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Outline

• Wavelets and Filterbanks

• Biorthogonal bases

• The dual perspective: from FB to wavelet bases
– Biorthogonal FB
– Perfect reconstruction conditions

• Separable bases (2D)

• Overcomplete bases
– Wavelet frames (algorithme à trous, DDWF)
– Curvelets



Wavelets and Filterbanks

Wavelet side

• Scaling function
– Design (from multiresolution priors)
– Signal approximation
– Corresponding filtering operation

Condition on the filter h[n] → Conjugate 
Mirror Filter (CMF)

• Corresponding wavelet families

Filterbank side

• Perfect reconstruction conditions (PR)
– Reversibility of the transform

• Equivalence with the conditions on the 
wavelet filters

– Special case: CMFs → Orhogonal
wavelets

– General case → Biorthogonal wavelets



Wavelets and filterbanks

• The decomposition coefficients in a wavelet orthogonal basis are computed with a fast 
algorithm that cascades discrete convolutions with h and g, and subsamples the output

• Fast orthogonal WT
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Linking the domains
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Switching between the 
Fourier and the z-domain



Fast orthogonal wavelet transform

• Fast FB algorithm that computes the orthogonal wavelet coefficients of a discrete signal 
a0[n]. Let us define

Since                                is orthonormal, then

• A fast wavelet transform decomposes successively each approximation PVjf in the coarser 
approximation PVj+1f plus the wavelet coefficients carried by PWj+1f.

• In the reconstruction, PVjf is recovered from PVj+1f and PWj+1f for decreasing values of j 
starting from J (decomposition depth)
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Fast wavelet transform

• Theorem 7.7
– At the decomposition

– At the reconstruction
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Proof: decomposition (1)
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Proof: decomposition (2)

• Coming back to the projection coefficients

• Similarly, one can prove the relations for both the details and the reconstruction formula
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Proof: decomposition (3)

• Details
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Proof: Reconstruction
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Since Wj+1 is the orthonormal complement of Vj+1 in Vj, the union of the two respective basis is a basis 
for Vj. Hence



Summary

• The coefficients aj+1 and dj+1 are computed by taking every other sample of the convolution 
of aj with        and           respectively.

• The filter ¯h removes the higher frequencies of the inner product sequence aj , whereas ¯g 
is a high-pass filter that collects the remaining highest frequencies. 

• The reconstruction is an interpolation that inserts zeroes to expand aj+1 and dj+1 and filters 
these signals, as shown in Figure.

h g



Orthogonal wavelet representation

• An orthogonal wavelet representation of aL=< f ,ϕL,n> is composed of wavelet coefficients 
of f at scales 2L<2j<=2J , plus the remaining approximation at the largest scale 2J :

• Initialization
– Let b[n] be the discrete time input signal and let N-1 be the sampling period, such that the 

corresponding scale is 2L=N-1

– Then: 

original continuous 
time signal discrete time signal interpolation function

N-1: discrete sample distance
2L= N-1 scale



Initialization
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Filterbank implementation
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Fast DWT

• Theorem 7.6 proves that aj+1 and dj+1 are computed by taking every other sample of the 
convolution on aj and dj with       and       respectively

• The filter h removes the higher frequencies of the inner product and the filter g is a band-
pass filter that collects such residual frequencies

• An orthonormal wavelet representation is composed of wavelet coefficients at scales                  

plus the remaining approximation at scale 2J

h g
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Summary
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The fast orthogonal WT is implemented by a filterbank that is 
completely specified by the filter h, which is a CMF
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↑2 h

↑2 g
ja

Teorem 7.2 (Mallat&Meyer) and Theorem 7.3 [Mallat&Meyer]



Filter bank perspective
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Taking h[n]=ħ[-n] as reference (which amounts to choosing the synthesis low-pass filter) the following 
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Finite signals

• Issue: signal extension at borders

• Possible solutions:
– Periodic extension

Works with any kind of wavelet
Generates large coefficients at the borders

– Symmetryc/antisymmetric extension, depending on the wavelet symmetry
More difficult implementation
Haar filter is the only symmetric filter with compact support

– Use different wavelets at boundary (boundary wavelets)
– Implementation by lifting steps



Wavelet graphs



The filter bank perspective



Perfect reconstruction FB

• Dual perspective: given a filterbank consisting of 4 filters, we derive the perfect 
reconstruction conditions

• Goal: determine the conditions on the filters ensuring that
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PR Filter banks

• The decomposition of a discrete signal in a multirate filter bank is interpreted as an 
expansion in l2(Z)
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then

and the signal is recovered by the reconstruction filter

thus

dual family of vectors

points to 
biorthogonal

wavelets



The two families are biorthogonal

Thus, a PR FB projects a discrete time signals over a biorthogonal basis of l2(Z).
If the dual basis is the same as the original basis than the projection is orthonormal.



Discrete Wavelet basis

• Question: why bother with the construction of wavelet basis if a PR FB can do the same 
easily?

• Answer: because conjugate mirror filters are most often used in filter banks that cascade 
several levels of filterings and subsamplings. Thus, it is necessary to understand the 
behavior of such a cascade
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for depth j-L>0



Discrete wavelet basis



Perfect reconstruction FB

• Theorem 7.7 (Vetterli) The FB performs an exact reconstruction for any input signal iif
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When all the filters are FIR, the determinant can be evaluated, which yields simpler 
relations between the decomposition and the reconstruction filters.



Changing the sampling rate

• Downsampling

• Upsampling
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Perfect Reconstruction conditions
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Perfect Reconstruction conditions

• Putting all together
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PR filters

• Theorem 7.8. Perfect reconstruction filters also satisfy

Furthermore, if the filters have a finite impulse response there exists a in R and l in Z such 
that

• Conjugate Mirror Filters: 
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Proof

Given h and      and setting a=1 and l=0 in (2) the remaining filters are given by the following 
relations

The filters h and     are related to the scaling functions φ and ~φ via the corresponding two-scale relations, 
as was the case for the orthogonal filters (see eq. 1).

