
6/15/2016

1

Asynchronous Design Seminar at

University of Verona – Lecture Notes 5

Asynchronous Control Circuits – One-Hot FSMs and PTnet
Theory

Contents

 One-Hot FSM Templates

 Linear States

 Choice States

 Hollaar’s and David’s Approaches

 SI vs. non SI operation during State Transitions

 Extensions to PTnets

 Fork/Join Structures

 Hazard-freeness of Combinational Logic

 How to check?

Asynchronous Control Circuit Design - L5 6/29/20152

6/15/2016

2

One-Hot/One-Cold Encoding

6/29/2015Asynchronous Control Circuit Design - L53

 What is unique to One-Hot/One-Cold State Codes?
State Number Sequential

Encoding

Gray

Encoding

Johnson Encoding One-hot Encoding

0 0000 0000 00000000 0000000000000001

1 0001 0001 00000001 0000000000000010

2 0010 0011 00000011 0000000000000100

3 0011 0010 00000111 0000000000001000

4 0100 0110 00001111 0000000000010000

5 0101 0111 00011111 0000000000100000

6 0110 0101 00111111 0000000001000000

7 0111 0100 01111111 0000000010000000

8 1000 1100 11111111 0000000100000000

9 1001 1101 11111110 0000001000000000

10 1010 1111 11111100 0000010000000000

11 1011 1110 11111000 0000100000000000

12 1100 1010 11110000 0001000000000000

13 1101 1011 11100000 0010000000000000

14 1110 1001 11000000 0100000000000000

15 1111 1000 10000000 1000000000000000

One-Hot/One-Cold Encoding

6/29/2015Asynchronous Control Circuit Design - L54

 One-Hot encoding is not actually an encoding per se

 Simple and unique assignment of binary codes to symbolic
states

 Very commonly used in industry, why?

 Fast in terms of CAD tools time  no computation required
with respect to binary encoding states

 Fast in terms of circuit operation  no encoding/decoding
logic required in the fan-in/fan-out of state variables

 One-Hot FSM is compositional  easy to break to pieces

 Disadvantage?

 Number of binary signals linearly dependent on number of
states

 In many cases this is not a problem as FSMs are usually small

6/15/2016

3

One-Hot/One-Cold Encoding in

Asynchronous Design

6/29/2015Asynchronous Control Circuit Design - L55

 In asynchronous design, encoded states may
present races in state transitions

 Presented earlier in Hazards/Race analysis Methods

 One-Hot Encoding transitions are regular

 Two signal transitions per state transition

 1 0 and 0 1 depending on current/next state

 Is One-Hot Encoding race-free?

 NO! But the race is regular and can thus be rectified
by using a regular circuit structure

 One-hot Critical Race (for any n states add 0s):

 10 11 01 (2 states – unique)

 100110010011001 (3 states – not unique)

One-Hot Critical Race

6/29/2015Asynchronous Control Circuit Design - L56

 For any two state transition (for any n states add 0s):

 Correct transition: 10 11 01

 Erroneous transition: 10 00 XX

 Avoiding the Race imposes a Race Constraint

 Enter the next state before leaving the current state

 Only the first transition is acceptable: 10 11 01

 No interference between next/current state (11)

due to one-hot encoding!

 How can the Race Constraint be satisfied?

 As a timing constraint for the state set and reset paths

 By circuit modification

6/15/2016

4

One-Hot FSMs

6/29/2015Asynchronous Control Circuit Design - L57

 Regular Template Circuit Structure

 State is SR Latch

 Implemented using standard-cells or as a single latch cell

 Set and Reset conditions implemented typically in 2-level Logic

 Set condition =
Previous State AND Enter Conditions for Current State

 Reset condition = Next State (Entered)

 May be implemented as SI or Fundamental Mode

 Depends on Environment constraints

 Depends on Local Timing constraints required for Correct

operation

One-Hot FSMs – Linear FSM Example

6/29/2015Asynchronous Control Circuit Design - L58

 Each One-hot state

may be implemented

using an SR latch

 Set input

 State entering

conditions

 Reset input

 State exit conditions

 Both Active-low due

to NAND SR latch

 Regular Circuit

Structure!

