Teorie e Modelli

let \mathcal{L} be a *countable* first-order language.

By a *theory* in \mathscr{L} we shall mean a set Σ of \mathscr{L} -sentences which is closed under deducibility, i.e. such that for each \mathscr{L} -sentence σ , if $\Sigma \vdash \sigma$, then $\sigma \in \Sigma$. A subset Γ of a theory Σ is called a *set of postulates* for Σ if $\Gamma \vdash \sigma$ for every $\sigma \in \Sigma$. It is clear that each set of sentences Γ is a set of postulates for a unique theory Σ , namely,

 $\Sigma = \{ \sigma : \sigma \text{ is an } \mathscr{L} \text{-sentence and } \Gamma \vdash \sigma \}.$

A property P of \mathcal{L} -structures is called a *first-order* property if there is an \mathcal{L} -sentence σ such that, for any \mathcal{L} -structure \mathfrak{A} ,

 \mathfrak{A} has property $P \Leftrightarrow \mathfrak{A} \models \sigma$.

Consider, for example, the (first-order) theory of partially ordered sets, **PO**. This theory is formulated in a language \mathscr{L} having one binary predicate symbol **R**. Its postulates are

 $\forall x Rxx,$ $\forall x \forall y [Rxy \land Ryx \rightarrow x=y],$ $\forall x \forall y \forall z [Rxy \land Ryz \rightarrow Rxz].$

An \mathscr{L} -structure $\langle A, R \rangle$ is then a model of **PO** iff it is a partially ordered set. Since a partially ordered set can have many different first-order properties, e.g. it can be a lattice, or a Boolean algebra, or a totally ordered set, etc., it is clear that **PO** does not precisely determine the first-order properties of its models. Let us call a theory Σ complete if it is consistent and the first-order properties of any model of Σ are just those determined by the sentences in Σ . More precisely, if for each \mathscr{L} -structure \mathfrak{A} we define Th(\mathfrak{A}), the theory of \mathfrak{A} , to be the set of all \mathscr{L} -sentences σ such that $\mathfrak{A} \models \sigma$, then Σ is complete iff Σ is consistent and Th(\mathfrak{A}) = Σ for each model \mathfrak{A} of Σ .

4.1. LEMMA. The following conditions on a consistent theory Σ are equivalent:
(i) Σ is complete.

(iii) For any \mathcal{L} -sentence σ , either $\sigma \in \Sigma$ or $\neg \sigma \in \Sigma$.

Let α be an infinite cardinal. A theory Σ is said to be α -categorical if any pair of models of Σ of cardinality α are isomorphic. We now give some examples.

4.4. THEOREM. Let Σ be a consistent theory with no finite models, and which is α -categorical for some infinite α . Then Σ is complete.

UDO

UDO₁ asserts that R is a total ordering, UDO₂ asserts that R is dense, and UDO₃ that it is unbounded both below and above. Natural examples of models of Σ are \mathfrak{Q} and \mathfrak{R} , the sets of rational numbers and real numbers, with their natural orderings.

4.5. THEOREM. UDO is ℵ₀-categorical.

4.6. COROLLARY. UDO is a complete theory.

Axiomatic theories

5.1. DEFINITION. For any set Σ of sentences we let T_{Σ} be the property such that $T_{\Sigma}(x)$ holds iff x is a SENTENCE belonging to Σ .

5.2. DEFINITION. A theory Σ is axiomatizable if there exists a set Γ of postulates for Σ such that T_{Γ} is recursively enumerable. If such a set Γ of postulates is actually given to us so that we can find an r.e. index for T_{Γ} (in the sense of §11 of Ch. 6), then we say that Σ is axiomatic.

.5.4. THEOREM. A theory Σ is axiomatizable iff T_{Σ} is recursively enumerable.

