
Fourier analysis of discrete-time signals

(Lathi Chapt. 10 and these slides)



Towards the discrete-time Fourier transform 
• How we will get there?

• Periodic discrete-time signal representation by Discrete-time Fourier 
series

• Extension to non-periodic DT signals using the “periodization trick”
• Derivation of the Discrete Time Fourier Transform (DTFT)
• Discrete Fourier Transform



Discrete-time periodic signals
• A periodic DT signal of period N0 is called N0-periodic signal

• For the frequency it is customary to use a different notation: 
the frequency of a DT sinusoid with period N0 is

N0

f [n+ kN0] = f [n]

⌦0 =
2⇡

N0

n

f[n]



Fourier series representation of DT periodic signals
• DT N0-periodic signals can be represented by DTFS with 

fundamental frequency               and its multiples

• The exponential DT exponential basis functions are

• Important difference with respect to the continuous case: only 
a finite number of exponentials are different!
• This is because the DT exponential series is periodic of period 

⌦0 =
2⇡

N0

e0k, e±j⌦0k, e±j2⌦0k, . . . , e±jn⌦0k

e±j(⌦±2⇡)k = e±j⌦k

e0k, e±j!0t, e±j2!0t, . . . , e±jn!0t

Discrete time 

Continuous time 

2⇡



Increasing the frequency: continuous time 
• Consider a continuous time sinusoid with increasing 

frequency: the number of oscillations per unit time increases 
with frequency



Increasing the frequency: discrete time
• Discrete-time sinusoid 

• Changing the frequency by 2pi leaves the signal unchanged

• Thus when the frequency increases from zero, the number of 
oscillations per unit time increase until the frequency reaches 
pi, then decreases again towards the value that it had in zero. 

• The values of the signal are the same, for each time index n, 
as those for frequencies differing of 2pi

s[n] = sin(⌦0n)

s[n] = sin((⌦0 + 2⇡)n) = sin(⌦0n+ 2⇡n) = sin(⌦0n)



Discrete time sinusoids

N=128, sinusoid with 
minimum frequency

Changing Omega0 by 2pi 
or, equivalently, F0 by 1

N = 128, Ts = 1 ! Fs = 1, T0 = N = 128, F0 = 1/T0 = 1/N

0, 1/N, 2/N, . . . , (N � 1)/N, 1

Range of possible frequencies F (multiples of F0)



Discrete time sinusoids: conjugate symmetry



Discrete time sinusoids: maximum frequency 

Fmax=1/2

Two samples per period



DT cosine



Warning
• Discrete time sinusoids are periodic only if

• That is the period is a fraction of the number of samples

• Not all discrete sinusoids are periodic

⌦N = 2⇡k ! 2⇡

T
N = 2⇡k ! T =

N

k
k integer



Periodicity of the DT FS
• The r-th harmonic is IDENTICAL to the (r+N0)-th harmonic
• Let the r-th harmonic be

• Thus

Index of the 
harmonic

Independent variable

gr[n] = ejr⌦0n

gr(t) = ejr!0t

⌦0 =
2⇡

N0



Periodicity of the DT FS
• Follows

• Thus, the first harmonic is identical to the N0+1 harmonic, the 
second to the N0+2 etc

• There are only N0 distinct harmonics ranging on the period 0-
2 pi 
• Since they are separated by 

• If the signal is real, Hermitian symmetry holds and only N0/2 
different sinusoids are possible

⌦0 =
2⇡

N0



Periodicity of the DT FS



Periodicity of the DTFS coefficients



Periodicity of the DTFS coefficients
• Then

• In summary

Dr =
1

N0

N0�1X

k=0

f [k]e�j 2⇡
N0

kr

f [k] =
N0�1X

r=0

Dre
j 2⇡
N0

rk

analysissynthesis

Same number of 
samples

Frequency resolution



Example
f [k] = sin[0.1⇡k]

⌦0 =
2⇡

N0
= 0.1⇡ !

N0 =
2⇡

⌦0
=

2⇡

0.1⇡
= 20



Example

Be careful: the spectrum is periodic with period 2π, BUT it can be 
represented as a function of the harmonic index, that ranges between 1 
and N0-1



A-periodic signals
• Same “trick”

This signal can 
be represented 
by the DTFS



A-periodic signals
• Using the same arguments and steps as we did for going 

from continuous-time periodic signals to continuous-time a-
periodic signals, we can 
• 1) derive the expression of the Fourier-representation of DT non-

periodic signals (Discrete Time Fourier Transform, DTFT)
• 2) link the periodic and a–periodic cases

• Of note:
• Discrete-time signals ➔ Periodic spectra
• Periodic signals ➔ Discrete spectra
• And respective combinations



A-periodic signals
• We define the function

• We can sow that 

Coefficient of the r-th
harmonic component of the 
periodized signal

Continuous 
frequency 
variable

F(Ω) is the envelop of Dr



DTFT
• Increasing N0 the frequency resolution increases and the 

frequency spacing decreases and in the limit N0->infty we 
can define the DTFT for a non-periodic signal as

