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Topics 

•  Feature extraction 

•  Image segmentation 

•  Clustering and classification 
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Region based processing 

•  Complementary to edge detection 

•  Based on neighborhood characteristics 

•  Local descriptors represent properties of sets of pixels. Typically 
these are representative of the pdf (histogram) of the gray values in 
each region 
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Applications 

•  Image segmentation 
–  Group similar components (such as, pixels in an image, image frames in 

a video) to obtain a compact representation.  
–  Clustering, classification  

•  Methods: Thresholding, K-means clustering, etc. 

•  Pattern recognition 
–  Classification 

•  Scenarios: Finding tumors, veins, etc. in medical images, finding 
targets in satellite/aerial images, finding people in surveillance 
images, summarizing video, etc. 
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Segmentation strategy 

Edge-based 

•  Assumption: different objects are 
separated by edges (grey level 
discontinuities) 

•  The segmentation is performed by 
identifying the grey level gradients 

•  The same approach can be 
extended to color channels 

Region-based 

•  Assumption: different objects are 
separated by other kind of 
perceptual boundaries 

–  neighborhood features 

•  Most often texture-based 
–  Textures are considered as 

instantiations of underlying 
stochastic processes and 
analyzed under the assumptions 
that stationarity and ergodicity 
hold 

•  Method 
–  Region-based features are 

extracted and used to define 
“classes” 
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Examples 

original 

zoomed 
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Examples 

Canny 
block mean block std 



Feature extraction 
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Types of features 

•  An image feature is a distinguishing primitive characteristic or 
attribute of an image. 

•  Amplitude features: image domain 

•  Transformed coefficients features: transformed domain 
–  Fourier domain 
–  Principal components (PCA) 
–  Wavelet domain 
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Amplitude features 

•  Image variables such as luminance or tristimulus values may be 
utilized directly, or alternatively, some linear, nonlinear, or perhaps 
noninvertible transformation can be performed to generate variables 
in a new amplitude space.  

•  Amplitude measurements may be made at specific image points 
f[i,j], [e.g., the amplitude at pixel coordinate] , or over a 
neighborhood centered at [i,j]. 
–  An advantage of a neighborhood, as opposed to a point measurement, 

is a diminishing of noise effects because of the averaging process.  
–  A disadvantage is that object edges falling within the neighborhood can 

lead to erroneous measurements. 
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Amplitude features 

•  Mean over a window W=2w+1 

•  Median over a window W=2w+1 
–  The median is defined to be that pixel amplitude in the window for which 

one-half of the pixels are equal or smaller in amplitude, and one-half are 
equal or greater in amplitude. 

•  Standard deviation over a window W=2w+1 
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Example 
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Histogram features 

•  Mean and standard deviation can be calculated based on the 
histogram, as well as other features representing the distribution of 
gray level (or tristimulus) values 

•  First order histogram  
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Quantitative histogram shape descriptors 

•  First order descriptors 
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Quantitative histogram shape descriptors 

•  First order descriptors 
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Quantitative histogram shape descriptors 

•  histogram mode: the pixel amplitude corresponding to the histogram 
peak (i.e., the most commonly occurring pixel amplitude in the 
window). 

•  If the histogram peak is not unique, the pixel at the peak closest to 
the mean is usually chosen as the histogram shape descriptor. 

mode 

bi-modal histogram 
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Quantitative histogram shape descriptors 

•  Second-order histogram features are based on the definition of the 
joint probability distribution of pairs of pixels. 

•  Histogram estimate of the second-order distribution 
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Second order histogram estimates 
gray level 
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two gray levels 

Given r, theta 

co-occurrence matrix 
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Descriptors 
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Descriptors 
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Transform features: Fourier 

•  The distribution (histogram) of the 
transformed coefficients is 
characterized either considering 
the whole frequency domain or 
partitioning it according to different 
criteria 

•  In each frequency region, the 
most common choice consists in 
using first order descriptors  

–  mean 
–  variance (as indicator of the 

energy) 



Texture definition 

•  Many portions of images of natural scenes are devoid of sharp 
edges over large areas.  

•  In these areas, the scene can often be characterized as exhibiting a 
consistent structure analogous to the texture of cloth.  

•  Image texture measurements can be used to segment an image and 
classify its segments. 

