW description ; NFP_String 0.*

Figure 14.65 - HwGeneral profile details (HwLogical)

The HwGeneral profile of the HRM profile maps the general model from the domain view (Figure 14.53 on page 238). It
benefits from General Resource Model profile extensions (Section 10, “ Generic Resource Modeling (GRM),” on page 89)

and it provides a functional classification of resources.

UML Profile for MARTE, V1.0

249

HwComputing profile

« profile »
HwCaomputing
« stereotype » w stereotype »
MARTE::GRM::ComputingResource HwResolioe
« stereatype » blocksComputing
BNUMeration » HwComputingResource {subsets ownedHW)
ISA_Type 0.
Frequencies : Interval<MFP_Frequency=
RISC op_Freq _rreq ¥
CISC
WLIW
SIMD
ather
undef
« slarectype » « Slenaolype » & slareoctype »
caches HwProcessor HwASIC HwPLD
{subsets cwnedHW} [0_*
farchitecture : NFP_DataSize technology : PLD_Technalogy
= mips : NFP_Natural organization PLD_Crganization
g H""g‘;"’rﬁ” g fipc : NFP_Real nbLUTs: NFP_Matural
HLEEEL nbCores : NFP_Natural nbLUT_Inputs : NFP_Natural
nbPipelines - MFF_Natural nbFlipFlops : NFP_Natural
awnedMMUs ﬁ.‘ nbStages : NFP_Natural
{subsets ownedHW] 0. nbALUs - NFP_Matural "
nbFPUs @ NFP_Matural
teraot:
A r . | blocksRAM
« enumeration » 0. {subsets ownedHW}
ownedlSAs PLD_Technology
predictors 0.* | {subsets ownedHW]} « sleraolype »
{subsets ownedHW}, [0. SRAM HwRAM
antifuse
 stereotype » * 51?_'WE I:SE.EFE ! flash
HwBranchPredictar other
family - NEF_String undef « enumeration »
inst_Width - NFP_DataSize FLD_Class
type @ 1SA_T!
ype - BATpe « tupleType » symetricalArray
PLD_Crganization rowBased
sealfGates
nbRows : NFP_Natural hierarchicalPLD
nbColumns : NFP_Natural other
< stereclype class : PLD_Class undef
HwResource

Figure 14.66 - HwComputing package details

The HwComputing profile from the HwL ogical profile maps the corresponding hardware computing domain model.

250 UML Profile for MARTE, V1.0

HwMemory profile

w profile »
Hwhlemaory
« slersolype » « slersolype »
MARTE::GRM::Storage HwResource
« slareolype » « dataT:
ype »
Hwilemory Timing

memorySize : MNFP_DataSize
addressSize | NFP_DataSize
tirmings : Timing [*]

Thoughput : MFP_DataTxRate

notation : MFP_String
description : NFP_String
value : NFP_Duration

structure : CacheStructure

isStatic :NFP_Boolean

o Stergotype » « sleraolype » « sterealype » « sleraalype »
HwCache HwRAM HwROM HwDrive
level : NFP_Natural arganization : MemoryOrganization | | type : ROM_Type sactorSize | NFP_DataSize
type | CacheType isSynchronous | NFP_Boolean organization : MemonyOrganization

!

repl_Palicy : Repl_Policy isMonvolatile - MFP_Boalean 0.1
writePalicy : WritePolicy repl_Policy : Repl_Policy buffer
itePalicy : WritePal
w "l d {subsets ownedHW}

« enumeration » « enumeration » # enumeration » tupleType » tupleType » « enumeration »

Repl_Folicy WitePolicy CacheType CacheStructure MemaryCrganization ROM_Type
LRU writeBack data nbSets | NFP_Matural nbRows : NFP_Natural miasked ROM
MFU writeThrouah instruction blocSize | MFP_DataSize nbColumns | NFP_Matural EPROM
FIFD ather unifiad associativity : NFP_Matural nbBanks : MFP_Matural QTF_EFPROM
rancom undif other wordSize : NFP_DataSize EEPROM
ather undef flash
undef other

undefined

Figure 14.67 - HwMemory profile details (HwStorage)

The HwMemory profile lightly varies from its corresponding domain model. It removes abstract HW_ProcessingM emory

and HW_StorageMemory concepts but it maintains the composition specifying the buffer memory for the HwDrive.

