Wavelets and filterbanks

Mallat 2009, Chapter 7

Outline

- Wavelets and Filterbanks
- Biorthogonal bases
- The dual perspective: from FB to wavelet bases
 - Biorthogonal FB
 - Perfect reconstruction conditions
- Separable bases (2D)
- Overcomplete bases
 - Wavelet frames (algorithme à trous, DDWF)
 - Curvelets

Wavelets and Filterbanks

Wavelet side

- Scaling function
 - Design (from multiresolution priors)
 - Signal approximation
 - Corresponding filtering operation
 - Condition on the filter h[n] → Conjugate Mirror Filter (CMF)
- Corresponding wavelet families

Filterbank side

- Perfect reconstruction conditions (PR)
 - Reversibility of the transform
- Equivalence with the conditions on the wavelet filters
 - Special case: $CMFs \rightarrow Orhogonal$ wavelets
 - General case \rightarrow Biorthogonal wavelets

Wavelets and filterbanks

- The decomposition coefficients in a wavelet orthogonal basis are computed with a fast algorithm that cascades discrete convolutions with h and g, and subsamples the output
- Fast orthogonal WT

$$f(t) = \sum_{n} a_{0}[n]\varphi(t-n) \in V_{0}$$

Since $\{\varphi(t-n)\}_{n \in \mathbb{Z}}$ is an orthonormal basis
 $a_{0}[n] = \langle f(t), \varphi(t-n) \rangle = \int_{-\infty}^{+\infty} f(t)\varphi^{*}(t-n)dt = \int_{-\infty}^{+\infty} f(t)\overline{\varphi}^{*}(n-t)dt = f * \overline{\varphi}(n)$
 $\overline{\varphi}(t) = \varphi(-t)$

Linking the domains

$$\begin{aligned} z &= e^{j\omega} \\ \hat{f}(\omega) &= \hat{f}(e^{j\omega}) \leftrightarrow f(z) \\ \hat{f}(\omega + \pi) &= \hat{f}(e^{j(\omega + \pi)}) = \hat{f}(-e^{j\omega}) \leftrightarrow f(-z) \\ \hat{f}(-\omega) &= \hat{f}(e^{-j\omega}) \leftrightarrow f(z^{-1}) \\ \hat{f}^*(\omega) &= \hat{f}(-\omega) \leftrightarrow f(z^{-1}) \end{aligned}$$

Switching between the Fourier and the z-domain

Fast orthogonal wavelet transform

• Fast FB algorithm that computes the orthogonal wavelet coefficients of a discrete signal a₀[n]. Let us define

$$f(t) = \sum_{n} a_0[n]\varphi(t-n) \in V_0$$

Since $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is orthonormal, then

$$a_{0}[n] = \langle f(t), \varphi(t-n) \rangle = f * \overline{\varphi}(n)$$

$$a_{j}[n] = \langle f, \varphi_{j,n} \rangle \text{ since } \varphi_{j,n} \text{ is an orthonormal basis for } V_{j}$$

$$d_{j}[n] = \langle f, \psi_{j,n} \rangle$$

- A fast wavelet transform decomposes successively each approximation $PV_{j}f$ in the coarser approximation $PV_{j+1}f$ plus the wavelet coefficients carried by $PW_{j+1}f$.
- In the reconstruction, $PV_{j}f$ is recovered from $PV_{j+1}f$ and $PW_{j+1}f$ for decreasing values of j starting from J (decomposition depth)

Fast wavelet transform

- Theorem 7.7
 - At the decomposition

$$a_{j+1}[p] = \sum_{n=-\infty}^{+\infty} h[n-2p]a_j[n] = a_j * \overline{h}[2p]$$
(1)

$$d_{j+1}[p] = \sum_{n=-\infty}^{+\infty} g[n-2p]a_j[n] = a_j * \overline{g}[2p]$$
(2)

– At the reconstruction

$$a_{j}[p] = \sum_{n=-\infty}^{+\infty} h[p-2n]a_{j+1}[n] + \sum_{n=-\infty}^{+\infty} g[p-2n]d_{j+1}[n] = \breve{a}_{j+1} * h[n] + \breve{d}_{j+1} * g[n] \quad (4)$$

$$\breve{x}[n] = \begin{cases} x[p] & n = 2p \\ 0 & n = 2p+1 \end{cases}$$

Proof: decomposition (1)