•   The notion of texture appears to depend upon three ingredients: 
–  (1) some local 'order' is repeated over a region which is large in 

comparison to the order's size, (2) the order consists in the nonrandom 
arrangement of elementary parts and (3) the parts are roughly uniform 
entities having approximately the same dimensions everywhere within 
the textured region.”  
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Texture definition 

•  Although these descriptions of texture seem perceptually 
reasonably, they do not immediately lead to simple quantitative 
textural measures  
–  the description of an edge discontinuity leads to a quantitative 

description of an edge in terms of its location, slope angle, and height. 

•  Textures are often described in terms of “coarseness” 
–  The coarseness index is related to the spatial repetition period of the 

local structure. 
–  A large period implies a coarse texture; a small period implies a fine 

texture. 
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Texture definition 

•  Texture is a neighborhood property of an image point.  
–  Therefore, texture measures are inherently dependent on the size of the 

observation neighborhood. 

•  Because texture is a spatial property, measurements should be 
restricted to regions of relative uniformity. 

•  Hence it is necessary to establish the boundary of a uniform textural 
region by some form of image segmentation before attempting 
texture measurements. 
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Artificial vs natural textures 
•  Texture may be classified as being artificial or natural.  

–  Artificial textures consist of arrangements of symbols, such as line 
segments, dots, and stars placed against a neutral background. Several 
examples of artificial texture are presented in Figure16.4-1 (9).  

–  As the name implies, natural textures are images of natural scenes 
containing semirepetitive arrangements of pixels. Examples include 
photographs of brick walls, terrazzo tile, sand, and grass.  

•  Brodatz has published an album of photographs of naturally 
occurring textures that is used as the reference texture database for 
texture processing. 
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Texture, scale and perception 
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Artificial 
textures 
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Natural 
textures 
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Visual texture discrimination 

•  A discrete stochastic field is an array of numbers that are randomly 
distributed in amplitude and governed by some joint probability 
density. When converted to light intensities, such fields can be made 
to approximate natural textures surprisingly well by control of the 
generating probability density.  
–  This technique is useful for generating realistic appearing artificial 

scenes for applications such as airplane flight simulators  

•  Stochastic texture fields are also an extremely useful tool for 
investigating human perception of texture as a guide to the 
development of texture feature extraction methods 

•  Julesz: identification of the parameters of stochastic fields that are 
relevant from a perceptual point of view 
–  Namely that are used by the visual system for distinguishing different 

textures 
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Julesz’s main moments 
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First order 

Second order 

Third order 



Julesz’s moments perceptual significance 
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Julesz’s moments perceptual significance 
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Julesz’s moments perceptual significance 

•  The examples of indicate that  
–  texture field pairs differing in their first- and second-order distributions 

can be discriminated and  
–  supports the conjecture, attributed to Julesz, that differences in third 

order,and presumably, higher-order distribution texture fields cannot be 
perceived provided that their first-order and second- distributions are 
pairwise identical 
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Texture analysis in F-domain 

•  Several studies have considered textural analysis based on the 
Fourier spectrum of an image region 
–  Because the degree of texture coarseness is proportional to its spatial 

period, a region of coarse texture should have its Fourier spectral 
energy concentrated at low spatial frequencies. Conversely, regions 
of fine texture should exhibit a concentration of spectral energy at high 
spatial frequencies.  

–  Although this correspondence exists to some degree, difficulties often 
arise because of spatial changes in the period and phase of texture 
pattern repetitions.  

–  Experiments have shown that there is considerable spectral overlap of 
regions of distinctly different natural texture, such as urban, rural, and 
woodland regions extracted from aerial photographs.  

•  Solution: pave the F-domain and extract band-wise features 
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Texture analysis by Autocorrelation 

•  Autocorrelation function 

•  Rationale:  presumably, a region of coarse texture will exhibit a 
higher correlation for a fixed shift than will a region of fine texture  

•  Thus, texture coarseness should be proportional to the spread of the 
autocorrelation function 
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Texture analysis by Autocorrelation 

36 



TA by 2D Histograms 

•  Two-dimensional histogram estimation, also said gray-scale 
dependency matrix 
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TA by 2D Histograms 

•  For each member of the parameter set , the two-dimensional 
histogram may be regarded as a array of numbers relating the 
measured statistical dependency of pixel pairs 

•  For a given separation set , the histogram obtained for fine texture 
tends to be more uniformly dispersed than the histogram for 
coarse texture  

•  Texture coarseness can be measured in terms of the relative spread 
of histogram occupancy cells about the main diagonal of the 
histogram 
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TA by 2D Histograms: example 
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TA by filter banks 