UML Profile for MARTE, V1.0

251

HwStorageManager profile

« steraolype »
HwDMA

nbChannels - MFF_Natural
transferidth . NFP_DataSize

drivenBy|0_*

« Stersotype »
HwProcessor

o profile »
HWStorageManager
o sterectype » « siereotype »
MARTE::GRM::Storage HwResaurce
« sleraotype » managedMemories o steraolype »
« Sterestyps » HwStoragehManager o.* HwhMemory
Hw#rbiter

« slereolype »
HwhirU

virtualAddrSpace : NFP_DataSize
physicalAddrSpace : NFP_DataSize
memoryProtection : NFP_Boolean

/nbEntriesTLB - NFP_Natural

}

ownedTLBs
{subsets ownedHW}

*

Stareatype »
HwCache

Figure 14.68 - HwStorageManager profile details (HwStorage)

The HwStorageM anager profile from the HwL ogical profile maps identically the corresponding domain model.

252

UML Profile for MARTE, V1.0

HwCommunication profile

« profile »

HWCommunication

« slarectype »
HwResource

[

i)

« sterectype »
HwCommunicationResource

Communication EndPaoint

« slerectype »
MARTE:: GRM::

i

o sleraclype »
Hwirbiter

arbiters

0.*

controlledMedias

« slerectype »
Hwhdedia

« slarectype »
MARTE::GRM::
CommunicationMedia

0.*

connectedTo

4

endPoints
{subsets ownedHW}

« stereotype »

= bandwidth - NFF_DataTxRate

0.

sides

i

« slerealype »

HwEndPoint

HwBus

adressWidth : NFP_DalaSize
wordWidth : NFP_DataSize
isSynchrnous : NFP_Boolean
IsSerial - NFP_Boolean

o Sterectype »
HwBridge

Figure 14.69 - HwCommunication profile details

The HwCommunication profile maps the corresponding HW_Communication domain model.

Notice that among the inherited extensions, HwMedia extends the UML Connector metaclass.

UML Profile for MARTE, V1.0

253

HwTiming profile

w profile »
HWTiming

« slereolype »

MARTE::GRM:: TimingResaurce

 stereotype »
HwResource

frequency : NFP_Frequency [0..1]

1 3

« stereotype »
HwTimingResource

1

|

HwClock

inputClock

« StEreotype »
HwTimer

« sterectype o
frequency : NFP_Frequency

0.1

nbCounters : NFP_Natural
counterWidth : NFP_Datasize

Figure 14.70 - HwTiming profile details

Compared to its domain model, the association connecting an HW_Resource to an HW_Clock is substituted by an
optional HwWResource attribute named frequency.

As shown in example 14.2.4.1, the notifying service is the only difference between the two domain concepts HW_Timer
and HW_Watchdog. Therefore, the HRM profile unifies both concepts under the HwTimer stereotype.

HwDevice profile

« profile »

HWDevice
« sterectype » « stereotype »
GRM::DeviceResource HwResource

i

i

HwDevice

« stareotype »

i

« sleractype »
Hwl/O

« stereotype »
HwSupport

Figure 14.71 - HwDevice profile details

The HwDevice profile from the HwL ogical profile maps the corresponding hardware device domain model.

254

UML Profile for MARTE, V1.0

HwLayout profile

« profile »
HWLayout
« stersotype » « enumeration » u tu
pleType »
HwResaurce ComponentKind Env_Condition
card type : ConditionType
channel status | ComponentState
chip descrption | NFP_String
part range : Interval=T-=Real>
« slareclype » unit
HwComponent othar
0.1 .
undef « enumeration »
kind : ComponentKind ConditionType
dimensions : NFP_Length [D..3] « enumeration »
farea : NFP_Area ComponentState femperature
pasition - Interval<MFP_Matural= [D..2] humidity
grid - NFF_Matural [0..2] eratin altitude
Q.* _ | nbPins : NFP_Natural [0..1] :t?)raga ¢ vibration
subComponents W%"Q“'&’F'EPF—,”_"G'Q“‘ ather shock
bsets ownedH price - NFE_Fnca undaf other
{subsets ow W r_Conditions : Env_Condition [*] undef