$$\varphi_{j+1}[p] \in V_{j+1} \subset V_j \rightarrow \varphi_{j+1}[p] = \sum_n \left\langle \varphi_{j+1}[p], \varphi_j[n] \right\rangle \varphi_j[n] \left\langle \varphi \right\rangle_j[n] \left(\mathsf{b} \right)$$
but
$$\left\langle \varphi_{j+1}[p], \varphi_j[n] \right\rangle = \int \frac{1}{\sqrt{2^{j+1}}} \varphi \left(\frac{t-2^{j+1}p}{2^{j+1}} \right) \frac{1}{\sqrt{2^j}} \varphi^* \left(\frac{t-2^j n}{2^j} \right) dt \quad (\mathsf{a})$$
let
$$t' = 2^{-j}t - 2p \rightarrow t = 2^j t' + 2^{j+1}p$$
then
$$\varphi \left(\frac{t-2^{j+1}p}{2^{j+1}} \right) = \varphi \left(\frac{t'}{2} \right)$$

$$\varphi^* \left(\frac{t-2^{j}n}{2^j} \right) = \varphi^* \left(t' + 2p - n \right)$$
replacing into (a)
$$\left\langle \varphi_{j+1}[p], \varphi_j[n] \right\rangle = \int \frac{1}{\sqrt{2}} \varphi \left(\frac{t'}{2} \right) \varphi^* \left(t' + 2p - n \right) dt' = \left\langle \frac{1}{\sqrt{2}} \varphi \left(\frac{t}{2} \right), \varphi \left(t + 2p - n \right) \right\rangle = h[n - 2p]$$
thus (b) becomes
$$\left[\varphi_{j+1}[p] = \sum_n h[n - 2p] \varphi_j[n] \right]$$

(3)

Proof: decomposition (2)

• Coming back to the projection coefficients

$$\begin{aligned} a_{j+1}[p] &= \left\langle f, \varphi_{j+1,p} \right\rangle = \left\langle f, \sum_{n} h[n-2p]\varphi_{j,n} \right\rangle = \int_{-\infty}^{+\infty} f \sum_{n} h[n-2p]\varphi_{j,n}^{*} dt = \\ &= \sum_{n} h[n-2p] \int_{-\infty}^{+\infty} f(t)\varphi_{j,n}^{*}(t) dt = \sum_{n} h[n-2p] \left\langle f, \varphi_{j,n} \right\rangle = \sum_{n} h[n-2p]a_{j}[n] \rightarrow \\ &\overline{a_{j+1}[p] = a_{j} * \overline{h}[2p]} \end{aligned}$$

• Similarly, one can prove the relations for both the details and the reconstruction formula

Proof: decomposition (3)

• Details

$$\psi_{j+1,p} \in W_{j+1} \subset V_j \rightarrow \psi_{j+1,p} = \sum_n \left\langle \psi_{j+1,n}, \varphi_{j,n} \right\rangle \varphi_{j,n}$$

$$t' = 2^{-j}t - 2p \rightarrow$$
(3bis)
$$\left\langle \psi_{j+1,n}, \varphi_{j,n} \right\rangle = \left\langle \frac{1}{\sqrt{2}} \psi\left(\frac{t}{2}\right), \varphi(t-n+2p) \right\rangle = g[n-2p] \rightarrow$$

$$\psi_{j+1,p} = \sum_n g[n-2p] \varphi_{j,n} \rightarrow$$

$$\left\langle f, \psi_{j+1,n} \right\rangle = \sum_n g[n-2p] \left\langle f, \varphi_{j,n} \right\rangle \rightarrow$$

$$d_{j+1}[p] = \sum_n g[n-2p] a_j[n]$$

Proof: Reconstruction

Since W_{j+1} is the orthonormal complement of V_{j+1} in V_j , the union of the two respective basis is a basis for V_j . Hence

$$V_{j} = V_{j+1} \oplus W_{j+1} \rightarrow \varphi_{j,p} = \sum_{n} \left\langle \varphi_{j,p}, \varphi_{j+1,n} \right\rangle \varphi_{j+1,n} + \sum_{n} \left\langle \varphi_{j,p}, \psi_{j+1,n} \right\rangle \psi_{j+1,n}$$

but $\left\langle \varphi_{j,p}, \varphi_{j+1,n} \right\rangle = h[p-2n]$ (see (3) and (3bis), the analogous one for g)
 $\left\langle \varphi_{j,p}, \psi_{j+1,n} \right\rangle = g[p-2n]$

thus

$$\varphi_{j,p} = \sum_{n} h[n-2p]\varphi_{j+1,n} + \sum_{n} g[n-2p]\psi_{j+1,n}$$

Taking the scalar product with f at both sides:

$$a_{j}[p] = \sum_{n=-\infty}^{+\infty} h[p-2n]a_{j+1}[n] + \sum_{n=-\infty}^{+\infty} g[p-2n]d_{j+1}[n] = \breve{a}_{j+1} * h[n] + \breve{d}_{j+1} * g[n] \qquad \text{CVD}$$
$$\breve{x}[n] = \begin{cases} x[p] & n = 2p \\ 0 & n = 2p+1 \end{cases}$$

Summary

- The coefficients a_{j+1} and d_{j+1} are computed by taking every other sample of the convolution of aj with \overline{h} and \overline{g} respectively.
- The filter h removes the higher frequencies of the inner product sequence a_j , whereas g is a high-pass filter that *collects* the remaining highest frequencies.
- The reconstruction is an interpolation that inserts zeroes to expand a_{j+1} and d_{j+1} and filters these signals, as shown in Figure.

