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CHAPTER 1

First part

1. Lecture of 1 october 2018: Introduction (3h)

“... nihil omnino in mundo contingit, in quo non maximi minime ratio quaepiam eluceat 1...”
Leonhard Euler, 1744

We will speak of optimization problem, when we have a rational and coherent agent and a set of
possible (mutually exclusive) alternatives X, among which the agent must choose. The agent
must choose one of the alternatives basing on a choice criterion, characterized by a preference
relation, that allows the comparison of pairs of alternatives x, y ∈ X.

The rationality and coherence of the agent impose that the preference relation must be a total
order relation2, and the simplest way is to assume the existence of a function F : X → [−∞,+∞]
(called cost function) modeling the preference relation in the following way: the agent will prefer
x ∈ X to y ∈ X if and only if F(x) ≤ F(y).

Thus, the basic form of an optimization problem we are going to deal with is the following one.

Let X be a set, F : X → [−∞,+∞] be a function:
i. determine inf

x∈X
F(x), in particular establish if inf

x∈X
F(x) > −∞;

ii. establish if there exist points x̄ ∈ X such that F(x̄) = inf
x∈X

F(x). In such case, the set

arg min
x∈X

F(x) =

{
x̄ ∈ X : F(x̄) = inf

x∈X
F(x)

}
is called the set of minimum points of F on X, and inf

x∈X
F(x) = min

x∈X
F(x);

iii. characterize the points of arg min
x∈X

F(x).

We recall that sup
x∈X

F(x) = − inf
x∈X

(−F(x)), so also the problem of the maximization could be

reformulated as minimization problems.

Maximization/minimizartion problems, apart from their mathematical interest, are at the basis
of almost every field of knowledge, e.g. physics, biology models, economics, social sciences, but
also industry, design, programming, resource management, transport...

Some examples:

• the distance function of a point x ∈ Rn from a nonempty set S ⊂ Rn is defined as

dS(x) := inf
y∈S
{‖y− x‖},

in this case x is fixed and F(y) = ‖y− x‖;

• Fermat’s Rule in geometrical optics states that the path followed by the ligth to go from a
point A to a point B is the path which minimizes the time needed to travel from A to B
among all possible paths joining A and B;

1nothing in all the world will occur in which no maximum or minimum rule is somehow shining forth...
2In some framework, in particular in economics, there are also other possibility, modeling the fact that the agent can

have multiple contrasting criteria of choice. This lead to drop the total order assumption and assuming that the preference
relation is a partial order. We will not deal with this problems in this course

1



2 1. FIRST PART

• the least action principle for a mechanical system subject to conservative forces and
smooth constraints establish that if T is the kinetic energy of the systems and V is the
potential energy, introducing the Lagrangian L = T −V, the trajectories followed by
the system from an initial state q0 at an initial time a to a final state q1 at a final time b
are the minimizers of the action

F(q(·)) :=
∫ b

a
L(t, q(t), q̇(t)) dt,

among all the trajectories q : [a, b]→ Rn satisfying q(a) = q0, q(b) = q1 and the
constraints;

• usually students wants to pass exams minimizing the study time and maximizing the
final mark.

We recall the following definitions.

DEFINITION 1.1. Let X be a set, f : X → R∪ {±∞} a function.
• a point a ∈ X is an absolute minimizer of f if f (y) ≥ f (a) for all y ∈ X. The minimizer is

strict if f (y) > f (a) for all y ∈ X \ {a}.
• a point a ∈ X is an absolute maximizer of f if f (y) ≤ f (a) for all y ∈ X. The maximizer is

strict if f (y) < f (a) for all y ∈ X \ {a}.

If X is endowed with a topology, we can give a local version of the above definitions.

DEFINITION 1.2. Let X be a topological space, f : X → R∪ {±∞} be a function.
• a point a ∈ X is a local minimizer of f if there exists a neighborhood U of a such that

f (y) ≥ f (a) for all y ∈ U. The local minimizer is strict if f (y) > f (a) for all y ∈ U \ {a}.
• a point a ∈ X is a local maximizer of f if there exists a neighborhood U of a such that

f (y) ≤ f (a) for all y ∈ U. The local maximizer is strict if f (y) < f (a) for all y ∈ U \ {a}.
Local maxima and minima are called local extremals.

EXAMPLE 1.3. Let X = R. Consider F(x) = x4 − 12x + 1. We want to minimize F over R. As
well known from the previous courses in Mathematical Analysis, we compute F′(x) = 4x3 − 12.
We have F′(x) = 0 if and only if x = 3

√
3. Noticing that lim

x→±∞
F(x) = +∞, and since

F′′(x) = 12x2 and F′′( 3
√

3) > 0, we have that x̄ = 3
√

3 is the unique minimum point for F and the
value of the minimum is F( 3

√
3) = 1− 9 3

√
3.

REMARK 1.4. Let us review carefully step by step the above example:
(1) existence: notice that F ∈ C0(R, R), moreover lim

|x|→+∞
F(x) = +∞. Since F is not

identically +∞, we have that inf
x∈R

F(x) < +∞. Thus let {xn}n∈N be a sequence in R

such that F(xn)→ inf
x∈R

F(x) (such kind of sequences are called minimizing sequences). If

|xn| was unbounded, it would be possible to find a subsequence {xnk}k∈N such that
|xnk | → +∞, but in this case we would have

inf
x∈R

F(x) = lim
n→∞

F(xn) = lim
k→∞

F(xnk ) = lim
|x|→+∞

F(x) = +∞,

which is a contradiction. Thus there exists M > 0 such that |xn| ≤ M. But this implies
that

inf
x∈R

F(x) = inf
x∈[−M,M]

F(x),

and since F is continuous and the interval [−M, M] is compact, we can apply
Weierstrass’ Theorem: every real-valued continuous function defined on a compact set
admits absolute maxima and minima. So there exists at least one minimum point of F.

(2) necessary condition: let x̄ be a minimum point. Since F is of class C1, necessarily we
must have F′(x̄) = 0, this lead to isolate the candidate point x̄ = 3

√
3.
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(3) sufficient condition: Since F ∈ C2, F′(x̄) = 0 e F′′(x̄) > 0 then x̄ = 3
√

3 is a minimum
point for F on R and it is the unique minimum point.

REMARK 1.5. Attention: using necessary conditions without an existence theorem can be extremely
misleading.

EXAMPLE 1.6 (Perron’s Paradox). Consider the problem sup
x∈R+

x. Let x̄ > 0. We consider two

possibilities: if x̄ > 1 then x̄2 > x̄, thus x̄ cannot be a maximum point, and if 0 < x̄ < 1 then√
x̄ > x̄, so again x̄ cannot be a maximum point. So these two necessary conditions lead us to

isolate the point x̄ = 1. However sup
x∈R+

x = +∞, there are no maximum points, and the necessary

conditions are useless.

The core of the existence part of the proof is Weierstrass Theorem, which can be summarized by
saying:

continuity + compactness = existence of maxima and minima.

Our aim is now to preserve existence weakening the other two assumptions. We preliminary
notice that Weierstrass Theorem yields existence of both maxima and minima, but we are
intrested only in the minimum points.

Thus it is natural to search for a weakened notion of continuity in some sense still respecting the
notion of minimum.

Assume that x̄ ∈ X is a local minimum point, in this case we have that there exists a
neighborhood U of x such that

F(y) ≥ F(x̄), for all y ∈ U \ {x̄}.

In particular, we have
inf

y∈U\{x̄}
F(y) ≥ F(x̄),

which leads to
sup

V open
x̄∈V

inf
y∈V\{x̄}

F(y) ≥ F(x̄).

By definition, the right hand side is the lim inf for y tending to x̄, thus we obtain :

lim inf
y→x̄

F(y) ≥ F(x̄).

If F is continuous and X is a topological Hausdorff space, we have that for every x ∈ X it holds

lim
y→x

F(y) = F(x),

in particular
lim inf

y→x̄
F(y) = lim

y→x̄
F(y) = F(x̄);

thus a natural weakening of the cointinuity which repects the notion of minimum would be to
require that for every x ∈ X it holds

lim inf
y→x

F(y) ≥ F(x).

DEFINITION 1.7 (Limsup and Liminf in topological spaces). Let X be a topological Hausdorff
space, x ∈ X, F : X → [−∞,+∞]. We define

lim inf
y→x

F(y) := sup
V open

x∈V

inf
y∈V\{x}

F(y),

lim sup
y→x

F(y) := inf
V open

x∈V

sup
y∈V\{x}

F(y),
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LEMMA 1.8. Let X be a topological Hausdorff space, x ∈ X, F : X → [−∞,+∞]. We have always

lim inf
y→x

F(y) ≤ lim sup
y→x

F(y).

Moreover, lim
y→x

F(y) exists if and only if

lim inf
y→x

F(y) = lim sup
y→x

F(y),

and in this case we have
lim inf

y→x
F(y) = lim sup

y→x
F(y) = lim

y→x
F(y).

PROOF. Let a > lim sup
y→x

F(y). In particular, for any ε > 0 there exists an open neighborhood

Vε of x such that
sup

y∈Vε\{x}
F(y)− ε ≤ lim sup

y→x
F(y),

and recalling the choice of a we obtain

sup
y∈Vε\{x}

F(y) ≤ a + ε,

Given any open neighborhood V of x, we have

inf
y∈V\{x}

F(y) ≤ inf
y∈V∩Vε\{x}

F(y) ≤ sup
y∈Vε\{x}

F(y) ≤ a + ε,

hence by taking the supremum on V we obtain

lim inf
y→x

F(y) ≤ a + ε.

By letting ε→ 0+ and a→
[

lim sup
y→x

F(y)

]+
, we have

lim inf
y→x

F(y) ≤ lim sup
y→x

F(y).

Indeed, assume that lim
y→x

F(y) = ` exists, and take any neighborhood W of `. Then there exists a

neighborhood V of x such that if y ∈ V then F(y) ∈W, thus

inf W ≤ inf
y∈V\{x}

F(y),

sup W ≥ sup
y∈V\{x}

F(y)

and so for all neighborhood W of ` we have

inf W ≤ lim inf
y→x

F(y) ≤ lim sup
y→x

F(y) ≤ sup W.

If ` ∈ R take W = B(`, 1/i), if ` = −∞ take W =]−∞,−i], if ` = +∞ take W =]i,+∞[. In all
cases, by letting i→ +∞ we have

` = lim
y→x

F(y) = lim inf
y→x

F(y) = lim sup
y→x

F(y).

Assume now that
` = lim inf

y→x
F(y) = lim sup

y→x
F(y).

For any ε > 0 there exist open sets Vε and Vε such that x ∈ V(ε) := Vε ∩Vε and

sup
y∈Vε\{x}

F(y)− ε ≤ ` ≤ inf
y∈Vε\{x}

F(y) + ε,

hence
sup

y∈V(ε)\{x}
F(y)− ε ≤ ` ≤ inf

y∈V(ε)\{x}
F(y) + ε,
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So for every ε > 0, if y ∈ V(ε) \ {x̄} we have F(y) ∈ B(`, ε), hence we have that the limit exists
and

lim
y→x

F(y) = `.

�

The following simple remark will be often used.

LEMMA 1.9. Let X, Y, Z be nonempty sets, and let f : X×Y× Z → [−∞,+∞] be a map. Then

sup
y∈Y

[
sup
z∈Z

f (x, y, z)

]
= sup

z∈Z

[
sup
y∈Y

f (x, y, z)

]
,

inf
y∈Y

[
inf
z∈Z

f (x, y, z)

]
= inf

z∈Z

[
inf
y∈Y

f (x, y, z)

]
,

sup
y∈Y

[
inf
z∈Z

f (x, y, z)

]
≤ inf

z∈Z

[
sup
y∈Y

f (x, y, z)

]
.

PROOF. Assume that M(x) ≥ sup
z∈Z

f (x, y, z) for all y ∈ Y, then we have M(x) ≥ f (x, y, z) for

all y ∈ Y, z ∈ Z, and so M(x) ≥ sup
y∈Y

f (x, y, z) for all z ∈ Z. Conversely, by reversing the role of y

and z we have that if M(x) ≥ sup
y∈Y

f (x, y, z) for all z ∈ Z then M(x) ≥ sup
z∈Z

f (x, y, z) for all y ∈ Y.

This implies that M(x) ≥ sup
y∈Y

sup
z∈Z

f (x, y, z) if and only if M(x) ≥ sup
z∈Z

sup
y∈Y

f (x, y, z), and so

equality hold, proving the first relation. The second relation can be obtained similarly, by
replacing sup with inf and ≥ with ≤.

For the third relation, notice that for any (x, ȳ, z̄) ∈ X×Y× Z we have

inf
z∈Z

f (x, ȳ, z) ≤ f (x, ȳ, z̄) ≤
[

sup
y∈Y

f (x, y, z̄)

]
,

in particular, for every ȳ ∈ Y we have

inf
z∈Z

f (x, ȳ, z) ≤
[

sup
y∈Y

f (x, y, z̄)

]
, for all z̄ ∈ Z,

and so for every ȳ ∈ Y we have

inf
z∈Z

f (x, ȳ, z) ≤ inf
z∈Z

[
sup
y∈Y

f (x, y, z̄)

]
,

thus

sup
y∈Y

inf
z∈Z

f (x, y, z) ≤ inf
z∈Z

[
sup
y∈Y

f (x, y, z̄)

]
.

�

REMARK 1.10. In the case in which X is a metric space, we have that the above definition of
lim inf reduces to the usual one. More precisely, we can characterize the topological lim inf and
lim sup by mean of sequences recalling that in every metric space a base for the topology is given
by balls (in particular, every point has a countable base of neighborhoods).