Arithmetic

the finitely axiomatized theory Π_2

- $(8.1) \qquad \forall \mathbf{v}_1(\mathbf{s}\mathbf{v}_1 \neq \mathbf{s}_0),$
- (8.2) $\forall \mathbf{v}_1 \forall \mathbf{v}_2 (\mathbf{s} \mathbf{v}_1 = \mathbf{s} \mathbf{v}_2 \rightarrow \mathbf{v}_1 = \mathbf{v}_2),$
- (8.3) $\forall v_1(v_1 + s_0 = v_1),$
- (8.4) $\forall \mathbf{v}_1 \forall \mathbf{v}_2 [\mathbf{v}_1 + \mathbf{s} \mathbf{v}_2 = \mathbf{s}(\mathbf{v}_1 + \mathbf{v}_2)],$
- $(8.5) \qquad \forall \mathbf{v}_1(\mathbf{v}_1 \times \mathbf{s}_0 = \mathbf{s}_0),$
- (8.6) $\forall \mathbf{v}_1 \forall \mathbf{v}_2 (\mathbf{v}_1 \times \mathbf{s} \mathbf{v}_2 = \mathbf{v}_1 \times \mathbf{v}_2 + \mathbf{v}_1),$
- (8.7) $\forall \mathbf{v}_1(\mathbf{v}_1 \leq \mathbf{s}_0 \rightarrow \mathbf{v}_1 = \mathbf{s}_0),$
- (8.8) $\forall \mathbf{v}_1 \forall \mathbf{v}_2 (\mathbf{v}_1 \leqslant \mathbf{s} \mathbf{v}_2 \rightarrow \mathbf{v}_1 \leqslant \mathbf{v}_2 \lor \mathbf{v}_1 = \mathbf{s} \mathbf{v}_2),$
- (8.9) $\forall \mathbf{v}_1 \forall \mathbf{v}_2 (\mathbf{v}_1 \leqslant \mathbf{v}_2 \lor \mathbf{v}_2 \leqslant \mathbf{v}_1).$

first order Peano Arithmetic

We let Φ_n be the set of all \mathscr{L} -formulas whose free variables are among $\mathbf{v}_1, \ldots, \mathbf{v}_n$ (i.e., the first *n* variables of \mathscr{L}). In particular, Φ_0 is the set of all \mathscr{L} -sentences.

The theory Π which we shall now begin to study has as its postulates the six sentences (8.1)–(8.6) and all sentences of the form

$$(9.1) \qquad \forall \mathbf{v}_2 \dots \forall \mathbf{v}_k \ [\alpha(\mathbf{s}_0) \to \forall \mathbf{v}_1 \{ \alpha \to \alpha(\mathbf{s}\mathbf{v}_1) \} \to \forall \mathbf{v}_1 \alpha],$$

where $k \ge 1$ and $\alpha \in \Phi_k$. Postulates (9.1) are called *induction* postulates.

The postulates of Π were obviously obtained by trying to formalize in \mathscr{L} the seven Peano postulates listed in §2. For this reason Π is usually called *first-order Peano arithmetic*. A theory Σ is *complete* if it is consistent and for every sentence α we have $\alpha \in \Sigma$ or $\neg \alpha \in \Sigma$.

Baby arithmetic Π_0

- $(6.1) s_n + s_0 = s_n,$
- $(6.2) s_n + s_{m+1} = s(s_n + s_m),$

$$(6.3) s_n \times s_0 = s_0,$$

(6.4) $\mathbf{s}_n \times \mathbf{s}_{m+1} = (\mathbf{s}_n \times \mathbf{s}_m) + \mathbf{s}_n$

for all numbers n and m.