6/15/2016

5

One-Hot FSMs – Choice FSM Example

6/29/2015Asynchronous Control Circuit Design - L59

 Choice can easily be
implemented

 Reset condition for
state s1 is the Set
condition of
s2 OR s3

 Transforms to AND
due to active-low
Reset

 Similarly for return
from Choice

 Reset for
predecessors is Set
of successor

Scale-of-Two Loops

6/29/2015Asynchronous Control Circuit Design - L510

 For correct
operation Set and
Reset conditions
must be
Mutually-
Exclusive

 If the predecessor
and successor states
are the same this
correctness
condition is violated
if Set/Reset
conditions overlap in
time

 What if both x and
z are high in RHS?

6/15/2016

6

Scale-of-Two Loops - Solutions

6/29/2015Asynchronous Control Circuit Design - L511

 To ensure

Mutually-Exclusive

Set and Reset

signals we can

either:

 Add

intermediate

dummy state (SI

operation)

 Add transition

signals to Reset

conditions

(normally ignored)

One-Hot Race

6/29/2015Asynchronous Control Circuit Design - L512

 Is this approach

Race-Free?

 NO!!!

 Why not?

 It does not

enforce One-Hot

Race-Free

behaviour:

 10 11 01

 Can it be made
Race-Free?

6/15/2016

7

One-Hot Race

6/29/2015Asynchronous Control Circuit Design - L513

 Can it be made Race-
Free?

 Yes

 Two approaches:

 Ensure Set path is
faster than Reset path
(for two or more
states!!!)

 SI Solution:

 Add a propagate gate
(current state and
NOT previous state)

 PR = CS.PS’

 Use PR_sn instead of
sn

General One-Hot FSM State Structure

6/29/2015Asynchronous Control Circuit Design - L514

 Propagate gate (pr_sn) ensures SI operation

6/15/2016

8

What about Hazards? Is this a Hazard-free

Approach?

6/29/2015Asynchronous Control Circuit Design - L515

 It is possible for the Set and Reset Logic to contain Logic

Hazards

 How can this be resolved?

 Hazards may be analysed using Fundamental or SI Analysis

Techniques

 Logic Hazards can be removed by restructuring Set/Reset

Logic

Other Observations about One-Hot FSMs

6/29/2015Asynchronous Control Circuit Design - L516

 It is possible to extend One-Hot FSMs to model FSMs

with Forks and Joins!

 Allow multiple One-hot states to be high between fork and

join states

 How?

 Modify reset conditions

6/15/2016

9

CMOS One-Hot FSMs

6/29/2015Asynchronous Control Circuit Design - L517

 Possible to implement

One-Hot FSMs at

Transistor-Level

 Set and Reset

Conditions become

Pull-up and Pull-

down networks of

State-storing gates

Example where CSC has no Solution!

6/29/2015Asynchronous Control Circuit Design - L518

DAC’06: Carmona and Cortadella: “State Encoding of Large Asynchronous Controllers”

6/15/2016

10

Contents

 Fundamental Definitions

 Net, Marking, etc.

 PTnet Classes

 Siphons/Deadlocks and Traps

 Handles

 S-Covers and T-Covers

 An Algorithm for S-Covering FCPTnets

6/29/201519 Asynchronous Control Circuit Design - L5

PTnet Definitions

6/29/2015Asynchronous Control Circuit Design - L520

 Definition [PTnet]:

 A Place Transition net (or PTnet) is a triple N = (S, T, F), where

 S is the set of places,

 T is the set of transitions (S ∩T = Ø)

 F ≤ (S x T) U (T x S) is the flow relation

 Elements of S U T are called nodes

 pre-set •x of x in (S U T) is given by

 •x = {y in S U T | (y, x) in F}

 post-set x• of x in (S U T) is given by

 x• = {y in S U T | (x, y) in F}

 A Marking M is a function M: SN

 A Marked PTnet <N, M0> is a PTnet with an initial marking

6/15/2016

11

PTnet Definitions

6/29/2015Asynchronous Control Circuit Design - L521

 A transition t in T is enabled at marking M iff:

 For all p in •t: M(p) > 0

 When t fires at M a new marking M’ is produced:

 M’(p) = M(p) – F(p, t) + F(t, p) (F is characteristic function of F)

 M[t>M’ denotes that M’ is reachable from M by the

occurrence of transition t

 The set of markings reachable from the initial marking M0

by the occurrence of a sequence of transitions

σ = t1t2…tn =is denoted by R(N, M0)

PTnet Definitions – Net Subclasses

6/29/2015Asynchronous Control Circuit Design - L522

 Definition [S-graph – State Machine]:

 A net N = (S, T, F) is called an S-graph or State Machine, iff each

transition has exactly one input place and one output place

 for all t in T: |•t| = 1 = |t•|

 Definition [T-graph – Signal Transition Graph]:

