Image Enhancement in the frequency
domain

GZ Chapter 4
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* In this lecture we will look at image enhancement in the frequency
domain
— The Fourier series & the Fourier transform
— Image Processing in the frequency domain
* Image smoothing
* Image sharpening
— Fast Fourier Transform
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The Discrete Fourier Transform (DFT)

* Here we use the GW'’s notations

« The Discrete Time Fourier Transform of f(x,y) for
x=0,1,2...M-1 and
y =0,1,2...N-1, denoted by F(u, v), is given by the equation:

M-1N-1

F(u,v) = Ezf(x y)e—J2Jr(ux/M+vy/N)

x=0 y=0

foru=0,1,2..M-1andv =0, 1, 2...N-1.




The Inverse DFT

It is really important to keep in mind that the Fourier transform is
completely reversible

The inverse DFT is given by:

M-1N-1

f(x,y)=— E E F (1, v)e/ 2 Mww/N)

uOvO

forx=0,1,2...M-1andy =0, 1, 2...N-1




Fourier spectra

Fourier spectra in 1D

— The absolute value of the complex function in the Fourier domain is the
amplitude spectrum

F(u) = |F(u)|e7*" (4.2-9)

|F(u)| = [R*(u) + lz(u)}l’!2 (4.2-10)

— The angle defined by the inverse tg of the ratio between the imaginary
and the real components of the complex function is the phase spectrum

G = e [ i({ff)]

— The square of the amplitude spectrum Is the power spectrum
P(u) = |F(u)|2
= R*(u) + I'*(u).




Fourier spectra in 2D

We define the Fourier spectrum, phase angle, and power spectrum as in the
previous section:

F(u, )| = [R2(u,v) + 1A(,0)]" (4.2-18)
L _{I(zz.v)} 43,15
é(u, v) = tan R(u. ) (4.2-19)
and
P(u.v) = |F(u,v)[ (4.2-20)

= R*(u,v) + I*(u,v)

where R(u, v) and I(u,v) are the real and imaginary parts of F(u, v), respectively.




Main properties

The value of the DFT in the origin is the mean value of the function
f(x,y)
M —
F(0,0) 2 2 f(x,y),
If f is real its DFT is conjugate symmetric

F(u,v) = F*(—u,—v)

Thus the Fourier spectrum is symmetric

|F(u, 0)| = |F(-u,




Basics of filtering in the frequency domain

To filter an image in the frequency domain:
— Compute F(u,v) the DFT of the image

— Multiply F(u,v) by a filter function H(u,v)

— Compute the inverse DFT of the result

Frequency domain filtering operation

Filter

function
H(u. v)

Inverse
Fourier
transform

Fourier
transform

Hu,v)F(u,v)
Pre-

processing,

f(x.y) g(x.y)
Input Enhanced
image

image




Some Basic Frequency Domain Filters

Low Pass Filter (smoothing)

Hiu, v)
i

High Pass Filter (edge detection)
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Filtering in Fourier domain

. Multiply the input image by (—1)*"" to center the transform, as indicated
in Eq. (4.2-21).

Compute F(u, v), the DFT of the image from (1).

Multiply F(u, v) by a filter function H (u, v).

Compute the inverse DFT of the result in (3).

Obtain the real part of the result in (4).

Multiply the result in (5) by (—1)*"".

G(u,v) = H(u,v)F(u,v).

H(u,v) is the filter transfer function, which is the DFT of the filter
Impulse response

The implementation consists in multiplying point-wise the filter H(u,v)
with the function F(u,v)

Real filters are called zero phase shift filters because they don't
change the phase of F(u,v)
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Filtered image

The filtered image is obtained by taking the inverse DFT of the
resulting image

Filtered Image = 3 (G (u, v)|.

It can happen that the filtered image has spurious imaginary
components even though the original image f(x,y) and the filter
h(x,y) are real. These are due to numerical errors and are neglected

The final result is thus the real part of the filtered image

12




Smoothing: low pass filtering




Edge detection: high-pass filtering
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Edge detection: greylevel image
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Filtered image
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Hints for filtering

Color images are usually converted to graylevel images before
filtering. This is due to the fact that the information about the
structure of the image (what is in the image) is represented in the
luminance component

Images are usually stored as “unsigned integers”. Some operations
could require the explicit cast to double or float for being
implemented

The filtered image in general consists of double values, so a cast to
unsigned integer could be required before saving it in a file using a
predefined format. This could introduce errors due to rounding
operations.
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Frequency Domain Filters

The basic model for filtering is:
G(u,v) = H(u,v)F(u,v)

where F(u,v) is the Fourier transform of the image being filtered and
H(u,v) is the filter transform function

Filtered image

f(xy)= R {F(u,v)}

Smoothing is achieved in the frequency domain by dropping out the
high frequency components

— Low pass (LP) filters — only pass the low frequencies, drop the high
ones

— High-pass (HP) filters — olny pass the frequencies above a minimum
value




LP and HP filtering

Origin

ab

cd

FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b) Result of lowpass filtering the image in Fig. 4.4(a).
{c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4(a).
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Filtering in spatial and frequency domains

The filtering operations in spatial and frequency domains are linked
by the convolution theorem

f(x,y)*h(x,y) = I;—MZ j (m,n)h(x — m,y — n). (4.2-30)
£(x,y) * h(x, y) < Flu, v)H(u,v).

