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Basic example: Word count  

!  Assume to have a large collection of texts 

–  e.g., Web pages from the whole Internet 

!  We would like to count how many times each word is mentioned all over 
the collection 

–  it represents the basis for more complex computations, such as frequencies, 
pairings, etc 

!  Assuming that the collection is distributed among N machines, how would 
you proceed? 
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Basic example: Word count  

!  In a single machine, the solution is trivial 
•  final output: [(fog, 3), (winter, 2), (and, 4), …] 

!  With multiple machines 

1.  Use the solution for the single machine in each machine 

•  intermediate output: [(fog, 3), (winter, 2), (and, 4), …] 

2.  Join the results collected from the different machines and produce the final 
output 

•  final output: [(tree, 8), (fog, 13), (cold, 3), (winter, 6), (and, 22), …] 
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Divide and Conquer 

“Work”!

w1! w2! w3!

r1! r2! r3!

“Result”!

worker! worker! worker!

Partition!

Combine!
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Word count: pseudo-code 

"  The two computational steps materializes into two methods, 
Map and Reduce 

–  MapReduce is then a programming model 

"  These two methods are included in a framework that takes care 
of different aspects 
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Parallel computing: Concerns 

!  A parallel system needs to provide: 

–  Data distribution 

–  Computation distribution 

–  Fault tolerance 

–  Job scheduling 

"  The execution framework should hide these system-level details 

–  Separate the what from the how 

"  MapReduce abstracts away the “distributed” part of the system 

–  MapReduce is then an execution framework 
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What is MapReduce 

!  A programming model: 

–  Inspired by functional programming 

–  Allows expressing distributed computations on massive amounts of data 

!  An execution framework: 

–  Designed for large-scale data processing 

–  Designed to run on clusters of commodity hardware 
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The Programming Model 
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MapReduce: Programming model 

!  MapReduce is a new use of an old idea in Computer Science 

!  Map: Apply a function to every object in a list 

–  Each object (e.g. document) is independent 

•  Order is unimportant 

•  Maps can be done in parallel 

–  The function produces an intermediate result 

!  Reduce: Combine the intermediate results to produce a final result 
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What can we do with MapReduce? 

!  There are several important problems that can be adapted to MapReduce 

–  Inverted indexing (web search), graph algorithms (PageRank), … 

!  The key point is how to design algorithms with the MapReduce 
programming model 

–  We will show some “design patterns” 

•  How to transform a problem and its input 

•  How to save memory and bandwidth in the system 

 12 

Data structures 

!  Key-value pairs are the basic data structure 

–  Keys and values can be: integers, float, strings, raw bytes 

•  E.g.: for a collection of Web pages, input keys may be URLs and values may be the 
HTML content 

–  They can also be arbitrary data structures  

!  The design of MapReduce algorithms involes: 

–  Imposing the key-value structure on arbitrary datasets 

•  E.g.: for a collection of Web pages, input keys may be URLs and values may be the 
HTML content 

–  In some algorithms, input keys are not used, in others they uniquely identify a 
record 

–  Keys can be combined in complex ways to design various algorithms 
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MapReduce jobs 

!  The programmer defines a mapper and a reducer as follows: 

–  map: (k1, v1) � [(k2, v2)] 

–  reduce: (k2, [v2]) � [(k3, v3)] 

!  A MapReduce job consists in: 

–  A dataset, stored on the underlying distributed filesystem, which is split in 
a number of blocks across machines 

–  The mapper, applied to every input key-value pair to generate intermediate 
key-value pairs 

–  The reducer, applied to all values associated with the same intermediate 
key to generate output key-value pairs 
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Where the magic happens 

!  Implicit between the map and reduce phases is a distributed “group by” 
operation on intermediate keys 

–  Intermediate data arrive at each reducer in order, sorted by the key 

–  No ordering is guaranteed across reducers  

!  Output keys from reducers are written back to the distributed filesystem 

–  The output may consist of r distinct files, where r is the number of reducers 

–  Such output may be the input to a subsequent MapReduce phase 

!  Intermediate keys are transient: 

–  They are not stored on the distributed filesystem 

–  They are “spilled” to the local disk of each machine in the cluster 
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A Simplified view of MapReduce 
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The Execution Framework 
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MapReduce: Execution framework 

!  MapReduce program, a.k.a. a job: 

–  Code of mappers and reducers 

–  Code for combiners and partitioners (optional) 

–  Configuration parameters 

–  All packaged together 

  

!  A MapReduce job is submitted to the cluster 

–  The framework takes care of everything else 

–  Next, we will delve into (some) details 
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Scheduling 