 A net N = (S, T, F) is called an T-graph or STG, iff each place has

exactly one input transition and one output transition

 for all s in S: |•s| = 1 = |s•|

6/15/2016

12

 Definition [Free-Choice]:

 N is called free-choice iff all p in S such that |p•|>1,

•(p•) = p

 Definition [Asymmetric-Choice]:

 N is called asymmetric-choice (or simple net) iff for every two
places p1, p2, p1•∩ p2• ≠ Ø  p1• ≤ p2• or p1• ≥ p2•

PTnet Definitions – Net Subclasses

6/29/2015Asynchronous Control Circuit Design - L523

PTnet Definitions – Net Subclasses

6/29/2015Asynchronous Control Circuit Design - L524

 Definition [General PTnet]:

 N is called general PTnet iff for every two places
p1, p2, p1•∩ p2• ≠ Ø  p1• ≤ p2• or p1• ≥ p2•

6/15/2016

13

Asymmetric or Symmetric Confusion

6/29/2015Asynchronous Control Circuit Design - L525

 Cases where Choice and

Concurrency are combined

are referred to as confusion

 Symmetric Confusion

 t1, t3 are concurrent but in

conflict with t2

 Asymmetric Confusion

 t1, t2 are in conflict,

if t3 fires before t1!

 t1, t3 are concurrent

s1 s2

t1 t2 t3

t1 t2

t3
s1 s2

s3

PTnet Classification Revisited

6/29/2015Asynchronous Control Circuit Design - L526

MG

SM FC

AC

PT

6/15/2016

14

PTnet Definitions - Subnets

6/29/2015Asynchronous Control Circuit Design - L527

 Definition [S-Components and T-Components]:

 N’ = (S’, T’, F’) is a subnet of N = (S, T, F) iff
S’ ≤ S, T’ ≤ T and F’ = F ∩ ((S’ x T’) U (T’ x S’))

 N’ is an S-component (T-component) of N iff

N’ is a strongly connected S-graph (T-graph) and|
T’ = •S’∩S’• (S’ = •T’∩T’•).

 N’ is generated by a set X’ ≤ S ∩T iff:

S’ = (X’ ∩ S) U •(X’ ∩T) U (X’ ∩T)•

T’ = (X’ ∩T) U •(X’ ∩ S) U (X’ ∩ S)•

PTnet Definitions – Behavioural Properties

6/29/2015Asynchronous Control Circuit Design - L528

 Definition [Bounded Net]:

 A marked net (N, M0) is bounded iff:

 for all p in S, there exists k in N, s.t. for all markings M
reachable from M0: M(p) ≤ k

 Definition [Structurally Bounded Net]:

 A net N is structurally bounded iff it is bounded for any initial
marking M0.

 Definition [Liveness]:

 A transition t in T is live in (N, M0) iff:

 For all M in R(N, M0) there exists M’ in R(N, M): M’ enables t.

 The marked net (N, M0) is live iff all t in T are live.

 N is structurally live iff there exists initial marking M0 such that
(N, M0) is live

6/15/2016

15

PTnet Definitions – Graph Properties

6/29/2015Asynchronous Control Circuit Design - L529

 Definition [Path]:

 A path of a net N=(S, T, F) is an alternating sequence

π = (x0f0x1…fr-1xr) of elements X = S U T such that:

for all I, 0 ≤ i ≤ r – 1: fi = (xi, xi+1) in F

 A path is elementary iff all xi are distinct except x0 and xr

 A circuit is a path such that x0 = xr

 A circuit is elementary iff it is elementary as a path

 Definition[Alternating Circuit]

 Let N = (S, T, F) be a net. A circuit Γ of N (not necessarily

elementary) is an alternating circuit iff for all arcs in Γ of the

form (p, t) the equality •t = {p} holds

PTnet Definitions - Subnets

6/29/2015Asynchronous Control Circuit Design - L530

 Definition [Well-formed Net]:

 A Net N is well-formed if there exists a marking M0 of N

such that (N, M0) is a live and bounded system

 Thus, the net is not necessarily live at the current

marking…

 Theorem [S-Components and Well-Formed Nets]:

 Well formed Nets are covered by S-Components

6/15/2016

16

PTnet Definitions – Siphons and Traps

6/29/2015Asynchronous Control Circuit Design - L531

 Definition [Siphons (Deadlocks) and Traps]:

 Let N = (S, T, F) be a net.