Figure 14.72 - HwLayout profile details

HwPower profile

« profile »
HWPower
« sterectype » powered Services « stereolype »
HwResourcaService {redefines p_ HW _Senvices} HwCampanant
consumption : NFP_Power 0. staticConsumgtion : NFP_Power
digsipation : NFP_Power staticDissipation : NFP_Power

« slereotype »

HwCoolingSupply
coolingPower : NFP_Power

o stereolype »
HwPowerSupply

suppliedPower : NFP_Power
capacity - MFF_Energy [0..1)

Figure 14.73 - HwPower profile details

Compared to the domain model, the HwPower profile puts the HW_PowerDescriptor properties directly into the
HwComponent and the HwResourceService stereotypes. It also fuses HW_Battery and HW_PowerSupply domain
concepts under the same stereotype.

14.2.3.2 Stereotype Descriptions

This sub-section provides a description of each stereotype from the Hardware Resource Profile. If a stereotype maps a
domain concept, a reference is given to the corresponding page. The following list is sorted in alphabetical order.

Note: The detailed description of concepts is mainly given in Section F.9, “DRM::HRM,” on page 637.

UML Profile for MARTE, V1.0 255

CacheStructure
The CacheStructure tupletype maps the CacheStructure domain element (Section F.9.1).

Attributes

¢ nbSets: NFP_Natural
Specifies the number of sets.

« blockSize: NFP_DataSize
Specifies the width of a cache block.

e associativity: NFP_Natural
Specifies the associativity of the cache.

CacheType
The CacheType enumeration maps the CacheType domain element (Section F.9.2).

Literals
« data

e instruction

¢ unified
for both data and instruction

e other
e undef

ComponentKind
ComponentKind is an enumeration of the following HwComponent kinds:

Description
 cad

e channel

e chip

e port

e unit

e other

e undef
ComponentState

The ComponentState enumeration maps the ComponentState domain element (Section F.9.3).

Description
e oOperating
e storage

non-operating state

256

UML Profile for MARTE, V1.0

e other
e undef

ConditionType
The ConditionType enumeration maps the ConditionType domain element (Section F.9.4).

Description

» temperature

e humidity
o dtitude
e vibration
e shock

e other

e undef

Env_Condition
The Env_Condition tupletype maps the Env_Condition domain element (Section F.9.5).

Attributes

e type: ConditionType
Specifies the condition type.

e status: ComponentState
Specifies the required state of the HwComponent.

e description: NFP_String
Specifies a short description of the environmental condition.

e range: Interval<T->Real>
Specifies the range of possible values.
HwActuator
Actuators are frequently used as mechanisms to introduce motion, or to clamp an object so as to prevent motion. They are
devices that transform an input signal (mainly an electrical signal) into motion (Section F.9.6).
Generalizations

« Hwl/O

HwATrbiter
The HwArbiter stereotype maps the HW_Arbiter domain element (Section F.9.7).

Generalizations

« HwCommunicationResource

UML Profile for MARTE, V1.0 257

Associations

e controlledMedias: HwMedig[0..*]
Specifies the controlled connections.

Notations

HwWASIC
The HWASIC stereotype maps the HW_ASIC domain element (Section F.9.8).

Generalizations

» HwComputingResource

Constraints

[1] if aclock frequency is specified, it must belong to op_Frequencies.

HwBranchPredictor
The HwBranchPredictor stereotype maps the HW_BranchPredictor domain element (Section F.9.10).

Generalizations

» HwResource

HwBridge
The HwBridge stereotype maps the HW_Bridge domain element (Section F.9.11).

Generalizations

- HwMedia

Associations

e sides: HwMedig[0..*]
Specifies HwMedias at the ends of the HwBridge.

Notations

T

HwBus
The HwBuUSs stereotype maps the HW_Bus domain element (Section F.9.12).

258 UML Profile for MARTE, V1.0

Generalizations

« HwMedia

Attributes

e adressWidth: NFP_DataSize
Specifies the supported addressing size. In general, it is a number of bits.

e wordWidth: NFP_DataSize
Specifies the transfer word width.

e isSynchronous: NFP_Boolean
Specifies whether the bus is clocked or not.

e isSeria: NFP_Boolean
Distinguishes seria from parallel buses.
Constraints

[1] Synchronous bus must have a clock frequency.