F(Ω) is 2π-periodic



A-periodic signals: rect

DTFT is continuous and 2pi periodic



Discrete Fourier Transform
• DTFS “corresponds” to DFT 
• Now we can say that our signal has “period” N0

• Reformulating
N0 ! N

Dr ! F [k]

f [k] ! f [n]

⌦0 ! 2⇡

N

f [n] =
N�1X

k=0

F [k]ej2⇡
nk
N

F [k] =
1

N

N�1X

n=0

f [n]e�j2⇡ nk
N analysis

synthesis

2π periodic or N-
periodic



Discrete Fourier Transform
• The DFT can be considered as a generalization of the CTFT 

to discrete series of a finite number of samples
• It is the FT of a discrete (sampled) function of one variable
• The 1/N factor is put either in the analysis formula or in the 

synthesis one, or the 1/sqrt(N) is put in front of both.
• Calculating the DFT takes about N2 calculations

• The FFT algorithm is used



Properties of DFT



DFT
• About N2 multiplications are needed to calculate the DFT
• The transform F[k] has the same number of components of 

f[n], that is N
• The DFT always exists for signals that do not go to infinity at 

any point
• Using the Eulero’s formula

frequency component k discrete trigonometric functions

F [k] =
1

N

N�1X

n=0

f [n]e�j2⇡ nk
N =

1

N

N�1X

n=0

f [n]

✓
cos(2⇡

nk

N

)� j sin(2⇡
nk

N

)

◆



Properties of DFT



Circular convolution
• Finite length signals (N0 samples) → circular or periodic 

convolution
• the summation is over 1 period
• the result is a N0 period sequence

• The circular convolution is equivalent to the linear convolution 
of the zero-padded equal length sequences

[ ]f m

m *

[ ]g m

m

[ ]* [ ]f m g m

m
=

Length=P Length=Q Length=P+Q-1

For the convolution property to hold, M (the number of points used for calculating 
the DFT) must be greater than or equal to P+Q-1. 

[ ]* [ ] [ ] [ ]f m g m F k G kÛ

0 1

0
[ ] [ ] [ ] [ ] [ ]
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Circular convolution

• Zero padding [ ]* [ ] [ ] [ ]f m g m F k G kÛ

[ ]f m

m *

[ ]g m

m

[ ]* [ ]f m g m

m
=

[ ]F k

4-point DFT
(M=4)

[ ]G k [ ] [ ]F k G k



In words
• Given 2 sequences of length N and M, let y[k] be their linear convolution

• y[k] is also equal to the circular convolution of the two suitably zero padded sequences 
making them consist of the same number of samples

• In this way, the linear convolution between two sequences having a different length (filtering) 
can be computed by the DFT (which rests on the circular convolution)

• The procedure is the following
• Pad f[n] with Nh-1 zeros and h[n] with Nf-1 zeros
• Find Y[r] as the product of F[r] and H[r] (which are the DFTs of the corresponding zero-padded signals)
• Find the inverse DFT of Y[r]

• Allows to perform linear filtering using DFT

[ ] [ ] [ ] [ ] [ ]
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In practice..
• In order to calculate the DFT we start with k=0, calculate F(0) 

as in the formula below, then we change to u=1 etc

• F[0] is the mean value of the function f[n]
• This is also the case for the CTFT

• The transformed function F[k] has the same number of terms 
as f[n] and always exists

• The transform is always reversible by construction so that we 
can always recover f given F

1 1
2 0 /
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Highlights on DFT properties

time

Amplitude 
spectrum

0

Frequency (k)

|F[k]| F[0] low-pass 
characteristic

The DFT of a real signal is symmetric 
(Hermitian symmetry)
The DFT of a real symmetric signal 
(even like the cosine) is real and 
symmetric
The DFT is N-periodic 
Hence
The DFT of a real symmetric signal only 
needs to be specified in [0, N/2]

0 N/2 N



Visualization of the basic repetition
• To show a full period, we need to translate the origin of the 

transform at u=N/2 (or at (N/2,N/2) in 2D)

|F(u-N/2)|

|F(u)|

f n[ ]e2πu0n → f k −u0[ ]

u0 =
N
2

f n[ ]e
2π N

2
n
= f n[ ]eπNn = −1( )n f n[ ]→ f k − N

2
#

$%
&

'(



Going back to the intuition
• The FT decomposed the signal over its harmonic 

components and thus represents it as a sum of linearly 
independent complex exponential functions

• Thus, it can be interpreted as a “mathematical prism”



DFT
• Each term of the DFT, namely each value of F[k], results of 

the contributions of all the samples in the signal (f[n] for 
n=1,..,N)

• The samples of f[n] are multiplied by trigonometric functions 
of different frequencies