Junior arithmetic Π_1

The theory Π_1 — which we shall call *junior arithmetic* — is based on postulates (6.1)–(6.4) plus the following:

(7.2) $\mathbf{s}_n \neq \mathbf{s}_m$,

- (7.3) $\forall \mathbf{v}_1 (\mathbf{v}_1 \leq \mathbf{s}_n \leftrightarrow \mathbf{v}_1 = \mathbf{s}_0 \lor \ldots \lor \mathbf{v}_1 = \mathbf{s}_n),$
- (7.4) $\forall \mathbf{v}_1(\mathbf{s}_n \leqslant \mathbf{v}_1 \lor \mathbf{v}_1 \leqslant \mathbf{s}_n),$

for all n and all $m \neq n$.

Obviously, Π_1 is an extension of Π_0 ; it is a *proper* extension because, e.g., $s_0 \neq s_1$ belongs to Π_1 but not to Π_0 .

8.11. Theorem. $\Pi_1 \subseteq \Pi_2$.

11.7. THEOREM. Every consistent axiomatizable theory that includes Π_1 is incomplete.

11.8. FIRST INCOMPLETENESS THEOREM. Given any consistent axiomatic theory Σ that includes Π_1 , we can find a formula $\gamma \in \Phi_1$ (of the form described in Lemma 7.9) such that the sentences $\gamma(\mathbf{s}_{\pm\gamma})$ and $\neg \gamma(\mathbf{s}_{\pm\gamma})$ do not belong to Σ .

(# γ is the code number of γ)

11.9. SECOND INCOMPLETENESS THEOREM. Let Σ be an axiomatizable theory that includes first-order Peano arithmetic. If Σ is consistent, then the \mathscr{L} -sentence asserting this is not in Σ .

Introduction to Model Theory

any \mathcal{L} -structure whose domain is a set may be regarded as an ordered triple

$$\mathfrak{A} = \langle A, \mathcal{R}, \mathfrak{c} \rangle,$$

where

(1) A is a non-empty set called the *domain* or *universe* of \mathfrak{A} ;

(2) \mathscr{R} is a mapping of *I* into the set of all relations on *A* such that for each $i \in I, \mathscr{R}(i)$ is a $\lambda(i)$ -ary relation;

(3) c is a mapping of J into A.

For each $i \in I$ and each $j \in J$ we often write R_i for $\mathcal{R}(i)$ and c_j for c(j), and we also write

(4) $\mathfrak{A} = \langle A, \langle R_i \rangle_{i \in I}, \langle c_j \rangle_{j \in J} \rangle.$

The R_i and the c_j are called the *relations* and *designated individuals* of \mathfrak{A} , respectively. We shall sometimes write $\mathbf{R}_i^{\mathfrak{A}}$ for R_i and $\mathbf{c}_j^{\mathfrak{A}}$ for c_j , in order to emphasize the fact that R_i is the interpretation of \mathbf{R}_i , and c_j that of \mathbf{c}_i , in \mathfrak{A} .

If \mathfrak{A} is an \mathscr{L} -structure, we often call \mathscr{L} the language for \mathfrak{A} .

Given an \mathcal{L} -structure of the form (4), we obtain an \mathcal{L} -valuation (Chapter 2, §1) by further specifying a sequence

 $\mathfrak{a} = \langle a_0, a_1, \ldots \rangle$

of members of A as an assignment of values to the variables v_0, v_1, \ldots of \mathcal{L} . We shall call such a sequence an *assignment in* \mathfrak{A} .

$$a:VAR \rightarrow A$$

If a is an assignment in an \mathscr{L} -structure \mathfrak{A} and $b \in A$, we define $\mathfrak{a}(n|b)$ to be the assignment which assigns the same values to the variables as does a, *except* that it assigns the value b to the variable \mathbf{v}_n . Thus

 $\mathfrak{a}(n|b) = \langle a_0, a_1, \ldots, a_{n-1}, b, a_{n+1}, \ldots \rangle.$