HwCache
The HwCache stereotype maps the HW_Cache domain element (Section F.9.13).

Generalizations

+ HwMemory

Attributes

e level: NFP_Natural
Specifies the cache level. The default valueis 1.

* type: CacheType
Specifies the type of the cache.

e structure: CacheStructure
Specifies the structure of the cache.

Constraints

[1] memorySize is derived from structure attribute.

[2] addressSize is greater than the total cache entries number derived from the structure attribute.

HwClock
The HwClock stereotype maps the HW_Clock domain element (Section F.9.17).

Generalizations

» HwTimingResource

Attributes

* None

UML Profile for MARTE, V1.0 259

HwCommunicationResource

The HwCommuni cationResource stereotype maps the HW_CommunicationResource domain element (Section F.9.18).

Generalizations

 HwResource

HwComponent

The HwComponent stereotype maps the HW_Component domain element from the HW_L ayout package (Section
F.9.19).

Generalizations

 HwResource

Associations

¢ subComponents: HwComponent[0..*]
Specifies the owned physical entities. Subsets HwResource.ownedHW.

Attributes
e dimensions. NFP_Length[0..3]
Specifies Cartesian dimensions of the HwComponent. It is an ordered attribute.

[area. NFP_Area
Specifies the area of the HwComponent. Derived from dimensions.

e position: Interval<NFP_Natural>[0..2]
Specifies position within the enclosing HwComponent. It is an ordered attribute.

e grid: NFP_Natural[0..2]
Specifies arectilinear grid associated to the HwComponent. It is an ordered attribute.

e nbPRins: NFP_Natural[0..1]

Specifies the number of pins. It is optional.
e weight: NFP_Weight

Specifies the weight of the HwComponent.

e price: NFP_Price
Specifies the HwComponent price.

e r_Conditions: Env_Condition[*]
Specifies the required environmental conditions.

e kind: ComponentKind
Specifies the kind of the HwComponent

e dtaticConsumption: NFP_Power
Specifies the HwComponent static consumption.

e daticDissipation: NFP_Power
Specifies the HwComponent static dissipation.

260 UML Profile for MARTE, V1.0

Semantics

The HwComponent stereotype maps its corresponding domain concept but it has three additional attributes kind to specify
the kind of the hardware component, staticConsumption, and staticDissipation that are appropriate for power description
and substitute the composition between the HW_Component and HW_PowerDescriptor domain concepts.

Constraints

[1] area must derive from dimensions

[2] subComponents positions must not exceed the grid

[3] requiredConditions intervals must be included within the subcomponents corresponding intervals.
Notations

HwComponent has many shapes depending on its kind.

« Card

« Channel

« Chip

» Port

UML Profile for MARTE, V1.0 261

.

Each composite class stereotyped with “HW_Component” may be considered as a rectilinear grid where its parts are
located in their corresponding positions. Hence, one proposes an extension to the notation of composite class in order to
take into account this feature as depicted below. This notation is similar to the one of the Region concept of UML state
machine diagram.

HwComputingResource
The HwComputingResource stereotype maps the HW_ComputingResource domain element (Section F.9.21).

Generalizations

+ MARTE::GRM::ComputingResource

» HwResource

Attributes

e op_Frequencies: Interval<NFP_Frequency>
Specifies the range of supported frequencies.

Constraints

[9] if aclock frequency is specified, it must belong to op_Frequencies.

Notations

Figure 14.74 - HwCoolingSupply

HwCoolingSupply
The HwCoolingSupply stereotype maps the HW_CoolingSupply domain element (Section F.9.22).

262 UML Profile for MARTE, V1.0

Generalizations

« HwComponent

Attributes

e coolingPower: NFP_Power
Specifies the cooling power.

Notations

B

HwDevice

The HwDevice stereotype maps the HW_Device domain element (Section F.9.23).

Generalizations

« MARTE::GRM::DeviceResource

 HwResource

Notations

HwWDMA
The HWDMA stereotype maps the HW_DMA domain element (Section F.9.24).