Modulation theorem (reminder)

f(x,y)h(x,y) < F(u,v) * H(u. v).
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Another proof of the convolution theorem

« Starting from the digital delta function, we will prove that the filtering
operation in the signal domain is obtained by the convolution of the
signal with the filter impulse response h(x,y)

« Consider the digital delta function, so an impulse function of strength
A located in (X,,Y,)

« Shifting (or sampling) property

M-1 N—1
3 > sl y)AS(x — xo,y — Yo) = As( %0, o). (4.2-33)
x=0 y=0
M—1 N-1

>, Es x, y)8(x, y) = s(0,0).

x=0 y=
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Getting to the impulse response

FT of the delta function located in the origin

=] N=1

. < —j2m(ux
Fa0) = o 3 380, y)ePrerom

x=0 y=0 (4.2-35)
1

MN
Now, let’s set f(x,y)=d(x,y) and calculate the convolution between f
and a filter h(x,y)

=1 N1

f(JC,y)*h(X,y) 2 Ea(mn x_m’y_-n)

m=0 n=
1

= A—/I_A_lh(x y)
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Getting to the impulse response

It can be observed that if f is a delta, then the result of the
convolution is equal to the function h(x,y) apart from a change in the

amplitude

« Then, h(x,y) is called impulse response because it represents the
response (output) of the filter when the input is a delta

f(x,y)=delta(x,y) h(x,y)
—> h(x,y) - >

« So filtering in the signal domain is performed by the convolution of
the signal with the filter impulse response
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Filtering: summary

f(x,y) = h(x,y) < F(u,v)H(u,v)
5(x, y) = h(x, y) < 3I[8(x, y)|H(u, v)
h(x,y) < H(u,v).
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|deal Low Pass Filter

Simply cut off all high frequency components that are a specified
distance D, from the origin of the transform

/]

H(u.v)

H(u,v)
4

D,

» D(u,v)




ldeal Low Pass Filter (cont...)

« The transfer function for the ideal low pass filter can be given as:

1 1f D(u,v) < D,

Hwu,v)=1
0 1f D(u,v) > D,

« where D(u,v) is given as:

D(M,V) = [(u —]\4/2)2 +(V—N/2)2]1/2




ldeal Low Pass Filter (cont...)

« Above we show an image, it's Fourier spectrum and a series of ideal
low pass filters of radius 5, 15, 30, 80 and 230 superimposed on top
of it
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|ldeal Low Pass Filter (cont...
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|ldeal Low Pass Filter (cont...




ldeal Low Pass Filter (cont..
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|deal Low Pass Filter (cont...)

Result of filtering
with ideal low
pass filter of
radius 5




|deal Low Pass Filter (cont...)
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Butterworth Lowpass Filters

The transfer function of a Butterworth lowpass filter of order n with
cutoff frequency at distance D, from the origin is defined as:

|
H (Z/t, V) = 2n
1+[D(u,v)/ D,]
H(u.v) H(u.v)
,1\‘ 1o}
) ! \‘ —v 05}




Butterworth Lowpass Filter (cont...)
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Result of filtering
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Butterworth Lowpass Filter (cont...)

Result of filtering
with Butterworth
filter of order 2 and
cutoff radius 5




Butterworth Lowpass Filter (cont...)

Result of filtering
with Butterworth
filter of order 2 and
cutoff radius 15




Gaussian Lowpass Filters

« The transfer function of a Gaussian lowpass filter is defined as:

2
H(u, V) _ e—D2 (u,v)/2D,

H(u,v)

D, = 100

D(u,v)
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FIGURE 4.9

(a) Gaussian
frequency domain
lowpass filter.

(b) Gaussian
frequency domain
highpass filter.

(c) Corresponding
lowpass spatial
filter.
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(d) Corresponding

highpass spatial

filter. The masks

h(x) shown are used in
Chapter 3 for
lowpass and

[ highpass filtering.
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Gaussian Lowpass Filters (cont...)
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Lowpass Filters Compared
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Lowpass Filtering Examples

A low pass Gaussian filter is used to connect broken text

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than t-@r
2000.

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than tl%]r
2000.
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Lowpass Filtering Examples

Historicaliy, certain computer
programs were written using
only two digits rather than
four to define the applicable
yaar. Accordingiy, the
company's software may
recognize a date using "00"

as 1900 rather than t:%r
2000.

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than t%r
2000.
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Lowpass Filtering Examples (cont...)