Orthogonal wavelet representation

• An *orthogonal wavelet representation* of $a_L = \langle f, \varphi_{L,n} \rangle$ is composed of wavelet coefficients of *f* at scales $2^L \langle 2^j \langle =2^J \rangle$, plus the remaining approximation at the largest scale 2^J :

$$\left[\{d_j\}_{L < j \leq J}, a_J\right].$$

- Initialization
 - Let b[n] be the discrete time input signal and let N⁻¹ be the sampling period, such that the corresponding scale is $2^{L}=N^{-1}$

Initialization

following the definition:

 N^{-1} : discrete sample distance $2^{L} = N^{-1}$ scale

$$\begin{split} \varphi_{L,n} &= \frac{1}{\sqrt{2^L}} \varphi \left(\frac{t - 2^L n}{2^L} \right) \\ 2^L &= \frac{1}{N} \to \frac{1}{\sqrt{2^L}} = N^{1/2} = \sqrt{N} \to \varphi_{L,n} = \sqrt{N} \varphi \left(\frac{t - N^{-1} n}{N^{-1}} \right) \to \varphi \left(\frac{t - N^{-1} n}{N^{-1}} \right) = \frac{1}{\sqrt{N}} \varphi_{L,n} \end{split}$$

but

$$f(t) = \sum_{n=-\infty}^{+\infty} b[n] \varphi \left(\frac{t - N^{-1}n}{N^{-1}} \right) = \frac{1}{\sqrt{N}} \sum_{n=-\infty}^{+\infty} b[n] \varphi_{L,n}(t)$$
$$b[n] = \left\langle f, \varphi \left(\frac{t - N^{-1}n}{N^{-1}} \right) \right\rangle = \left\langle f, \frac{1}{\sqrt{N}} \varphi_{L,n} \right\rangle = \frac{1}{\sqrt{N}} a_L[n] \qquad a_L[n] = \left\langle f, \varphi_{L,n} \right\rangle$$

since

$$a_{L}[n] = \int_{-\infty}^{+\infty} f(t)\sqrt{N}\varphi\left(\frac{t-N^{-1}n}{N^{-1}}\right) dt \quad \text{by definition, then}$$

$$a_{L}[n] \approx \sqrt{N}f(N^{-1}n) \quad \text{if f is regular, the sampled values can be considered as a local average in the neighborhood of f(N^{-1}n)}$$

Filterbank implementation

Fast DWT

- Theorem 7.6 proves that a_{j+1} and d_{j+1} are computed by taking every other sample of the convolution on a_j and d_j with \overline{h} and \overline{g} respectively
- The filter h removes the higher frequencies of the inner product and the filter g is a bandpass filter that collects such residual frequencies
- An orthonormal **wavelet representation** is composed of wavelet coefficients at scales

$$1\!\leq\!2^j\leq\!2^J$$

plus the remaining approximation at scale 2^J

$$\left[\left\{d_{j}\right\}_{1\leq j\leq J},a_{J}\right]$$

Summary

The fast orthogonal WT is implemented by a filterbank that is completely specified by the filter h, which is a CMF The filters are the same for every *j*

Taking $h[n]=\hbar[-n]$ as reference (which amounts to choosing the synthesis low-pass filter) the following relations hold for an orthogonal filter bank:

$$\overline{h}[n] = h[-n]$$

$$g[n] = (-1)^{1-n} h[1-n] = (-1)^{1-n} \overline{h}[n-1]$$

$$\overline{g}[n] = g[-n] = (-1)^{-(1-n)} h[-(1-n)]$$
neglecting the unitary shift, as usually done in applications

$$g[n] = (-1)^{-n} h[-n] = (-1)^{-n} h[n]$$
$$\overline{g}[n] = g[-n] = (-1)^{n} h[n]$$

Finite signals

- Issue: signal extension at borders
- Possible solutions:
 - Periodic extension
 - Works with any kind of wavelet
 - Generates large coefficients at the borders
 - Symmetryc/antisymmetric extension, depending on the wavelet symmetry
 - More difficult implementation
 - Haar filter is the only symmetric filter with compact support
 - Use different wavelets at boundary (boundary wavelets)
 - Implementation by *lifting steps*

Wavelet graphs

The graphs of ϕ and ψ are computed numerically with the inverse wavelet transform. If $f = \phi$, then $a_0[n] = \delta[n]$ and $d_j[n] = 0$ for all $L < j \le 0$. The inverse wavelet transform computes a_L and (7.111) shows that

 $N^{1/2} a_L[n] \approx \phi(N^{-1}n).$

If ϕ is regular and N is large enough, we recover a precise approximation of the graph of ϕ from a_L .