 D ≤ S is a siphon (deadlock) iff D ≠ Ø and •D ≤ D•

 Θ ≤ S is a trap iff Θ ≠ Ø and Θ• ≤ •Θ

 A siphon (deadlock) or trap is minimal iff

there exists no deadlock or trap D’ such that D’ ≤ D

 A siphon (deadlock) or trap is strongly-connected iff

the subnet generated by D U •D is strongly connected

 Commoner’s Theorem

 An FC System is live iff each siphon contains a marked trap

 Each cycle is marked

PTnet Definitions – Siphons and Traps

6/29/2015Asynchronous Control Circuit Design - L532

 Theorem[Minimal Siphon for General PTnets]

 Let N = (S, T, F) be a net, D ≤ S a siphon of N and ND the subnet of N

generated by D U •D.

 D is minimal iff there exists a circuit Γ in ND (not necessarily elementary)

that passes through all places of D such that for every transition t in Γ
either:

 |•t ∩ D| = 1 (if net is FC) or

 |•t ∩ D| ≥ 2 and the places of (•t ∩ D) belong to an

alternating circuit D

p1 p2

6/15/2016

17

PTnet Definitions – Siphons and Traps

6/29/2015Asynchronous Control Circuit Design - L533

 The set {s1, s2} is a siphon; the set {s3, s4} is a trap

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L534

 1:

 s0 is a siphon (minimal)

 s1 is a trap

 2:

 {s0, s1} is a siphon

 NOT minimal,

as structurally {s0}, {s1} are also

siphons

s0 s1t0

s1

s2t0

s0

1

2

6/15/2016

18

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L535

 Siphon

 D = {s0, s1, s3}

 •t0 = {s1, s3}

 |•t0 ∩ {s1, s3}| = 2

 D is not minimal

 Minimal Siphon

 {s0, s3}

t1

t3

t0

t2
s0

s2

s1

s3

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L536

 Minimal Siphon

 {s0, s1}

 Minimal Trap

 {s2}
s0

t0

t1

s3

s1 t2 s2

6/15/2016

19

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L537

 Minimal Siphon

 {s2}

 Minimal Traps

 {s4}, {s5}
t3

t0

t1

s0 s1 s4

s2

t2

s3 t4 s5

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L538

 Minimal Siphon

 {s0, s1}

s0 s1

t0

t1

t2 s2

s4t3s3

s5

t4

s6

t5

6/15/2016

20

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L539

 Minimal Siphons/Traps

 {s0, s1}

 {s3, s4}
s0

t0

t1

s4

t2

t3

s1

s3

Siphon Example and Complexity

6/29/2015Asynchronous Control Circuit Design - L540

 Places s0, s1, s3 are

choice places to all

others

 Minimal Siphon

 {s0, s1, s2}

 Are NOT Siphons

 {s0, s1}, {s1, s2}, {s0, s2}

 {s0}, {s1}, {s2}

 Complexity ~O(S, T)

s0

s2

s1

6/15/2016

21

Siphon Example and Complexity

6/29/2015Asynchronous Control Circuit Design - L541

 Free-Choice structure between

multiple place siphons

 Minimal siphons = {s0}, {s1}, {s3}

 Siphons

 {s0}, {s1}, {s3}

 {s0, s1}, {s0, s2}, {s1, s2}

 {s0, s1, s2}

 The number of Siphons is

WC Exponential!

 Should not aim to explore ALL siphons

s0

s1

s2

PTnet Definitions – Graph Properties

6/29/2015Asynchronous Control Circuit Design - L542

 Definition [Handle]:

 Let N’ be a partial subnet of N.

 An elementary path π = (x0f0x1…fn-1xn) is a handle of N’

iff π ∩ N’ = {x0, xn}

…
x0 xn

N-N’ N’

6/15/2016

22

PTnet Examples

PTnet Examples - 1

6/29/2015Asynchronous Control Circuit Design - L544

s1 s2

t2

t1

t3 s3

t4

t5

s2

t1

t2

s1
t3

s4

s4

t4

B’, L
B, L’

B, L

1. 2.

6/15/2016

23

PTnet Examples - 2

6/29/2015Asynchronous Control Circuit Design - L545

B’, L’

4. 5.

B’, L

PTnet Examples - 3

6/29/2015Asynchronous Control Circuit Design - L546

6.

B’, L’ B, L

7.

