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Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA,
Parker B, Widlansky ME, Tschakovsky ME, Green DJ. Assessment of flow-
mediated dilation in humans: a methodological and physiological guideline. Am J
Physiol Heart Circ Physiol 300: H2–H12, 2011. First published October 15, 2010;
doi:10.1152/ajpheart.00471.2010.—Endothelial dysfunction is now considered an
important early event in the development of atherosclerosis, which precedes gross
morphological signs and clinical symptoms. The assessment of flow-mediated
dilation (FMD) was introduced almost 20 years ago as a noninvasive approach to
examine vasodilator function in vivo. FMD is widely believed to reflect endothe-
lium-dependent and largely nitric oxide-mediated arterial function and has been
used as a surrogate marker of vascular health. This noninvasive technique has been
used to compare groups of subjects and to evaluate the impact of interventions
within individuals. Despite its widespread adoption, there is considerable variabil-
ity between studies with respect to the protocols applied, methods of analysis, and
interpretation of results. Moreover, differences in methodological approaches have
important impacts on the response magnitude, can result in spurious data interpre-
tation, and limit the comparability of outcomes between studies. This review results
from a collegial discussion between physiologists with the purpose of developing
considered guidelines. The contributors represent several distinct research groups
that have independently worked to advance the evidence base for improvement of
the technical approaches to FMD measurement and analysis. The outcome is a
series of recommendations on the basis of review and critical appraisal of recent
physiological studies, pertaining to the most appropriate methods to assess FMD in
humans.

methodology; recommendations; shear rate; vascular function; atherosclerosis;
cardiovascular risk; endothelial function

IN GENERAL TERMS, flow-mediated dilatation (FMD) can de-
scribe any vasodilatation of an artery following an increase in
luminal blood flow and internal-wall shear stress (Fig. 1).
However, the term has conventionally come to describe subtle
variations of the technique introduced by Celermajer, Dean-
field, and colleagues in the Lancet in 1992 (14). This landmark
paper introduced an approach involving assessment of periph-
eral conduit artery diameter following a period of distal limb
ischemia. The Celermajer/Deanfield approach was based on

several key studies and observations. Nobel prize-winning
experiments by Furchgott (33) established that the endothelium
produces a labile vasodilator substance, whereas animal studies
established that FMD in arteries was dependent on the presence
of an intact endothelial lining (93, 108) and that shear stress-
sensitive ion channels existed in endothelial cells (16, 63, 83).
Rubanyi, Vanhoutte, and colleagues (102) indicated that, in
response to flow, the endothelium released a substance that
possessed the characteristics of Furchgott’s endothelium-de-
rived relaxing factor, later identified as nitric oxide (NO) (78),
and in situ studies using NO antagonists decreased FMD (17,
48). Subsequent animal studies consolidated the link between
increases in flow, wall shear stress, endothelial NO synthase
expression, and NO bioactivity (6, 123). The accumulated
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evidence strongly suggested that flow-associated shear was the
physiological stimulus to endothelium-mediated vasodilation
in vivo. In humans, Vallance, Collier, and Moncada (124)
established that NO production occurs basally and in response
to pharmacological stimulation, whereas increases in flow-
associated shear subsequent to differing periods of arterial
occlusion induced vasodilation of large conduit arteries (3, 80,
104, 107). Although Celermajer, Deanfield, et al. (14) provided
no direct evidence that their FMD technique induced dilation
that could be blocked by NO antagonists, they reasonably
assumed from the evidence available at the time that the dilator
response was likely to be endothelium dependent and NO
mediated.

Studies performed after the Celermajer and Deanfield paper
largely confirmed the assumption that their FMD technique
was NO dependent. Joannides et al. (52) published evidence
that radial artery dilation (FMD � 3.6%) following 3 min of
ischemia was converted to constriction (�2.8%) in the pres-
ence of NO blockade with N-monomethyl-L-arginine (52).
Mullen et al. (79) found that NO blockade decreased the radial
artery FMD response to 5-min ischemia from �5.3% to 0.7%,
with no difference in the hyperemic blood-flow stimulus,
making it unlikely that stimulus magnitude reductions ex-
plained the FMD response abolition. However, 15 min of
ischemia induced a radial FMD response, which was not
affected by NO blockade (79). This supported the notion that

the duration of ischemia was an important determinant of the
mechanisms responsible for the subsequent vasodilator re-
sponses (79). More recently, the superficial femoral artery
FMD, induced by a 5-min cuff occlusion period, was found to
be largely NO dependent (61). Therefore, most (52, 61, 68, 79),
but not all (96), studies suggest that FMD can be substantially
attenuated by NO blockade. Taken together, these physiolog-
ical studies generally reinforced the validity of the approach
introduced by Celermajer and Deanfield as an endothelium-
dependent and NO-specific index of endothelial function (14).