Different lowpass Gaussian filters used to remove blemishes in a
photograph




Lowpass Filtering Examples (cont...)
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Sharpening in the Frequency Domain

Edges and fine details in images are associated with high frequency
components

High pass filters — only pass the high frequencies, drop the low ones

High pass frequencies are precisely the reverse of low pass filters,
SO:

Hyp(u, v) =1 —H(u, v)




|deal High Pass Filters

The ideal high pass filter is given as:

H(u,v) ={

0 if D(u,v) < D,
1 1f D(u,v)> D,

where DO is the cut off distance as before

Hu, v)
'y
1LOT

l ' *D{u, v)




ldeal High Pass Filters (cont...)
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=15 =30 =80




Butterworth High Pass Filters

« The Butterworth high pass filter is given as:

1
1+[D, /D(u,v)]zn

H(u,v) =

* where n is the order and D, is the cut off distance as before

Hu, v)
1.0

o \\ ‘ * - * D(u, v)




Butterworth High Pass Filters (cont...
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Butterworth Butterworth
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Gaussian High Pass Filters

The Gaussian high pass filter is given as:

where DO

H(u, V) _ 1 _ e—D2 (u,v)/2D02

is the cut off distance as before
Hiu, v)
.. H(w?) [ ' L0
-, *

= D{u, v)




Gaussian High Pass Filters (cont...)
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High pass filters comparison

Impulse response

1[' Gray-level profiles

abec

FIGURE 4.23 Spatial representations of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency
domain highpass filters, and corresponding gray-level profiles.
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Highpass Filter Comparison
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Highpass Filter Comparison

: g5 1 Results of ideal
L B T high pass filtering
with D, = 15




Highpass Filter Comparison
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Highpass Filter Comparison

Results of Gaussian
high pass filtering with
D,=15
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Laplacian filter

* From the properties of the Fourier transform

~l x|,
3[ T }—(]u) F(u).

From this it follows that

\[rﬂf (x.y) | @f(x,y) }

+

5 — = (ju)’F(u,v) + (jv)*F(u,v)
X 0y

= —(u* + v?)F(u,v).
The expression on the left side is the laplacian of the function f, thus

3’[V2f(x, y)] = —(u? + vz)F(u,, V),

Y




Thus, the Laplacian can be implemented in the Fourier domain by

using the filter

Laplacian filter

H(u,v) = —(u* + v°).
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Laplacian
filter

c

f

ab
Cd

FIGURE 4.27 (a) 3-D plot of Laplacian in the frequency domain. (b) Image representation of (a).
(c) Laplacian in the spatial domain obtained from the inverse DFT of (b). (d) Zoomed section of the origin
of (c). (e) Gray-level profile through the center of (d). (f) Laplacian mask used in Section 3.7.
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Laplacian ::
filter (3 Image of the

North Pole of the
moon.

(b) Laplacian
filtered image.
(c) Laplacian
image scaled.

(d) Image
enhanced by
using Eq. (4.4-12).
(Original image
courtesy of

NASA.)
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High boost filtering

A special case of unsharp masking

|dea: HP filters cut the zero frequency component, namely the mean
value. The resulting image is zero mean and looks very dark

High boost filtering “sums” the original image to the result of HPF in
order to get an image with sharper (emphasized) edges but with
same range of gray values as the original one

In formulas
- Highpass  f (x,y) = f(x,y) — fips(x, y).

— High boost  f; . =@'(_XT, \) b= f“,(.\', y). Signal domain

th(u, ’U) =1 — Hlp(ua ’1)), Frequency domain
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High boost filtering

Reworking the formulas

Jin (% 3) = Af (x.3) = f,, (%.7)

fhb (X,y) = Af(x’y)_f(xay)'l'f(x’y)_flp (X,y) =
=(A=1)f(x.y)+ /i, (2.7)

For A=1 the high-boost corresponds to the HP

For A>1 the contribution of the original image
becomes larger
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High boost filtering

Note: high pass filtering is also called unsharp filtering

In the Fourier domain

H,, (u,v) = (A—l)H(u,v)+th (u,v)

]

Boosting the edges
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FIGURE 4.29
Same as Fig. 3.43,
but using
frequency domain
filtering. (a) Input
image.

(b) Laplacian of
(a). (c) Image
obtained using
Eq. (4.4-17) with
A = 2.(d) Same
as (c), but with

A = 2.7.(Original
image courtesy of
Mr. Michael
Shaffer,
Department of
Geological
Sciences,
University of
Oregon, Eugene.)

High boost filtering

64




High boost + histogram equalization

ab
c d

FIGURE 4.30

(a) A chest X-ray
image. (b) Result
of Butterworth
highpass filtering.
(¢) Result of high-
[requency
emphasis filtering.
(d) Result of
performing
histogram
equalization on
(¢). (Original
image courtesy
Dr. Thomas

R. Gest, Division
of Anatomical
Sciences,
University of
Michigan Medical
School.)
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Rest of Chapter 4

2D Fourier transform and properties
Convolution and correlation
Need for padding

Fast Fourier Transform (FFT)
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