Let \mathscr{L} be a language with predicate symbols $\{\mathbf{R}_i: i \in I\}$, constant symbols $\{\mathbf{c}_i: j \in J\}$ and signature λ . Let

$$\mathfrak{A} = \langle A, \langle R_i \rangle_{i \in I}, \langle c_j \rangle_{j \in J} \rangle$$

be an \mathscr{L} -structure, and let $\mathfrak{a} = \langle a_0, a_1, ... \rangle$ be an assignment in \mathfrak{A} . For all \mathscr{L} -formulas φ we define the relation \mathfrak{a} satisfies φ in \mathfrak{A} , which we write $\mathfrak{A} \models_a \varphi$, by induction on deg φ :

(1) For terms $\mathbf{t}_1, \mathbf{t}_2$ of \mathcal{L} ,

$$\mathfrak{A} \models_{\mathbf{a}} \mathbf{t}_1 = \mathbf{t}_2 \Leftrightarrow b_1 = b_2,$$

where if \mathbf{t}_n (n=1, 2) is the variable \mathbf{v}_k then b_n is a_k , while if \mathbf{t}_n is the constant \mathbf{c}_j then b_n is c_j .

(2) For $i \in I$ and terms $\mathbf{t}_1, \dots, \mathbf{t}_{\lambda(i)}$ of \mathcal{L} ,

 $\mathfrak{A} \models_{\mathfrak{a}} \mathbf{R}_{\iota} \mathbf{t}_{1} \dots \mathbf{t}_{\lambda(i)} \Leftrightarrow \langle b_{1}, \dots, b_{\lambda(i)} \rangle \in \mathbf{R}_{i},$

where if \mathbf{t}_n $(n=1,...,\lambda(i))$ is the variable \mathbf{v}_k then b_n is a_k , while if \mathbf{t}_n is the constant \mathbf{c}_i then b_n is c_i .

(3) $\mathfrak{A} \models_a \neg \varphi \Leftrightarrow \text{not } \mathfrak{A} \models_a \varphi.$ (4) $\mathfrak{A} \models_a \varphi \land \psi \Leftrightarrow \mathfrak{A} \models_a \varphi \text{ and } \mathfrak{A} \models_a \psi.$ (5) $\mathfrak{A} \models_a \exists v_n \varphi \Leftrightarrow \mathfrak{A} \models_a (n|b) \varphi \text{ for some } b \in A.$ It should be clear that the above definition does not differ essentially from that given in 2.1.1. In fact, it is easy to verify that if \mathfrak{A} is an \mathscr{L} -structure and \mathfrak{a} is an assignment in \mathfrak{A} , then, if σ is the \mathscr{L} -valuation determined by \mathfrak{A} , \mathfrak{a} , we have, for each \mathscr{L} -formula φ ,

 $\mathfrak{A}\models_{\mathfrak{a}} \varphi \Leftrightarrow \varphi^{\sigma}=\top.$

The following facts are clear:

(a) $\mathfrak{A} \models_a \forall \mathbf{v}_n \varphi \Leftrightarrow \mathfrak{A} \models_{a(n|b)} \varphi$ for all $b \in A$;

(b) if φ is a formula and a, a' are assignments in \mathfrak{A} such that $a_n = a'_n$ whenever \mathbf{v}_n occurs free in φ , then $\mathfrak{A} \models_a \varphi \Leftrightarrow \mathfrak{A} \models_{a'} \varphi$. (See Thm. 2.2.3.) In view of fact (b), the truth of $\mathfrak{A} \models_a \varphi$, insofar as it depends on a, depends only on the values a assigns to the *free* variables of φ . Accordingly we make the following definition: if φ is a formula all of whose free variables are among $\mathbf{v}_0, \dots, \mathbf{v}_n$ and $a_0, \dots, a_n \in A$, we say that the finite sequence a_0, \dots, a_n

satisfies φ in \mathfrak{A} and write

 $\mathfrak{A} \models \varphi \left[a_0, \ldots, a_n \right]$

if $\mathfrak{A} \models_{a'} \varphi$ for some assignment a' in A such that $a'_0 = a_0, \dots, a'_n = a_n$. It follows immediately from (b) that $\mathfrak{A} \models \varphi [a_0, \dots, a_n]$ iff $\mathfrak{A} \models_{a'} \varphi$ for all assignments a' in \mathfrak{A} such that $a'_0 = a_0, \dots, a'_n = a_n$.

