
Data-intensive
computing systems

MapReduce

Universtity of Verona
Computer Science Department

 Damiano Carra

 2

Acknowledgements

!  Credits

–  Part of the course material is based on slides provided by the following

authors

•  Pietro Michiardi, Jimmy Lin

 3

Basic example: Word count

!  Assume to have a large collection of texts

–  e.g., Web pages from the whole Internet

!  We would like to count how many times each word is mentioned all over
the collection

–  it represents the basis for more complex computations, such as frequencies,
pairings, etc

!  Assuming that the collection is distributed among N machines, how would
you proceed?

 4

Basic example: Word count

!  In a single machine, the solution is trivial
•  final output: [(fog, 3), (winter, 2), (and, 4), …]

!  With multiple machines

1.  Use the solution for the single machine in each machine

•  intermediate output: [(fog, 3), (winter, 2), (and, 4), …]

2.  Join the results collected from the different machines and produce the final
output

•  final output: [(tree, 8), (fog, 13), (cold, 3), (winter, 6), (and, 22), …]

 5

Divide and Conquer

“Work”!

w1! w2! w3!

r1! r2! r3!

“Result”!

worker! worker! worker!

Partition!

Combine!

 6

Word count: pseudo-code

"  The two computational steps materializes into two methods,
Map and Reduce

–  MapReduce is then a programming model

"  These two methods are included in a framework that takes care
of different aspects

 7

Parallel computing: Concerns

!  A parallel system needs to provide:

–  Data distribution

–  Computation distribution

–  Fault tolerance

–  Job scheduling

"  The execution framework should hide these system-level details

–  Separate the what from the how

"  MapReduce abstracts away the “distributed” part of the system

–  MapReduce is then an execution framework

 8

What is MapReduce

!  A programming model:

–  Inspired by functional programming

–  Allows expressing distributed computations on massive amounts of data

!  An execution framework:

–  Designed for large-scale data processing

–  Designed to run on clusters of commodity hardware

 9

The Programming Model

 10

MapReduce: Programming model

!  MapReduce is a new use of an old idea in Computer Science

!  Map: Apply a function to every object in a list

–  Each object (e.g. document) is independent

•  Order is unimportant

•  Maps can be done in parallel

–  The function produces an intermediate result

!  Reduce: Combine the intermediate results to produce a final result

 11

What can we do with MapReduce?

!  There are several important problems that can be adapted to MapReduce

–  Inverted indexing (web search), graph algorithms (PageRank), …

!  The key point is how to design algorithms with the MapReduce
programming model

–  We will show some “design patterns”

•  How to transform a problem and its input

•  How to save memory and bandwidth in the system

 12

Data structures

!  Key-value pairs are the basic data structure

–  Keys and values can be: integers, float, strings, raw bytes

•  E.g.: for a collection of Web pages, input keys may be URLs and values may be the
HTML content

–  They can also be arbitrary data structures

!  The design of MapReduce algorithms involes:

–  Imposing the key-value structure on arbitrary datasets

•  E.g.: for a collection of Web pages, input keys may be URLs and values may be the
HTML content

–  In some algorithms, input keys are not used, in others they uniquely identify a
record

–  Keys can be combined in complex ways to design various algorithms

 13

MapReduce jobs

!  The programmer defines a mapper and a reducer as follows:

–  map: (k1, v1) � [(k2, v2)]

–  reduce: (k2, [v2]) � [(k3, v3)]

!  A MapReduce job consists in:

–  A dataset, stored on the underlying distributed filesystem, which is split in
a number of blocks across machines

–  The mapper, applied to every input key-value pair to generate intermediate
key-value pairs

–  The reducer, applied to all values associated with the same intermediate
key to generate output key-value pairs

 14

Where the magic happens

!  Implicit between the map and reduce phases is a distributed “group by”
operation on intermediate keys

–  Intermediate data arrive at each reducer in order, sorted by the key

–  No ordering is guaranteed across reducers

!  Output keys from reducers are written back to the distributed filesystem

–  The output may consist of r distinct files, where r is the number of reducers

–  Such output may be the input to a subsequent MapReduce phase

!  Intermediate keys are transient:

–  They are not stored on the distributed filesystem

–  They are “spilled” to the local disk of each machine in the cluster

 15

A Simplified view of MapReduce

 16

The Execution Framework

 17

MapReduce: Execution framework

!  MapReduce program, a.k.a. a job:

–  Code of mappers and reducers

–  Code for combiners and partitioners (optional)