6/15/2016

24

Minimal Siphons and S-Components

– Esparsa/Kemper Algorithm

Get Handle Algorithm

6/29/2015Asynchronous Control Circuit Design - L548

 N is strongly-connected FC-Net with S, S’ ≤ P U T

 S ∩ S’ = Ø, p in S, t in S’, t is in •p, Outputs handle H = (x0, x1, …, xn-2, t, p) or 0

 Num(v) values:

 num(v) == -1  v in S, start point of handle, num(v) ==0  v in S’, not visited before

 num(v) > 0  v has been visited before and either (a) no handle was found or

(b) has been reached again. In both cases v cannot belong to the handle

Algorithm Get_Handle(S, S’, F, t, p) Algorithm handle-DFS(v)

// S ∩ S’ = ø, p in S, t in S’ and t is in •p //

i = 1; Stack = empty;

forall x in S’ num(x) = 0;

forall x in S num(x) = -1;

push(Stack, p);

if (handle-DFS(t) == 0)

{

return NULL;

printf(“No handle exists\n”);

}

else

{

return Stack; // Stack contains Handle //

}

num(v) = i; i = i + 1;

push(Stack, v);

forall (w in •v)

if (num(w) == -1) // start node of handle //

{

push(Stack, w);

return 1;

}

forall (w in •v)

if (num(w) == 0) // new non-start node //

if (handle-DFS(w) == 1) return 1;

pop(Stack, v);

return 0;

6/15/2016

25

Get Minimal Siphon (Deadlock) Algorithm

6/29/2015Asynchronous Control Circuit Design - L549

 N = (P, T, F) strongly-connected FC-Net with p in P

 D is minimal deadlock D ≤ P, containing P

 To be an S-Component, minimal deadlock D must satisfy:

 It is strongly connected

 For all t in D: |•t∩D| = |t•∩D| = 1

Algorithm Get_Minimal_Deadlock(P, T, F, p, D, Td)

Pc = {p}; Tc = 0; // current sets of Places and Transitions

while (there exists p’ in Pc, there exists t in •p’ and t not in Tc)

{

H = Get_Handle((Pc U Tc), (P U T)-(Pc U Tc), F, p’, t);

Pc = Pc U (H ∩ P); // discard multiple instances of places

Tc = Tc U (H ∩ T); // and transitions

}

D = Pc; Td = Tc;

return D, Tc; // return Deadlock places and transitions

S-Covering - Example

6/29/2015Asynchronous Control Circuit Design - L550

 Original Net: s1 s2

s3 s4 s5 s6

s7 s8

t1 t2

t3 t4 t5 t6

t7

6/15/2016

26

S-Covering – Example – S-Cover

6/29/2015Asynchronous Control Circuit Design - L551

s1

s3 s5

s7

t1 t2

t3 t4 t5

t7

s2

s4 s6

s8

t2

t4 t6

t7

t1

T-Covering – Example T-Cover

6/29/2015Asynchronous Control Circuit Design - L552

s1 s2

s3 s4 s5

s7 s8

t1

t3 t4

t7

s1 s2

s4 s5 s6

s8

t2

t5 t6

t7

s7

6/15/2016

27

S-Cover for non Well-formed Net

6/29/2015Asynchronous Control Circuit Design - L553

s0

t0

t1

s4

t2

t3

s1

s3

s0

t0

t1
s1

s0

t0

t1

s4

t2

t3

s1

s3

Minimal Siphons – Cordone et. al

(PIPE2) Algorithms

6/15/2016

28

Rules for Siphon Extraction/Minimisation

6/29/2015Asynchronous Control Circuit Design - L555

 Definition [PTnet Reduction Function RED]

 Let G = (P, T, F) be a PTnet and ~P ≤ P.

 The reduction function RED is defined as follows:

 ~G = red(G, ~P), where the reduced net ~G = (~P, ~T, ~F) is

defined by:

 ~T = {t in T | (•t U t•) ∩ ~P ≠Ø}

 ~F(p, t) = F(p, t), ~F(t, p) = F(t, p), forall p in ~P, t in ~T

 Rule 1 [place subset reduction]

 Let G = (P, T, F) be PTnet and ~P ≤ P

 Set of siphons of G contained in ~P is the same as

siphons of reduced net ~G = red(G, ~P)

Rules for Siphon Extraction/Minimisation

6/29/2015Asynchronous Control Circuit Design - L556

 Places with empty subset and places with all net

transitions as post-set are special cases!