LEMMA 1.11 (Liminf and limsup in metric spaces). Let X be a metric space, x ∈ X,
F : X → R∪ {±∞}. Then the following are equivalent:

(I1) lim inf
y→x

F(y) = `;

(I2) for all sequences {yj}j∈N ⊆ X \ {x} such that yj → x and {F(yj)}j∈N has a limit, we have
lim
j→∞

F(yj) ≥ `, and there exists a sequence ȳi → x̄ such that equality holds.

Symmetrically, the following are equivalent:
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(S1) lim sup
y→x

F(y) = `;

(S1) for all sequences {yj}j∈N ⊆ X \ {x} such that yj → x and {F(yj)}j∈N has a limit, we have
lim
j→∞

F(yj) ≤ `, and there exists a sequence ȳi → x̄ such that equality holds.

PROOF. We prove only the equivalence of (I1) and (I2). The corresponding results for (S1)
and (S2) can be deduced by applying the results for (I1) and (I2) to the function G = −F, since

lim inf
y→x̄

G(y) := sup
V open

x̄∈V

inf
y∈V\{x̄}

G(y) = − inf
V open

x̄∈V

sup
y∈V\{x̄}

F(y) = − lim sup
y→x

F(y),

(I1 =⇒ I2) For any i ∈N there exists an open neighborhood Ui of x such that

sup
V open

x∈V

inf
y∈V\{x}

F(y) ≤ inf
y∈Ui\{x}

F(y) +
1
2i ,

moreover, there exists ri > 0 such that B(x, ri) ⊆ Ui. Without loss of generality, we may
assume also that if i > 0 we have 0 < ri < min{1/2i, ri−1}. We have

sup
V open

x∈V

inf
y∈V\{x}

F(y) ≤ inf
y∈Ui\{x}

F(y) +
1
2i ≤ inf

y∈B(x,ri)\{x}
F(y) +

1
2i .

Let {yj}j∈N ⊆ X \ {x} be such that yj → x and {F(yj)}j∈N converges. For every i ∈N

we have that there exists ji ∈N such that yj ∈ B(x, ri) for all i ≥ ju since yj → x. This
implies that

` = sup
V open

x∈V

inf
y∈V\{x}

F(y) ≤ F(yj) +
1
2i , for all j ≥ ji.

By letting j→ ∞ and then i→ +∞ we obtain the first part of (2).
Choose ȳi ∈ B(x, ri) \ {x̄} such that

inf
y∈B(x,ri)\{x̄}

F(y) ≤ F(ȳi) ≤ inf
y∈B(x,ri)\{x̄}

F(y) +
1
2i .

Thus we have

F(ȳi)−
1
2i ≤ inf

y∈B(x̄,ri)\{x̄}
F(y) ≤ sup

V open
x̄∈V

inf
y∈V\{x̄}

F(y) = `

≤ inf
y∈B(x,ri)\{x}

F(y) +
1
2i ≤ F(ȳi) +

1
2i .

We conclude that:
(a) since 0 < ri < 1/2i for i > 0, we have ri → 0+ and so ȳi → x;

(b) since ri < ri−1 for i > 0, we have that

{
inf

y∈B(x̄,ri)\{x}
F(y)

}
i∈N\{0}

is an increasing

sequence (the infimum is made on shrinking sets), thus it admits a limit that we
denote by `′;

(c) we have that F(yi)→ `′ as y→ ∞ by the choice of yi;
(d) we have `′ = ` for the above chain of inequalities.

(I2 =⇒ I1) If {yi} is any sequence such that yi → x and {F(yi)}i∈N has a limit, we have that for
every open neighborhood V of x there exists jV ∈N such that yi ∈ V for all i > jV ,
hence

inf
y∈V\{x}

F(y) ≤ F(yi), i > jV .
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By letting i→ +∞, we obtain

inf
y∈V\{x}

F(y) ≤ lim
i→∞

F(yi),

and taking the sup on V we have

lim inf
y→x

F(y) ≤ lim
i→∞

F(yi),

for every sequence {yi}i∈R such that yi → x and {F(yi)}i∈N has a limit. In particular,
we have that

lim inf
y→x

F(y) ≤ lim
i→∞

F(ȳi) = `,

Let {ri}i∈N ⊆ [0,+∞[ a monotone decreasing sequence. Then

{
inf

y∈B(x̄,ri)\{x}
F(y)

}
i∈N

is

an increasing sequence, thus it admits a limit `′. Choose ȳi ∈ B(x, ri) \ {x} such that

inf
y∈B(x̄,ri)\{x}

F(y) ≤ F(ȳi) ≤ inf
y∈B(x,ri)\{x}

F(y) +
1
2i ,

and notice that ȳi → x and F(ȳi)→ `′, thus by assumption we must have ` ≤ `′. On the
other hand, we must have

sup
V open

x∈V

inf
y∈V\{x}

F(y) ≥ inf
y∈B(x,ri)\{x}

F(y),

and letting i→ ∞ we obtain

` ≥ sup
V open

x∈V

inf
y∈V\{x}

F(y) ≥ `′,

so ` = `′ and the proof is completed.
�

DEFINITION 1.12 (Semicontinuity). Let X be a topological Hausdorff space, F : X → [−∞,+∞].
We say that F is lower semicontinuous (shortly l.s.c.) if for every x ∈ X it holds

lim inf
y→x

F(y) ≥ F(x),

where
lim inf

y→x
F(y) = sup

V open
x∈V

inf
y∈V\{x}

F(y).

Symmetrically, we say that F is upper semicontinuous (shortly u.s.c.) if for every x ∈ X it holds

lim sup
y→x

F(y) ≤ F(x),

where
lim sup

y→x
F(y) = inf

V open
x∈V

sup
y∈V\{x}

F(y).

We will give now another characterization of semicontinuous functions.

DEFINITION 1.13. Let X be a topological Hausdorff space, F : X → [−∞,+∞]. Define

dom F := {x ∈ X : F(x) ∈ R}, the domain of F;

epi F := {(x, α) ∈ X×R : α ≥ F(x)}, the epigraph of F;

hypo F := {(x, β) ∈ X×R : β ≤ F(x)}, the hypograph of F.

LEMMA 1.14. Let X be a topological vector space, F : X → [−∞,+∞]. Then
(1) F is l.s.c. if and only epi F is closed in X×R (endowed with product topology);
(2) F is u.s.c. if and only hypo F is closed in X×R (endowed with product topology);
(3) F is continuous if and only if it is both l.s.c. and u.s.c.
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PROOF. Assume that F is l.s.c. and want to prove that epi F is closed. Let (x, α) /∈ epi F, in
particular we have

α < F(x) ≤ lim inf
y→x

F(y) = sup
V open

x∈V

inf
y∈V\{x}

F(y).

Take ε > 0 such that α + ε/2 < F(x) and let Vε be open such that x ∈ Vε and

sup
V open

x∈V

inf
y∈V\{x}

F(y) ≤ inf
y∈Vε\{x}

F(y) +
ε

4
,

hence

α +
ε

2
< F(x) ≤ inf

y∈Vε\{x}
F(y) +

ε

4
,

so α + ε/4 < F(y) for all y ∈ Vε, hence Vε×]−∞, α + ε/4[ is an open neighborhood of (x, α) that
has empty intersection with epi F, hence the complement set of epi F is open, thus epi F is closed.

Assume now that epi F is closed in X×R and want to prove that F is l.s.c. Given (x, α) /∈ epi F
we have that there exists an open neighborhood V of x and ε > 0 such that V × B(α, ε) has
empty intersection with epi F, since the complement of has epi F is open. In particular, we have
that F(y) > α + ε for every y ∈ V, hence

inf
y∈V\{x}

F(y) ≥ α + ε,

and so by passing to the sup on V

lim inf
y→x

F(y) ≥ α + ε.

This holds for every α < F(x) and for every ε > 0 sufficiently small, hence by letting ε > 0 and
α→ F(x)− we have

lim inf
y→x

F(y) ≥ F(x),

thus F is l.s.c.

The statement on upper semicontinuity can be proved with an analogous argument, and it is left
to the reader.

Assume that F is continuous, then is trivially l.s.c. and u.s.c. Conversely, if we assume that F is
both l.s.c. and u.s.c. we have

lim sup
y→x

F(y) ≤ F(x) ≤ lim inf
y→x

F(y),

which implies

F(x) = lim sup
y→x

F(y) = lim inf
y→x

F(y) = lim
y→x

F(y),

hence F is continuous. �
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EXAMPLE 1.15. A lower semicontinu-
ous function. Since

lim
x→0±

f (x) = ±1,

we have that

lim inf
x→0

f (x) = −1 > −2 = f (0).

All the points (0, y) with y ≥ −2 be-
long to epi f , which then is closed in
R×R.

−2 −1 1 2

−2

−1

1

2

0

y = f (x)

f (0)

EXAMPLE 1.16. An upper semicontin-
uous function. Since

lim
x→0±

f (x) = ±1,

we have

lim sup
x→0

f (x) = 1 < 2 = g(0).

All the points (0, y) with y ≤ 2 belong
to hypo g which then is closed in R×
R.

−2 −1 1 2

−2

−1

1

2

0

y = g(x)

g(0)

After having discussed the weakened notion of continuity, we pass to examine compactness
assumption. Even in the first example (minimization on R) the space X was not compact a
priori, however the fact that lim

|x|→∞
F(x) = +∞, toghether with the fact that F was not identically

+∞ leaded us to say that every minimizing sequence indeed belongs to a suitable compact set.

Thus the following definition is natural:

DEFINITION 1.17 (Coercivity). Let X be a metric space, F : X → [−∞,+∞]. We say that F is
coercive if for every t ∈ R there exists K(t) ⊂ X, with K(t) compact subset of X, such that

{x ∈ X : F(x) ≤ t} ⊆ K(t).

We notice that if X is compact, coercivity property is trivial, since we can choose K(t) = X for
every t ∈ R.

We are ready now to state the weakened version of Weierstrass Theorem.

THEOREM 1.18 (Tonelli-Weierstrass). Let X be a metric space, F : X → [−∞,+∞]. Assume that F is
lower semicontinuous and coercive. Then F admits at least a minimum point in X.

PROOF. If F(x) = +∞ for every x ∈ X then there is nothing to prove, since every x ∈ X is a
minimum point. So we can assume that inf

x∈X
F(x) = m < +∞. Let t > m and by assumption we

can consider the compact set K(t) containing {x ∈ X : F(x) ≤ t}. We have

inf
x∈X

F(x) = inf
x∈K(t)

F(x).

Let now {xn}n∈N be a minimizing sequence. For sufficiently large n we have F(xn) < t thus
xn ∈ K(t) which is compact. So there exists a subsequence {xnk}k∈N converging to x̄ ∈ K(t). By
lower semicontinuity:

F(x̄) ≤ lim inf
k→∞

F(xnk ) = lim
n→∞

F(xn) = m,
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and this implies F(x̄) = m so x̄ is a minimum point for F in K(t) and in X. �

LEMMA 1.19. Let X = Rn, F : X → [−∞,+∞]. Then F is coercive if and only if lim
‖x‖→∞

F(x) = +∞.

PROOF. Fix t ∈ R. By assumption, there exists M = M(t) > 0 such that if ‖x‖ > M(t) then
F(x) > t. But this implies

{x ∈ X : F(x) ≤ t} ⊆ {x ∈ X : ‖x‖ ≤ M(t)}
Since we are in Rn, the set K(t) := B(0, M(t)) is compact, so F is coercive.

Conversely, assume that F is coercive. In that case, if {xn}n∈N is a sequence with ‖xn‖ → ∞ and
such that lim

n→∞
F(xn) exists, we must necessarily have lim

n→∞
F(xn) = +∞. In fact, if by

contradiction lim
n→∞

F(xn) ≤ ` ∈ R, we should have xn ∈ K(`+ 1), for n sufficiently large. But in

this case, since K(`+ 1) is compact thus bounded, we could not have ‖xn‖ → ∞. So for every
sequence such that ‖xn‖ → ∞ and lim

n→∞
F(xn) exists, necessarily we have lim

n→∞
F(xn) = +∞, thus

lim inf
‖x‖→∞

F(x) = +∞,

but this implies
lim
‖x‖→∞

F(x) = +∞.

�

Summarizing, we have obtained the following fact:

lower semicontinuity + coercivity = existence of points of minimum.

EXERCISE 1.20. We will prove Tonelli-Weierstrass Theorem without assuming that X is a metric
space.

(1) Prove the following topological version of Weierstrass theorem: let f : Z → Y be a
continuous map between two topological spaces Z and Y. If Z is compact then f (Z) is
compact in Y.

(2) Define T := {]a,+∞] : a ∈ R∪ {−∞}} ∪ {[−∞,+∞], ∅}. Prove that T is a topology
on R∪ {±∞}.

(3) Let X be a topological space, f : X → R∪ {±∞} be a map, and x0 ∈ X. Prove that f is
continuous at x0 when we endow R∪ {±∞} with the topology T if and only if f is
lower semicontinuous at x0 (w.r.t. the usual topology on R∪ {±∞})

(4) Prove that K ⊆ R∪ {±∞} is compact for the topology T if and only if inf K ∈ K.
(5) Conclude the proof of the theorem.