FMD has become popular in clinically orientated studies, in
part, because it strongly predicts cardiovascular events in
patients with established cardiovascular disease (Table 1).
These studies generally indicate that FMD provides indepen-
dent prognostic information, which may exceed the predictive
value of traditional risk factors (Table 1). Studies that have
examined the prognostic role of FMD in asymptomatic sub-
jects have suggested a more modest association (31, 32, 132),
and it has been suggested that FMD may become less predic-
tive in older individuals in whom arterial distensibility may be
limited (129, 133) (Figs. 1–4). In summary, FMD appears to be
predictive of cardiovascular events in asymptomatic subjects
and those with established cardiovascular diseases. FMD ap-
pears at least as predictive as traditional risk factors (Table 1),
a conclusion supported by a recent meta-analysis (49). More-

Fig. 1. Schematic representation of steps involved in flow-mediated dilation (FMD) generation from the initiation of the shear-stress stimulus (step 1) to the
resultant vessel diameter change (step 6). Blood flow-associated shear stress is sensed by deformation of mechanosensitive structures at the cell membrane. These
structures could include the glycocalyx, the primary cilia, and mechanosensitive ion channels (19). Shear-stress mechanotransduction activates a signaling
cascade that results in vasodilator production (step 2). The vasodilators produced and predominantly involved in FMD appear to depend on the nature of the
shear-stress stimulus (100) and the endothelial phenotype (96). Vasodilators must diffuse from the endothelial cell into the smooth muscle cell (step 3). Nitric
oxide (NO) may react with reactive oxygen species (ROS), decreasing its bioavailability (103). In the vascular smooth muscle, vasodilators trigger a signaling
cascade that results in a lowering of calcium concentration and vasorelaxation (step 4). Vessel wall structural factors (e.g., relative proportions of collagen and
elastin or wall-to-lumen ratio) may influence the diameter change that results from a given degree of smooth muscle relaxation (69) (step 5). FMD is quantified
as the change in vessel diameter from baseline dimensions before the application of the shear-stress stimulus (step 6). Given the established vasoprotective
properties of NO, FMD is often intended as an index of NO bioavailability (37, 100). Thus efforts have been directed at identifying specific protocols and stimulus
profiles that are able to isolate the NO pathway (step 7). Examining vasodilatory responses to exogenous nitroglycerin can isolate and interrogate function
downstream of the endothelium. EDHF, endothelial-derived hyperpolarizing factor; PG, vasodilatory prostaglandins; CYP 450, cytochrome P450; eNOS,
endothelial NO synthase.
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over, a change in FMD may also provide important prognostic
information in humans (Table 1).

The FMD technique has increasingly been applied in phys-
iological studies to examine the mechanisms that underlie the
acute or chronic impact of stimuli that alter vascular function
and risk (e.g., exercise training, smoking, hypercholesterol-
emia, hypertension) (20, 26, 34, 41, 54, 81, 101, 134) or to
study hemodynamic effects on the vasculature in vivo (85, 87,
98, 115, 120, 121, 131). Consequently, the FMD test represents
an important tool to improve our physiological insight and
understanding of mechanisms that alter endothelial and vascu-
lar function. It is clear, however, that minor changes in the
methodological approach can critically impact the nature and
magnitude of the FMD response (10, 25, 79). Whereas previ-
ous guidelines made important contributions to standardizing
the technical approach and setting minimum standard require-
ments for FMD measurement (18, 38), recent studies have
identified important physiological and technical issues that
can impact the validity, reproducibility, and interpretation
of FMD studies (5, 8, 10, 40, 45, 55, 70, 85, 86, 90, 97, 99,
100, 113, 117, 126). Given the widespread use of FMD,
these issues merit detailed discussion. This review results
from discussion between several distinct research groups
who have independently worked to provide an evidence base
and physiological background for the improvement of the
practical guidance and technical approaches to FMD mea-
surement and analysis.

Technical Issues Pertaining to Duplex Ultrasound
Assessment of FMD

Diameter and velocity assessment. High-resolution B-mode
ultrasound has become the research tool of choice for measur-
ing conduit artery diameter for FMD assessment. The main
advantages of B-mode ultrasound are that it is relatively cost
effective, noninvasive, portable, and reproducible when fol-
lowing appropriate training and experience (22–24, 130). The
main challenge with B-mode imaging is to identify clear
vascular boundaries. Imaging of a blood vessel in the longitu-
dinal plane allows visualization of the double lines of Pignoli
(92), distinguishable demarcated boundaries that allow for
precise diameter measurement (�0.05 mm) (130) by auto-
mated edge-detection software.