Generalizations

» HwStorageM anager
» HwArbiter

Associations

e drivenBy: HwProcessor[0..*]
Specifies processors that control the HWDMA.

Attributes

¢ nbChannels: NFP_Natural
Specifies the number of HWDMA channels.

UML Profile for MARTE, V1.0

263

e transferWidth: NFP_DataSize
Specifies the maximum supported transfer width.

HwDrive

The HwDrive stereotype maps the HW_Drive domain element (Section F.9.25).

Generalizations

« HwMemory

Associations

¢ buffer: HWRAMJO..1]
Specifies the memory buffer of the HwDrive. Subsets HwResource::ownedHW.

Attributes

e sectorSize: NFP_DataSize
Specifies the sector size of the HwDrive.

Semantics

An HwDrive may own an HWRAM as a memory buffer. This composition substitutes the one from the domain model
between the HW_ProcessingMemory and HW_StorageMemory concepts.

HwEndPoint
The HWENdPoint stereotype maps the HW_EndPoint domain element (Section F.9.26).

Generalizations

+ MARTE::GRM ::CommunicationEndPoint

« HwCommunicationResource

Associations

e connectedTo: HwMedig[0..*]
Specifies the communi cation medias that the end point is connected to.

HwI/O
The HwI/O stereotype maps the HW_1/O domain element (Section F.9.27).

Generalizations

« HwDevice

Notations

264 UML Profile for MARTE, V1.0

HwISA
The HWISA stereotype maps the HW_ISA domain element (Section F.9.28).

Generalizations

HwResource

Attributes

o family: NFP_String
Specifiesthe ISA family.

e inst_Width: NFP_DataSize
Specifies the instruction width.

e type ISA_Type
Specifies the ISA type.

HwMedia
The HwMedia stereotype maps the HW_Media domain element (Section F.9.29).

Generalizations
« MARTE::GRM::CommunicationMedia

« HwCommunicationResource

Extensions

* None

Associations

e arbiters: HwArbiter[0..*]
Specifies the HwMedia controllers.

Attributes

* None

Notations

—

HwMemory

The HwMemory stereotype maps the HW_Memory domain element (Section F.9.30).

Generalizations

« MARTE::GRM::StorageResource

 HwResource

UML Profile for MARTE, V1.0

265

Attributes

¢ memorySize: NFP_DataSize
Specifies the storage capacity of the HwMemory.

e addressSize: NFP_DataSize
Specifies the address width of the HwMemory.

e timings: Timing[*]

Specifies timings of the HwMemory.
e throughput:NFP_DataTxRate

Speciifes the throughput in a memory.
Constraints

[10] The value of the inherited attribute isprotected is true.

Notations

HwMMU
The HWMMU stereotype maps the HW_MMU domain element (Section F.9.31).

Generalizations

« HwStorageManager

Associations

e ownedTLBs: HwCache[0..*]
Specifies the owned Trand ation L ookaside Buffers.

Attributes

e virtuaAddrSpace: NFP_DataSize
Specifies the managed virtual address space.

e physicalAddrSpace: NFP_DataSize
Specifies the managed physical address space.

« memoryProtection: NFP_Boolean
Specifies if memory protection is supported.

e /nbEntriesTLB: NFP_Natural

Specifies the total number of TLBs entries. Derived from the ownedTL Bs association.

Constraints

[1] nbEntriesTLB is derived from the ownedTLBs number of entries.

266

UML Profile for MARTE, V1.0

HwPLD
The HWPLD stereotype maps the HW_PLD domain element (Section F.9.32).

Generalizations

» HwComputingResource

Associations

e blocksComputing: HwComputingResource[0..*]
Specifies owned computing blocks. Subsets HwResource.ownedHW.

* blocksRAM : HWRAMIO..*]
Specifies the owned HWRAM memories.

Attributes

e technology: PLD_Technology
Specifies the HwPLD technol ogy.

e organization: PLD_Organization
Specifies the matrix organization of the HwPLD.

e nbLUTs
Specifies the number of LUTs within the HwPLD.

e nbLUT_Inputs
Specifies the number of inputs of one LUT.