SOLUTION.
(1) Let {Vα}α∈I be an open covering of f (Z). Set

Uα = f−1(Vα) = {x ∈ Z : f (z) ∈ Vα}.
Since f is continuous, Uα is open. Given x ∈ Z, there exists αx ∈ I such that f (x) ∈ Vαx

since
f (x) ∈ f (Z) ⊆

⋃
α∈I

Vα,

thus x ∈ Uαx . In particular, we have that {Uα}α∈I is an open covering of the compact set
Z. So there exist N ∈N \ {0}, and α1, . . . , αN ∈ I such that

Z =
N⋃

i=1

Uαi ,

and so

f (Z) = f

(
N⋃

i=1

Uαi

)
=

N⋃
i=1

f (Uαi ) =
N⋃

i=1

Vαi ,

thus from the open covering {Vα}α∈I of f (Z) we have extracted a finite subcovering,
and so f (Z) is compact.
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(2) We have R∪ {±∞}, ∅ ∈ T . Given a family of elements of T if at least one of them
coincides with [−∞,+∞], then the union is [−∞,+∞] ∈ T . If all the elements of the
family are ∅, then the union is ∅ ∈ T . In the remaining cases, we have that the union of
all the elements of the family coincides with

⋃
α∈I

]rα,+∞] for a family

{rα}α∈I ⊆ R∪ {−∞}. If r ∈
⋃
α∈I

]rα,+∞] we have that there exists α̂ ∈ I such that r > rα̂,

and so r > infα∈I rα. Conversely, let r > infα∈I rα. Then there exists α̂ ∈ I such that
r > rα̂, in particular

⋃
α∈I

]rα,+∞] =

]
inf
α∈I

rα,+∞

]
∈ T ,

since infα∈I rα ∈ R∪ {−∞}. It is trivial to verify that a finite intersection of element of
T belongs again to T .

(3) Suppose that f is l.s.c. at x0. We prove that the inverse image of every open
neighborhood of f (x0) w.r.t. the topology T is a neighborhood of x0 in X. An open
neighborhood of f (x0) is of the form Wr =] f (x0)− r,+∞] for a certain r ∈ R. Since

sup
V open

x0∈V

inf
y∈V\{x}

f (y) ≥ f (x),

there exists an open neighborhood Vr of x0 such that

inf
y∈Vr\{x0}

f (y) +
r
2
≥ sup

V open
x0∈V

inf
y∈V\{x0}

f (y) ≥ f (x),

and so for all y ∈ Vr we obtain

f (y) ≥ f (x)− r
2
> f (x)− r,

thus for any Wr there exists a neighborhood Vr of x0 such that f (y) ∈Wr for all y ∈ Vr.

Conversely, assume that the inverse image of every open neighborhood of f (x0)
w.r.t. the topology T is a neighborhood of x0 in X. In particular, for any r > 0 the set
{y : f (y) > f (x0)− r} = f−1(] f (x0)− r,+∞]) is a neighborhood of x0 in X. In
particular, there exists an open neighborhood V̂ of x0 such that f (y) > f (x0)− r for all
y ∈ V̂. So for all r > 0,

sup
V open

x0∈V

inf
y∈V\{x0}

f (y) ≥ inf
y∈V̂\{x0}

f (y) ≥ f (x0)− r

which, by letting r → 0+, implies

lim inf
y→x

f (y) = sup
V open

x0∈V

inf
y∈V\{x0}

f (y) ≥ f (x0),

i.e., f is l.s.c. at x0.
(4) Let K satisfying inf K ∈ K and take an open covering of K. If [−∞,+∞] belongs to the

covering, then trivially we can extract the finite subcovering consisting only on
[−∞,+∞] to cover K. Otherwise, any union of sets of the form ]rα,+∞], α ∈ I, cannot
cover K unless there exists α̂ ∈ I such that rα̂ < inf K. In this case, we have that
K ⊆]rα̂,+∞], thus we have extract a finite subcovering of K. Conversely, assume that
inf K /∈ K, and take a sequence {xn}n∈N, xn → inf F with xn > k. We have⋃

n∈N

]xn,+∞] ⊇ K,

but we cannot extract a finite subcovering of K from ]xn,+∞], x ∈N.



12 1. FIRST PART

(5) Let f : X → R∪ {±∞} be l.s.c. and coercive. If inf F(x) = +∞, then the minimum is
+∞ and it is achieved at every x ∈ X. Otherwise, given m ∈ R, m > inf F(x), there
exists a compact K ⊆ X such that F|K ≤ m and inf

x∈K
F(x) = inf

x∈X
F(x). Endowing

R∪ {±∞} with the topology T , we have that F is continuous, and so F(K) is compact.
In particular, inf F(K) ∈ F(K), thus there exists x̄ ∈ K such that F(x̄) = inf F(K), and so
x̄ is a point of minimum for F on X.

Summary of Lecture 1

• Given a nonempty set X and a map F : X → R ∪ {±∞} we consider the basic
minimization problem infx∈X F(x).
• The main features of the problem are:

– existence of solutions, i.e. existence of minimizers x̄ for F with F(x̄) ∈ R,
– necessary conditions, i.e. properties that a minimizer satisfies,
– sufficient conditions, i.e. properties that, if satisfied, give a minimizer.

• Perron’s paradox taught us that using necessary conditions without an existence
result can be quite dangerous.
• We notice that a priori there is no topology given on X.
• Without a topology on X, we speak only about absolute minimizers, which are in-

dependent from the topology. Local minimizers are instead related to a topology.
• We are free to choose any topology on X in order to study the problem, in particular

to have existence.
• A topological criterion yielding existence is the Weierstrass theorem: if X is compact

and F is continuous then F admits maximum and minimum.
• This overexceeds our needs: we want to relax the assumptions of Weierstrass theo-

rem, but still retaining the existence of the minimum.
• To this aim we introduce

– the concept of lower semicontinuity, which is a weakened form of continuity. A
function is l.s.c. iff it has closed graph.

– the concept of coercivity, i.e. for each sublevel there is compact set containing
it.

• We ended up with the Tonelli-Weierstrass theorem: if F is l.s.c. and coercive, then F
admits minimum on X.

2. Lecture of 5 october 2018: Weak topologies, convex sets and convex functions (3h)

During the previous lecture, we discussed the problem of the existence of minima, obtaining a
more general version of Weierstrass Theorem suitable for our purpouses:

lower semicontinuity + coercivity = existence of points of minimum.

When we study the general minimization problem inf
x∈X

F(x), is not given a priori any topology

on X. To determine a suitable topology on X to have existence of solutions is a part of the
problem.

L.s.c. functions enjoy intresting stability properties:

LEMMA 2.1. Let {Fi}i∈I with Fi : X → [−∞,+∞] for every I ∈ I be a family of l.s.c. functions, let
F1, F2 : X → [−∞,+∞] be l.s.c. functions, and let λ ≥ 0. Then:

(1) λF1 + F2 is l.s.c.;
(2) Defined F(x) := supi∈I Fi(x), we have that F : X → [−∞,+∞] and F is l.s.c.

PROOF. The first statement follows from the properties of the limits:

λF1(x) + F2(x) ≤ λ lim inf
y→x

F1(y) + lim inf
y→x

F2(y) ≤ lim inf
y→x

(λF1(y) + F2(y)),

For the second, we have
epi F =

⋂
i∈I

epi Fi,
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since by assumption epi Fi is closed for all i ∈ I, we have that epi F is also closed, thus F is
l.s.c. �

We notice that:
(1) a very strong topology on X make easier to obtain lower semicontinuity, but more

difficult to have compactness and then coercivity;
(2) a very weak topology on X make more difficult to have lower semicontinuity, but easier

to have compactness and then coercivity.

EXAMPLE 2.2. Let g ∈ X := L2(0, 1) be fixed. We are intrested in the following minimization
problem:

inf
u∈X

Fg(u),

where Fg : L2(0, 1)→ R is defined by

Fg(u) :=
∫ 1

0
|u(t)|2 dt− 2

∫ 1

0
g(t)u(t) dt.

We notice that, indeed, the problem is trivial: in fact we have

Fg(u) =
∫ 1

0
|u(t)|2 dt− 2

∫ 1

0
g(t)u(t) dt +

∫ 1

0
|g(t)|2 dt−

∫ 1

0
|g(t)|2 dt

=
∫ 1

0

(
|u(t)|2 − 2g(t)u(t) + |g(t)|2

)
dt−

∫ 1

0
|g(t)|2 dt

=
∫ 1

0
(u(t)− g(t))2 dt−

∫ 1

0
|g(t)|2 dt ≥ −

∫ 1

0
|g(t)|2 dt

and, on the other hand,

Fg(g) = −
∫ 1

0
|g(t)|2 dt,

and so we conclude that g is a minimum point in X for Fg and the value at the minimum is Fg(g).

We are now intrested in testing the assumptions of the generalized Weierstrass Theorem in the
above simple situation. Suppose to endow X = L2(0, 1) with the strong topology of the norm
‖ · ‖L2 coming from the scalar product of L2. Then we have

Fg(u) := ‖u‖2
L2 − 2〈g, u〉L2 .

Let us check the assumption of the Tonelli-Weierstrass Theorem:
(1) The functional is continuous, indeed, given a sequence {un}n∈N in L2(0, 1) converging

to u ∈ L2(0, 1) according to the norm of L2(0, 1), by Schwarz’s inequality we have:

|Fg(un)− Fg(u)| =
∣∣∣‖un‖2

L2 − ‖u‖2
L2 − 2〈g, un − u〉L2

∣∣∣
≤
∣∣∣‖un‖2

L2 − ‖u‖2
L2

∣∣∣+ 2 |〈g, un − u〉L2 |

≤ |〈un − u, un + u〉L2 |+ ‖g‖L2‖un − u‖L2

≤ ‖un − u‖L2‖un + u‖L2 |+ ‖g‖L2‖un − u‖L2

≤ ‖un − u‖L2 (‖un + u‖L2 + ‖g‖L2)→ 0, per n→ ∞,

since the term in brackets is bounded. Being continuous, in particular the functional is
lower semicontinuous.

(2) We check now the coercivity property. We preliminary observe that

Fg(u) ≤ ‖u‖2
L2 + 2‖u‖L2‖g‖L2 .

Let us consider the sequence of functions {uk(t) := sin(2πkt)}k∈N. We have

‖uk‖2
L2 =

∫ 1

0
| sin(2πkt)|2 dt =

1
2π

∫ 2π

0
sin2(kx) dx =

1
2

,

thus
Fg(uk) ≤

1
2
+
√

2‖g‖L2 =: M.
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If Fg was coercive, it should exist a compact K = K(M) such that uk ∈ K(M) for every
k ∈N. But in this case it would be possible to extract from {uk}k∈N a subsequence
{ukj
}j∈N converging in L2 norm to a function ū ∈ K(M). According to

Riemann-Lebesgue’s Lemma, we have for every ϕ ∈ L2(0, 1)

lim
j→∞
〈ukj

, ϕ〉 = lim
j→∞

∫ 1

0
ϕ(x) sin(2πk jx) dx = 0,

and in particular:
lim
j→∞
〈ukj

, ū〉 = 0,

but we should have also

lim
j→∞
〈ukj

, ū〉 = 〈ū, ū〉L2 = ‖ū‖2
L2 ,

thus ū = 0. But this leads to the following contradiction

1
2
= ‖ukj

‖L2 → ‖ū‖L2 = 0.

Thus the functional is not coercive.

We recall now from the previous courses in calculus the following definitions:

DEFINITION 2.3 (Topological dual). Let E be a Banach space, we denote by E′ its topological dual,
i.e.,

E′ := { f : E→ R : f is linear and continuous}
The space E′ is a Banach space endowed with the following norm:

‖ f ‖E′ := sup
x∈E\{0}

| f (x)|
‖x‖E

.

We recall that if dim E < +∞ then every linear map is also automatically continuous. This fact is
no longer true when E has infinite dimension.

DEFINITION 2.4 (weak topology). The weak topology σ(E, E′) on E is the weaker topology on E
(i.e. with minimal number of open sets) such that allthe elements of E′ are continuous. Given a
sequence {xn}n∈N in E and x ∈ E we say that xn weakly converges to x and write xn ⇀ x or
xn → x in σ(E, E′) if

〈 f , xn〉E′ ,E → 〈 f , x〉 in R, for all f ∈ E′,

where we denote with 〈 f , xn〉E′ ,E = f (xn) ∈ R the evaluation of f at xn.

THEOREM 2.5 (properties of the weak topology). The weak topology enjoys the following properties:

(1) The weak topology is Hausdorff (equivalently, if the weak limit exists, then it is unique).
(2) Given x0 ∈ E, a basis of neighborhoods of x0 for σ(E, E′) is given by finite intersection of sets of

the form
V := {x ∈ E : |〈 f , x− x0〉E′ ,E| < ε}

where ε > 0, f ∈ E′.
(3) If xn → x strongly (i.e., according to the norm of E, equivalently if ‖xn − x‖E → 0) then

xn ⇀ x, the converse in general does not hold.
(4) If xn ⇀ x then ‖xn‖E is bounded and ‖x‖E ≤ lim inf

n→∞
‖xn‖E.

(5) If xn ⇀ x and ‖ fn − f ‖E′ → 0 then fn(xn)→ f (x).
(6) If E is finite-dimensional, the weak and the strong topology coincide on E, otherwise the weak

topology is strictly weaker.

PROOF. See Propositions III.3, III.4, III.5, III.6 at pp.52–54 of [3]. �
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DEFINITION 2.6 (Convex sets). Let X be a vector space on R or C, F ⊆ X a nonempty set. We
say that F is convex if for every λ ∈ [0, 1], x, y ∈ F we have λx + (1− λ)x ∈ F.