• The domain over which F[k] lives is called frequency domain
• Each term of the summation which gives F[k] is called 

frequency component of harmonic component



DFT is a complex number
• F[k] in general are complex numbers
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Stretching vs shrinking

stretched shrinked



Periodization vs discretization

• DT (discrete time) signals can be seen as sampled versions of 
CT (continuous time) signals

• Both CT and DT signals can be of finite duration or periodic
• There is a duality between periodicity and discretization

• Periodic signals have discrete frequency (sampled) transform 
• Discrete time signals have periodic transform 
• DT periodic signals have discrete (sampled) periodic transforms
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Linking continuous and discrete domains



Increasing the resolution by Zero Padding
• Consider the analysis formula

• If f[n] consists of N samples than F[k] consists of N samples
as well, it is discrete (k is an integer) and it is periodic
(because the signal f[n] is discrete time, namely n is an 
integer)

• The value of each F[k], for all k, is given by a weighted sum 
of the values of f[n], for n=1,.., N-1

• Key point: if we artificially increase the length of the signal
adding M zeros on the right, we get a signal f1[m] for which
m=1,…,N+M-1. Since

F k[ ] = 1
N

f n[ ]e
−
2π jkn
N

n=0

N−1

∑

f1 m[ ] =
f [m] for 0 ≤m < N

0 for N ≤m < N +M

"

#
$

%
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Increasing the resolution through ZP
• Then the value of each F[k] is obtained by a weighted sum of 

the “real” values of f[n] for 0≤k≤N-1, which are the only ones 
different from zero, but they happen at different “normalized 
frequencies” since the frequency axis has been rescaled. In 
consequence, F[k] is more “densely sampled” and thus 
features a higher resolution.



Increasing the resolution by Zero Padding

n

zero padding

0 N0

k0 2π

F(Ω) (DTFT) in shade
F[k]: “sampled version”

4π
2π/N0



Zero padding

n

zero padding

0
N0

k0 2π

F(Ω)

4π
2π/N0

Increasing the number of zeros 
augments the “resolution” of 
the transform since the samples 
of the DFT get “closer”



Summary of dualities

FOURIER DOMAINSIGNAL DOMAIN

Sampling Periodicity

SamplingPeriodicity

DTFT

CTFS

Sampling+Periodicity Sampling +PeriodicityDTFS/DFT



Discrete Cosine Transform (DCT)

Applies to digital (sampled) finite length
signals AND uses only cosines. 

The DCT coefficients are all real numbers



Discrete Cosine Transform (DCT)
• Operate on finite discrete sequences (as DFT)
• A discrete cosine transform (DCT) expresses a sequence of 

finitely many data points in terms of a sum of cosine functions
oscillating at different frequencies

• DCT is a Fourier-related transform similar to the DFT but using 
only real numbers

• DCT is equivalent to DFT of roughly twice the length, operating on 
real data with even symmetry (since the Fourier transform of a real 
and even function is real and even), where in some variants the 
input and/or output data are shifted by half a sample 

• There are eight standard DCT variants, out of which four are 
common

• Strong connection with the Karunen-Loeven transform
• VERY important for signal compression 



DCT
• DCT implies different boundary conditions than the DFT or 

other related transforms 
• A DCT, like a cosine transform, implies an even periodic

extension of the original function 
• Tricky part

• First, one has to specify whether the function is even or odd at both the 
left and right boundaries of the domain 

• Second, one has to specify around what point the function is even or 
odd
• In particular, consider a sequence abcd of four equally spaced data points, 

and say that we specify an even left boundary. There are two sensible 
possibilities: either the data is even about the sample a, in which case the 
even extension is dcbabcd, or the data is even about the point halfway
between a and the previous point, in which case the even extension is 
dcbaabcd (a is repeated). 



Symmetries



DCT
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• Warning: the normalization factor in front of these transform definitions is merely a 
convention and differs between treatments.

• Some authors multiply the transforms by (2/N0)1/2 so that the inverse does not require any 
additional multiplicative factor.

• Combined with appropriate factors of √2 (see above), this can be used to make the transform matrix 
orthogonal. 



Summary of dualities

FOURIER DOMAINSIGNAL DOMAIN

Sampling Periodicity

SamplingPeriodicity

DTFT

CTFS

Sampling+Periodicity Sampling +PeriodicityDTFS/DFT



Summary : CT versus DT FT

Relationship between the (continuous) Fourier transform and the discrete Fourier transform.
Left column: A continuous function (top) and its Fourier transform (bottom).
Center-left column: Periodic summation of the original function (top). Fourier transform (bottom) is
zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series.
Center-right column: Original function is discretized (multiplied by a Dirac comb) (top). Its Fourier
transform (bottom) is a periodic summation (DTFT) of the original transform.
Right column: The DFT (bottom) computes discrete samples of the continuous DTFT. The inverse DFT
(top) is a periodic summation of the original samples. The FFT algorithm computes one cycle of the
DFT and its inverse is one cycle of the DFT inverse.

CTFT FS DTFT DFT