Similarly, if $f = \psi$, then $a_0[n] = 0$, $d_0[n] = \delta[n]$, and $d_j[n] = 0$ for L < j < 0. Then $a_L[n]$ is calculated with the inverse wavelet transform and $N^{1/2} a_L[n] \approx \psi(N^{-1}n)$. The Daubechies wavelets and scaling functions in Figure 7.10 are calculated with this procedure.

The filter bank perspective

Perfect reconstruction FB

• **Dual perspective**: given a filterbank consisting of 4 filters, we derive the *perfect reconstruction conditions*

• Goal: determine the conditions on the filters ensuring that

$$\tilde{a}_0 \equiv a_0$$

PR Filter banks

• The decomposition of a discrete signal in a multirate filter bank is interpreted as an expansion in l²(Z)

since

$$a_{1}[l] = a_{0} * \overline{h}[2l] = \sum_{n} a_{0}[n]\overline{h}[2l-n] = \sum_{n} a_{0}[n]h[n-2l]$$

then

$$a_{1}[l] = \sum_{n=-\infty}^{+\infty} a_{0}[n] h[n-2l] = \langle a_{0}[n], h[n-2l] \rangle,$$
$$d_{1}[l] = \sum_{n=-\infty}^{+\infty} a_{0}[n] g[n-2l] = \langle a_{0}[n], g[n-2l] \rangle.$$

and the signal is recovered by the reconstruction filter

$$a_0[n] = \sum_{l=-\infty}^{+\infty} a_1[l] \,\tilde{h}[n-2l] + \sum_{l=-\infty}^{+\infty} d_1[l] \,\tilde{g}[n-2l]. \qquad \text{dual family of vectors}$$

thus

$$a_0[n] = \sum_{l=-\infty}^{+\infty} \langle f[k] (h[k-2l]) \tilde{h}[n-2l] + \sum_{l=-\infty}^{+\infty} \langle f[k] (g[k-2l]) \tilde{g}[n-2l].$$

points to biorthogonal wavelets

The two families are biorthogonal

Theorem 7.13. If h, g, \tilde{h} , and \tilde{g} are perfect reconstruction filters, and their Fourier transforms are bounded, then $\{\tilde{h}[n-2l], \tilde{g}[n-2l]\}_{l \in \mathbb{Z}}$ and $\{h[n-2l], g[n-2l]\}_{l \in \mathbb{Z}}$ are biorthogonal Riesz bases of $\ell^2(\mathbb{Z})$.

Thus, a PR FB projects a discrete time signals over a biorthogonal basis of $l^2(Z)$. If the dual basis is the same as the original basis than the projection is orthonormal.

Discrete Wavelet basis

- Question: why bother with the construction of wavelet basis if a PR FB can do the same easily?
- Answer: because conjugate mirror filters are most often used in filter banks that cascade several levels of filterings and subsamplings. Thus, it is necessary to understand the behavior of such a cascade

 N^{-1} : discrete sample distance $2^{L} = N^{-1}$ scale

$$a_{L}[n] = \langle f, \varphi_{L,n} \rangle \quad \text{discrete signal at scale } 2^{L}$$
$$\varphi\left(\frac{t - N^{-1}n}{N^{-1}}\right) = \frac{1}{\sqrt{N}}\varphi_{L,n}$$

for depth j-L>0

$$a_{j}[l] = a_{L} \star \bar{\phi}_{j}[2^{j-L}l] = \langle a_{L}[n], \phi_{j}[n-2^{j-L}l] \rangle$$
$$d_{j}[l] = a_{L} \star \bar{\psi}_{j}[2^{j-L}l] = \langle a_{L}[n], \psi_{j}[n-2^{j-L}l] \rangle.$$

$$\hat{\phi}_{j}(\omega) = \prod_{\substack{h=0\\j-L-2}}^{j-L-1} \hat{h}(2^{p}\omega)$$
$$\hat{\psi}_{j}(\omega) = \hat{g}(2^{j-L-1}\omega) \prod_{p=0}^{h-2} \hat{h}(2^{p}\omega).$$

Discrete wavelet basis

For conjugate mirror filters, one can verify that this family is an orthonormal basis of $\ell^2(\mathbb{Z})$. These discrete vectors are close to a uniform sampling of the continuous timescaling functions $\phi_j(t) = 2^{-j/2}\phi(2^{-j}t)$ and wavelets $\psi_j(t) = 2^{-j/2}\phi(2^{-j}t)$. When the number L-j of successive convolutions increases, one can verify that $\phi_j[n]$ and $\psi_j[n]$ converge, respectively, to $N^{-1/2}\phi_j(N^{-1}n)$ and $N^{-1/2}\psi_j(N^{-1}n)$.

