Teorie e Modelli




let & be a countable first-order language.

By a theory in £ we shall mean a set ¥ of #-sentences which is closed
under deducibility, i.e. such that for each #-sentence o, if X}, then
ccX. A subset I' of a theory X is called a set of postulates for £ if I''-o

for every ¢€ X. It is clear that each set of sentences I 1s a set of postulates
for a unique theory X, namely,

Y={o :0 is an Z-sentence and I'oc}.

A property P of Z-structures is called a first-order property if there is
an #-sentence ¢ such that, for any #-structure A,

A has property P & Uko.




Consider, for example, the (first-order) theory of partially ordered sets,
PO. This theory is formulated in a language £ having one binary predicate
symbol R. Its postulates are

VxRxx,

VxVYy [Rxy A Ryx— x=y],
VxVyVz [RxyA Ryz— Rxz].

An Z-structure (4,R) is then a model of PO iff it is a partially ordered set.
Since a partially ordered set can have many different first-order properties,
e.g. it can be a lattice, or a Boolean algebra, or a totally ordered set, etc.,
it is clear that PO does not precisely determine the first-order properties
of its models.




Let us call a theory X complete if it is consistent and the first-order
properties of any model of X are just those determined by the sentences
in X. More precisely, if for each #-structure A we define Th(A), the
theory of U, to be the set of all Z-sentences ¢ such that Ai=o, then X
is complete iff £ is consistent and Th() = X for each model A of X.

4.1. LEMMA. The following conditions on a consistent theory X are equivalent:

(1) X is complete.

(ii1) For any ¥-sentence 6, either 6€X or —16€X.

Let o be an infinite cardinal. A theory X is said to be a-categorical
if any pair of models of X of cardinality « are isomorphic. We now give
some examples.

4.4. THEOREM. Let X be a consistent theory with no finite models, and
which is o-categorical for some infinite a. Then X is complete.




UubDO

(UDO,;) VxRxxAVxVYy[RxyARyx—x=y]A VxVyVz[RxyA Ryz— Rxz]
AVxVYy [RxyVRyx]

(UDO,) VxVy [RxyAxzy—> 3z [x52ZAy7#ZA RxzA Rzy]]

(UDOy) ¥x3Jydz [xs2yAx#zA Ryx A Rxz].

UDO, asserts that R is a total ordering, UDO, asserts that R is dense,
and UDOQO, that it is unbounded both below and above. Natural examples
of models of X are Q and R, the sets of rational numbers and real numbers,

with their natural orderings.

4.5. THEOREM. UDO is 8,-categorical.

4.6. CoroLLARY. UDO is a complete theory.




Axiomatic theories

5.1. DEerFINITION. For any set X of sentences we let 7y be the property
such that Ty(x) holds iff x is a SENTENCE belonging to X.

5.2. DEfFINITION. A theory X is axiomatizable if there exists a set I' of
postulates for £ such that 7} is recursively enumerable. If such a set
I' of postulates is actually given to us so that we can find an r.e. index for
T (in the sense of §11 of Ch. 6), then we say that X is axiomatic.

5.4. THEOREM. A theory X is axiomatizable iff Ty, is recursively enumerable.




(8.1)
(8.2)

(8.3)
(8.4)
(8.5)
(8.6)
(8.7)
(8.8)
(8.9)

Arithmetic

the finitely axiomatized theory Il

Vvi(svi#s,),

V V1V Va(SV1==8SVy=> v, =V)),
VVi(Va4-8,=Va),

V1V velvisvo=s(v,+ V)],

V v1(V1 XSo=$y),

V V1V V2 (V1 XSVo=V; X Vo4-v)),

V V1(V1SS0=> V1 =5,),

V V1V Vo (V1 SV, = ViV, VYV =8Y,),

VYV V(ViSV, VV,V)).




first order Peano Arithmetic

We let @, be the set of all #-formulas whose free variables are among
vy,...,V, (i.e., the first n variables of #). In particular, @, is the set of all

Z-sentences.

The theory IT which we shall now begin to study has as its postulates the
six sentences (8.1)-(8.6) and all sentences of the form

9.1) VV,... V¥, [0(So) &> VYV {ot=> a(svy) } = Y v,a],

where k=1 and a€®,. Postulates (9.1) are called induction postulates.

The postulates of II were obviously obtained by trying to formalize
in .Z the seven Peano postulates listed in §2. For this reason II is usually
called first-order Peano arithmetic.




A theory X is complete if it is consistent and for every sentence a we
have a€X or —jack.

Baby arithmetic HO

(6.1) SytS0==S5,,

(6.2) SptSm +1=5(8,4S),
(6.3) S, X So=S$,,

(6.4) S XS +1=(8,XS,) 1S,

for all numbers n and:m.




Junior arithmetic Il

The theory II, — which we shall call junior arithmetic — is based on
postulates (6.1)-(6.4) plus the following:

(12) s,
(7.3) VVI(V1<SnHV1=Sov .o VV1=S,,),
(74) Vvl(sn<v1 VV1<Sn)>

for all » and all m=n.
Obviously, IT, is an extension of Il,; it is a proper extension because,
e.g., So#&s; belongs to IT; but not to II,.