Because of the recent acknowledgment of the importance of
quantifying shear stress during the FMD responses (86, 99,
100), duplex ultrasound for simultaneous acquisition of B-
mode diameter and pulsed-wave Doppler velocity signals is
recommended where available. An important limitation of
duplex ultrasound is that the same transducer is employed to
detect signals for both the Doppler frequency shift as well as
the arterial diameter, which have competing requirements for
optimal data acquisition. B-mode echoes are of greater inten-
sity with perpendicular incidence of the ultrasound beam to the
vessel orientation (90 degrees), whereas optimal pulsed-wave
Doppler signals require parallel incidence with the direction of

Table 1. Endothelial function as predictor of prognosis

Authors Journal Year N Group

FMD As A Predictor

Subjects with CVD or CVD Risk Healthy Subjects Change in FMD

Shechter et al. IJC 2009 435 men and women P (future CVD)
Kitta et al. JACC 2009 251 CAD single FMD: NP (future events)

FMDs across time: IP (future
events)

FMD increase after 6 or
26 mo �fewer events

Yeboah et al. Circ 2009 3026 men and women IP (future CVD)
Rossi et al. JACC 2008 2264 women P (future CVD)
Yeboah et al. Circ 2007 2791 men and women IP (future CVD)
Shimbo et al. Atheroscl 2007 842 men and women P (future CVD in lowest

tertiles)
Suessenbacher et al. Vasc Med 2006 68 CAD single FMD: NP (future events) FMD increase after 14

or 44 mo �fewer
events

Karatzis et al. AJC 2006 98 ACS P (future events)
Patti et al. Circ 2005 136 CAD IP (stent restenosis)
Meyer et al. JACC 2005 75 CHF IP (deterioration and death)
Frick et al. JACC 2005 398 Chest pain NP (future events)
Fischer et al. EHJ 2005 67 CHF IP (survival)
Fichtlscherer et al. Circ 2004 198 ACS Endothelial function

increase after 8 wk
�fewer ACS

Fathi et al. JACC 2004 444 CAD and healthy IP (in higher risk patients) NP (in no/low risk
subjects)

Gocke et al. JACC 2003 199 PVD IP (future events)
Brevetti et al. Circ 2003 131 PVD Low FMD: IP
Chan et al. JACC 2003 106 CAD IP (FMD/GTN) FMD decrease across

time �future events
Modena et al. JACC 2002 400 Hypertension P (future events) FMD increase after

drug treatment
�fewer events

Neunteufl et al. AJC 2000 73 Chest pain IP (future events)

NP, no predictor; P, predictor; IP, independent predictor; CAD; coronary artery disease, ACS, acute coronary syndrome; CHF, chronic heart failure; PVD,
peripheral vascular disease; FMD, flow-mediated dilation; GTN, glyceryl trinitrate; IJC, International Journal of Cardiology; JACC, Journal of the American
College of Cardiology; Circ, Circulation; Atheroscl, Atherosclerosis; Vasc Med, Vascular Medicine; AJC, The American Journal of Cardiology; EHJ, European
Heart Journal.
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blood flow (0 degrees) (62, 82, 118). Consequently, a compro-
mise must be reached to uphold fundamental principles and
assumptions for both modalities as well as to minimize the loss
of signal quality (82).

Modern duplex ultrasound systems incorporate a narrow
Doppler beam aperture that can be steered 20–30° of center of
the B-mode imaging beam. This ensures that measurable
Doppler shifts are achievable at an approximate angle of 60°
between the Doppler beam and the vessel orientation, while
maintaining optimal B-mode imaging. For clinical ultrasound,
approximation of the Doppler beam-vessel angle �60° in
relation to the direction of blood flow allows estimation of
blood-flow velocity within reasonable levels of measurement
error (94) and with adequate quality (46, 62). Because the error
associated with incorrect estimation of insonation angle in-
creases exponentially with angles �60° (62, 82, 118), we
recommend an insonation angle of �60° when velocity assess-
ment is used for shear rate calculation. However, insonation
angles above 60° may be validly used under circumstances
where extensive flow calibrations have been undertaken (98).
In all circumstances, the angle used should be reported in the
methods section.

Analysis of velocity signal. Blood-flow velocity can be
calculated using the peak (peak Doppler shifts) or mean ve-
locity (intensity weighted mean of all Doppler shifts). The
peak-velocity approach measures the fastest moving blood
cells, located in the center of the vessel. It is assumed that half
the peak velocity is representative of the mean velocity (67).
The intensity-weighted mean-velocity approach involves esti-
mating mean velocity from all of the Doppler shifts measured
across the cross section of the vessel, from the slower outer
lamina to the faster central layers of flow. This latter approach
can be limited by incomplete sampling of Doppler shifts
across the full width of the artery by the current linear array
transducers (118). Because of the narrow Doppler beams,
the slower moving peripheral lamellae from the lateral
aspects of the artery are not taken into account, even if the
Doppler sample gate is widely spaced to encompass the near
and far walls of the artery (118). This can overestimate
velocity by up to 33% (29).