The factor $N^{-1/2}$ normalizes the $\ell^2(\mathbb{Z})$ norm of these sampled functions. If L - j = 4, then $\phi_j[n]$ and $\psi_j[n]$ are already very close to these limit values. Thus, the impulse responses $\phi_j[n]$ and $\psi_j[n]$ of the filter bank are much closer to continuous time-scaling functions and wavelets than they are to the original conjugate mirror filters h and g. This explains why wavelets provide appropriate models for understanding the applications of these filter banks. Chapter 8 relates more general filter banks to wavelet packet bases.

Perfect reconstruction FB

• Theorem 7.7 (Vetterli) The FB performs an exact reconstruction for any input signal iif

$$\hat{h}^{*}(\omega)\tilde{\tilde{h}}(\omega) + \hat{g}^{*}(\omega)\hat{\tilde{g}}(\omega) = 2$$
$$\hat{h}^{*}(\omega + \pi)\hat{\tilde{h}}(\omega) + \hat{g}^{*}(\omega + \pi)\hat{\tilde{g}}(\omega) = 0 \qquad (alias free)$$

Matrix notations

$$\begin{pmatrix} \hat{\tilde{h}}^{*}(\omega) \\ \hat{\tilde{g}}^{*}(\omega) \end{pmatrix} = \frac{2}{\Delta(\omega)} \begin{pmatrix} \hat{g}(\omega + \pi) \\ -\hat{h}(\omega + \pi) \end{pmatrix}$$
$$\Delta(\omega) = \hat{h}(\omega)\hat{g}(\omega + \pi) - \hat{h}(\omega + \pi)\hat{g}(\omega)$$

When all the filters are FIR, the determinant can be evaluated, which yields simpler relations between the decomposition and the reconstruction filters.

Changing the sampling rate

• Downsampling

$$\hat{y}(2\omega) = \sum_{n=-\infty}^{+\infty} x [2n] e^{-j2n\omega} = \frac{1}{2} (\hat{x}(\omega) + \hat{x}(\omega + \pi))$$

• Upsampling

$$\hat{y}(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j2n\omega} = \hat{x}(2\omega)$$

Perfect Reconstruction conditions

Perfect Reconstruction conditions

• Putting all together

$$\begin{split} \hat{\tilde{a}}_{0}(\omega) &= \hat{a}_{1}(2\omega)\hat{\tilde{h}}(\omega) + \hat{d}_{1}(2\omega)\hat{\tilde{g}}(\omega) = \\ &= \frac{1}{2} \Big(a_{0}\left(\omega\right)\hat{h}^{*}\left(\omega\right) + a_{0}\left(\omega + \pi\right)\hat{h}^{*}\left(\omega + \pi\right) \Big)\hat{\tilde{h}}(\omega) \\ &+ \frac{1}{2} \Big(a_{0}\left(\omega\right)\hat{g}^{*}\left(\omega\right) + a_{0}\left(\omega + \pi\right)\hat{g}^{*}\left(\omega + \pi\right) \Big)\hat{\tilde{g}}(\omega) \\ \hat{\tilde{a}}_{0}(\omega) &= \frac{1}{2} \Big(\hat{h}^{*}\left(\omega\right)\hat{\tilde{h}}(\omega) + \hat{g}^{*}\left(\omega\right)\hat{\tilde{g}}(\omega) \Big) a_{0}\left(\omega\right) + \frac{1}{2} \Big(\hat{h}^{*}\left(\omega + \pi\right)\hat{\tilde{h}}(\omega) + \hat{g}^{*}\left(\omega + \pi\right)\hat{\tilde{g}}(\omega) \Big) a_{0}\left(\omega + \pi\right) \\ &= 1 \end{split}$$

$$\hat{h}^{*}(\omega)\hat{\tilde{h}}(\omega) + \hat{g}^{*}(\omega)\hat{\tilde{g}}(\omega) = 2$$
$$\hat{h}^{*}(\omega+\pi)\hat{\tilde{h}}(\omega) + \hat{g}^{*}(\omega+\pi)\hat{\tilde{g}}(\omega) = 0$$

(alias free)

Matrix notations

$$\begin{pmatrix} \hat{\tilde{h}}^{*}(\omega) \\ \hat{\tilde{g}}^{*}(\omega) \end{pmatrix} = \frac{2}{\Delta(\omega)} \begin{pmatrix} \hat{g}(\omega + \pi) \\ -\hat{h}(\omega + \pi) \end{pmatrix}$$

$$\Delta(\omega) = \hat{h}(\omega)\hat{g}(\omega + \pi) - \hat{h}(\omega + \pi)\hat{g}(\omega)$$