–  Configuration parameters

–  All packaged together

!  A MapReduce job is submitted to the cluster

–  The framework takes care of everything else

–  Next, we will delve into (some) details

 18

Scheduling

!  Each Job is broken into tasks

–  Map tasks work on fractions of the input dataset, as defined by the underlying distributed
filesystem

–  Reduce tasks work on intermediate inputs and write back to the distributed filesystem

!  The number of tasks may exceed the number of available machines in a cluster

–  The scheduler takes care of maintaining something similar to a queue of pending tasks to
be assigned to machines with available resources

!  Jobs to be executed in a cluster requires scheduling as well

–  Different users may submit jobs

–  Jobs may be of various complexity

–  Fairness is generally a requirement

 19

Data/code co-location

!  How to feed data to the code

–  In MapReduce, this issue is intertwined with scheduling and the underlying
distributed filesystem

!  How data locality is achieved

–  The scheduler starts the task on the node that holds a particular block of data
required by the task

–  If this is not possible, tasks are started elsewhere, and data will cross the
network

•  Note that usually input data is replicated

–  Distance rules help dealing with bandwidth consumption

•  Same rack scheduling

 20

Synchronization

!  In MapReduce, synchronization is achieved by the “shuffle and sort” barrier

–  Intermediate key-value pairs are grouped by key

–  This requires a distributed sort involving all mappers, and taking into account
all reducers

–  If you have m mappers and r reducers this phase involves up to m × r copying
operations

!  IMPORTANT: the reduce operation cannot start until all mappers have
finished

–  This is different from functional programming that allows “lazy” aggregation

–  In practice, a common optimization is for reducers to pull data from mappers as
soon as they finish

 21

Errors and faults

The MapReduce framework deals with:

!  Hardware failures

–  Individual machines: disks, RAM

–  Networking equipment

–  Power / cooling

!  Software failures

–  Exceptions, bugs

!  Corrupt and/or invalid input data

 22

Programming model: Optimizations

 23

Local aggregation

!  In the context of data-intensive distributed processing, the most important
aspect of synchronization is the exchange of intermediate results
–  This involves copying intermediate results from the processes that produced them to

those that consume them

–  In general, this involves data transfers over the network

–  In Hadoop, also disk I/O is involved, as intermediate results are written to disk

!  Network and disk latencies are expensive
–  Reducing the amount of intermediate data translates into algorithmic efficiency

!  Combiners and preserving state across inputs
–  Reduce the number and size of key-value pairs to be shuffled

 24

Combiners

!  Combiners are a general mechanism to reduce the amount of intermediate
data

–  They could be thought of as “mini-reducers”

!  Back to our running example: word count

–  Combiners aggregate term counts across documents processed by each map task

–  If combiners take advantage of all opportunities for local aggregation we have
at most m × V intermediate key-value pairs

•  m: number of mappers

•  V : number of unique terms in the collection

–  Note: due to Zipfian nature of term distributions, not all mappers will see all
terms

 25

Combiners: an illustration

 26

Combiners: considerations

!  The input/output format of the combiners are determined by the Map and
Reduce input/output

–  The input of the combiner has the same format of the input of the reducers

–  The output of the combiner has the same format of the output of the mappers

!  In general, the code is very similar to the reducer’s code

–  sometimes it is possible to use the reducers themselves

•  but this is not always true

!  The execution of the combiners is not under control of the programmer

–  e.g., when the combiners are called

 27

In-Mapper Combiners

!  In-Mapper Combiners, a possible improvement

!  Use an associative array to cumulate intermediate results

–  The array is used to sum up term counts within a single document

–  The Emit method is called only after all InputRecords have been processed

!  Example (see next slide)

–  The code emits a key-value pair for each unique term in the document

 28

In-Mapper Combiners: example

 29

In-Memory Combiners

!  Taking the idea one step further

–  Exploit implementation details in Hadoop

–  A Java mapper object is created for each map task

–  JVM reuse must be enabled

!  Preserve state within and across calls to the Map method

–  Initialize method, used to create a across-map persistent data structure

–  Close method, used to emit intermediate key-value pairs only when all map
task scheduled on one machine are done

 30

In-Memory Combiners: example

 31

In-Memory Combiners: Considerations

!  Precautions

–  In-memory combining breaks the functional programming paradigm due to state
preservation

–  Preserving state across multiple instances implies that algorithm behavior might
depend on execution order

•  Ordering-dependent bugs are difficult to find

!  Scalability bottleneck

–  The in-memory combining technique strictly depends on having sufficient
memory to store intermediate results

•  And you don’t want the OS to deal with swapping

–  Multiple threads compete for the same resources