It is immediate to prove that a nonempty arbitrary intersection of convex sets is convex, thus
given a nonempty set S, is possible to consider the intersection of all the subsets of X containing
it. This intersection, called co(S), is the smaller convex set (in the sense of inclusion) containing S
and is named the convexification or convex hull of S. If holds:

co(S) :=

{
n

∑
j=0

λjxj : n ∈N, λj ∈ [0, 1], xj ∈ S for all 0 ≤ j ≤ n,
n

∑
j=0

λj = 1

}
,

set of all finite convex combination of elements of S.

Since the intersection of an arbitrary family of closed sets is closed, is possibile to dermine also
the smallest closed convex set containing S, which is the intersection of all the closed convex sets
containing S and coincides with co(S), i.e., the closure of the convex hull.

Attention: the closure of the convex hull in general does not coincide with the convex hull of the
closure!

EXAMPLE 2.7. Consider a separable Hilbert space with orthonormal basis S = {ei}i∈N. Given
two elements ei, ej ∈ S with i 6= j we have ‖ei − ej‖ =

√
2, so S = S̄ is closed. Thus co(S̄) is the

set of finite convex combinations of elements of S. We show now that 0 /∈ co(S̄). Indeed, since all
the elements of S = S̄ are linearly independent, we have

0 =
N

∑
i=1

λiei

if and only if λi = 0 for all i, but in this case 0 /∈ co(S̄) because we must have λi ≥ 0 and ∑ λi = 1
so at least one of the λi must be nonzero.

However, it is well known that ei ⇀ 0 for i→ ∞, in particular 0 ∈ coS (since ei can be viewed as
a convex combination made of a single element) because strong and weak topology coincides on
convex sets.

EXAMPLE 2.8. Set X := L2(−π, π) with the strong topology. Consider

S :=
{

1√
2π

,
cos(kx)√

π
,

sin(kx)√
π

, k ∈N \ {0}
}

Given f1, f2 ∈ S, f1 6= f2, we have ‖ f1 − f2‖ >
√

2, so S = S̄ and it is closed. Thus co(S̄) is the set
of finite convex combinations of elements of S, in particular co(S̄) ⊆ C∞(]− π, π[). On the other
hand, for every N ∈N, consider the function fN : [−π, π]→ R defined by

fN(x) :=

N

∑
n=1

sin(nx)√
πn2

N

∑
n=1

1
n2

.

Such function belongs to co(S) for every n ∈N and converges in L2 to

f∞(x) :=
6

π3/2

∞

∑
n=1

sin(nx)
n2 .

The sequence of the first derivatives converges in L2 to

f ′∞(x) :=
6

π3/2

∞

∑
n=1

cos(nx)
n

.

but such function is not continuous in x = 0, thus f∞ ∈ co(S) \ co(S̄).

DEFINITION 2.9. Let E be a vector space, A, B nonempty subsets of E, f : E→ R be a linear
function not identically 0, and α ∈ R. We say that
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(1) H is the hyperplane of equation f = α if

H := {x ∈ E : f (x) = α};

(2) H separates A and B in the weak sense if f (a) ≤ α and f (b) ≥ α for every a ∈ A, b ∈ B;
(3) H separates A and B in the strict sense if there exists ε > 0 with f (a) ≤ α− ε and

f (b) ≥ α + ε for every a ∈ A, b ∈ B.

If E is a normed space, then H is closed in E if and only if f is continuous.

We recall now the geometric form of Hahn-Banach’s Theorem:

THEOREM 2.10 (Hahn-Banach, geometric form). Let E be a normed vector space, A, B ⊆ E convex,
nonempty, disjoint.

(1) If A is open, then there exists a closed hyperplane separating A and B in the weak sense;
(2) If A is closed and B is compact, then there exists a closed hyperplane separating A e B in the

strict sense.

PROOF. Omitted. See Theorem I.6, I.7, pp. 5–10 in [3]. �

EXERCISE 2.11. Let X be a topological vector space (i.e. a vector space endowed with an
Hausdorff topology such that the sum and the multiplication by scalars are continuous), C ⊂ X
be a nonempty convex set.

(1) if int C 6= ∅ then int C is convex;
(2) C is convex;
(3) if int C 6= ∅ then C = int C.

SOLUTION. Let y ∈ X be fixed. The function f :]0, 1[×X× X → X defined by

f (λ, x, y) := λy + (1− λ)x

is continuous. Moreover, for every fixed λ ∈]0, 1[ and y ∈ X, the function
x 7→ fy,λ(x) := f (λ, x, y) is invertible with continuous inverse given by:

gy,λ(z) :=
z− λy
1− λ

.

So for every fixed λ ∈]0, 1[, y ∈ X, the function x 7→ fy,λ(x) maps open sets on open sets. By
convexity, we have also that if y ∈ C and λ ∈]0, 1[ then fy,λ(x) ∈ C for every x ∈ C.
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Let C be a convex set with nonempty inte-
rior, x1, x2 ∈ int C. We must prove that

y := λx1 + (1− λ)x2 ∈ int C,

for every λ ∈]0, 1[. Fix λ ∈]0, 1[, by assump-
tion there exists an open neighborhood V of
x2 contained in C, and so fx1,λ(V) ⊆ C by
convexity. Since y ∈ fx1,λ(V) and fx1,λ(V) is
open (since fx1,λ(·) maps open sets to open
sets), we conclude that y ∈ int C.

x2

x1

y := fx1(λ, x2)
= λx1 + (1− λ)x2

V

x

Ux

y

Uy

z := λx + (1− λ)y

Vz

x′

y′

λx′ + (1− λ)y′

Suppose now that x, y ∈ C and take λ ∈
]0, 1[. Set z = λx+(1− λ)y, and we want to
prove that z ∈ C. Since the map (x′, y′) 7→
λx′+(1−λ)y′ is continuous, for any neigh-
borhood Vz of z there are neighborhoods Ux
and Uy of x and y respectively such that if
x′ ∈ Ux and y′ ∈ Uy then λx′ + (1− λ)y′ ∈
Vz. By assumption, we have Ux ∩ C 6= ∅
and Uy ∩ C 6= ∅, since x, y ∈ C. By con-
vexity, z′ = λx′ + (1− λ)y′ ∈ C ∩Vz for all
x′ ∈ Ux ∩ C and y′ ∈ Uy ∩ C. In particular,
for any neighborhood Vz of z we have that
z′ ∈ Vz ∩ C 6= ∅ and so z ∈ C, thus C is
convex.

We prove that C = int(C). Trivially, C ⊇ int(C). We prove the converse inclusion. Let now z ∈ C.
We have to prove that for every open neighborhood Uz of z we have Uz ∩ int C 6= ∅. By
construction, we have Uz ∩ C 6= ∅, thus let x ∈ Uz ∩ C. Choose y ∈ int(C), λ ∈]0, 1[, and
consider the open map fx,λ(·). Since by assumption there exists Vy ⊆ C, Vy open, we have that
fx,λ(Vy) ⊆ C for all λ ∈]0, 1[, and it is open. Thus fx,λ(y) = λx + (1− λ)y ∈ fx,λ(Vy) ⊆ int C for
all λ ∈]0, 1[. By continuity of the map λ 7→ f (λ, x, y) on [0, 1] and the fact that x = f (1, x, y), the
inverse image of the open set Uz, which is also a neighborhood of x, is an open subset of [0, 1], in
particular, there exists λ̂ ∈]0, 1[ such that f (λ̂, x, y) ∈ Uz. Hence f (λ̂, x, y) ∈ Uz ∩ int C, which is
nonempty.

EXERCISE 2.12. Let X, Y be topological vector spaces Let L : X → Y and ` : X → R be linear,
b ∈ Y, c ∈ R. Define P : X×]0,+∞[→ X by P(x, t) = x/t, Q : X → Y by Q(x) = Lx + b,

R : X → R by R(x) = `(x) + c, S(x) =
Q(x)
R(x)

. Prove the following assertions

• for any family of convex sets {Ci}i∈I , if C :=
⋂
i∈I

Ci 6= ∅, then it is convex;

• for all C ⊆ X convex, the set Q(C′) is convex;
• for all C′ ⊆ Q(X) ⊆ Y convex, the set Q−1(C′) is convex;
• for all C ⊆ X convex, we have that P(C, t) is convex for all t > 0;
• for all C′ ⊆ P(X) ⊆ X convex, we have that P−1(C′)} is convex;
• for all C ⊆ X convex such that R(C) ⊆]0,+∞[, we have that S(C) is convex;
• for all C′ ⊆ S(X) ∩ R−1(]0,+∞[) ⊆ X convex, we have that S−1(C′) is convex.
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DEFINITION 2.13. Let E be a normed space, H be a closed hyperplane of equation f = α, A ⊂ E,
a ∈ A. We say that H is a supporting hyperplane to A at the supporting point a if a ∈ H and at least
one of the following conditions holds true:

(1) either f (x) ≤ α for all x ∈ A;
(2) or f (x) ≥ α for all x ∈ A.

Geometrically, we have that A is entirely contained in at least one of the closed half-spaces:

H+ := {x ∈ E : f (x) ≥ α}, H− := {x ∈ E : f (x) ≤ α}.

We say that a convex set is strictly convex if every supporting hyperplane intersects it in a unique
point. 22

Hahn-Banach’s Theorem now yields:

COROLLARY 2.14. Let E be a normed space, A ⊆ E be convex.

(1) if int (A) 6= ∅, then every point of the boundary of A is a supporting point;
(2) every closed convex set is the intersection of all the half-spaces containing it;
(3) a convex set is weakly closed if and only if it is strongly closed.

We notice that if E = Rd, every nonempty closed subset A admits supporting hyperplanes at
every point of the boundary without additional assumptions.

THEOREM 2.15 (Mazur). Let X be a normed space, E be a totally bounded set. Then H := co(E) is
totally bounded.

PROOF. Let ε > 0, U = B(0, ε). Set V = B(0, ε/2). There exists a finite set E1 such that
E ⊆ E1 + V. Let H1 = co(E1). Denoted E1 = {e1, ..., em}, we consider the set

S :=

{
(t1, ..., tm) ∈ Rm : ti ≥ 0 for all i = 1...m,

m

∑
i=1

ti = 1

}
,

(m-dimensional simplex) and the map σ : S→ H1, σ(t1, ..., tm) = ∑m
i=1 tiei. The map σ is

continuous and surjective, thus since S is compact also H1 is compact. Given x ∈ H, we have
that x = α1x1 + ... + αnxn where αi ∈ [0, 1], xi ∈ E for all i = 1...n and α1 + ... + αn = 1. By
definition of E1, there exist yi ∈ E1 such that xi − yi ∈ V for i = 1, ..., n. We decompose x in the
sum x = x′ + x′′ with x′ = ∑ αiyi ∈ H1 and x′′ = ∑ αi(xi − yi). By convexity we have that
x′′ ∈ V, so E ⊆ H1 + V. By compactness, there exists a finite set F such that H1 ⊆ F + V, so
E ⊆ F + V + V ⊆ F + U. By arbitrariness of ε and hence of U the proof is concluded. �

COROLLARY 2.16. If X is a normed space and {xn}n∈N ⊆ X weakly converges to ū then there exists a
sequence of convex combinations {vn}n∈N of {xn}n∈N ⊆ X such that vn converges to ū and

vn =
n

∑
k=1

λkxk,
n

∑
k=1

λk = 1, λk ≥ 0, 1 ≤ k ≤ n.

We have already noticed that if F is a l.s.c. function with convex epigraph w.r.t. strong topology,
it remains l.s.c. also if we equip the space with the weak topology. So if we pass from the strong
topology to the weak topology, from one side we are not threatening the lower semicontinuity of the
functions with convex epigraph, and on the other side in general, may help to prove coecivity and
level set compactness.

It turns out to be natural, in this framework, to study the minimization problems of lower
semicontinuous functionals with convex epigraph.

DEFINITION 2.17. Let X be a vector space, F : X → [−∞,+∞]. We say that F is convex if

F(λx + (1− λ)y) ≤ λF(x) + (1− λ)F(y),

for every λ ∈ [0, 1] and for every x, y ∈ X such that we have not F(x) = −F(y) = ±∞, i.e. the
right hand side is not +∞−∞ or −∞ + ∞.
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By induction, if x1, . . . , xn ∈ X and λ1, . . . , λn ∈ [0, 1] with
n

∑
i=1

λi = 1 then

F

(
n

∑
i=1

λixi

)
≤

n

∑
i=1

λiF(xi),

if the right hand side is well-defined (i.e. it has no expressions +∞−∞).

EXERCISE 2.18. If F is convex, then {x : F(x) ≤ u} and {x : F(x) < u} are either convex or
empty for every u ∈ [−∞,+∞]. The converse in general fails: there are nonconvex functions F
such that {x : F(x) ≤ u} and {x : F(x) < u} are either empty or convex for every
u ∈ [−∞,+∞]. In particular, if F is convex then dom F is convex.

We motivate now the choice to allow F to take the value ±∞. Consider the following constrained
minimization problem: let V ⊆ X and F : V → [−∞,+∞]. We are interested in

inf
x∈V

F(x).

If is natural to redefine F by setting F̃ : X → [−∞, ∞]

F̃(x) :=

{
F(x) if x ∈ V
+∞, if x /∈ V,

and study
inf
x∈X

F̃(x).

This problem has the same properties of the original one, but now we can take advantage of the
fact that F̃ is defined on the whole space.
So we will always assume that our function are defined on the whole space, unless explicitely
stated. To add constraints, it turns out to be very useful the following

DEFINITION 2.19 (Indicator function). Let X be a set, V a nonempty subset of X. We define the
indicator function IV : X → [0,+∞[ setting IV(x) = 0 if x ∈ V and IV(x) = +∞ if x /∈ V. So

inf
x∈V

F(x)

becomes
inf
x∈X

(F(x) + IV(x)).