¢ nbFlipFlops
Specifies the number of FlipFlops within the HwPLD.
Constraints

[1] if aclock frequency is specified, it must belong to op_Frequencies.

HwPowerSupply
The HwPowerSupply stereotype maps the HW_PowerSupply domain element (Section F.9.35).

Generalizations

« HwComponent

Attributes

e suppliedPower: NFP_Power
Specifies the instantaneous supplied power.

e capacity: NFP_Energy[0..1]
Specifies the capacity of the HwPowerSupply.

Semantics

This stereotype denotes both domain elements HW_PowerSupply and HW_Battery.

Constraints

[1] power consumption is greater than dissipation.

UML Profile for MARTE, V1.0 267

Notations

z

HwProcessor

The HwProcessor stereotype maps the HW_Processor domain element (Section F.9.37).

Generalizations

» HwComputingResource

Associations

e predictors: HwBranchPredictor[0..*]
Specifies the owned branch prediction units. Subsets HwResource.ownedHW.

e caches: HwCache[0..*]
Specifies processor caches. Subsets HwResource.ownedHW.

« ownedMMUs: HWMMU[O0..*]
Specifies the owned Memory Management Units. Subsets HwResource.ownedHW.

¢ ownedISAs: HWISA[1..*]
Specifies the owned instruction set architectures. Subsets HwResource.ownedHW.

Attributes

e [architecture: NFP_DataSize
Specifies the instruction width. Derived from ownedl SAs.

e mips. NFP_Natura
Specifies the throughput of the processor.

e [ipc: NFP_Red
Specifies the number of instructions executed each clock cycle. Derived from mips and clock attributes.

e nbCores. NFP_Natural
Specifies the number of cores within the HwProcessor.

e nbPipelines: NFP_Natural
Specifies the number of pipelines per core.

¢ nbStages: NFP_Natural
Specifies the number of stages per pipeline.

 nbALUs: NFP_Natural
Specifies the number of Arithmetic Logic Units within the HwProcessor.

¢ nbFPUs. NFP_Natural
Specifies the number of Floating Point Units within the HwProcessor.

Constraints

[1] if aclock frequency is specified, it must belong to op_Frequencies.

268 UML Profile for MARTE, V1.0

[2] architecture must derive from the inst_ Width of the supportedI SAs.

[3] ipc must derive from mips attribute and clock frequeny.

HWRAM
The HWRAM stereotype maps the HW_RAM domain element (Section F.9.38).

Generalizations

« HwMemory

Attributes

e organization: MemoryOrganization
Specifies the organization of the HWRAM.

e isSynchronous: NFP_Boolean
Specifies whether the HWAM is clocked or not.

e isStatic: NFP_Boolean
Specifies whether the HWRAM s static or not.

« isNonVolatile: NFP_Boolean
Specifies whether the HWRAM isvolatile or not. Default valueisfalse.
Constraints

[1] memorySize is derived from organization attribute.
[2] addressSize is greater than the number of memory words derived from organization attribute.

[3] synchronous HWRAM must have a clock frequency.

HwResource (from HwLogical)
This HwResource stereotype maps the HW_Resource domain element from the HW_Logical package (Section F.9.39).

Generalizations

+ MARTE::GRM::Resource

Associations

e ownedHW: HwResource[0..*]
Specifies the owned sub-HwResources. Subsets Resource.ownedElement.

e p_HW_Services: HwResourceService[0..%]
Specifies the provided services. Subsets Resource.pServices.

e r_HW_Services: HwResourceService[0..*]
Specifies the required services.

e endPoints: HWENdPoint[0..*]
Specifies the connection points of the HwReource. Subsets ownedHW.

UML Profile for MARTE, V1.0 269

Attributes

e description: NFP_String
Specifies atextual description of the HwResource.

« frequency: NFP_Frequency[0..1]
Specifies the clock frequency of the HwResource.

HwResource (from HwPhysical)
This HwResource stereotype maps the HW_Resource domain element from the HW_General package (Section F.9.41).

Generalizations

+ MARTE::GRM::Resource

Associations

« ownedHW: HwResource[0..*]
Specifies the owned sub-HwResources. Subsets Resource.ownedElement.

e p_HW_Services. HwResourceService[0..*]
Specifies the provided services. Subsets Resource.pServices.

e r_HW_Services: HwResourceService[0..*]
Specifies the required services.