40 



TA by filter banks 

•  Advantage: spatial features in different directions are extracted 

•  Disadvantage: NOT scalable (filters of fixed size in F-domain) 
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TA by Gabor filters 

•  A two-dimensional Gabor filter  is a complex field sinusoidal grating 
that is modulated by a two-dimensional Gaussian function in the 
spatial domain 

•  Gabor filters have tunable orientation and radial frequency 
passbands and tunable center frequencies 
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F: frequency modulation 
(parameter ruling frequency 
displacement) 

Rotated reference 
frame by angle Φ 

Gaussian kernel 
+ 

Transfer function 



Gabor filters 

•  Impulse response (image domain) 
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Gabor filters 

•  Transfer funcion (F-domain) for a given direction 
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Gabor filters 
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Dyadic Gabor filter (F-domain) 
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Segmentation 

Region-based processing 
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Image Segmentation 

Contour-based 

•  Discontinuity 
–  The approach is to partition an 

image based on abrupt changes 
in gray-scale levels 

–  The principal areas of interest 
within this category are detection 
of isolated points, lines, and edges 
in an image 

Region-based 

•  Similarity, homogeneity 

•  The principal approaches in this 
category are based on  

–  thresholding,  
–  region growing 
–  region splitting/merging 
–  clustering in feature space 
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Thresholding 

•  Image model 
–  The objects in the image differ in the graylevel distribution 

•  Simplest: object(s)+background 
–  The spatial (image domain) parameters (i.e. mean, variance) are 

sufficient to characterize each object category 
•  rests on the ergodicity assumption 

–  Easily generalized to multi-spectral images (i.e. color images) 
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Thresholding 

•  Individual pixels in an image are marked as “object” pixels if their 
value is greater than some threshold value and as “background” 
pixels otherwise → threshold above 
–  assuming an object to be brighter than the background 
–  Variants  

•  threshold below, which is opposite of threshold above;  
•  threshold inside, where a pixel is labeled "object" if its value is between two 

thresholds 
•  threshold outside, which is the opposite of threshold inside  

–  Typically, an object pixel is given a value of “1” while a background 
pixel is given a value of “0.”  

–  Finally, a binary image is created by coloring each pixel white or black, 
depending on a pixel's label.  
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Thresholding types 

•  Histogram shape-based methods 
–  Peaks, valleys and curvatures of the smoothed histogram are analyzed  

•  Clustering-based methods 
–  gray-level samples are clustered in two parts as background and 

foreground (object), or alternately are modeled as a mixture of two 
Gaussians  

•  Entropy-based methods 
–  Entropy of the foreground and background regions, cross-entropy 

between the original and segmented image, etc.  

•  Object attribute-based methods  
–  Based on a measure of similarity between the gray-level and the 

binarized images, such as fuzzy shape similarity, edge coincidence, etc.  
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Thresholding types 

•  Stochastic methods: use higher-order probability distributions and/or 
correlation between pixels  

•  Local or adaptive methods: adapt the threshold value on each pixel 
to the local image characteristics 
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Histogram thresholding 

•  Suppose that an image, f(x,y), is composed of light objects on a dark 
background, and the following figure is the histogram of the image.  

•  Then, the objects can be extracted by comparing pixel values with a 
threshold T.   
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Thresholding 
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Thresholding 
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Histogram thresholding 

•  Analytical models can be fit to the valleys of the histogram and then 
used to find local minima 

ax2+bx+c 

T=xmin=-b/2a 

background 

object 
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Choice of the T value 

•  Empirical, by inspection 

•  Automatic 
1.  Choose an initial value T 

2.  Segment the image accordingly 
–  This will produce twos sets of pixels, G1 and G2 

3.  Update the threshold 

4.  Go back to 2 until the change due to the update of T reaches a lower 
bound ΔT0 
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Multilevel luminance thresholding 
•  It is also possible to extract objects that have a specific intensity range 

using multiple thresholds.   