Notice that IV is a convex function if and only if V is convex, and it is l.s.c. if and only if V is
closed.

We will treat later the case −∞.

DEFINITION 2.20. Let X be a vector space, F : X → [−∞,+∞] be convex. We say that F is proper
if F(x) > −∞ for every x ∈ X and there exists at least one y ∈ X for which F(y) ∈ R

(equivalently, F > −∞ and dom F 6= ∅).

We now clarify the link between convex functions and function with convex epigraph.

LEMMA 2.21. Let X be a vector space, F : X → [−∞,+∞]. Then F is convex if and only if epi F is
convex. Hence, if F, G, {Fi}i∈I are proper convex functions and λ > 0 we have that:

(1) λF + G is convex;
(2) H(x) := sup

i∈I
F(x) is convex.

PROOF. Left as an exercise. �

DEFINITION 2.22. We say that F is strictly convex if epi F is stricly convex.

An immediate consequence of the definition is the following.

LEMMA 2.23. Let X be a Banach space. F : X → [−∞,+∞] convex and strongly l.s.c. Then it is weakly
l.s.c.
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Summary of Lecture 2

• In the previous lecture we ended sup with Tonelli-Weierstrass theorem, a powerful
topological criterion to establish the existence of the minimizer of the basic optimiza-
tion problem infx∈X F(x) where F : X → R∪ {±∞}.
• More precisely, we asked F to be l.s.c. and coecive to obtain existence of a mini-

mizer.
• Thus our aim now will be to identify a good topology on X in order to apply the

above theorem.
• It easy to see that a too weak topology on X will give us compactness, and hence

coercivity, for free, but it will make almost impossible to have l.s.c. property. On
the other hand, a too strong topology on X will give us continuity, and hence l.s.c.,
for free, but it will make hard to have the coercivity property.
• We have seen an example where X = L2([0, 1]) in which the natural topology on X,

i.e., the topology of the norm, will prevent us to apply Tonelli-Weierstrass criterion
even for a very simple F.
• Thus, even if we restrict to the cases when X is a normed space, we have to move to

the weak topology. According to this topology, a sequence {xn}n∈N ⊆ X converges
to x ∈ X if and only if we have the following convergence in R

lim
n→+∞

〈 f , xn〉X′ ,X = 〈 f , x〉X′ ,X ,

for all f : X → R linear and continuous. We use the notation 〈 f , x〉X′ ,X in place of
f (x).

• We made a quick review of the properties of the weak topology. The weak topology
is weaker than the strong topology of the norm. Thus it will be easier to have com-
pactness and hence coercivity. However to switch from strong to weak topology
may destroy the l.s.c. property.
• The geometric characterization of the l.s.c. told us that l.s.c. is equivalent to the

closedness of the epigraph. Thus the first step to preserve this property is to iden-
tify a class of sets for which the strong closure and the weak closure coincides.
• To this aim we introduced and studied some properties of the convex sets. Con-

vexity is a property which does not depend on the topology, but just on the linear
structure of the space.
• If we add a topological structure compatible with the linear one, we have seen that

convexity is preserved in passing to interior or closure.
• The core result of all the convex analysis is Hahn-Banach theorem, whose geometric

forms we revised carefully.
• Among the countless important consequences of Hahn-Banach theorem, we men-

tion the fact that a convex set is strongly closed if and only if it is weakly closed. By
applying this fact on the epigraph of F, we conclude that a convex function is l.s.c.
for the strong topology if and only if it is l.s.c. for the weak topology.
• In particular, for convex functions, to pass from strong to weak topology does not

destroy the l.s.c. property.

3. Lecture of 8 october 2018: Continuity and affine minorants of convex functions (3h)

We prove now a particular case of Hahn-Banach Theorem applied to convex functions. Before it,
we recall that we can identify (X×R)′ and X′ ×R in the following way: given f ∈ (X×R)′,
the couple (`, α) ∈ X′ ×R defined as `(x) = f (x, 0) and α = f (0, 1) satisfies f (x, r) = `(x) + αr.
Conversely, given (`, α) ∈ X′ ×R, we can define f ∈ (X×R)′ by setting f (x, r) = `(x) + αr.

LEMMA 3.1 (affine minorants of convex l.s.c. functions). Let X be a Banach space.
F : X →]−∞,+∞] be convex and l.s.c. Let (x, γ) /∈ epi F. Then there exists a continuous linear
functional ` : X → R, ` 6= 0 and α, ε > 0 such that

`(x) + αγ < `(y) + αβ− ε

for all (y, β) ∈ epi F.
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PROOF. If F ≡ +∞ then epi F = ∅ and there is nothing to prove. So we assume the existence
of z ∈ X with F(z) < +∞. By assumption the closed set epi F and the compact set {(x, γ)} are
disjoint, so by Hahn-Banach Theorem in its second geometric form, it is possible to find a
continuous linear functional f : X×R→ R and η ∈ R such that they are stricly separated by
the closed hyperplane (closed in X×R) whose equation is f (p, r) = η. Recalling the
isomorphism (X×R)′ ' X′ ×R, we can identify f with a couple (`, α) ∈ X′ ×R.

epi F

(x, γ)

`(
p)
+

αr
=

η

`(
p)
+

αr
=

η
+

ε
`(

p)
+

αr
=

η
−

ε

z

(z, F(z))
F(z)

H−εH+
ε

To avoid triviality assume epi F 6= ∅ or,
equivalently, dom F 6= ∅.

Choose z ∈ dom F, thus F(z) < +∞.

Separate the closed epi F and the compact
{(x, γ)}with an hyperplane whose equation
is `(p) + αr = η in such a way that

(x, γ) ∈ H−ε := {(p, r) : `(p) + αr ≤ η − ε},
epi F ⊆ H+

ε := {(p, r) : `(p) + αr ≥ η + ε}.

The separation is strict, thus ε > 0.

Since {z} × [F(z),+∞[⊆ H+
ε , we must have

α ≥ 0.

If x ∈ dom F then α > 0: otherwise, if α = 0
the conditions (x, γ) ∈ H−ε and (x, F(z)) ∈
epi F ⊆ H+

ε lead to a contradiction.

Assume x /∈ dom F and α = 0, thus `(x) < η < `(y) for all y ∈ dom F, or equivalently,
`(y)− `(x) ≥ η − `(x) > 0 for all y ∈ dom F. Since z ∈ dom F, we take u < F(z) and we can
separate (z, u) /∈ epi F from epi F by an hyperplane of equation `′(p) + α′(r) = η′ in such a way
that `′(z) + α′u < `(y) + α′β for all (y, β) ∈ epi F and α′ > 0. Set l̄ = k`+ `′, ᾱ = α′ > 0 and
choose k such that ¯̀(x) + ᾱγ + ε < ¯̀(y) + ᾱβ for all (y, β) ∈ epi F. Substituting, we obtain

k >
`′(x) + α′γ− (`′(y) + α′β) + ε

`(y)− `(x)
, for all (y, β) ∈ epi F.

The denominator of the right hand side is larger than η − `(x) and the numerator is less than
`′(x) + α′(x)− (`′(z) + α′u) + ε, thus the inequality is fulfilled by choosing

k >
`′(x) + α′γ− (`′(z) + α′u) + ε

η − `(x)
.

�

EXAMPLE 3.2. Assume that X = R, F : X →]−∞,+∞] be convex and l.s.c. Let (x0, y0) /∈ epi F.
In this case, X′ = R, thus according to the previous theorem, we have that there exists m′ ∈ R,
α > 0, and η such that

m′x0 + αy0 < η < m′x1 + αy1 − ε

for all (x1, y1) ∈ epi F. Since α > 0, we can divide all by α and define m = m′/α, q = η/α
obtaining that the line y = mx + q stricly separates (x0, y0) and epi F. So since α > 0 we have
find that the separating line is not vertical. More precisely, if we can separate (x0, y0) from epi F
with a vertical line, we can also make the separation with a nonvertical line.

We discuss now the case of convex l.s.c. functions which take the value −∞.

LEMMA 3.3. Let X be a Banach space, F : X → [−∞,+∞] be convex and l.s.c. If there exists u0 ∈ X
such that F(u0) = −∞ then dom F = ∅.

PROOF. By contradiction, suppose dom F 6= ∅, in particular there exist ū ∈ X and ā ∈ R

such that ā < F(ū) ∈ R. By lemma 3.1 there exist ` ∈ X′ and α > 0 such that

`(ū) + αā < `(y) + αβ
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for all (y, β) ∈ epi F. Taking y = u0, since (u0, β) ∈ epi F for all β ∈ R, and dividing by α > 0 we
have

1
α
`(ū− u0) + ā < β.

By letting β→ −∞ we obtain a contradiction, since the left hand side is finite. �

We are going now to state some results about continuity of convex functions. We will prove that
a convex function cannot be have as discontinuity jumps of finite length (in other words, we
cannot have that lim sup and lim inf are different and both finite). Convexity gives to the
function a rigid structure, which we are going to examine.
The rigidity of the convex functions allows us in a certain sense to transfer information from one
point of the domain to another one.

PROPOSITION 3.4. Let X be a topological vector space. Let F : X → [−∞,+∞] be convex. The
following are equivalent:

(i.) there exists u ∈ X with F(u) > −∞, a ∈ R and a neighborhood W of u, such that F(v) ≤ a for
all v ∈W;

(ii.) there exists u ∈ dom F such that F is continuous at u;
(iii.) there exists a nonempty open set O and a ∈ R such that F|O is not identically −∞ and

F(v) ≤ a for all v ∈ O;
(iv.) F is proper and is continuous in the interior of its domain, which is nonempty;
(v.) if X is a normed space, then the domain of F has nonempty interior and F is locally Lipschitz

continuous on the interior of dom F.

REMARK 3.5. Notice that if we have just information on a subset of the domain of F (local
information), we are still able to derive global regularity properties for F.

PROOF.
(i.)⇐⇒ (ii.). Trivially (ii.) =⇒ (i.). Let us prove the converse implication. Up to translation, without

loss of generality, we can assume u = 0 and F(u) = 0 and that βW ⊆W for all |β| ≤ 1
(if X is a Banach space, we take W = B(0, δ) for a suitable δ > 0). By assumption, we
have co {W × {a}, (0, 0)} ⊆ epi F, thus for every 0 < ε < 1 if x ∈ εW, hence x/ε ∈W,
we must have

F(x) = F
(

ε · x
ε
+ (1− ε) · 0

)
≤ εF

( x
ε

)
+ (1− ε)F(0) ≤ εa.

Moreover, since also −x ∈ εW, we have F(−x) ≤ εa, thus

0 = F(0) = F
(

1
2
· x +

1
2
(−x)

)
≤ 1

2
F(x) +

1
2

F(−x) ≤ 1
2

F(x) +
1
2
· εa,

which implies F(x) ≥ −εa. Thus we have |F(x)| ≤ εa for all x ∈ εW, which yields
continuity of F at u.

(ii.)⇐⇒ (iii.) By continuity, we have (ii.) =⇒ (iii.). Conversely, (iii.) implies that there exists at least
one point in O fulfilling (i.), hence F is continuous at that point, thus (ii.) is fulfilled.

(iii.)⇐⇒ (iv.) Trivially, (iv.) =⇒ (iii.). Conversely, assume (iii.). Since F is continuous in at least one
point of O, in particular is bounded around that point, by possibly shrinking O we can
assume that O ⊆ int dom F. and F|O is bounded, hence there exists a ∈ R such that
F(x) ≤ a for all x ∈ O. In particular, int dom F 6= ∅. Let u ∈ O, v ∈ int dom F, v 6= u.
For µ > 0 sufficiently small zµ := u + (1 + µ)(v− u) belongs to int dom F since zµ → v
for µ→ 0+. Fix µ > 0 such that zµ ∈ int dom F, and let β > F(zµ). For any fixed
λ ∈]0, 1[ consider the continuous map fλ(x) = λx + (1− λ)zµ. As already observed,
this map is invertible and its inverse is continuous. Moreover,

fλ(u) = λu + (1− λ) (u + (1 + µ)(v− u)) = (λ− µ + λµ)u + (1− (λ− µ + λµ))v,
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thus choosing λ =
µ

1 + µ
∈]0, 1[, we have fλ(u) = v. Moreover, fλ(O) is an open

neighborhood of v and given y ∈ fλ(O), we have y = fλ(x) for a certain x ∈ O
F(y) = F( fλ(x)) = F(λx + (1− λ)zµ) ≤ λF(x) + (1− λ)F(zµ) ≤ λa + β.

Since F is bounded from above in a neighborhood of v, we have that it is continuous at
v. By the arbitrariness of v ∈ int dom F, we have that F is continuous in int dom F.

(i.)⇐⇒ (v.) Trivially, (v.) =⇒ (i.). Conversely, assume (i.). Without loss of generality, we can take
u = 0, F(u) = 0 and W = B(0, δ). Take v1, v2 ∈ B(0, δ/2), v1 6= v2 and set

µ =
δ

2‖v1 − v2‖
> 1. Notice that zµ := v2 + µ(v2 − v1) ∈ B(0, δ). As before, we consider

fλ(x) = x + λ(zµ − x), noticing that for λ =
1

1 + µ
we have fλ(v1) = v2, moreover,

F(v2) = F( f 1
1+µ

(v1)) ≤ F(v1) +
1

1 + µ
[F(zµ)− F(v1)] ≤ F(v1) +

2a
1 + µ

,

thus F(v2)− F(v1) ≤
2a

1 + µ
. Reversing the roles of v1, v2 we have

|F(v2)− F(v1)| ≤
2a

1 + µ
=

2a
1 + δ

2‖v1−v2‖
=

4a‖v1 − v2‖
δ + 2‖v1 − v2‖

≤ 4a
δ
‖v1 − v2‖.