Attributes

e description: NFP_String
Specifies atextual description of the HwResource.

HwResourceService (from HwLogical)

The HwResourceService stereotype maps the HW_ResourceService domain element from the HW_General package
(Section F.9.41).

Generalizations
« MARTE::GRM::ResourceService

HwResourceService (from HwPhysical)

The HwResourceService stereotype maps the HW_ResourceService domain element from the HW_Physical package
(Section F.9.42).

Generalizations

« MARTE::GRM ::ResourceService

Attributes

e consumption: NFP_Power
Specifies the consumption of the HwComponent when powering the HwResourceService.

e dissipation: NFP_Power
Specifies the dissipation of the HwComponent when powering the HwResourceService.

270 UML Profile for MARTE, V1.0

Semantics

Compared to its analogous domain concept, the HwResourceService stereotype from the HwPhysical package converts
the association with the HW_PowerDescriptor to two appropriate attributes.

Constraints

[1] power consumption is greater than dissipation.

HwWROM
The HWROM stereotype maps the HW_ROM domain element (Section F.9.43).

Generalizations

« HwMemory

Attributes

¢ type: ROM_Type
Specifies the HWROM type.

e organization: MemoryOrganization
Specifies the structure of the HWROM.

Constraints
[1] memorySize is derived from organization attribute.

[2] addressSize is greater than the number of memory words derived from organization attribute.

HwSensor

A sensor is a device that measures a physical quantity and converts it into a signal, which can be read by an observer or
by an instrument. (Section F.9.44).

Generalizations

+ Hwl/O

HwStorageManager

The HwStorageM anager stereotype maps the HW_StorageManager domain element (Section F.9.44).

Generalizations

 MARTE::GRM::StorageResource

 HwResource

Associations

¢ managedMemories: HwMemory[O0..*]
Specifies the managed memories.

UML Profile for MARTE, V1.0 271

Notations

=

HwSupport

The HwSupport stereotype maps the HW_Support domain element (Section F.9.47).

Generalizations

« HwDevice

HwTimer
The HwTimer stereotype maps the HW_Timer domain element (Section F.9.48).

Generalizations

» HwTimingResource

Associations

e inputClock: HwClock[0..1]
Specifies the input clock of the HwTimer.

Attributes

¢ nbCounters. NFP_Natural
Specifies the number of counters within the HwTimer.

e counterWidth: NFP_DataSize
Specifies the width of one counter.

Semantics

This stereotype unifies both domain elements HW_Timer and HW_Watchdog.

HwTimingResource

The HwTimingResource stereotype maps the HW_TimingResource domain element (Section F.9.49).

Generalizations
+ MARTE::GRM::TimingResource

 HwResource

272 UML Profile for MARTE, V1.0

Notations

ISA_Type
The ISA_Type enumeration maps the ISA_Type domain element (Section F.9.52).

Description
e RISC
(Reduced Instruction Set Computer)
« CISC
(Complex Instruction Set Computer)
e VLIW
(Very Long Instruction Word)
e SIMD
(Single Instruction Multiple Data)
e other
e undef

MemoryOrganization

The MemoryOrganization tupletype maps the MemoryOrganization domain element (Section F.9.53).

Attributes

¢ nbRows: NFP_Natural
Specifies the number of rows.

¢ nbColumns. NFP_Natural
Specifies the number of columns.

¢ nbBanks. NFP_Natural
Specifies the number of banks.

PLD_Class
The PLD_Class enumeration maps the PLD_Class domain element (Section F.9.54).

Description
» symetricalArray
» rowBased

» seaOfGates

UML Profile for MARTE, V1.0 273

« hierarchicaPLD
« other

o undef

PLD_Organization
The PLD_Organization tupletype maps the PLD_Organization domain element (Section F.9.55).

Attributes

¢ nbRows: NFP_Natural
Specifies the number of rows.

¢ nbColumns. NFP_Natural
Specifies the number of columns.

e class: PLD Class
Specifiesthe HW_PLD Class.

PLD_Technology
The PLD_Technology enumeration maps the PLD_Technology domain element (Section F.9.56).