Both methods of velocity assessment have their merits and
disadvantages and do not appear to be interchangeable (30).
This should be appreciated when comparing absolute blood
flow/velocity values between studies that have adopted differ-
ent approaches. Moreover, it is advisable to choose a single
method within a study and also preferably between studies
from the same laboratory. Claims of assessment of absolute
blood flow should only be made where ultrasound machines
and analysis methods have been validated against phantom
artery preparations or string phantoms (130).

From velocity and diameter data, shear rate can be calcu-
lated. In most studies shear rate is calculated rather than shear
stress, as it is generally assumed that blood viscosity does not
differ substantially between individuals and/or groups or after
interventions (11, 35, 86). In a recent study, it was demon-
strated that the addition of viscosity measurements does not
have a significant impact on shear stress calculations and does
not alter the interpretation of the FMD results (86). Because
different approaches have been adopted to calculate shear rate
(90), caution is warranted when comparing shear rate data
between studies. We recommended using identical settings

within and between studies from one laboratory (23). In addi-
tion, calculations should all be clearly described in the methods
sections given the fact that different methods can impact on
absolute values as explained above.

Methodological Considerations Pertaining to FMD
Assessment

Subject preparation. FMD can be influenced by dietary
intake (7), recent aerobic or resistance exercise (20, 41, 75,
120), caffeine and alcohol ingestion (44, 88), and supplement/
medication use (39, 72, 111). We therefore recommend assess-
ing FMD when subjects are fasted and have avoided exercise,
caffeine, alcohol, drugs, stimulants, and medications for a
consistent period of time (at least 6 h) to minimize the effect of
these confounding factors (Table 2). In the case of clinical
populations in whom medication use cannot be avoided, tests
should be conducted after a standardized period of time fol-
lowing medication and a careful history of medication use and

Table 2. Recommendations for FMD assessment to examine
a largely nitric oxide-mediated, endothelium-dependent
vasodilation of a conduit artery in humans

Methodological and Technical Guidelines

Subject Preparation
- Rest in a quiet, preferably darkened room for a period of �20 min

before assessment.
- Supine posture (i.e., the imaged artery should not be substantially above

or below heart level).
- Tests should be standardized and, for multiple tests, conducted at a

similar time of day.
- Cuff must be placed distal to the imaged artery and inflated for 5 min.
- Subjects must be fasted for �6 h.
- Subjects must avoid exercise or food/drinks that contain caffeine or

alcohol for �8 h.
- Careful history should be taken regarding the use/timing of drugs

because some drugs have an effect.
- Premenopausal women should be assessed on days 1-7 of the

menstrual cycle.
Protocol

- Baseline diameter must be examined before cuff inflation for a period of
at least 1 min.

- Present absolute baseline diameter should be in results section.
- Measurement of postdeflation diameter should start before cuff release.
- Measurements should be performed for �3 min in upper limb arteries

and �5 min in lower limb arteries.
Technique

- Continuous measurement of velocity and diameter using duplex
ultrasound should be performed.

- Blood velocity should be assessed using an insonation �60°.
- Use the same angle within a study and study group (and report angle).
- B-mode images with a probe of �7.5 MHz should be used (and report

probe details).
Analysis

- Continuous edge detection and wall tracking should be used to capture
true peak diameter and for calculation of shear rate.

- Peak velocity outer envelope assessment is recommended for analysis
of the Doppler signal.

- Automated mathematical algorithms should be used to calculate the peak
diameter.

- Present the FMD response in absolute (in mm) and relative (in %)
change.

- The relevant shear-rate stimulus (area-under-the-curve until peak diameter)
must be presented.

- The use of ratio normalization (e.g., FMD/shear) is currently unresolved,
and at this time no recommendation to use such normalization can be
provided.
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timing should be collected. Time of day at which assessments
are made may also affect FMD (53, 84, 112). It is recom-
mended that tests be conducted at a similar time of day for
repeat assessments, and, for between-group studies, assessment
times should be standardized.

Because acute sympathetic nervous system activation and
ambient temperature can alter FMD (27, 45, 70, 126), testing
should be conducted in a quiet (preferably darkened), temper-
ature-controlled thermoneutral room after the subject has been
resting quietly. Finally, premenopausal women should be as-
sessed in a standardized phase of the menstrual cycle (ideally
days 1–7, when concentrations of circulating female sex hor-
mones are lowest) (42, 127).