�

a

δ
v
|v|−δ

v
|v|

W
εδ

v
|v|

v v
ε

−v
ε

O

(v/ε, a)(−v/ε, a)

Without loss of generality, (u, F(u)) =
(0, 0), and W = B(0, δ).

We have εW ⊆W for all |ε| ≤ 1.

Given v ∈ εW, we have v/ε ∈ W
and ±v ∈ εW, thus by convexity of
epi F, the triangle co{(0, 0), (±v/ε, a)}
is contained in epi F, hence the graph
of F restricted to the segment joining
(±v/ε, a) must be below that triangle.

We write ±v as convex combination of
0 and±v/ε with coefficients 1

1+ε and ε,
obtaining F(±v) ≤ εF(±v/ε) = εa.

On the other hand, since 0 is the mid-
point of that segment, by convexity the
value of the function at 0 (i.e. 0) must
be below the midpoint of the values of
the function at ±v.

This implies that the sum of the values
of the function at ±v must be positive,
and since F(−v) ≤ εa, we have F(v) ≥
−εa.

Thus |F(v)| ≤ εa, which yields conti-
nuity by letting ε→ 0+.

REMARK 3.6. Taking F(x) = 1 for x > 0 and F(x) = −1 for x ≤ 0, we see that these properties
are far from being true if F is not convex!

EXERCISE 3.7. For every x̄ ∈ H1
0(Ω), δ, M > 0 and x∗ ∈ H−1(Ω) \ L2(Ω) there exists

xM ∈ H1
0(Ω) with ‖x̄− xM‖L2 < δ and 〈x∗, xM〉H−1,H1

0
> M.

PROOF. Since x∗ /∈ L2, it cannot be continuous for the L2-norm, otherwise we have x∗ ∈ L2,
thus there exists a sequence {xn}n∈N ⊆ C∞

c (Ω) such that xn → 0 in L2 and 〈x∗, xn〉 → +∞. The
general case can be obtained by translation. �
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We have already seen that a closed convex set coincides with the intersection of all the closed
half-spaces containing it. If the closed convex set is the epigraph of a convex l.s.c function
G : X → [−∞,+∞], this can be equivalently stated by saying that epi G coincides with the
epigraph of the function defined as pointwise supremum of all the affine continuous function
whose graphs are below the graph of G, since their epigraphs form a family of closed half-space
containing epi G, and the pointwise supremum yields the intersection of the family. We will
precise now that notion.

DEFINITION 3.8. Let X be a normed space, F : X → [−∞,+∞] be a function (not necessarily
convex). Define

F̄(x) = sup{h(x) : h : X → [−∞,+∞] is l.s.c. and h(y) ≤ F(y) for all y ∈ X}.

Since the pointwise supremum of l.s.c. functions is l.s.c., we have that F̄ is the largest l.s.c.
function everywhere less or equal to F, we will call F the l.s.c. regularization of F.

LEMMA 3.9 (closure and convexification of epigraphs). Let X be a normed space,
F : X → [−∞,+∞] be a function (not necessarily convex). Then:

(1) there exists G : X → [−∞,+∞] such that epi G = epi F, moreover we have

G(x) = lim
r→0+

inf
y∈B(x,r)

F(y).

(2) there exists G̃ : X → [−∞,+∞] such that epi G̃ = co(epi F);
(3) epi F = epi F.

PROOF. We define:

G(x) = inf{β ∈ R : (x, β) ∈ epi F},
G̃(x) = inf{β ∈ R : (x, β) ∈ co(epi) F},

where we set inf{∅} = +∞.

(1) If (x̄, β̄) ∈ epi F then (x̄, β̄) ∈ epi F thus G(x̄) ≤ β̄ and so (x̄, β̄) ∈ epi G. Hence
epi F ⊆ epi G. Conversely, assume that (x, β̄) ∈ epi G. By definition, there exists
{ξn}n∈N ⊆ R such that {(x, ξn)}n∈N ⊆ epi F and β̄ ≤ ξn ≤ β̄ + 1/n for all n ∈N. Since
(x, ξn)→ (x, β̄) in X×R, by the closedness of epi F we obtain (x, β̄) ∈ epi F.

So we have epi F ⊆ epi G ⊆ epi F, and by taking the closure we have epi G = epi F.
Define now G′(x) = lim

r→0+
inf

y∈B(x,r)
F(y), we want to prove epi G′ = epi F, thus G = G′.

Suppose to have (x, β) ∈ epi G′, then there are sequences (xn, βn) ∈ epi G′ such that
xn → x, βn ∈ β, and

βn ≥ G′(xn) = lim
r→0+

inf
y∈B(xn ,r)

F(y) ≥ lim
r→0+

inf
y∈B(x,r+|x−xn |)

F(y) = G′(x),

and so β ≥ G′(x), thus epi G′ is closed. Moreover, suppose to have (x, β) ∈ epi F, then
there are sequences (xn, βn) ∈ epi F such that xn → x, βn → β, and

βn ≥ F(xn) ≥ lim
r→0+

inf
y∈B(xn ,r)

F(y) ≥ lim
r→0+

inf
y∈B(x,r+|x−xn |)

F(y) = G′(x),

and so β ≥ G′(x), thus epi G′ ⊇ epi F.

Take now a sequence rn → 0+, then

{
inf

y∈B(x,rn)

F(y)

}
n∈N

is an increasing sequence

in R, and so

G′(x) = sup
r>0

inf
y∈B(x,r)

F(y) = min{lim inf
y→x

F(y), F(x)}.

In particular, we have that G′(x) ≤ F(x) and equality holds if and only if
F(x) ≤ lim inf

y→x
F(y).
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We have two possibilities: either (x, G′(x)) = (x, F(x)) or there exists a sequence
xn → x such that (xn, F(xn))→ (x, G′(x)) and (xn, F(xn)) ∈ epi F. In any case, we have
(x, G′(x)) ∈ epi F, since even if (x, G′(x)) = (x, F(x)) we can see (x, G′(x)) as the limit
along the constant sequence xn ≡ x of (xn, F(xn)) ∈ epi F. We conclude that
epi F = epi G′

(2) Repeat first part of the above argument replacing G and epi F with G̃ and co(epi F),
respectively.

(3) Since F is l.s.c. and is everywhere less or equal than F, we have that epi F is closed and
contains epi F, thus by taking the closure we have epi F ⊇ epi F. Moreover, by
definition we have that G is everywhere less than F, since G is a l.s.c. function below F
and F is the pointwise supremum of all such functions, thus epi G ⊇ epi F.

Recalling that epi G = epi F, we have

epi F = epi G ⊇ epi F ⊇ epi F,

so equality holds.

�

LEMMA 3.10. A function f : X → [−∞,+∞] is l.s.c. at x0 ∈ X if and only if f (x0) = f (x0).

PROOF. We recall that f (y) ≤ f (y) for all y ∈ X. Assume that f (x0) = f (x0), then

f (x0) = f (x0) ≤ lim inf
x→x0

f (x) ≤ lim inf
x→x0

f (x).

Conversely, let f be l.s.c. at x0. If f (x0) = +∞ the proof is concluded, otherwise let
(x0, t) ∈ epi f = epi f . We have a sequence (xn, tn) ∈ epi f with xn → x0, tn → t. Then

f (x0) ≤ lim inf
n→∞

f (xn) ≤ lim inf
n→∞

tn = t

so f (x0) ≤ t for all t ≥ f (x0). But then f (x0) ≤ f (x0) and so equality holds. �

Among the l.s.c. minorants, a distinguished role is played by the continuous affine functions, i.e.
functions f of the form f (v) = `(v) + α where ` ∈ X′ (so linear and continuous from X to R) and
α ∈ R. Thus the following definition is quite natural.

DEFINITION 3.11. Let X be a topological vector space where every points has a basis of
neighborhoods made by convex sets (such spaces are called locally convex l.c.s.), we define

Γ(X) :=

{
F : X → [−∞,+∞] : F(x) = sup

i∈I
{ fi(x)} where fi is continuous affine

}
,

We define its subset Γ0(X) by removing from Γ(X) the constant functions taking everywhere
vaues +∞ or −∞.

REMARK 3.12. The pointwise supremum of elements of Γ(X) is still an element of Γ(X). Indeed,
let G(x) = sup

i∈I
ki(x) with ki ∈ Γ(X) for all i ∈ I, and let x̄ be fixed. Take any sequence εi → 0+,

and notice by definition that there exists i ∈ I such that ki(x) ≤ G(x) for all x ∈ X and

G(x̄)− εi ≤ ki(x̄) ≤ G(x̄).

Since ki ∈ Γ(X), there exists a continuous affine function fi such that fi(x) ≤ ki(x) ≤ G(x) for all
x ∈ X and satisfying ki(x̄)− εi ≤ fi(x̄). So we have

G(x̄)− 2εi ≤ ki(x̄)− εi ≤ fi(x̄) ≤ G(x̄).

So G(x̄) = sup
i∈I

fi(x̄) hence G ∈ Γ(X).

PROPOSITION 3.13. We have that F ∈ Γ(X) if and only if F : X → [−∞,+∞] is a convex l.s.c.
function such that if there exists at least a point where it take the value −∞, then it is identically −∞.
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PROOF. Assume that F ∈ Γ(X). Since it is pointwise supremum for convex l.s.c. functions, it
is a convex l.s.c. function. Moreover, if I = ∅ then F is identically −∞, otherwise, F cannot take
the value −∞ at any point.

Conversely, let F : X → [−∞,+∞] be a convex l.s.c. function such that F(x) > −∞ for every
x ∈ X. If F is identically +∞ then F is the pointwise supremum of all continuous affine functions
from X to R, if F ≡ −∞, it is the supremum of the empty family of affine continuous function,
thus it remains the case epi F 6= ∅ and epi F 6= X× R.
We have already seen in Lemma 3.1 that if P := (x, u) /∈ epi F, there exist ` = `P ∈ X′,
α = αP > 0, ε = εP such that `P(x) + αPu < `P(y) + αPβ− εP for all (y, β) ∈ epi F, or,
equivalently,

fP(y) :=
1

αP
[−`P(y) + `P(x) + εP] + u < β

for all (y, β) ∈ epi F. Notice that the map y 7→ fP(y) is continuous and affine (since P = (x, u) is

fixed) and we have epi F ⊆ epi fP. Moreover, we have fP(x) =
ε

α
+ u > u, thus P /∈ epi fP.

Define G(x) = sup{ fP(x) : P /∈ epi F}. Clearly G ∈ Γ. Moreover,

epi G =
⋂

P/∈epi F

epi fP ⊇ epi F,

since epi fP ⊇ epi F for all P /∈ epi F. On the other hand, given Q /∈ epi F, we have Q /∈ epi fQ
thus Q /∈ epi G. Hence epi F = epi G thus F = G. �

DEFINITION 3.14. Let F : X → [−∞,+∞] be a function (not necessarily convex). We say that G
is the Γ-regularization of F if it is the largest function of Γ(X) such that G(x) ≤ F(x) for every
x ∈ X, i.e. if it is the pointwise supremum of all function g ∈ Γ(x) such that g(x) ≤ F(x) for all
x ∈ X.

PROPOSITION 3.15. Let F, G : X → [−∞,+∞].
(1) G is the Γ-regularization of F if and only if G is the pointwise supremum of all continuous affine

minorants of F;
(2) if F ∈ Γ(X) then F coincides with its Γ-regularization;
(3) if F admits at least one continuous affine minorant, and G is the Γ-regularization of F, then

epi G = co epi F;
(4) if G is the Γ-regularization of F then G ≤ F̄ ≤ F;
(5) if F is convex and admits at least one continuous affine minorant, and G is the Γ-regularization

of F, then G = F̄.

PROOF.
(1) We use the convention that inf ∅ = +∞, and define

G1(x) := sup{h(x) : h(y) ≤ F(y) for all y ∈ X, h continuous and affine},
G2(x) := sup{k(x) : k(y) ≤ F(y) for all y ∈ X, k ∈ Γ(X)}.

We have G1, G2 ∈ Γ(X) since the pointwise supremum of elements of Γ(X) is in
Γ(X).

Since all the continuous affine functions belong to Γ(X), being sup of a family made
by a single element of continuous affine functions), the following holds:
(a) G1(x) ≤ G2(x) for all x ∈ X by definition (the sup in the definition of G2 is on a

larger set than in the definition of G1), so all the continuous affine minorants of G1
are continuous affine minorants of G2.

(b) since G2(x) ≤ F(x) for all x ∈ X, every continuous affine minorant of G2 is a
function of Γ(X) which is also a minorant of F. So by definition of G1, every
continuous affine minorant of G2 must be also a continuous affine minorant of G1.

So G1 and G2 are elements of Γ(X) which have the same set of continuous affine
minorants, thus G1 = G2.

(2) Trivial.
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(3) Let f be a continuous affine minorant of F. Take a l.s.c. convex function G̃ such that
epi G̃ = co epi F. Since

epi F ⊆ co epi F = epi G̃ ⊆ epi f ,

we have f ≤ G̃ ≤ F, and by passing to the pointwise supremum on the minorants f , we
have that G ≤ G̃. Since G̃ ∈ Γ(X) we have by definition G̃ ≤ G, so we obtain G̃ = G′.