Switching to the z-domain

Signal domain
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Biorthogonal filter banks

• A 2-channel multirate filter bank convolves a signal a0 with 

a low pass filter                    

and a high pass filter

and sub-samples the output by 2

A reconstructed signal ã0 is obtained by filtering the zero-expanded signals with a dual low-pass           
and high pass filter  

Imposing the PR condition (output signal=input signal) one gets the relations that the different filters 
must satisfy (Theorem 7.7)
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Revisiting the orthogonal case (CMF)
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Taking                              as reference (which amounts to choosing the analysis low-pass filter) the 
following relations hold for an orthogonal filter bank:
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Orthogonal vs biorthogonal PRFB
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Fast BWT

• Two different sets of basis functions are used for analysis and synthesis

• PR filterbank
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Be careful with notations!

• In the simplified notation where 
– h[n] is the analysis low pass filter and g[n] is the analysis high pass filter, as it is the case in most of the 

literature;
– the delay factor is not made explicit;

• The relations among the filters modify as follows
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BiorthogonalBiorthogonal bases

Orthonormal basis

{en}n∈N: basis of Hilbert space

Ortogonality condition < en, ep>=0     ∀n≠p

∀y ∈ H,     

There exists a sequence

|en|2=1 ortho-normal basis

Bi-orthogonal basis

{en}n∈N: linearly independent

∀y ∈ H,     ∃A>0 and B>0 :

Biorthogonality condition: 

A=B=1 ⇒ orthogonal basis
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Biorthogonal bases

( )
( )

( )
( )

1 1

ˆ ˆ2 2ˆ ˆ ˆ ˆ(0), (0)
2 2

If  and  are FIR
p p

p p

h h
h hω ω

ω ω
− −+∞ +∞

= =

Φ = Φ Φ = Φ∏ ∏

{ } { }2 2

' ',

( , ) ( , )

,

ˆˆ

( ), ( ) [ ]

( )

, [ '] [ ']

2

The functions  and  satisfy the biorthogonality relation

The two wavelet families  and   are Riesz bases of L
j,n j,n

j n

j n Z j n Z

j n

t t n n

ψ ψ R

n n j j

φ φ
ϕ ϕ δ

ψ ψ δ δ

∈ ∈

− =

= − −

Though, some other conditions must be imposed to guarantee that φ^ and φ^tilde are FT of 
finite energy functions. The theorem from Cohen, Daubechies and Feaveau provides sufficient
conditions (Theorem 7.10)

( )2
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, ,

, ,

Any  has two possible decompositions in these bases
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Summary of Biorthogonality relations

• An infinite cascade of PR filter banks                       yields two scaling functions and two wavelets 
whose Fourier transform satisfy

( ) ( ) ( ) ( )
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Properties of biorthogonal filters

Imposing the zero average condition to ψ in equations (iii) and (iv)

* * *

*

ˆ ˆˆ ˆ(0) (0) 0 (0) (0) 0

ˆ ˆˆ ˆ ˆˆ ( ) ( ) ( ) ( ) ( ) ( ) 0

ˆ ( )

replacing into the relations (3) (also shown below)

Furthermore, replacing such values in the  PR condition (1)

i i
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g e h g e h h h

h

ω ωω ω π ω ω π π π

ω

− −

Ψ = Ψ = → = =

= + = + → = =
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It is common choice to set
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Biorthogonal bases

• If the decomposition and reconstruction filters are different, the resulting bases is non-
orthogonal

• The cascade of J levels is equivalent to a signal decomposition over a non-orthogonal bases

• The dual bases is needed for reconstruction 

{ } { }
1 ,

2 , 2J j
J jn j J n

k n k nϕ ψ
∈Ζ ≤ ≤ ∈Ζ
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Example: bior3.5



Example: bior3.5



Biorthogonal bases



Biorthogonal bases



CMF : orhtogonal filters

• PR filter banks decompose the signals in a basis of l2(Z). This basis is orthogonalorthogonal for Conjugate Conjugate 
Mirror FiltersMirror Filters (CMF).

• [Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIRorthogonal FIR filter banks, 
called CMFs

– Imposing that the decomposition filter h is equal to the reconstruction filter h~, eq. (1) becomes

– Correspondingly

* *

* *
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Summary

• PR filter banks decompose the signals in a basis of l2(Z). This basis is orthogonal for Conjugate 
Mirror Filters (CMF).

• [Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIR filter banks, called 
CMFs

– Imposing that the decomposition filter h is equal to the reconstruction filter h~, eq. (1) becomes

– Correspondingly
2|)(ˆ||)(ˆ|

2)(ˆ)(ˆ)(ˆ)(ˆ
2)(~̂)(ˆ)(~̂)(ˆ
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Properties

• Support
– h,     are FIR → scaling functions and wavelets have compact support

• Vanishing moments
– The number of vanishing moments of Ψ is equal to the order     of zeros of    in π. Similarly, the 

number of vanishing moments of      is equal to the order p of zeros of h in π. 

• Regularity
– One can show that the regularity of  Ψ and φ increases with the number of vanishing moments of   

, thus with the order p of zeros of h in π. Viceversa, the regularity of     and                increases 
with the number of vanishing moments of Ψ, thus with the order     of zeros of       in π.

• Symmetry
– It is possible to construct both symmetric and anti-symmetric bases using linear phase filters

In the orthogonal case only the Haar filter is possible as FIR solution.

h~

p~ h~
ψ~

ψ~ ϕ~ψ~
p~ h~
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