 

Extension to color images is straightforward: There are three color channels, in 
each one specifies the intensity range of the object… Even if objects are not 
separated in a single channel, they might be with all the channels… Application 
example: Detecting/Tracking faces based on skin color… 
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Optimal global and adaptive thresholding 

•  Assumptions:  
–  The image contains only two principal gray level regions 
–  The histogram is bimodal 
–  It can be considered as a good estimate of the pdf 

•  Model:  
–  The global histogram is given by the mixture (sum) of the two pdfs 
–  The weights are proportional to the relative areas of the dark and light 

regions 
•  And thus are given by the areas under the two, respectively 
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Optimal global and adaptive thresholding 

Mixture pdf describing the global gray level variations in the image 
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Probability of errors 

•  Misclassification of a background point as object 

•  Misclassification of an object point as background 

•  Total error probability 

•  E1 is weighted by P2 because if the probability of background points is zero 
than the contribution to such points to the error is zero too 
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Finding the threshold 

•  Take the derivative of E with respect to T and set it to zero 

•  Notes 
–  If P1=P2 then the optimal value for T corresponds to the intersect of the 

curves 
–  The explicit calculation of T requires the knowledge of the pdf, which is 

not always the case 
–  In general, it is assumed that the two pdfs are Gaussian 
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Finding the threshold 

•  For Gaussian mixtures 
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Clustering based thresholding 
•  Definition and optimization of a cost (or objective) function 

–  Cost of classifying a background pixel as an object pixel is Cb  
–  Cost of classifying an object pixel as a background pixel is Co  
–  Find the threshold, T, that minimizes the total cost 

 

a 2a 

h1 
h2 

T 

Background 

Object 
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Clustering based thresholding 

•  Idea 1: pick a threshold such that each pixel on each side of the 
threshold is closer in intensity to the mean of all pixels on that side 
of the threshold than the mean of all pixels on the other side of the 
threshold. Let 
–  µB(T) = the mean of all pixels less than the threshold (background) 
–  µO(T) = the mean of all pixels greater than the threshold (object) 

•  We want to find a threshold such that the grey levels for the object 
are closest to the average of the object and the grey levels for the 
background are closest to the average of the background: 
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Clustering based thresholding 

•  Idea 2: select T to minimize the within-class variance—the weighted 
sum of the variances of each cluster: 
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Clustering based thresholding 

•  Idea 3: Modeling the pdf as the superposition of two Gaussians and 
take the overlapping point as the threshold 
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Bottlenecks 
•  Non-uniform illumination may change the histogram in a way that it 

becomes impossible to segment the image using a single global 
threshold.  

•  Choosing local threshold values may help 

•  Guideline: partition the image in blocks of almost uniform luminance and 
perform the segmentation locally 

–  In alternative, one can apply chromatic adaptation transforms which 
compensate for differences in the scene illumination, such as retinex 
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Examples 
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Examples 
•  Adaptive thresholding 

 

Global thresholding 

Adaptive thresholding 
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Region based segmentation 

•  Formulation 

Ri = R
i=1

n


Ri  is a connected region i =1,…,n

Ri  Rj =∅ ∀i ≠ j

PR Ri( ) =TRUE i =1,…,n

PR Ri  Rj( ) = FALSE ∀i ≠ j

PR: logical predicate defined over the region. Ex: all points in the region have the same gray 
level 

the segmentation must be complete 

the points in a region must be connected according 
to a predefined criterion 
the regions must be disjoint 

condition that is satisfied by all points in Ri 

regions Ri and Rj are different with respect to 
predicate PR 
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Region-Oriented Segmentation 

•  Region Growing 
–  Region growing is a procedure that groups pixels or subregions into 

larger regions.  
–  The simplest of these approaches is pixel aggregation, which starts with 

a set of “seed” points and from these grows regions by appending to 
each seed points those neighboring pixels that have similar properties 
(such as gray level, texture, color, shape). 

–  Region growing based techniques are better than the edge-based 
techniques in noisy images where edges are difficult to detect.  
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Region-Oriented Segmentation 
•  Region Splitting 

–  Alternative to Region growing that starts from a set of seed points.  
–  An alternative is to start with the whole image as a single region and 

subdivide the regions that do not satisfy a condition of homogeneity.  

•  Region Merging 
–  Region merging is the opposite of region splitting. 
–  Start with small regions (e.g. 2x2 or 4x4 regions) and merge the regions that 

have similar characteristics (such as gray level, variance).  

•  Typically, splitting and merging approaches are used iteratively.  
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Region-Oriented Segmentation 

•  Region splitting and merging 
–  The image is initially splitted into regions arbitrarily. These are 

subsequently merged and/or further splitted to satisfy the predefined 
homogeneity criterion  

–  Let R be a region and PR a predicate. The approach consists in taking 
initially R=entire image and splitting it in subregions such that at the 
end of the process PR(Ri)=TRUE in every region. 

