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The lifting scheme

• New philosophy in Biorthogonal wavelet construction

• Sweldens, ~95

• Both linear and non-linear wavelets
– Integer implementation enabling lossless coding



Biorthogonal basis:why?

• FIR orthonormal filters: no symmetry
• (except Haar filter)

• FIR biorthogonal filters: symmetry
– linear phase
– better boundary conditions



Basis oh the Hilbert space

• Orthonormal basis:
– {en}n∈N: family of the Hilbert space
– < en, ep>=0 ∀n≠p
– ∀x ∈ H,     ∃λ(n)=< x, en>
– |en|2=1
– x=∑n λ(n) en



Basis of the Hilbert space

• Riesz bases:
– {en}n∈N: linearly independent
– ∀y ∈ H,     ∃A>0 and B>0 :   y=∑n λ(n) en

– |y|2/B ≤ ∑n |λ(n)|2 ≤ |y|2/A
– λ(n)=< y, e˜n>
– {e˜n}n∈N : dual family
– Biorthogonality relationship: < en, e˜p>=δ(n-p)
– y=∑n < y, e˜n> en

– A=B=1 ⇒ orthogonal basis



Biorthogonal filters
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Rationale

• Goal: Exploit the correlation structure present in most real life signals to build a 
sparse approximation

– The correlation structure is typically local in space (time) and frequency

• Basic idea
– Split the signal x in its polyphase components (even and odd samples)

– These two are highly correlated. It is thus natural to use one of them (e.g. the odds) to 
predict the other (e.g. the even)

– The operation of computing a prediction and recording the detail we call lifting step
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Lifting steps

– To get a good frequency splitting, the evens are also updated by replacing them with a 
smoothed version

– Built-in feature of lifting: no matter how P and U are chosen, the scheme is always 
invertible and thus leads to critically sampled perfect reconstruction filter banks
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Biorthogonal FB
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Polyphase representation

• Given the biorthoganl filters h and g
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Polyphase representation qui



→ the other way around

• The problem of finding a FIR wavelet transform then amounts to finding a matrix 
P(z) with determinant =1

• Once the matrix is given, the filters follow
– One can show that this corresponds to the biorthogonality relations
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The lifting scheme

• Definition 1. A filter pair (h,g) is complementary if the corresponding polyphase
matrix P(z) has determinant 1

– If (h,g) is complementary, so is

• Theorem 3 (Lifting). Let (h,g) be complementary. Then, any other finite filter gnew(z) 
complementary to h is of the form

where s(z) is a Laurent polynomial. Conversely, any filter of this form is 
complementary to h

• Proof
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proof and consequences
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“Lifted” FB

( )

( ) ( ) ( )

' 1
' 0 1

' 1
' 0 1

e

o

e e

o o

x as z
x d
x x as z

P z P z
x x d

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

↑2

z-1↑2
+

xa

d
P(z)

↑2

z-1↑2
+

x

x’o

P(z)

x’e

s(z)

+a

d

xe

xo

xe

xo

( )e

o

x a
P z

x d
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

( )'P z



From Swelden’s paper



Analysis FB

( ) ( ) ( ) ( ) ( ) ( )2
1

1 0
( ) 1

new newP z P z h z h z g z s z
s z

−
−

⎡ ⎤
= → = −⎢ ⎥−⎣ ⎦

Update

1 1

1 1
( ) ( )
( ) ( )

g z z h z
h z z g z

− −

− −

= −
= − −

↓2

z ↓2
+

x
a

d
xo

xe

( )1 t
P z−

d’

a’

s(z)

-



Equivalent representations
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Equivalent representations
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Towards lossless
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Dual lifting

• Teorem 4. Let (h,g) be complementary. Then any other filter hnew(z) 
complementary to g is of the form

where t(z) is a Laurent polynomial. Conversely, any filter of this form is 
complementary to g

– New polyphase matrix

– Dual lifting creates a new          given by
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Dual lifting

• Prediction steps: the HP coefficients are shaped (lifted) by filtering the LP ones by 
the filter t(z)

• Update steps: the LP coefficients are shaped by filtering the HP ones by s(z)

• One can start from the lazy wavelet and use lifting to gradually build one’s way up 
to a multiresolution analysis with particular properties
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lifting and dual lifting



lazy wavalet



Lifted basis functions

• Lifting

• Dual lifting
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Global Lifting

Lifting

Dual Lifting

Lifting ψ

Lifting ϕ
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( ),h g ( ),new newh g



Cakewalk construction

↓2

↓2

x
↑2

↑2

+

x
+-

- +

s st t

dual lifting (update)

h

g

h

g

lifting (prediction)



Lifting the Lazy wavelet
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Lifting theorem

• Theorem 7. Given a complementary filter pair (h,g), then there always exist 
Laurent polynomials si(z) and ti(z) for i=1,...,m and a non-zero constant K so that

– The dual polyphase matrix is given by

• Every finite filter wavelet transform can be obtained by starting with the lazy 
wavelet followed by m lifting and dual lifting steps, followed by a scaling

• The prediction and update steps are found by factorization of the polyphase matrix
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Implementation
Analysis
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Integer wavelet transform
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Fully in-place implementation

• Odd samples are used to predict even samples and viceversa
– The original memory locations can be overwritten

decomposition
tree

Original



Summary

• Biorthogonal (FIR) wavelets

• Perfect reconstruction ensured for any signal extension at borders

• Faster, fully in-place implementation

• Reduced computational complexity

• Non-linear lifting

• All operations within one lifting step can be done entirely parallel while the only 
sequential part is the order of the lifting operations

• Allows wavelets mapping integers to integers, important for hardware 
implementation and lossless coding

• Allows for adaptive wavelet transforms (i.e. wavelets on the sphere) 



Application: Object-based coding

Object1 Object2Header

Border dimension



Appendix

Laurent polynomials

[sweldens paper]



Filters and Laurent polynomials



Laurent polynomials



Laurent polynomials
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