(4) Trivial by the previous items.
(5) Trivial by the previous items.

�

Summary of Lecture 3

• We have seen that a good framework for our minimization problem infx∈X F(x),
with F : X → R∪ {±∞} is to take as X a normed space, and as F(·) a l.s.c. convex
function. In this case, endowing X with the weak topology will not compromise
the l.s.c., since for convex functions strong l.s.c. and weak l.s.c. coincides. We recall
that compactness, and hence coercivity, has much more possibility to be proved
under weak topology.
• Hahn-Banach Theorem tells us that every convex and closed subset C of X × R

is the intersection of the closed half-spaces containing it. This follows from the
separation of each point P /∈ C by a closed hyperplane.
• When F is convex l.s.c., its epigraph is a closed convex subset of X ×R. Among

the closed hyperplanes of X ×R, a distinguished role is played by the graphs of
continuous affine functions. Every graph (resp. epigraph) of a continuous affine
functions defines uniquely a closed hyperplane in X×R (resp. a closed half space
of X × R). Unfortunately, it is not possible in general to represent every closed
hyperplane in X ×R by a graph of a function defined on X (e.g. the line x = 0
is a closed hyperplane in R × R which cannot be represented by the graph of a
function defined on R).
• Thus we proved a version of Hahn-Banach Theorem in order to separate every

P /∈ epi F from epi F by mean of the graph of a continuous affine function. A
consequence is that the epigraph of every convex l.s.c. function is contained in the
interserction of all the epigraphs of continuous affine function below it (called con-
tinuous affine minorants). They actually coincides if the set of continuous affine mi-
norants is nonempty.
• Moreover, since the intersection of epigraph is the epigraph of the pointwise supre-

mum, the previous representation allows us to construct functions whose epigraph
is the closed convex hull of the epigraph of a given function. This procedure can
be viewed as a regularization of the original function.
• The rigid structure of convex functions allows us to prove strong continuity prop-

erty (and in some case local Lipschitz continuity) for a convex function F : X →
R ∪ {+∞} provided that the interior of the domain is nonempty. In particular, we
have seen that if we have at least a point u where F does not assume the value −∞
and is uniformly bounded from above, then F is locally Lipschitz continuous on
the whole of the interior of the domain of F, which is notempty since u belongs to
it.

4. Lecture of 12 october 2018: Conjugate of convex functions (3h)

The importance of the study of continuous affine minorants of convex functions can be
motivated by the following simple remark. If epi F admits at (x̄, ā) the supporting hyperplane of
equation f = αā, where f (x, a) = `(x) + αa and α > 0, `(x) = 0, necessarily for every given
(x, a) ∈ epi F we have a ≥ ā for every x ∈ X. Thus, since F(x̄) = ā and we can always take
a = F(x), we obtain that x̄ is a minimum point for F and the value of the minimum is ā.
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Let F : X → [−∞,+∞], x∗ ∈ X′, α ∈ R. The continuous affine function f (x) := 〈x∗, x〉X′ ,X − α is
everywhere less than F if and only if for every x ∈ X we have.

α ≥ 〈x∗, x〉X′ ,X − F(x).

So the following definition is quite natural:

DEFINITION 4.1 (Convex conjugate). Let F : X → [−∞,+∞], x∗ ∈ X′, α ∈ R. Define the convex
conjugate F∗ : X′ → [−∞,+∞] (also called polar or Legendre-Fenchel transformed) of F by setting
for all x∗ ∈ X′

F∗(x∗) = sup
x∈X

{
〈x∗, x〉X′ ,X − F(x)

}
.

Notice that F∗(x∗) ≤ α if and only if the continuous affine function f (x) := 〈x∗, x〉X′ ,X − α is
everywhere less than F. Equivalently, (x∗, α) ∈ epi F∗ if and only if epi F ⊆ epi f(x∗ ,α), where
f(x∗ ,α)(x) = 〈x∗, x〉 − α.

Now our problem is: in order to have good regularity properties on F∗, which topology is better
to endow X′ with? F∗ is a pointwise supremum of affine functions x∗ 7→ 〈x∗, x〉X′ ,X − F(x) (here
x is fixed). A minimum natural requirement is to ask all these functions to be continuous. This
amounts to endow X′ with the weaker topology such that the maps x∗ 7→ 〈x∗, x〉 are continuous
for every x ∈ X.

From the course in Functional Analysis, we know that this topology is the weak∗-topology
σ(X′, X). We will review now some basic notions about that topology.

DEFINITION 4.2. Let X be a Banach space, X′ its dual and X′′ := (X′)′ its bidual, i.e., the dual of
X′ endowed with his norm as dual space. Then there exists an isometric embedding J : X → X′′

defined as follows
〈Jx, x∗〉X′′ ,X′ := 〈x∗, x〉X′ ,X

for every x ∈ X and x∗ ∈ X′. J is trivially linear, and

‖Jx‖X′′ = ‖x‖X .

If J is surjective, the space X is called reflexive.

DEFINITION 4.3. The weak∗-topology σ(X′, X) on X′ is the smallest topology which make all the
functions of the set JX := {Jx : x ∈ X} be continuous. Since JX ⊆ X′′, this topology is weaker
than the weak topology σ(X′, X′′) which make continuous all the functions of X′′.

PROPOSITION 4.4. The following properties hold:
(1) the weak∗ topology is Hausdorff;
(2) given f ∈ X′, a basis for the set of neighborhoods of f in the weak∗ topology is given by

V = { f ∈ X′ : |〈 f − f0, xi〉X′ ,X | < ε, for all i ∈ I},
where I is finite, xi ∈ X for all i ∈ I and ε > 0;

Let { fn}n∈N be a sequence in X′, f ∈ X′, {xn}n∈N be a sequence, x ∈ X. Then:
(1) fn ⇀∗ f (i.e., fn weakly∗ converges to f ) if and only if 〈 fn, x〉X′ ,X → 〈 f , x〉X′ ,X for all x ∈ X;
(2) If fn → f strongly, then fn ⇀ f weakly in σ(X′, X′′), and if fn ⇀ f weakly in σ(X′, X′′) then

fn ⇀∗ f (i.e., weakly∗, or in σ(X′, X));
(3) If fn ⇀∗ f , then ‖ fn‖ is bounded and ‖ f ‖ ≤ lim inf ‖ fn‖;
(4) If fn ⇀∗ f and xn → x strongly in X, then 〈 fn, xn〉 → 〈 f , x〉.

PROOF. See [3], Section III.4, in particular Propositions III.10, III.11, III.12 pp. 59–61. �

We recall now the following fundamental theorems:

THEOREM 4.5 (Banach-Alaoglu-Bourbaki). The closed unit ball B′ := {x∗ ∈ X′ : ‖x∗‖X′ ≤ 1} of
X′ is weakly∗-compact.

PROOF. See Theorem III.15 in [3] pp. 64–66. �

THEOREM 4.6 (Kakutani). The closed unit ball B := {x ∈ X : ‖x‖X ≤ 1} of X is weakly compact if
and only if X is reflexive.
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PROOF. See Theorem III.16 in [3] p. 66. �

If we endow X′ with the weak∗ topology, we have the following result.

PROPOSITION 4.7. Let F : X → [−∞,+∞]. The convex conjugate F∗ : X′ → [−∞,+∞] enjoys the
following properties:

(1) F∗ is always convex and w∗-lower semicontinuous (i.e., l.s.c. with respect to weak∗-topology);
(2) if F is proper (not necessarily convex), then F∗(x∗) > −∞ for all x∗;
(3) if F is convex, l.s.c. and proper, then F∗ is proper;
(4) if F is proper, for all x∗ ∈ X′ and x ∈ X the Young’s inequality holds:

〈x∗, x〉X′ ,X ≤ F(x) + F∗(x∗).

PROOF.
(1) F∗ is a pointwise supremum of continuous affine functions, so it is a pointwise

supremum of convex l.s.c. functions, so is convex l.s.c.
(2) If F is proper, then dom F 6= ∅, so there exists x ∈ X with −∞ < F(x) < +∞. But then

F∗(x∗) ≥ 〈x∗, x〉X′ ,X − F(x) > −∞.
(3) Since F is proper, convex and l.s.c., we have F ∈ Γ(X), thus there exists a continuous

affine minorant 〈x∗, x〉 − α dove x∗ ∈ X′ and α ∈ R. But then , by using the definition of
F∗, we have F∗(x∗) ≤ α, so F∗ is not identically +∞.

(4) Trivial since F∗(x∗) ≥ 〈x∗, x〉X′ ,X − F(x) for all x ∈ X, x∗ ∈ X′, and the sum
F(x) + F(x∗) is always well-defined (cannot be +∞−∞).

�

Immediately from the definition of F∗ we have the following properties:

PROPOSITION 4.8. Let F, G, Fi : X → [−∞,+∞], i ∈ I. Then:
(1) F∗(0) = − infx∈X F(x);
(2) if F ≤ G then F∗ ≥ G∗;

(3)

(
inf
i∈I

Fi

)∗
=

(
sup
i∈I

F∗i

)
and

(
sup
i∈I

Fi

)∗
≤
(

inf
i∈I

F∗i

)
;

(4) (λF)∗(x∗) = λF∗(x∗/λ), for all λ > 0, x∗ ∈ X′;
(5) defined (F + α)(x) = F(x) + α, we have (F + α)∗ = F∗ − α, for all α ∈ R

(6) fix w ∈ X and set Fw(x) = F(x− w), then F∗w(x∗) = F∗(x∗) + 〈x∗, w〉X′ ,X .

PROOF. Trivial from the definition. For item (3), use Lemma 1.9. �

DEFINITION 4.9 (Bipolar). We can iterate the construction of convex conjugate considering the
bipolar of F : X → [−∞,+∞], i.e., the function F∗∗ : X′′ → R defined as F∗∗ = (F∗)∗. We have in
particular

F∗(x∗) ≥ 〈x∗, x〉X′ ,X − F(x)

which implies
F(x) ≥ 〈x∗, x〉X′ ,X − F∗(x∗) = 〈Jx, x∗〉X′′ ,X − F∗(x∗)

and by taking the sup on x∗ ∈ X′ we have

F(x) ≥ sup
x∗∈X′

〈Jx, x∗〉X′′ ,X − F∗(x∗) = F∗∗(Jx).

The following theorem gives a full characterization of the cases in which equality holds.

THEOREM 4.10 (Fenchel-Moreau). Let X be a normed space and F : X →]−∞,+∞] be not
identically +∞. Then F = F∗∗ ◦ J if and only if F is convex and l.s.c.

PROOF. Suppose F = F∗∗ ◦ J. We already know that F∗∗ is convex. Since J is linear, for
x, y ∈ X, λ ∈ [0, 1] we have

F(λx + (1− λ)y) = F∗∗(J(λx + (1− λ)y)) = F∗∗(λJx + (1− λ)Jy)

≤ λF∗∗(Jx) + (1− λ)F∗∗(Jy) = λF(x) + (1− λ)F(y),
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so F is convex. Moreover F∗∗ is l.s.c. for weak∗ topology on X∗∗, so F = F∗∗ ◦ J is convex and
l.s.c. for both the weak and the strong topology on X.

Conversely, assume that F is convex and l.s.c. Since F∗∗ ◦ J ≤ F, the thesis is trivial if
F∗∗(x) = +∞. Since F is proper, F∗ is not identically +∞, and so F∗∗ > −∞. So we have to prove
that if F∗∗(Jx) ∈ R we have F(x) = F∗∗(Jx). By contradiction, suppose that there exists x0 ∈ X
such that F∗∗(Jx0) < F(x0) so (x0, F∗∗(Jx0)) /∈ epi F. We can separate the closed epi F (recalling
that F is l.s.c.) and the compact (x0, F∗∗(Jx0)) in the same way as we did in the characterization
of Γ(X), obtaining ` ∈ X′, α > 0, β ∈ R such that

`(x0) + αF∗∗(Jx0) < β := inf
(x,t)∈epi F

(`(x) + αt)

= inf
x∈dom F

(`(x) + αF(x)) = −α sup
x∈dom F

(
−
〈`, x〉X′ ,X

α
− F(x)

)
= −αF∗(−`/α).

We obtain
`(x0) + αF∗∗(Jx0) < −αF∗(−`/α)

and so

〈Jx0,− `

α
〉X′′ ,X′ > F∗∗(Jx0) + F∗(−`/α),

however by Young’s inequality, being F∗∗ > −∞, we should have

F∗∗(Jx0) + F∗(−`/α) ≥ 〈Jx0,− `

α
〉X′′ ,X′ ,

which lead to a contradiction. �

COROLLARY 4.11. Let X be a normed, F : X → [−∞,+∞] convex but not necessarily l.s.c. Then
F∗∗ ◦ J = F̄. In particular, F∗∗ ◦ J(x) = F(x) if and only if F is l.s.c. at x.

PROOF. F∗∗ ◦ J is a l.s.c. minorant of F, so F∗∗ ◦ J ≤ F̄. On the other hand, if G is a convex
l.s.c. functions with G ≤ F we have G∗ ≥ F∗ e G∗∗ ≤ F∗∗ so by Fenchel-Moreau Theorem, we
have G = G∗∗ ◦ J ≤ F∗∗ ◦ J. By the arbitrariness of G, we have F̄ ≤ F∗∗ ◦ J. �

REMARK 4.12. A consequence of the previous lemma, we have F∗∗∗ = F∗, in fact F∗ is convex
and l.s.c., so (F∗)∗∗ coincides with F∗ (we identify X′ with its image in X′′′).