PR filters

• Theorem 7.8. Perfect reconstruction filters also satisfy

$$\hat{h}^*(\omega)\hat{\tilde{h}}(\omega) + \hat{h}^*(\omega + \pi)\hat{\tilde{h}}(\omega + \pi) = 2$$

Furthermore, if the filters have a finite impulse response there exists *a* in *R* and *l* in *Z* such that

$$\hat{g}(\omega) = e^{-j\omega} \hat{\tilde{h}}^*(\omega + \pi)$$
$$\hat{\tilde{g}}(\omega) = e^{-j\omega} h^*(\omega + \pi)$$

Correspondingly $g[n] = (-1)^{1-n} \tilde{h}[1-n]$ $\tilde{g}[n] = (-1)^{1-n} h[1-n]$

• Conjugate Mirror Filters:

$$\tilde{h} = h \rightarrow \left| \hat{h}(\omega) \right|^2 + \left| \hat{h}(\omega + \pi) \right|^2 = 2$$

Proof

Given h and \tilde{h} and setting a=l and l=0 in (2) the remaining filters are given by the following relations

(3)
$$\hat{g}(\omega) = e^{-i\omega}\hat{h}^*(\omega + \pi)$$
$$\hat{g}(\omega) = e^{-i\omega}\hat{h}^*(\omega + \pi)$$

• The filters *h* and \tilde{h} are related to the scaling functions φ and $\sim \varphi$ via the corresponding two-scale relations, as was the case for the orthogonal filters (see eq. 1).

Switching to the z-domain

$$g(z) = z^{-1}\tilde{h}(-z^{-1})$$

$$\tilde{g}(z) = z^{-1}h(-z^{-1})$$

Signal domain

$$g[n] = (-1)^{1-n} \tilde{h}[1-n]$$

$$\tilde{g}[n] = (-1)^{1-n} h[1-n]$$

Biorthogonal filter banks

• A 2-channel multirate filter bank convolves a signal a_0 with a low pass filter $\overline{h}[n] = h[-n]$ and a high pass filter $\overline{g}[n] = g[-n]$

and sub-samples the output by 2

$$a_1[n] = a_0 * \overline{h}[2n]$$
$$d_1[n] = a_0 * \overline{g}[2n]$$

A reconstructed signal \tilde{a}_0 is obtained by filtering the zero-expanded signals with a *dual low-pass* $\tilde{h}[n]$ and high pass filter $\tilde{g}[n]$

 $\widetilde{a}_0[n] = \breve{a}_1 * \widetilde{h}[n] + \breve{d}_1 * \widetilde{g}[n]$ $y[n] = \breve{x}[n] = \begin{cases} x[p] & n = 2p\\ 0 & n = 2p+1 \end{cases}$

Imposing the PR condition (output signal=input signal) one gets the relations that the different filters must satisfy (Theorem 7.7)

Revisiting the orthogonal case (CMF)

Taking $\overline{h[n]} = h[-n]$ as reference (which amounts to choosing the analysis low-pass filter) the following relations hold for an orthogonal filter bank:

 $\overline{h}[n] = h[-n] \leftrightarrow h[n] = \overline{h}[-n]$

synthesis low-pass (interpolation) filter: reverse the order of the coefficients

 $g[n] = (-1)^{1-n} h[1-n]$

negate every other sample

Orthogonal vs biorthogonal PRFB

 $\begin{array}{l} \tilde{h} \neq h \\ \hat{h}^{*}(\omega)\hat{\tilde{h}}(\omega) + \hat{h}^{*}(\omega + \pi)\hat{\tilde{h}}(\omega + \pi) = 2 \\ \hat{g}(\omega) = e^{-j\omega}\hat{\tilde{h}}^{*}(\omega + \pi) \\ \hat{\tilde{g}}(\omega) = e^{-j\omega}h^{*}(\omega + \pi) \end{array}$

In the signal domain $g[n] = (-1)^{1-n} \tilde{h}[1-n]$ $\tilde{g}[n] = (-1)^{1-n} h[1-n]$ $\tilde{h} = h$ <u>Orthogonal</u> PRFB $\left| \hat{h}(\omega) \right|^{2} + \left| \hat{h}(\omega + \pi) \right|^{2} = 2$ $\tilde{g} = g$

Fast BWT

• Two different sets of basis functions are used for analysis and synthesis

$$a_{j+1}[n] = a_j * \overline{h}[2n]$$

$$d_{j+1}[n] = a_j * \overline{g}[2n]$$

$$a_j[n] = \overline{a}_{j+1} * \widetilde{h}[n] + \overline{d}_{j+1} * \widetilde{g}[n]$$

Be careful with notations!