Protocol: cuff position. The importance of cuff position
(distal or proximal to ultrasound measurement site) has been
examined in various studies (8, 25). Small changes to the
placement (8, 25) of the cuff can alter the contribution of
different vasoactive substances to FMD [e.g., nitric oxide (25,
60), endothelium-derived hyperpolarizing factor (47), and
prostaglandins (25, 60)]. It may also alter the shear magnitude
and/or transmural pressure response, resulting in a different
FMD stimulus (1, 25, 91). A 5-min cuff occlusion distal to the
ultrasound probe placed on the brachial artery was associated
with an �7% FMD response, which was abolished by NO
blockade (25). However, when the cuff was placed above the
ultrasound probe, the �12% FMD response was only partially
decreased by NO blockade (i.e., to �7.5%) (25). These data
indicate that cuff placement may influence the nature of the
FMD response, and the dilation of arteries within the ischemic
territory may be affected by dilators other than NO and also by
myogenic responses. We therefore recommend cuff occlusion
below the imaged artery to ensure maximal dependence of the
vasodilator response on the endothelium and endothelium-
derived NO.

Analysis: edge detection and wall tracking. Initial studies
using the FMD technique relied on manual assessment of
vessel diameters using visual inspection of single frames and
placement of ultrasonic calipers at discrete points along the
long axis of the B-mode image (13, 14). This method of
manual assessment is highly operator dependent and subject to
significant observer error (38, 74, 95, 130). Computer-assisted
analysis, utilizing edge-detection and wall-tracking software,

permits multiple measurements along the vessel wall. Studies
comparing the validity and reproducibility of computerized
edge-detection and wall-tracking systems demonstrate signifi-
cantly lower intraobserver variation for the automated systems
than for the manual technique (95, 109, 130). Therefore,
validated, accurate, and reproducible edge-detection and wall-
tracking systems should be used to improve the validity of the
FMD measurements.

Protocol: assessment of peak diameter. In the first studies
using FMD, peak artery diameter was assessed on a single
frame at 60 s postdeflation (Fig. 2) (13, 14). The reason for
defining 60 s as the appropriate time to take a peak diameter
measure dates back to the original work of Celermajer, Dean-
field et al. (14). Although this approach is still used (43, 57,
128), recent papers have questioned the validity of this tech-
nique to detect the “true” peak diameter (10, 114).

PEAK DIAMETER IN THE BA. It was recently demonstrated that
calculating FMD on the basis of the 60-s value can lead to a
25–40% underestimation of the true FMD in humans (10)
(Fig. 3). Also, a predetermined time window (e.g., 50–70 or
70–90 s) can result in an underestimate of the true maximal
FMD (10). This may lead to a systemic reduction in the effect
size of interventions and result in type II statistical errors (71).
Because the time to peak diameter differs between (10, 71, 85)
and within (50) groups, measurement of time to peak diameter
as a potential simple marker of risk has attracted interest.
However, recent data have been interpreted as indicating that
the time to peak diameter is at least partially NO independent
and that the time to peak diameter does not appear to be a
useful adjunctive measure of endothelial health (71). These
studies, nonetheless, endorse continuous measurement of arte-
rial diameter responses during FMD. On the basis of available
data, an assessment period of at least 180 s for the brachial
artery seems warranted when assessing the FMD, with most
peak measurements occurring in the first 120 s after cuff
release (10). Further work remains to determine the determi-
nants and utility of time to peak diameter measurement.

IDENTIFICATION OF PEAK DIAMETER: TIMING OF DIAMETER MEA-

SUREMENTS AND SIZE OF TIME BINS. The 2002 guidelines recom-
mended measurement of the brachial diameter at end diastole
to limit the influence of potential differences in vascular

Fig. 2. Schematic presentation of diameter and shear-stress (or rate) responses
following cuff deflation in response to a 5-min ischemic stimulus. The gray
area represents the relevant shear rate area-under-the-curve (AUC) that is
believed to be the main stimulus for the peak diameter.

Fig. 3. Mean and individual brachial artery diameter time to peak dilation
following a period of 5 min of forearm ischemia in healthy young (n � 12, �),
old fit (n � 12, �), and old unfit (n � 12, □) subjects. Error bars represent
standard error of the mean. [Adapted from Black et al. (10).]

Review

H6 FMD TECHNIQUES AND METHODS

AJP-Heart Circ Physiol • VOL 300 • JANUARY 2011 • www.ajpheart.org

 at U
niv D

egli S
tudi D

i V
erona on January 8, 2013

http://ajpheart.physiology.org/
D

ow
nloaded from

 

http://ajpheart.physiology.org/


compliance on diameter measurements (18). However, inter-
pretation of recent data indicates that FMD (and nitroglycerin-
mediated dilation) measurements using an average of the
vessel diameter over the entire cardiac cycle yield equivalent
results over a wide range of vascular compliance (55, 85).