Description

+ SRAM
« Antifuse
+ Flash

- other

« undef

Repl_Policy
The Repl_Policy enumeration maps the Repl_Policy domain element (Section F.9.58).

Description
« LRU
Least Recently Used
« NFU
Not Frequently Used
« FIFO
First In First Out
¢ Random
e other
e undef

274 UML Profile for MARTE, V1.0

ROM_Type
The ROM_Type enumeration maps the ROM_Type domain element (Section F.9.59).

Description
¢ maskedROM
« EPROM (
Erasable Programmable ROM)

* OTP_EPROM(
One Time Programmable EPROM)

+ EEPROM
(Electrically EPROM)
« flash
e other
e undef
Timing

The Timing tupletype maps the Timing domain element (Section F.9.60).

Attributes

e notation: NFP_String
Specifies the Timing notation.

e description: NFP_String
Specifies a short description of the Timing.

e vaue: NFP Duration
Specifies the duration value of the Timing.

WritePolicy
The WritePolicy enumeration maps the WritePolicy domain element (Section F.9.61).

Description
» writeBack
 writeThrough
- other

« undef
14.2.4 Examples

This section contains examples implementing the Hardware Resource Model profile. These examples may help users to
model a given hardware platform or to design a new one using the set of stereotypes detailed above.

In order to leave a large modeling flexibility, the HRM profile can be applied on all structural UML diagrams; Class
(example 14.2.4.2), Component, Composite Structure (example 14.2.4.3).

UML Profile for MARTE, V1.0 275

At the end, notice that the OMG standard XML Metadata I nterchange (XM1) eases exchanging metadata of UML models.
It is now supported by most UML-based modeling tools. The XMI also eases model transformation, parsing, and code
generation, consequently, many tools affords mechanisms to extract data from UML models for analysis, simulation, or
implementation purposes.

14.2.4.1 Resource services

Within the domain view, the resource services (HW_ResourceService) are not explicitly specified as they are mainly

deduced from the nature of the resource and they should be fully listed only if such level of detail is needed. The logical
view classifies hardware resources depending on their functional role within the execution platform and the services they
are offering.

HW_Resou rceService

Figure 14.75 - Resource services example (HW_Timing)

HW_Pulse

pulseService
{subset p_HW_Senvices}

HW_TimeGet

pulseService
{subset r_HW_Senvices}

timeGetService
{subset p_HW_Senvices}

HW_Clock

HW_TimeSet

timeSet Service
{subset p_HW_Services}

HW_Count

countService
{subset p_HW_Services}

HW_Stop

stop Service
{subset p_HW_Senvices}

HW_Timer

HW_Scale

scale Service
{subset p_HW_Senvices}

HW_Alarm

alarmService
{subset p_HW_Senvices}

HW_Watchdog

Figure 14.76 gives a detailed description of required and provided services of timing resources (Figure 14.60). An
HW_Timer requires an HW_Pulse service offered by the HW_Clock and provides at least:

276

» HW_TimeGet service to get the current time.

+ HW_TimeSet service to set a new time value given as parameter.

» HW_Count service to start counting.

UML Profile for MARTE, V1.0

+ HW_Stop serviceto stop counting.

+ HW_Scale service to set a counting scale, it needs a number of clocks as parameter.

An HW_Watchdog is an HW_Timer providing an additional notifying service HW_Alarm.

14.2.4.2 Stereotype application

Figure 14.77 shows a three step example of applying the HWRAM stereotype.

(a) is part of the detailed HwStorage metamodel, it collects properties common to all memory technologies.

(b) defines the SDRAM (short for Synchronous Dynamic Random Access Memory) technology as a model where a part
of tagged values (e.g., isNonVolatile, isSynchronous, and isStatic) are fixed. Other specific attributes are added at this
level to refine the SDRAM class (burst transfers and refresh modes).

(c) isthefinal step where we instantiate a particular memory card from of the SDRAM technology model. Here is areal
example of specific Samsung SDRAM.

(a) Metamadel level

« stereotype »
HwResource

frequency : NFP_Frequency [0..1]

7

« stereotype »
HwMemory

memorySize | NFP_DataSize
addressS