–  Recipe:  
1.  Evaluate PR over R: if it is FALSE then split R in, let’s say, 4 

subregions 
2.  Repeat the procedure for each resulting region 
3.  For each couple i,j evaluate PR(RiURj). If this is TRUE then merge Ri 

and Rj 

4.  Stop when no further splitting or merging is possible 
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Region splitting and merging 

•  Image quadtree resulting for the considered type of splitting 
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Region-Oriented Segmentation 
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Towards texture segmentation 

•  All the methods using means and variances to characterize regions 
basically characterize the texture of the region 

•  The concept of texture segmentation consists in using texture 
features as predicates 
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Example 
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Example 
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Watershed Segmentation Algorithm 
•  Visualize an image in 3D: spatial coordinates and gray levels.  

•  In such a topographic interpretation, there are 3 types of points: 
–  Points belonging to a regional minimum 
–  Points at which a drop of water would fall to a single minimum. (àThe catchment basin 

or watershed of that minimum.) 
–  Points at which a drop of water would be equally likely to fall to more than one minimum. 

(àThe divide lines or watershed lines.) 

 

Watershed 
lines 
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Watershed Segmentation Algorithm 
•  The objective is to find watershed lines.  
•  The idea is simple:  

–  Suppose that a hole is punched in each regional minimum and that the entire 
topography is flooded from below by letting water rise through the holes at a uniform 
rate. 

–  When rising water in distinct catchment basins is about to merge, a dam (diga) is built to 
prevent merging.  

–  Dam boundaries correspond to the watershed lines.   
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Watershed Segmentation Algorithm 
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Watershed Segmentation Algorithm 

Original image 

Topographic view 



84 

Watershed Segmentation Algorithm 

•  Start with all pixels with the lowest possible value. 
–  These form the basis for initial watersheds 

•  For each intensity level k: 
–  For each group of pixels of intensity k 

•  If adjacent to exactly one existing region, add these pixels to that region 
•  Else if adjacent to more than one existing regions, mark as boundary 
•  Else start a new region 
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Watershed algorithm might be used on the gradient image instead of the 
original image. 

Watershed Segmentation Algorithm 
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Due to noise and other local irregularities of the gradient, over-segmentation 
might occur. 

Watershed Segmentation Algorithm 
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A solution is to limit the number of regional minima. Use markers to specify 
the only allowed regional minima.  

Supervised Watershed Segmentation 
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A solution is to limit the number of regional minima. Use markers to specify 
the only allowed regional minima. (For example, gray-level values might be 
used as a marker.) 

Watershed Segmentation Algorithm 

A detailed description of the algorithm can be found in Gonzalez, Chapt. 10. 
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Take the difference between a reference image and a subsequent image to 
determine the still elements image components. 

Use of Motion In Segmentation 



Motion detection and estimation 
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Motion detection and estimation 

•  A video sequence is a much richer source of visual information than 
a still image.  
–  This is primarily due to the capture of motion; while a single image 

provides a snapshot of a scene, a sequence of images registers the 
dynamics in it.  

–  The registered motion is a very strong cue for human vision; we can 
easily recognize objects as soon as they move even if they are 
inconspicuous when still. 

•  Main applications 
–  Video analysis (through feature extraction) 
–  Video compression and coding (MPEG4) 
–  Investigation of the dynamics of human organs 
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Why is it important? 

•  First, motion carries a lot of information about spatiotemporal 
relationships between image objects. This information can be used 
in such applications as traffic monitoring or security surveillance, for 
example to identify objects entering or leaving the scene or objects 
that just moved.  

•  Secondly, image properties, such as intensity or color, have a very 
high correlation in the direction of motion, i.e., they do not change 
significantly when tracked in the image (the color of a car does not 
change as the car moves across the image). This can be used for 
the removal of temporal video redundancy; 
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Example: Left ventricle dynamics from US 
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Basic operations 

•  Motion detection: do the points (or objects) move? 

•  Motion estimation: how do they move? 