3.11. THEOREM. II; =II,.




11.7. THEOREM. Every consistent axiomatizable theory that includes 11, is
incomplete. |

11.8. FIRST INCOMPLETENESS THEOREM. Given any consistent axiomatic
theory X that includes I, we can find a formulay € ®, (of the form described
in Lemma 7.9) such that the sentences y(s,.,) and =1Y(s,.,) do not belong to X.

(#y is the code number of )

11.9. SECOND INCOMPLETENESS THEOREM. Let X be an axiomatizable theory
that includes first-order Peano arithmetic. If X is consistent, then the
F-sentence asserting this is not in X. §




Introduction to Model Theory

any Z-structure whose domain is a set may be regarded
as an ordered triple

N=(A,R,¢),

where

(1) 4 1s a non-empty set called the domain or universe of U;

(2) 2 is a mapping of I into the set of all relations on 4 such that for
each ic I, Z(i) is a A(i)-ary relation;

(3) ¢ is a mapping of J into A.
For each i€ I and each j€ J we often write R; for (i) and c; for ¢(j), and
we also write

4 U=(4, (Rpicr, (¢j)jen)-
The R; and the c; are called the relations and designated individuals of I,
respectively. We shall sometimes write R for R; and c‘}‘ for c¢;, in order
to emphasize the fact that R; is the interpretation of R;, and c; that of
¢;, in A

If A 1s an L-structure, we often call £ the language for A.




Given an #-structure of the form (4), we obtain an Z-valuation
(Chapter 2, §1) by further specifying a sequence

a={a,,a,...)

of members of 4 as an assignment of values to the variables v,,v,,... of &Z.
We shall call such a sequence an assignment in .

a:VAR— A

If a is an assignment in an #-structure U and b€ A, we define a(n|b)
to be the assignment which assigns the same values to the variables as
does a, except that it assigns the value b to the variable v,. Thus

a(nlb)=<aOaala- . -,an—labaan +1y - >




Let % be a language with predicate symbols {R;: i€ I}, constant symbols
{c;: jeJ} and signature A. Let

N ——-<A, <Ri>i€I > <CJ>J'€J>

be an Z-structure, and let a={a,,a,,...) be an assignment in A. For all
Z-formulas ¢ we define the relation a satisfies ¢ in U, which we write
A =, @, by induction on deg ¢:

(1) For terms t,, t, of %,

QI tza t1=t2 <~ b1:b2,

where if t, (n=1, 2) is the variable v, then b, is qa,, while if t, is the constant
c; then b, 1s c;.
(2) For i€l and terms t,.....t;,; of &,

A F::a thl"'ti(i) <~ <b19""b).(i)>€Ri3

where if t, (n=1,...,A(i)) is the variable v, then b, is a,, while if t, is the
constant ¢; then b, is c;.

(3) U=, 719 © not Uk, @.

4) A=, 9AY © A= @ and A =, V.

(5) A=, Jv,0 & W @ for some bE A.




It should be clear that the above definition does not differ essentially from
that given in 2.1.1. In fact, it is easy to verify that if U is an Z-structure
and a is an assignment in A, then, if ¢ is the #-valuation determined by

A, a, we have, for each £-formula ¢,
AE=,0 & ¢'=T.

The following facts are clear:

@ A=, Vv, 0 & U= ne for all be 4,

(b) if @ is a formula and a, a” are assignments in A such that a,=a_
whenever v, occurs free in @, then U =, ¢ < U=, @. (See Thm. 2.2.3))

In view of fact (b), the truth of A=, @, insofar as it depends on a,
depends only on the values a assigns to the free variables of @. Accordingly
we make the following definition: if ¢ is a formula all of whose free variables
are among v,,...,v, and a,,...,a,€ A, we say that the finite sequence a,,...,a,
satisfies @ in A and write

U= ¢ la,....a,]

if A=, ¢ for some assignment a” in 4 such that g,=ay,...,a,=a,. It
follows immediately from (b) that U = @ [ay,....a,] Iff A=, ¢ for all
assignments a’ in U such that a,=a,, ..., a,=a,.




If ¢ is a sentence, i.e. a formula without free variables, we say that o
is valid or holds in N, or that A is a model of ¢, and write

NE=o,

if A=, ¢ for some assignment — and hence, in view of (b), all assign-
ments — a in W. If X is a set of sentences, we say that U is a model of

¥ and write
A=X

if A is a model of each sentence in X.

Let ¥’ be a language which is an extension of %, so that, in addition
to the predicate symbols and constant symbols of £, £’ contains a set
{R;: i€eI'} of predicate symbols and a set {c;: j€J’} of constants. Given
an #’-structure

W={A, (R)icryr>{Cjcr 1)
the &#-structure
A=A, (Rpicr>{Cj)jcs)

is called the Z-reduction of W, and W is called an ¥’-expansion of U
(cf. Ch. 2, §9). (Notice that in general an #-structure has more than one

Z’-expansion.)