If σ is a sentence, i.e. a formula without free variables, we say that σ is valid or holds in \mathfrak{A} , or that \mathfrak{A} is a model of σ , and write

 $\mathfrak{A}\models \sigma$,

if $\mathfrak{A} \models_a \sigma$ for some assignment — and hence, in view of (b), all assignments — \mathfrak{a} in \mathfrak{A} . If Σ is a set of sentences, we say that \mathfrak{A} is a *model* of Σ and write

 $\mathfrak{A}\models\Sigma$

if \mathfrak{A} is a model of each sentence in Σ .

Let \mathscr{L}' be a language which is an extension of \mathscr{L} , so that, in addition to the predicate symbols and constant symbols of \mathscr{L} , \mathscr{L}' contains a set $\{\mathbf{R}_i: i \in I'\}$ of predicate symbols and a set $\{\mathbf{c}_j: j \in J'\}$ of constants. Given an \mathscr{L}' -structure

 $\mathfrak{A}' = \langle A, \langle R_i \rangle_{i \in I \cup I'}, \langle c_j \rangle_{j \in J \cup J'} \rangle,$

the \mathcal{L} -structure

 $\mathfrak{A} = \langle A, \langle R_i \rangle_{i \in I}, \langle c_j \rangle_{j \in J} \rangle$

is called the \mathcal{L} -reduction of \mathfrak{A}' , and \mathfrak{A}' is called an \mathcal{L}' -expansion of \mathfrak{A} (cf. Ch. 2, §9). (Notice that in general an \mathcal{L} -structure has more than one \mathcal{L}' -expansion.)

Let

$$\mathfrak{A} = \langle A, \langle R_i \rangle_{i \in I}, \langle c_j \rangle_{j \in J} \rangle,$$

 $\mathfrak{A}' = \langle A', \langle R'_i \rangle_{i \in I}, \langle c'_j \rangle_{j \in J} \rangle$

be \mathscr{L} -structures. We say that \mathfrak{A} is a substructure of \mathfrak{A}' and write $\mathfrak{A} \subseteq \mathfrak{A}'$ if $A \subseteq A'$, for each $j \in J$, $c_j = c'_j$, and, for each $i \in I$, R_i is the restriction of R'_i to A, i.e. $R_i = R'_i \cap A^{\lambda(i)}$. If B is a non-empty subset of A which contains all the designated individuals c_j of \mathfrak{A} , we define the restriction $\mathfrak{A}|B$ of \mathfrak{A} to B by

 $\mathfrak{A}|B = \langle B, \langle R_i \cap B^{\lambda(i)} \rangle_{i \in I}, \langle c_j \rangle_{j \in J} \rangle.$

It is clear that for any subset B of A which contains all the designated individuals of \mathfrak{A} we have $\mathfrak{A}|B \subseteq \mathfrak{A}$.

An embedding of \mathfrak{A} into \mathfrak{A}' is a one-one mapping f of A into A' such that

(i)
$$f(c_j) = c'_j$$
 for all $j \in J$;
(ii) $\langle a_1, \dots, a_{\lambda(i)} \rangle \in R_i \iff \langle f(a_1), \dots, f(a_{\lambda(i)}) \rangle \in R'_i$

for all $i \in I$ and all $a_1, \ldots, a_{\lambda(i)} \in A$.