 Rule 2 [empty subset places]

 Let G = (P, T, F) be PTnet and _P ≤ P such that •_P = Ø

 Then, minimal siphons of G are minimal siphons of

~G = red(G, P - _P), plus the individual places in _P

 Rule 3 [all net transitions in post-set places]

 Let G = (P, T, F) be a PTnet such that P• = T

 Then P is a siphon

6/15/2016

29

Rules for Siphon Extraction/Minimisation

6/29/2015Asynchronous Control Circuit Design - L557

 Places in post-set of transitions with empty pre-set
cannot belong to a siphon and can be eliminated

 If all transitions are in post-set of some place, T = P• then
P is a siphon (see Rule 3)

 Rule 4 [trap places elimination]

 Let G = (P, T, F) be a PTnet and let _T ≤ T be such that

 •_T = Ø. Then, if _P = _T•, G has same siphons as

 ~G = red(G, P - _P)

 Rule 5 [redundant places]

 Let G = (P, T, F) be a PTnet and S ≤ P a siphon of G.

 If there exists _p in S: for all t in _p• either
(t• ∩ S) > {_p} or
(•t ∩ S) = Ø, then S – {_p} is also a siphon of G

Rules for Siphon Extraction/Minimisation

6/29/2015Asynchronous Control Circuit Design - L558

 Rule 6 [Siphon Minimality]

 Let G = (P, T, F) be a PTnet and S ≤ P a siphon of G.

 S is minimal for G, iff all reduced nets:

 ~Gp = red(G, S-{p}) for all p in S do not contain siphons

 Rule 7 [Siphon Decomposition into Smaller Siphons]

 Let G = (P, T, F) be a PTnet and ~P = {p1, p2, …, pn} ≤ P

 The set of Siphons of G NOT containing ~P is the Union

where Si is the set of siphons of the reduced net:

~Gi = red(G, P – {pi}), i.e. containing the n places except i.


n

i iS1

6/15/2016

30

Find a Siphon - Algorithm

6/29/2015Asynchronous Control Circuit Design - L559

 ~P is a set of places (one or more) which should be

contained in the siphon

 Elimination based on Rule 4 (trap places)

Algorithm Find_Siphon(G, ~P, P)

while (1)

{

if ((exists p in P ∩ ~P) && (exists t in •p such that t not in P•))

{

S = Ø; // Rule 4 //

return;

}

if ((exists p in P - ~P) && (exists t in •p such that t not in P•))

G = red(G, P – {p}); // modifies local P and G//

else

{

S = P;

return;

}

}

Algorithm Find_Min_Siphon(G, ~S, ~P, P)

while (exists p in (P - ~P) ∩ ~S such that (•t ∩ ~S) < {p} or

(t• ∩ ~S) = Ø) // Rule 5 //

~S = ~S – {p};

while (1) {

if (~S < P) G = red(G, ~S); Pnew = P - ~P;

if (Pnew == Ø)

{

S = S~;

return; // found minimal siphon //

}

forall (p in Pnew) // find smaller siphons of Pnew //

{

Gp = red(G, P – {p}); Pnew = Pnew – p;

Sp = Find_Siphon(Gp, ~P, P);

if (Sp != Ø)

{

~S = Sp;

break; // found smaller siphon – to outer loop //

}

}

}

Find a Minimal Siphon - Algorithn

6/29/2015Asynchronous Control Circuit Design - L560

 Computes one minimal siphon S ≤ ~S and containing ~P

6/15/2016

31

Algorithm Find_All_Min_Siphons(G, ~P, P)

SS = Ø; // Minimal Siphon Set //

while ((~P == Ø) && (exists p in P such that •p = Ø)) {

S = {p}; SS = SS U {S}; G = red(G, P – {p}); // Rule 2 //

}

~S = Find_Siphon(G, ~P, P);

if (~S == Ø) return;

S = Find_Min_Siphon(G, ~S, ~P, P);

SS = SS U S;

Pnew = S - ~P; Pold = Ø;

if (Pnew == Ø) return;

forall (p in Pnew) {

Gp = red(G, P – {p});

SSp = Find_All_Min_Siphons(Gp, ~P U Pold, P); // Rule 7 //

SS = SS U SSp;

Pnew = Pnew – {p}; Pold = Pold U {p};

}

Find all Minimal Siphons - Algorithm

6/29/2015Asynchronous Control Circuit Design - L561

 Find_All_Min_Siphons(G, Ø) returns all minimal siphons of G

 Worst-case complexity is O(2n)

 Due to Recursive call for Rule 7