• In the simplified notation where

- h[n] is the analysis low pass filter and g[n] is the analysis high pass filter, as it is the case in most of the literature;
- the delay factor is not made explicit;
- The relations among the filters modify as follows

Biorthogonal bases

Orthonormal basis

$$\label{eq:en} \begin{split} &\{e_n\}_{n\in N} \mbox{: basis of Hilbert space} \\ & Ortogonality \mbox{ condition } < e_n, \ e_p \mbox{=} 0 \qquad \forall n \mbox{\neq} p \\ & \forall y \in H, \end{split}$$

There exists a sequence

$$\lambda[n] = \langle y, e_n \rangle:$$

$$y = \sum_n \lambda[n] e_n$$

e.

 $|e_n|^2 = 1$

ortho-normal basis

e_n

Bi-orthogonal basis

 $\{e_n\}_{n \in \mathbb{N}}$: linearly independent $\forall y \in H$, $\exists A > 0 \text{ and } B > 0$: $\lambda[n] = \langle y, e_n \rangle$: $y = \sum \lambda[n]\widetilde{e}_n$ $\frac{\left|y\right|^{2}}{B} \leq \sum_{n} \left|\lambda[n]\right|^{2} \leq \frac{\left|y\right|^{2}}{A}$ Biorthogonality condition: $\langle e_n, \tilde{e}_p \rangle = \delta[n-p]$ $y = \sum \langle f, \tilde{e}_n \rangle e_n = \sum \langle f, e_n \rangle \tilde{e}_n$

 $A=B=1 \Rightarrow$ orthogonal basis

Biorthogonal bases

If *h* and
$$\tilde{h}$$
 are FIR
 $\hat{\Phi}(\omega) = \prod_{p=1}^{+\infty} \frac{\hat{h}(2^{-p}\omega)}{\sqrt{2}} \hat{\Phi}(0), \qquad \hat{\Phi}(\omega) = \prod_{p=1}^{+\infty} \frac{\hat{h}(2^{-p}\omega)}{\sqrt{2}} \hat{\Phi}(0)$

Though, some other conditions must be imposed to guarantee that ϕ^{A} and ϕ^{A} tilde are FT of finite energy functions. The theorem from Cohen, Daubechies and Feaveau provides *sufficient* conditions (Theorem 7.10)

The functions $\hat{\phi}$ and $\hat{\tilde{\phi}}$ satisfy the biorthogonality relation

$$\left\langle \varphi(t), \tilde{\varphi}(t-n) \right\rangle = \delta[n]$$

The two wavelet families
$$\left\{\psi_{j,n}\right\}_{(j,n)\in\mathbb{Z}^2}$$
 and $\left\{\tilde{\psi}_{j,n}\right\}_{(j,n)\in\mathbb{Z}^2}$ are Riesz bases of $L^2(R)$
 $\left[\left\langle\psi_{j,n},\tilde{\psi}_{j',n'}\right\rangle = \delta[n-n']\delta[j-j']\right]$

Any $f \in L^2(R)$ has two possible decompositions in these bases

$$f = \sum_{n,j} \left\langle f, \psi_{j,n} \right\rangle \widetilde{\psi}_{j,n} = \sum_{n,j} \left\langle f, \widetilde{\psi}_{j,n} \right\rangle \psi_{j,n}$$

Summary of Biorthogonality relations

• An infinite cascade of PR filter banks $(h,g), (\tilde{h},\tilde{g})$ yields two scaling functions and two wavelets whose Fourier transform satisfy

$$\begin{split} \hat{\Phi}(2\omega) &= \frac{1}{\sqrt{2}} \hat{h}(\omega) \hat{\Phi}(\omega) & \leftrightarrow \varphi\left(\frac{t}{2}\right) = \sum_{n=-\infty}^{+\infty} h[n]\varphi(t-n) \quad (i) \\ \hat{\tilde{\Phi}}(2\omega) &= \frac{1}{\sqrt{2}} \hat{\tilde{h}}(\omega) \hat{\tilde{\Phi}}(\omega) & \leftrightarrow \tilde{\varphi}\left(\frac{t}{2}\right) = \sum_{n=-\infty}^{+\infty} \tilde{h}[n]\tilde{\varphi}(t-n) \quad (ii) \\ \hat{\Psi}(2\omega) &= \frac{1}{\sqrt{2}} \hat{g}(\omega) \hat{\Phi}(\omega) \quad \leftrightarrow \psi\left(\frac{t}{2}\right) = \sum_{n=-\infty}^{+\infty} g[n]\varphi(t-n) \quad (iii) \\ \hat{\tilde{\Psi}}(2\omega) &= \frac{1}{\sqrt{2}} \hat{\tilde{g}}(\omega) \hat{\tilde{\Phi}}(\omega) \quad \leftrightarrow \tilde{\psi}\left(\frac{t}{2}\right) = \sum_{n=-\infty}^{+\infty} \tilde{g}[n]\tilde{\varphi}(t-n) \quad (iv) \end{split}$$