If f is an embedding of \mathfrak{A} into \mathfrak{A}' , it follows from (i) that f[A] contains all the designated individuals of \mathfrak{A}' , so that we can form the restriction $\mathfrak{A}'[f[A]]$. This is written $f[\mathfrak{A}]$ and is called the *image* of \mathfrak{A} under f. An isomorphism of \mathfrak{A} onto \mathfrak{A}' is an embedding of \mathfrak{A} onto \mathfrak{A}' . If there is an isomorphism of \mathfrak{A} onto \mathfrak{A}' , we say that \mathfrak{A} and \mathfrak{A}' are isomorphic and write $\mathfrak{A} \cong \mathfrak{A}'$. Clearly, if f is an embedding of \mathfrak{A} into \mathfrak{A}' , we have $\mathfrak{A} \cong f[\mathfrak{A}]$.

 \mathfrak{A} and \mathfrak{A}' are said to be $(\mathcal{L}$ -)elementarily equivalent, and we write $\mathfrak{A} \equiv \mathfrak{A}'$, if for any \mathcal{L} -sentence σ we have $\mathfrak{A} \models \sigma \Leftrightarrow \mathfrak{A}' \models \sigma$. Thus two \mathcal{L} -structures are elementarily equivalent if they cannot be distinguished by an \mathcal{L} -sentence.

1.1. PROBLEM. Let f be an isomorphism of \mathfrak{A} onto \mathfrak{A}' . Show by induction on deg φ that for any formula φ all of whose free variables are among $\mathbf{v}_0, \dots, \mathbf{v}_n$ and all $a_0, \dots, a_n \in A$ we have

 $\mathfrak{A} \models \mathbf{\varphi} \left[a_0, \dots, a_n \right] \Leftrightarrow \mathfrak{A}' \models \mathbf{\varphi} \left[f(a_0), \dots, f(a_n) \right].$

Infer that, if $\mathfrak{A} \cong \mathfrak{A}'$, then $\mathfrak{A} \equiv \mathfrak{A}'$. (We shall see later on that the converse is false.)

 \mathfrak{A} is said to be an (\mathcal{L}) -elementary substructure of \mathfrak{A}' , and \mathfrak{A}' an (\mathcal{L}) -elementary extension of \mathfrak{A} if $\mathfrak{A} \subseteq \mathfrak{A}'$ and for any \mathcal{L} -formula φ all of whose free variables are among $\mathbf{v}_0, \dots, \mathbf{v}_n$ we have

$$\mathfrak{A} \models \mathbf{\varphi} \left[a_0, \ldots, a_n \right] \Leftrightarrow \mathfrak{A}' \models \mathbf{\varphi} \left[a_0, \ldots, a_n \right]$$

for all $a_0, \ldots, a_n \in A$. In this situation we write $\mathfrak{A} \prec \mathfrak{A}'$.

It is clear that $\mathfrak{A} \prec \mathfrak{A}' \Rightarrow \mathfrak{A} \equiv \mathfrak{A}'$. Our next problem shows that the converse is false.

1.2. PROBLEM. Let $\mathfrak{A} = \langle \omega - \{0\}, \prec \rangle$, $\mathfrak{A}' = \langle \omega, \prec \rangle$ where \prec is the usual ordering of the natural numbers. Show that $\mathfrak{A} \cong \mathfrak{A}'$, $\mathfrak{A} \subseteq \mathfrak{A}'$, but not $\mathfrak{A} \prec \mathfrak{A}'$.

1.3. PROBLEM. Show that if $\mathfrak{A} \prec \mathfrak{A}', \mathfrak{A}'' \prec \mathfrak{A}'$ and $\mathfrak{A} \subseteq \mathfrak{A}''$, then $\mathfrak{A} \prec \mathfrak{A}''$.

An embedding f of \mathfrak{A} into \mathfrak{A}' is called an (\mathcal{L}) -elementary embedding if for any \mathcal{L} -formula φ all of whose free variables are among $\mathbf{v}_0, \dots, \mathbf{v}_n$ we have

 $\mathfrak{A} \models \mathbf{\varphi} \left[a_0, \dots, a_n \right] \Leftrightarrow \mathfrak{A}' \models \mathbf{\varphi} \left[f(a_0), \dots, f(a_n) \right]$

for all $a_0, \ldots, a_n \in A$.