!  Each Job is broken into tasks 

–  Map tasks work on fractions of the input dataset, as defined by the underlying distributed 
filesystem 

–  Reduce tasks work on intermediate inputs and write back to the distributed filesystem 

!  The number of tasks may exceed the number of available machines in a cluster 

–  The scheduler takes care of maintaining something similar to a queue of pending tasks to 
be assigned to machines with available resources 

!  Jobs to be executed in a cluster requires scheduling as well 

–  Different users may submit jobs 

–  Jobs may be of various complexity 

–  Fairness is generally a requirement 
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Data/code co-location 

!  How to feed data to the code 

–  In MapReduce, this issue is intertwined with scheduling and the underlying 
distributed filesystem 

!  How data locality is achieved 

–  The scheduler starts the task on the node that holds a particular block of data 
required by the task 

–  If this is not possible, tasks are started elsewhere, and data will cross the 
network 

•  Note that usually input data is replicated 

–  Distance rules help dealing with bandwidth consumption 

•  Same rack scheduling 
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Synchronization 

!  In MapReduce, synchronization is achieved by the “shuffle and sort” barrier 

–  Intermediate key-value pairs are grouped by key 

–  This requires a distributed sort involving all mappers, and taking into account 
all reducers 

–  If you have m mappers and r reducers this phase involves up to m × r copying 
operations 

!  IMPORTANT: the reduce operation cannot start until all mappers have 
finished 

–  This is different from functional programming that allows “lazy” aggregation 

–  In practice, a common optimization is for reducers to pull data from mappers as 
soon as they finish 
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Errors and faults 

The MapReduce framework deals with: 

!  Hardware failures 

–  Individual machines: disks, RAM 

–  Networking equipment 

–  Power / cooling 

!  Software failures 

–  Exceptions, bugs 

!  Corrupt and/or invalid input data 
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Programming model: Optimizations 



 23 

Local aggregation 

!  In the context of data-intensive distributed processing, the most important 
aspect of synchronization is the exchange of intermediate results 
–  This involves copying intermediate results from the processes that produced them to 

those that consume them 

–  In general, this involves data transfers over the network 

–  In Hadoop, also disk I/O is involved, as intermediate results are written to disk 

!  Network and disk latencies are expensive 
–  Reducing the amount of intermediate data translates into algorithmic efficiency 

!  Combiners and preserving state across inputs 
–  Reduce the number and size of key-value pairs to be shuffled 
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Combiners 

!  Combiners are a general mechanism to reduce the amount of intermediate 
data 

–  They could be thought of as “mini-reducers” 

!  Back to our running example: word count 

–  Combiners aggregate term counts across documents processed by each map task 

–  If combiners take advantage of all opportunities for local aggregation we have 
at most m × V intermediate key-value pairs 

•  m: number of mappers 

•  V : number of unique terms in the collection 

–  Note: due to Zipfian nature of term distributions, not all mappers will see all 
terms 



 25 

Combiners: an illustration 
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Combiners: considerations 

!  The input/output format of the combiners are determined by the Map and 
Reduce input/output 

–  The input of the combiner has the same format of the input of the reducers 

–  The output of the combiner has the same format of the output of the mappers 

!  In general, the code is very similar to the reducer’s code 

–  sometimes it is possible to use the reducers themselves 

•  but this is not always true 

!  The execution of the combiners is not under control of the programmer  

–  e.g., when the combiners are called   
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In-Mapper Combiners 

!  In-Mapper Combiners, a possible improvement 

!  Use an associative array to cumulate intermediate results 

–  The array is used to sum up term counts within a single document 

–  The Emit method is called only after all InputRecords have been processed 

!  Example (see next slide) 

–  The code emits a key-value pair for each unique term in the document 
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In-Mapper Combiners: example 
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In-Memory Combiners 

!  Taking the idea one step further 

–  Exploit implementation details in Hadoop 

–  A Java mapper object is created for each map task 

–  JVM reuse must be enabled 

!  Preserve state within and across calls to the Map method 

–  Initialize method, used to create a across-map persistent data structure 

–  Close method, used to emit intermediate key-value pairs only when all map 
task scheduled on one machine are done 
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In-Memory Combiners: example 
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In-Memory Combiners: Considerations 

!  Precautions 

–  In-memory combining breaks the functional programming paradigm due to state 
preservation 

–  Preserving state across multiple instances implies that algorithm behavior might 
depend on execution order 

•  Ordering-dependent bugs are difficult to find 

!  Scalability bottleneck 

–  The in-memory combining technique strictly depends on having sufficient 
memory to store intermediate results 

•  And you don’t want the OS to deal with swapping 

–  Multiple threads compete for the same resources 