Properties of biorthogonal filters

Imposing the zero average condition to ψ in equations *(iii)* and *(iv)*

$$\hat{\Psi}(0) = \hat{\tilde{\Psi}}(0) = 0 \quad \rightarrow \hat{g}(0) = \hat{g}(0) = 0$$

replacing into the relations (3) (also shown below)

$$\hat{g}(\omega) = e^{-i\omega}\hat{\tilde{h}}^*(\omega + \pi) \qquad \hat{\tilde{g}}(\omega) = e^{-i\omega}\hat{h}^*(\omega + \pi) \rightarrow \hat{\tilde{h}}^*(\pi) = \hat{\tilde{h}}(\pi) = 0$$
Furthermore, replacing such values in the PR condition (1)

$$\hat{h}^*(\omega)\hat{\tilde{h}}(\omega) + \hat{g}^*(\omega)\hat{\tilde{g}}(\omega) = 2 \longrightarrow \hat{h}^*(0)\hat{\tilde{h}}(0) = 2$$

It is common choice to set

$$\hat{h}^*(0) = \tilde{\tilde{h}}(0) = \sqrt{2}$$

Biorthogonal bases

- If the decomposition and reconstruction filters are different, the resulting bases is nonorthogonal
- The cascade of J levels is equivalent to a signal decomposition over a non-orthogonal bases

$$\left[\left\{\varphi_{J}\left[k-2^{J}n\right]\right\}_{n\in\mathbb{Z}},\left\{\psi_{j}\left[k-2^{j}n\right]\right\}_{1\leq j\leq J,n\in\mathbb{Z}}\right]$$

• The dual bases is needed for reconstruction

Example: bior3.5

Example: bior3.5

Biorthogonal bases

Biorthogonal bases

CMF : orhtogonal filters

- PR filter banks decompose the signals in a basis of $l^2(Z)$. This basis is *orthogonal* for *Conjugate Mirror Filters* (CMF).
- [Smith&Barnwell,1984]: Necessary and sufficient condition for PR *orthogonal FIR* filter banks, called CMFs
 - Imposing that the decomposition filter h is equal to the reconstruction filter h^{\sim} , eq. (1) becomes

$$\hat{h}^{*}(\omega)\hat{\tilde{h}}(\omega) + \hat{h}^{*}(\omega + \pi)\hat{\tilde{h}}(\omega + \pi) = 2 \quad (1) \rightarrow$$
$$\hat{h}^{*}(\omega)\hat{h}(\omega) + \hat{h}^{*}(\omega + \pi)\hat{h}(\omega + \pi) = 2 \rightarrow$$
$$|\hat{h}(\omega)|^{2} + |\hat{h}(\omega + \pi)|^{2} = 2$$

Correspondingly

$$\widetilde{h}[n] = h[n]$$

$$\widetilde{g}[n] = g[n] = (-1)^{1-n} h[1-n]$$

Summary

- PR filter banks decompose the signals in a basis of $l^2(Z)$. This basis is *orthogonal* for *Conjugate Mirror Filters* (CMF).
- [Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIR filter banks, called CMFs
 - Imposing that the decomposition filter h is equal to the reconstruction filter h^{\sim} , eq. (1) becomes

$$\hat{h}^{*}(\omega)\hat{\tilde{h}}(\omega) + \hat{h}^{*}(\omega + \pi)\hat{\tilde{h}}(\omega + \pi) = 2 \rightarrow$$
$$\hat{h}^{*}(\omega)\hat{h}(\omega) + \hat{h}^{*}(\omega + \pi)\hat{h}(\omega + \pi) = 2 \rightarrow$$

$$|\hat{h}(\omega)|^2 + |\hat{h}(\omega + \pi)|^2 = 2$$

 \sim

- Correspondingly

$$h[n] = h[n]$$

 $\tilde{g}[n] = g[n] = (-1)^{1-n} h[1-n]$

Properties

- Support
 - h, \tilde{h} are FIR \rightarrow scaling functions and wavelets have compact support
- Vanishing moments
 - The number of vanishing moments of Ψ is equal to the order \tilde{p} of zeros of \tilde{h} in π . Similarly, the number of vanishing moments of $\tilde{\psi}$ is equal to the order *p* of zeros of *h* in π .

• Regularity

- One can show that the regularity of Ψ and φ increases with the number of vanishing moments of
- $\tilde{\psi}$, thus with the order *p* of zeros of *h* in π . Viceversa, the regularity of $\tilde{\psi}$ and $\tilde{\varphi}$ increases with the number of vanishing moments of Ψ , thus with the order \tilde{p} of zeros of \tilde{h} in π .

• Symmetry

- It is possible to construct both symmetric and anti-symmetric bases using linear phase filters
 - In the orthogonal case only the Haar filter is possible as FIR solution.