•  Special case: apparent motion 
–  One object displayed at different positions in different time instants is 

perceived as a moving object 
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Motion based segmentation 

•  Motion segmentation, i.e., the identification of groups of image 
points moving similarly 

•  Concept: detect the changes from one image to the next 

•  Possible approaches 
–  Taking image differences 
–  Block matching 
–  Optical flow 



Notions and preliminaries 

•  Let x = (x, y)T be a spatial position of a pixel in continuous 
coordinates, i.e., x is in R2 within image limits, and let It denote 
image intesity at time t 

•  After sampling, x is discrete and lives in Z2 

•  Let v(x,y) be the velocity at the spatial position (x,y). Then, vt will 
denote a velocity field or motion field, i.e., the set of all velocity 
vectors within the image, at time t 

•  For discrete images, the notion of velocity is replaced by 
displacement d, but the meaning is unchanged since d represents 
the displacement of pixel (x,y) between two time instants t1 and t2 
thus it is representative of its “velocity” 
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Displacement / velocity 
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P x + dx, y+ dy( )t+Δt = P x, y( )t
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Motion estimation 

•  Pixel differences 

•  Optical flow 

•  Block matching 
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Difference images 

•  Difference image between two images taken at time points ti and tj 

–  dij=1 only if the difference between the pixel values in the two images 
are above a given threshold T 

–  dij has the same size as the two images 

•  Drawbacks 
–  Sensitivity to noise 

•  Accumulation strategies can be devised 
–  Only allows to detect motion but not to characterize it  

•  This would require establishing correspondences among pixels to calculate 
motion vectors 
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What is Optical Flow? 

Optical Flow 
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Velocity vectors 

Common assumption: 
The appearance of the image patches do not change (brightness constancy) 
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Optical flow: 2D projection of the physical movement of points relative to the observer 
to 2D displacement of pixel patches on the image plane. 



When does it fail? 

•  Illusory motion: the set is stationary yet things seem to move 

•  A uniform rotating sphere: nothing seems to move, yet it is rotating  

•  Changing directions or intensities of lighting can make things seem to move  
–  – for example, if the specular highlight on a rotating sphere moves. 

•  Muscle movement can make some spots on a cheetah move opposite direction of 
motion.  

•   And infinitely more break downs of optical flow. 
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OF Assumptions: Brightness Constancy 
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 OF Assumptions 
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OF Assumptions  



1D case  

)),(()),(()( dttdttxIttxItf ++=≡

Brightness Constancy Assumption: 
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Because no change in brightness with time 
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Tracking in the 1D case: 
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v

xI

Spatial derivative 

Temporal derivative 
tI

Tracking in the 1D case: 
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Assumptions: 
•  Brightness constancy 
•  Small motion 



Tracking in the 1D case 
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p

xI

tI

Temporal derivative at 2nd iteration 

Iterating helps refining the velocity vector 

Can keep the same estimate for spatial derivative 
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Converges in about 5 iterations 
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Ø Compute local image derivative at p: 
Ø  Initialize velocity vector:  
Ø Repeat until convergence: 

Ø Compensate for current velocity vector:  
Ø Compute temporal derivative: 
Ø Update velocity vector:  

For all pixel of interest p: 
xI

0←v

)1,()1,(' ++=+ tvxItxI 

),()1,(' tpItpIIt −+=

�  Need access to neighborhood pixels round p to compute  
�  Need access to the second image patch, for velocity compensation: 

�  The pixel data to be accessed in next image depends on current velocity estimate (bad?) 
�   Compensation stage requires a bilinear interpolation (because v is not integer) 

�  The image derivative        needs to be kept in memory throughout the iteration process   

Requirements: 
xI

xI

Algorithm 
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From 1D to 2D tracking 
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2D: 
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Shoot! One equation, two velocity (u,v) unknowns… 
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From 1D to 2D tracking 

* Slide from Michael Black, CS143 2003 

We get at most “Normal Flow” – with one point we can only detect movement  
perpendicular to the brightness gradient.  Solution is to take a patch of pixels 
Around the pixel of interest.     
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image I 

Gaussian pyramid of image It-1 Gaussian pyramid of image I 

image It 
image It-1 

u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 

Coarse-to-fine optical flow estimation 
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image I image J 

Gaussian pyramid of image It-1 Gaussian pyramid of image I 

image I image It-1 

Coarse-to-fine optical flow estimation 

run iterative L-K 

run iterative L-K 

warp & upsample 

. 

. 

. 



Example 
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Example: Results 
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Block matching 
Block-matching 

16x16 pixels/block 

Search window: ±16 pixels 
from the original position 

Computationally heavy! 
To reduce the complexity 

Sub-optimal algorithms 

Hardware assisted 
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Block matching 
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Motion estimation & Motion compensation 
Previous frame 

Current frame (A) 

Reconstructed frame 

Motion compensation 

Compensated frame (B) 

Delta frame=A-B 

Delta frame+Motion 
Vectors 

Reference frame 
(prediction residual, 
previously decoded) 

+ 