Let
A ={4, (Rdicr,> {Cpjen)
W=(A", (Ricr> (jen

be Z-structures. We say that U is a substructure of A’ and write A =W
if AcA’, for each j€J, ¢;=c], and, for each i€, R; is the restriction of
R/ to A4, i.e. R,=R;nA*®. If B is a non-empty subset of 4 which contains
all the designated individuals c; of U, we define the restriction U|B of
A to B by

A|B=(B, (R B*D,1, (c)jes)-

It is clear that for any subset B of 4 which contains all the designated
individuals of A we have A|B<=A.

An embedding of U into U’ is a one-one mapping f of A into A’ such that
(i) f(c))=c; forall jeJ;
(11) <a1"--aa).(i)>€Ri < <f(al)r"’f(a).(i))>€R;
for all i€7 and all a,...,a;;)€ 4.
If fis an embedding of U into A, it follows from (i) that f[4] contains

all the designated individuals of ’, so that we can form the restriction
A’|f[A]. This is written f[U] and is called the image of A under f.




An isomorphism of U onto A’ is an embedding of A onto WA’. If there
is an isomorphism of A onto A’, we say that A and A’ are isomorphic
and write U =A’. Clearly, if f is an embedding of A into A’, we have
A = fTA].

A and W are said to be (ZL-)elementarily equivalent, and we write
A=W, if for any F-sentence ¢ we have U6 < A'=6. Thus two
Z-structures are elementarily equivalent if they cannot be distinguished
bv an #-sentence.

1.1. PROBLEM. Let f be an isomorphism of U onto A’. Show by induction
on deg ¢ that for any formula ¢ all of whose free variables are among
¥o,...,¥, and all a,,...,a,6 A we have

A= @ [g.....a,] = WE=o[f(a),....f(a,)].

Infer that, if W= W', then A=W’. (We shall see later on that the converse
1s false.)




A is said to be an (F-)elementary substructure of A, and A’ an (L-)ele-
mentary extension of U if W= A and for any F-formula ¢ all of whose
free variables are among v,,...,v, we have

A=o[a,,...,a,] & WE=]la,,...,a,)
for all ay,...,a,€ A. In this situation we write A< W,
It is clear that A<WU' =>A=A". Our next problem shows that the
converse 1is false.

1.2. PROBLEM. Let A=(w— {0}, <), W ={(w,<) where < is the usual
ordering of the natural numbers. Show that AW=W, A <WA’, but not
UW<W.

1.3. PROBLEM. Show that if A<W, A”'<A” and W< A”, then A<A”.




An embedding f of A into WA’ is called an (Z-)elementary embedding
if for any Z-formula @ all of whose free variables are among v,,...,v,
we have

A=09lay,....a)] & WE=o[f(a),....f(a)

for all a,,...,a,€ 4.

1.4. PROBLEM. (i) Let f be an embedding of A into A’. Show that f is
an elementary embedding iff f[UA]<A’.

(ii) Let A =A’. Show that A <A’ iff the natural injection of A into
A’ is an elementary embedding of A into A".

(iii) Let f be any mapping of A into A" such that, for all a,,...,a,€ 4
and all formulas ¢ with free variables among v,,...,v,, A= o [4,,...,q,] <
o WE=olflay),....f(a,)]. Show that fis one-one and hence an elementary
embedding of U into W’.

AU is said to be elementarily embeddable in W’ if there is an elementary
embedding of A into WA’'. Clearly U is elementarily embeddable in A’
iff A is isomorphic to an elementary substructure of A’. Evidently, also,
if A is elementarily embeddable in A’, then A is elementarily equivalent
to W.

We now prove some lemmas which will be very useful later.




The Lowenheim—Skolem Theorems

2.1. THEOREM. Let U be an infinite L-structure, and let X< A. Then for
any cardinal o satisfying max {|X|, | Z|}<a<||¥U| there is an elementary
substructure B of W such that |'B||=a and X = B.

2.2. DOWNWARD LOWENHEIM-SKOLEM THEOREM. Let X be a set of sen-
tences of X with an infinite model of cardinality a=|X|. Then & has a mo-
del of any cardinality B such that max (|E|,8,) <f <a.

2.3. COROLLARY. Any countable set of sentences with an infinite model
has a countable model. [

2.4. LEMMA. Let U be an ¥-structure. Then, for any cardinal a=|U|,
N has an elementary extension of cardinality o iff W is elementarily

embeddable in a structure of cardinality a.




2.5. CoMPACTNESS THEOREM. If each finite subset of a set X of sentences
of ¥ has a model, then £ has a model. B

2.6. THEOREM. Let W be an infinite L-structure. Then A has an elementary
extension of any cardinality a=max (|U|}, || Z])-

2.7. UPWARD LOWENHEIM-SKOLEM THEOREM. Let X be a set of ¥-sentences
with a model of cardinality a=8,. Then X has a model of any cardinality
=>max(ax, |X|).




2.11. ProBLEM. (i) Use the compactness theorem to show that if a set
of sentences X has arbitrarily large finite models, then it has an infinite
model. (Show that each finite subset of the set ZuU{6,: n€w} has a model,
where o, is a sentence which asserts that there are at least n distinct
individuals.)
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