Another aspect of FMD analysis is the identification of the
peak dilation. For current, automated diameter analysis sys-
tems, various time bins have been used to average the peak
diameter and subsequently calculate FMD, varying from 3 s up
to 10 s (10, 28, 39, 41, 85, 86). Shorter time bins (e.g., 1 s) will
likely result in greater peak diameter and FMD, whereas longer
bins (e.g., 10 s) will result in a lower FMD. A recent study
reported that the FMD is significantly lower when using a 10-s
time bin compared with 3- or 5-s time bins (38). In light of
these data, we recommend that laboratories apply a consistent
time-bin methodology and report the method used.

OTHER CONDUIT ARTERIES. An increasing number of studies
are examining endothelial function in conduit arteries such as
the posterior tibial (56, 110), popliteal (9, 87, 89, 119), super-
ficial femoral (13, 21, 116, 131), deep femoral (131), and
common femoral (114) arteries. These studies have largely
assumed that, when adopting the typical FMD methodological
approach, the NO-dependent nature is comparable to that
observed in the radial artery (61, 68, 79). However, confirma-
tory evidence to this effect exists only for the superficial
femoral artery (61). Because endothelial NO synthase content
is heterogeneous throughout the arterial tree (64), the relative
contribution of NO to FMD may differ between conduit ves-
sels. In addition, arteries in the legs demonstrate a significantly
later peak than those in the arms (114). This means that the
3-min postdeflation time window for the brachial artery is
unlikely to capture the peak diameter in arteries of different
size, location, and structure. This should be taken into consid-
eration when examining the dilator response in arteries of
different size. Therefore, we recommend a 5-min time window
to capture the peak diameter in arteries other than the brachial
artery. Further work is necessary to establish the NO depen-
dence of FMD responses in conduit vessels other than the
radial and superficial femoral arteries.

Protocol: assessment of baseline diameter. The FMD re-
sponse is characteristically presented as a change from baseline
diameter. In the classic approach (11), baseline diameter has
been defined as the diameter preceding cuff inflation, and this
remains the most frequently adopted method in the literature
(16, 30, 69, 93, 98, 109). This approach has been used in
studies of prognosis (n � �10,000, Table 1), such that data
indicating that FMD is clinically relevant fundamentally as-
sume that FMD is calculated using a precuff inflation baseline.

Some recent physiological studies have assessed baseline
diameter at the end of the cuff inflation (20, 72, 73, 79, 81).
The rationale for this is that restoration of the occlusion-
induced change in diameter represents an integrative part of the
FMD response itself. Some studies suggest that radial artery
vasoconstriction occurs during distal cuff inflation (36, 125),
whereas recent studies examining the brachial diameter during
occlusion demonstrate conflicting results (89, 99, 117, 125).
One recent study directly compared the impact of using precuff
inflation vs. end-of-cuff inflation diameter on brachial artery
FMD (95). The brachial artery diameter during cuff inflation
was significantly larger than that assessed preinflation, conse-
quently leading to a significantly different FMD. More impor-

tantly, this effect of cuff inflation on the baseline diameter
differed across different age groups. The typical age-related
reduction in FMD was not found when the baseline diameter
preceding cuff deflation was used (95). Given that the impact
of occlusion on arterial diameter differs among populations
(95), we recommend using the preocclusion diameter as the
baseline value.

Shear stimulus and the FMD response. Several studies have
demonstrated, using various manipulations of the shear-stress
stimulus within subjects, that exposure to shear stress leads to
diameter increases in a dose-dependent fashion (8, 65, 85, 86,
99). The close relationship between a change in shear stimulus
and a change in diameter indicates that the shear stimulus is the
eliciting stimulus for artery dilation during the FMD response
(76). When shear stress increases, this signal is transduced by
the endothelial cells and stimulates the release of vasoactive
substances, which then act on the vascular smooth muscle (4,
59). The magnitude of dilation is therefore determined by
1) the characteristics of the shear-stress stimulus (e.g., amount,
pattern), 2) the transduction of the vasodilator response to the
smooth muscles, 3) the response of the smooth muscle to a
given vasodilator signal through changes in calcium concen-
trations, and 4) the resulting diameter change, which may be
affected by structural characteristics of the vessel wall (58, 66).
Steps 2-4 are the source of biological variability and result in
between-subject response differences (Fig. 1). The purpose of
the FMD test is to interrogate these biological differences to
identify endothelial function.