1.4. PROBLEM. (i) Let f be an embedding of \mathfrak{A} into \mathfrak{A}' . Show that f is an elementary embedding iff $f[\mathfrak{A}] \prec \mathfrak{A}'$.

(ii) Let $\mathfrak{A} \subseteq \mathfrak{A}'$. Show that $\mathfrak{A} \prec \mathfrak{A}'$ iff the natural injection of \mathfrak{A} into \mathfrak{A}' is an elementary embedding of \mathfrak{A} into \mathfrak{A}' .

(iii) Let f be any mapping of A into A' such that, for all $a_0, ..., a_n \in A$ and all formulas φ with free variables among $\mathbf{v}_0, ..., \mathbf{v}_n$, $\mathfrak{A} \models \varphi [a_0, ..., a_n] \Leftrightarrow \Leftrightarrow \mathfrak{A}' \models \varphi [f(a_0), ..., f(a_n)]$. Show that f is one-one and hence an elementary embedding of \mathfrak{A} into \mathfrak{A}' .

 \mathfrak{A} is said to be *elementarily embeddable* in \mathfrak{A}' if there is an elementary embedding of \mathfrak{A} into \mathfrak{A}' . Clearly \mathfrak{A} is elementarily embeddable in \mathfrak{A}' iff \mathfrak{A} is isomorphic to an elementary substructure of \mathfrak{A}' . Evidently, also, if \mathfrak{A} is elementarily embeddable in \mathfrak{A}' , then \mathfrak{A} is elementarily equivalent to \mathfrak{A}' .

We now prove some lemmas which will be very useful later.

The Löwenheim–Skolem Theorems

2.1. THEOREM. Let \mathfrak{A} be an infinite \mathcal{L} -structure, and let $X \subseteq A$. Then for any cardinal α satisfying max $\{|X|, \|\mathcal{L}\|\} \leq \alpha \leq \|\mathfrak{A}\|$ there is an elementary substructure \mathfrak{B} of \mathfrak{A} such that $\|\mathfrak{B}\| = \alpha$ and $X \subseteq B$.

2.2. DOWNWARD LÖWENHEIM-SKOLEM THEOREM. Let Σ be a set of sentences of \mathcal{L} with an infinite model of cardinality $\alpha > |\Sigma|$. Then Σ has a model of any cardinality β such that $\max(|\Sigma|, \aleph_0) < \beta < \alpha$.

2.3. COROLLARY. Any countable set of sentences with an infinite model has a countable model.

2.4. LEMMA. Let \mathfrak{A} be an \mathcal{L} -structure. Then, for any cardinal $\alpha \ge ||\mathfrak{A}||$, \mathfrak{A} has an elementary extension of cardinality α iff \mathfrak{A} is elementarily embeddable in a structure of cardinality α . 2.5. COMPACTNESS THEOREM. If each finite subset of a set Σ of sentences of \mathcal{L} has a model, then Σ has a model.

2.6. THEOREM. Let \mathfrak{A} be an infinite \mathscr{L} -structure. Then \mathfrak{A} has an elementary extension of any cardinality $\alpha \ge \max(\|\mathfrak{A}\|, \|\mathscr{L}\|)$.

2.7. UPWARD LÖWENHEIM-SKOLEM THEOREM. Let Σ be a set of \mathcal{L} -sentences with a model of cardinality $\alpha \ge \aleph_0$. Then Σ has a model of any cardinality $\ge \max(\alpha, |\Sigma|)$.

2.11. PROBLEM. (i) Use the compactness theorem to show that if a set of sentences Σ has arbitrarily large finite models, then it has an infinite model. (Show that each finite subset of the set $\Sigma \cup \{\sigma_n : n \in \omega\}$ has a model, where σ_n is a sentence which asserts that there are at least n distinct individuals.)