WHAT PORTION OF THE REACTIVE HYPEREMIA PROFILE IS RELE-

VANT TO FMD-RESPONSE DEVELOPMENT. The postdeflation shear
profile is transient in nature, and there is a significant delay
between the peak shear rate and the peak diameter (18) (Fig. 2).
This raises questions about which part of the reactive hyper-
emia shear profile represents the relevant stimulus for dilation.
Both postdeflation peak shear rate and the entire stimulus-until-
peak diameter have been hypothesized to contribute to the
FMD-response magnitude (99, 105). Pyke and Tschakovsky
(99) were the first to truly examine this matter and performed
a series of experiments in which they independently manipu-
lated the peak or the total shear-rate stimulus. These experi-
ments demonstrated that the total, rather than peak, shear rate
determines the magnitude of the FMD response (99). This
finding was recently confirmed by others (86).

It is also important to mention that it is not possible, using
some machines, to simultaneously have active B-mode and
pulsed-wave velocity windows in duplex mode. This, along
with the fact that simultaneous “live” velocity and diameter
measures can degrade B-mode image resolution in older ma-
chines, has led to the practice of recording velocity for an
initial period (e.g., 30 s) followed by a switch to diameter
measurement to capture the peak diameter. In this case, it is
possible to miss the true peak diameter, and shear rate can only
be calculated for the period of time during which velocity
measures are recorded. The validity of this approach to shear
calculation rests on whether there is a similar correlation
between FMD and the shear-stress stimulus calculated up to,
e.g., 30 s, compared with the individualized time-to-peak
diameter. In this context, one recent study suggested that a
good correlation existed between shear rate calculated to 30 s,
60 s, and to the individual peak diameter (113). Therefore,
measuring the first 30 s of the shear-stress stimulus may
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represent a valid alternative under some circumstances, but the
optimal approach must be to continuously collect high-resolu-
tion Doppler and B-mode images to the time of peak diameter
for the calculation of shear.

RELATIONSHIP BETWEEN SHEAR STRESS AND FMD: BETWEEN-SUB-

JECT COMPARISONS. In contrast to the within-subject studies (8,
65, 86, 99), the relationship between shear and FMD may be
weak when between-subject comparisons are undertaken (Figs.
4 and 5). For example, a recent study found a correlation
between total shear rate area-under-the-curve and FMD in
young adults (r2 � �0.15), whereas no correlation was evident
in either children or older adults (113). This does not under-
mine the role of shear stress as the stimulus for FMD but
primarily illustrates the importance of biological variability in
the FMD response to shear stress attributable to variability in
the above steps 2-4 (Fig. 1). It can be appreciated that different
individuals may have the same FMD even though they have
experienced substantially different shear-stress stimuli (or vice
versa, Fig. 4). A conclusion that similar FMD in this situation
reflects similar endothelial function could be potentially mis-
leading, as would a conclusion that different FMD is attribut-
able to different shear stress. Given the importance of shear
rate, we recommend measuring and presenting the shear stim-
ulus until peak diameter (85, 86, 99).

FMD ANALYSIS: STIMULUS NORMALIZATION. The FMD test elic-
its a reactive hyperemia stimulus, which is variable between
subjects (51, 86, 97) and determined by several factors (15, 77,
106, 122). Consequently, when distinct FMD responses are observed between groups or individuals, it may be unclear

whether this is attributable to differences in biological variabil-
ity in endothelial function per se or differences in the magni-
tude of reactive hyperemia (Fig. 5). This raises the issue of how
to account for the magnitude of the stimulus when interpreting
FMD results.

On the basis of the relationship between FMD and eliciting
shear-rate stimuli within young healthy subjects described
above (8, 65, 86, 99), researchers began normalizing the FMD
responses by dividing the FMD by shear rate (21, 86, 89).
However, important questions have since arisen regarding the
validity of this approach (5, 40). When adopting this type of
normalization, there must be at least a moderate correlation
between shear and FMD in each particular research setting (2,
5). This correlation should also be relatively stable in all the
groups or experimental conditions that are examined in any
study (5, 40). If the relationship between shear and FMD is
weak and/or inconsistent between study groups, then shear
normalization may be misleading and decrease statistical
power (5). Whereas a strong relation between the “dose” of
shear rate and the FMD is observed within young subjects (97,
99, 100), a relatively weak relation has been found between
young healthy subjects (114), with no relation reported in other
groups (113) (Figs. 4 and 5).

Even if there is a moderate to strong relationship between
shear and FMD, as suggested by within-subject comparisons,
the accuracy of normalization depends on the characteristics of
this relationship in each research setting (2, 5). Relevant
assumptions for the use of ratios indicate that normalization is
valid if 1) the relationship between both parameters is linear,
2) the intercept for the regression slope of this relationship is
zero, 3) data (including residuals) are normally distributed,
4) variances are similar between groups, and 5) the ratio does
not lead to spurious correlations with other variables (2) (Fig.

Fig. 4. Hypothetical data in which no between-subject relationship between
shear and FMD is observed despite the presence of (variable) within-subject
shear-FMD relationships. Thin solid lines represent within-subject shear-FMD
relationships when exposed to 5 different shear-stress stimuli. Circled points
represent the shear-stress stimulus and FMD response in each subject during a
single reactive hyperemia test. The thick solid line represents the between-
subject shear-FMD relationship. Box 1 represents a selection of data in which
subjects received the same shear-stress stimulus. In this selection it is straight-
forward to conclude that differences in the FMD response represent biological
variability in steps 2-4 described Fig. 1. Box 2 represents a selection of data in
which subjects have the same FMD response but experienced very distinct
shear-stress stimuli. In this data selection the subjects have differences in
endothelial function, and only the variable shear-stress stimulus has allowed
them to experience a similar FMD response. This highlights the importance of
determining an effective method to account for the stimulus magnitude.

Fig. 5. For any normalization approach to be appropriate, the covariate (i.e.,
shear) should be at least moderately correlated to the outcome (i.e., FMD) (5).
Thin solid lines represent hypothetical within-subject shear-FMD relation-
ships, where the dilation is presented to 5 incremental shear-stress stimuli. The
good within-subject shear-FMD relationship suggests that normalization is
appropriate when using a within-subject comparison in this data set. The thick
solid line represents the between-subject correlation fitted across the mean
values for the 5 subjects. A between-subject correlation is present in this data
set, which is a necessary assumption for normalization in cross-sectional
studies. Interindividual variation is expected in 1) the response of shear to the
hyperemic stress, 2) the slope of within-subject relationship, and 3) the
intercept of within-subject relationship.
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5). A recent study found that all assumptions for reliable use of
FMD/shear ratios were violated in the comparison of FMD
between samples of boys, young men, and older men (5).
Logarithmic transformation of shear rate and FMD improved
adherence to assumptions in this particular study (5), but it was
recommended that this and other methods of normalization,
such as analysis of covariance (5, 40) or allometric scaling (5),
should be further investigated before widespread use. In es-
sence, the accuracy of FMD normalization via simple division
by shear rate depends on the shear-FMD relationship being at
least moderately strong and consistent between groups or
conditions. If these conditions are not met, this process will be
inconsistently applied across these groups and conditions (2),
leading to inaccurate conclusions (5).

SUMMARY: SHEAR STIMULUS AND THE FMD RESPONSE. Taken
together, there is a physiological and mechanistic basis for
considering the impact of shear rate when interpreting FMD
responses because increased shear is the stimulus for FMD
(76). However, there are various factors that can influence the
transduction of shear stress into conduit artery dilation. These
factors may be both methodological [e.g., cuff position, dura-
tion of shear, and duration of ischemia (7, 8, 25, 79, 86)] and
physiological [e.g., arterial stiffness, flow pattern, and blood
viscosity (12, 73)] and have not been fully described or
accounted for. Moreover, there is evidence both for (85) and
against (5, 113, 114) using a ratio normalization of the dilatory
response to shear rate. In addition, the relationship between
shear rate and FMD may not be linear, and the mathematical
assumptions necessary to normalize FMD to shear are invali-
dated in certain study populations (5). On the basis of this
current evidence, we endorse measuring shear and acknowl-
edge it as the eliciting stimulus for FMD. Researchers should
ideally report the total shear-rate stimulus and, if necessary,
investigate the relationship between it and the dilatory response
in their publications. However, the use of ratio normalization
(FMD/shear) is presently unresolved, and at this time it is not
possible to recommend a method for correcting for differences
in shear. Further research will be necessary to 1) accurately
quantify the shear response to occlusion (to improve and
validate estimation of the shear stimulus) and 2) determine how
best to account for the shear stimulus in relation to the conduit
artery dilation for widespread utility of the FMD procedure.

Recommendations for FMD Assessment
and Future Perspectives

The FMD technique will soon enter its third decade as a
research tool in humans. There are many attractive reasons to
pursue this technique, including the fact that it provides a
noninvasive and direct measure of artery function and health in
vivo. There is increasing evidence that FMD provides valuable
and independent prognostic information in humans. However,
different methodological approaches limit its validity, compa-
rability, and its potential use as a clinical and physiological
research tool. In addition, improving understanding of the
physiological and technical principles underpinning the FMD
technique will improve its application and interpretation of
(patho)physiological changes that may occur between groups
or after interventions. Performing and reporting FMD in a
manner consistent with the physiology of the response to shear
stress will ultimately improve the accuracy of FMD measure-

ment for prediction of future clinical risk and as a methodolog-
ical investigative tool. This review has provided an updated
physiological rationale for the techniques employed in FMD
assessment. In addition, several unresolved issues in the prac-
tice of FMD were highlighted, and it is expected that this will
stimulate further work aimed at improving what has become an
extremely popular research and clinical measurement tool.
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