We give now some examples of convex conjugate:

EXERCISE 4.13. Let X = R. Prove that
(1) the convex conjugate of F(x) = |x| is F∗(y) = I[−1,1](y);
(2) the convex conjugate of G(x) = ex is defined by G∗(y) = +∞ if y < 0, G∗(0) = 0, and

G∗(y) = y(log y− 1) if y > 0;
(3) the convex conjugate of H(x) = |x|p/p where 1 < p < +∞ is H∗(y) = |y|q/q with

1/p + 1/q = 1;

SOLUTION.
(1) We have

F∗(y) = sup
x∈R

{
yx− |x|

}
= max

{
sup
x≥0
{yx− |x|}, sup

x≤0
{yx− |x|}

}

= max

{
sup
x≥0
{x(y− 1)}, sup

x≤0
{x(y + 1)}

}
.

Notice that if y > 1 then sup
x≥0
{x(y− 1)} = +∞, so F∗(y) = +∞, similarly, if y < −1 we

have |y + 1| = −(y + 1), so

sup
x≤0
{x(y + 1)} = sup

x≤0
{−|x|(y + 1)} = sup

x≥0
{|x| · |y + 1|} = +∞,
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so F∗(y) = +∞ even in this case. If −1 ≤ y ≤ 1 we have x(y− 1) ≤ 0 for all x ≥ 0 and
the supremum on x ≥ 0 is attained at x = 0 and its value is 0, and similarly
x(y + 1) ≤ 0 for all x ≤ 0, and the supremum on x ≤ 0 is attained at x = 0 and its value
is 0. Thus F∗(y) = 0 for |y| ≤ 1.

(2) Fix y ∈ R and consider gy(x) = yx− ex, thus G∗(y) = sup
x∈R

gy(x). We have

d
dx

gy(x) = y− ex and
d2

dx2 gy(x) = −ex < 0. This allows to conclude that gy(x) has at

most one critical point, and if gy(x) has a critical point, then it is a maximum. We have
that gy admits a critical point x̄ ∈ R if and only if y = ex̄, i.e., x̄ = log y and this implies
y > 0. Since

lim
x→+∞

gy(x) = −∞, lim
x→−∞

gy(x) =


+∞, if y < 0,
0, if y = 0,
−∞, if y > 0,

,

we can make the following conclusions:
• if y ≤ 0 we have that gy has no critical points, and it is strictly decreasing since

d
dx

gy(x) < 0. So G∗(y) = sup
x∈R

gy(x) = lim
x→−∞

gy(x), thus G∗(0) = 0 and

G∗(y) = +∞ if y < 0;
• if y > 0 we have that gy attains its unique maximum at x̄ = log y, thus

G∗(y) = gy(x̄) = y log y− elog y = y(log y− 1).

(3) Fix y ∈ R and consider hy(x) = yx− 1
p
|x|p, thus H∗(y) = sup

x∈R

hy(x). If y = 0 we have

H∗(0) = supx∈R

{
− 1

p
|x|p

}
= 0, attained at x = 0. Assume y 6= 0 and notice that given

x ∈ R with |x| = λ, λ ≥ 0, we have always

hy

(
λ

y
|y|

)
= λ|y| − 1

p
λp = |x||y| − 1

p
|x|p ≥ hy(x),

and so for y 6= 0 we have

H∗(y) = sup
λ≥0

{
λ|y| − 1

p
λp
}

.

A quick study of the map ĥy(λ) = λ|y| − 1
p

λp for λ ≥ 0 gives

d
dλ

ĥy(λ) = |y| − λp−1,

hence hy(λ) attains its unique maximum in [0,+∞[ at λ̄ ≥ 0 satisfying λ̄ = |y|
1

p−1 , so

H∗(y) = ĥy(λ̄) = |y|1+
1

p−1 − 1
p
|y|

p
p−1 =

(
1− 1

p

)
|y|

p
p−1 =

1
q
|y|q.

REMARK 4.14. The very same idea of (3) in the above exercise can be used to prove that if
X = Rn and we take F(x) = 1

p‖x‖p then F∗(y) = 1
q‖y‖q.

EXERCISE 4.15.
(1) Let X = R2 and f (x, y) = ax + by + c, where a, b, c ∈ R. Find f ∗;
(2) Let X = R2, f1(x, y) = a1x + b1y + c1, f2(x, y) = a2x + b2y + c2,

g(x, y) = min{ f1(x, y), f2(x, y)}. Find g∗.

PROOF.
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(1) We have to compute

f ∗(x∗, y∗) = sup
(x,y)∈R2

{〈(x∗, y∗), (x, y)〉 − (ax + by + c)}

= sup
(x,y)∈R2

{〈(x∗ − a, y∗ − b), (x, y)〉} − c

If x∗ = a and y∗ = b then f ∗(a, b) = −c. Otherwise, by taking x = λ(x∗ − a) and
y = λ(y∗ − b), we have

f ∗(x∗, y∗) ≥ sup
λ∈R

{
λ
[
(x∗ − a)2 + (y∗ − b)2

]}
− c

=
[
(x∗ − a)2 + (y∗ − b)2

]
sup
λ∈R

{λ} − c = +∞.

Thus f ∗(x∗, y∗) = I{(a,b)}(x∗, y∗)− c.
(2) From the previous item, we have f ∗i (x∗, y∗) = I{(ai ,bi)}(x∗, y∗)− ci, i = 1, 2. Thus

g∗(x∗, y∗) = (min{ f1, f2})∗ (x∗, y∗) = max{ f ∗1 (x∗, y∗), f ∗2 (x∗, y∗)}
= max{I{(a1,b1)}(x∗, y∗)− c1, I{(a2,b2)}(x∗, y∗)− c2},

and so

g∗(x∗, y∗) =


+∞, if (a1, b1) 6= (a2, b2),

I{(a1,b1)}(x∗, y∗)−min{c1, c2}, if a1 = a2 and b1 = b2.

�

LEMMA 4.16 (Marginals). Let X, Y be normed spaces, and Φ : X×Y →]−∞,+∞] be a convex
function. We define the functions ΦX : Y →]−∞,+∞] and ΦY →]−∞,+∞] by setting
ΦX(y) = inf

x∈X
Φ(x, y) and ΦY(x) = inf

y∈Y
Φ(x, y). Then ΦX and ΦY are convex functions, moreover

Φ∗X(y
∗) = Φ∗(0, y∗) and Φ∗Y(x∗) = Φ∗(x∗, 0). The functions ΦX and ΦY are called first and second

marginal of Φ.

PROOF. We know that the pointwise supremum of convex l.s.c. functions is a convex l.s.c.
function, hence since we deal with a pointwise infimum a proof is required. We will prove only
the statements for ΦX , being the others completely symmetric. Given λ ∈ [0, 1], y1, y2 ∈ Y,
a1 > ΦX(y1) and a2 > ΦX(y2), there exists x1, x2 ∈ X such that ΦX(yi) ≤ Φ(xi, yi) < ai, i = 1, 2.

ΦX(λy1 + (1− λ)y2) ≤ Φ(λx1 + (1− λ)x2), λy1 + (1− λ)y2) = Φ(λ(x1, y1) + (1− λ)(x2, y2))

≤ λΦ(x1, y1) + (1− λ)Φ(x2, y2) ≤ λa1 + (1− λ)a2.

By the arbitrariness of a1 and a2, we can let ai → ΦX(yi)
+, i = 1, 2, obtaining convexity. We have

Φ∗X(y
∗) = sup

y∈Y

{
〈y∗, y〉Y′ ,Y −ΦX(y)

}
= sup

y∈Y

{
〈y∗, y〉Y′ ,Y − inf

x∈X
Φ(x, y)

}
= sup

y∈Y
sup
x∈X

{
〈y∗, y〉Y′ ,Y −Φ(x, y)

}
= sup

y∈Y
sup
x∈X

{
〈(0, y∗), (x, y)〉X′×Y′ ,X×Y −Φ(x, y)

}
= Φ∗(0, y∗).

�

DEFINITION 4.17 (Support function). Let U ⊆ X be nonempty, we consider its indicator
function IU . Its convex conjugate is called support function to U:

σU(p) := sup
u∈U
〈p, u〉X′ ,X .

On the other hand, the minimal (w.r.t. inclusion) closed convex set containing U is co U, so for
the previous result we have

I∗∗U ◦ J = Ico U .
By passing to the conjugate again, σU(p) = σco U(p).
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Summary of Lecture 4

• We have seen that all the information about a proper, l.s.c., convex function is en-
closed in the set of its continuous affine minorants.
• More generally, we can define the convex conjugate F∗ : X′ → [−∞,+∞] of any

function F : X → [−∞,+∞] by setting F∗(x∗) = supx∗∈X′
{
〈x∗, x〉X′ ,X − F(x)

}
. Its

interpretation is as follows: F∗(x∗) ≤ α if and only if (x∗, α) ∈ epi F∗ if and only if
the continuous affine function fx∗ ,α : X → R, defined by fx∗ ,α(x) = 〈x∗, x〉X′ ,X − α,
is a minorant of F, i.e., fx∗ ,α(x) ≤ F(x) for all x ∈ X.
• The more convenient choice for the topology on X′ is to endow X′ with the weak∗

topology. In this case F∗ turns out to be always w∗-l.s.c. and convex, regardless of
the choice of F.
• The class of proper, l.s.c., convex functions behaves well under the operation of

conjugation, since the convex conjugate of a proper, l.s.c., convex function is again
a proper, l.s.c., convex function.
• We can iterate the conjugation, defining the biconjugate F′′ : X′′ → [−∞,+∞] of F.

Recalling that there exists a canonical injection, which is a linear isometry, J : X →
X′′, it is natural to compare the values of F and F∗∗ ◦ J on the elements of X. It
turns out that F ≥ F∗∗ ◦ J, and equality holds if and only if F is convex and l.s.c.
(Fenchel-Moreau theorem).

5. Lecture of 15 october 2018: Normal cone and subdifferential of convex analysis (3h)

Consider now a function f : Rd → R. If f is differentiable and if x is a critical point for f , then
the affine hyperplane in Rd+1 defined by the equation xd+1 = f (x) is tangent at (x, f (x)) to the
graph of f (the hyperplanes defined by equations of the type xd+1 = cost. will be often called
horizontal hyperplanes, this terminology being imprecise but suggestive).

If f is a convex differentiable function, and x is a critical point for f , then epi f is all contained in
the half space {(y, β) : y ∈ Ω, β ≥ f (x)} thus a posteriori for convex differentiable function, the
notion of critical point and point of minimum coincide.

If f is convex, not necessarily differentiable at x, but there exists an horizontal supporting
hyperplane to epi f at (x, f (x)), then epi f is all contained in the half space
{(y, β) : y ∈ Ω, β ≥ f (x)}, and so x is a point of minimum.

It is thus natural to associate at every (x, f (x)) the set of supporting hyperplanes to epi f at
(x, f (x)). Each of such hyperplane is completely determined by the direction of its normal,
whose orientation is choosen in order to point towards the half space not containing epi f , thus
we associate to (x, f (x)) the set of all the normals of all the supporting hyperplanes to epi f
passing by (x, f (x)) and pointing towards the half space not containing epi f .

More generally, given a closed convex set C, we can associate to each x ∈ C the set of the
normals to the supporting hyperplanes to C passing through x and pointing towards the half
space not containing C.

DEFINITION 5.1 (Normal cone in the sense of convex analysis). Let X be a normed space, C be a
closed convex nonempty subset of X, x ∈ C. We define the normal cone in the sense of convex
analysis to C at x by setting:

NC(x) := {v ∈ X′ : 〈v, y− x〉X′ ,X ≤ 0 for all y ∈ C} = {v ∈ X′ : σC(v) = 〈v, x〉X′ ,X}.

The normal cone NC(x) is trivially a w∗-closed, convex and nonempty subset of X′ and if λ > 0,
v ∈ NC(x) then λv ∈ NC(x).
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A

NK(A)B

NK(B)

C

NK(C)

K Geometrical interpretation of the
normal cone. The scalar prod-
uct between every element of the
cone at x and every segment join-
ing x to any other point of K must
be nonpositive.

REMARK 5.2.
(1) To recover the geometrical interpretation, let v ∈ NC(x), v 6= 0. Set α = 〈v, x〉X′ ,X and

consider the hyperplane H of equation 〈v, y〉 = α. Clearly, we have x ∈ H, moreover by
definition

〈v, y− x〉X′ ,X = 〈v, y〉X′ ,X − α ≤ 0, for all y ∈ C,
hence C ⊆ {y ∈ X : 〈v, y〉 ≤ α}.

(2) If X is an Hilbert space and C is a closed convex nonempty subset of H, then by the
projection theorem we have always z− πC(z) ∈ NC(πC(z)).

(3) Notice that the action of the vector v ∈ NC(x) (which should be imagined as applied at
x) on all the vectors y− x (that also must be imagined as applied at x) yields a real
nonpositive number for all y ∈ C.

REMARK 5.3. If C = epi F, with F : X →]−∞,+∞] convex and l.s.c., given (x, β) ∈ epi F we
have

NC(x, β) := {v ∈ X′ ×R : 〈v, (y, α)− (x, β)〉X′×R,X×R ≤ 0 for all (y, α) ∈ epi F}.
In particular, if we choose y = x, α ≥ f (x) = β, we have that if v = (vx, ξ) ∈ NC(x, β) where

vx ∈ X′ and ξ ∈ R then necessarily ξ ≤ 0. Thus if ξ 6= 0 we have
(

vx

|ξ| ,−1
)
∈ NC(x, β).

DEFINITION 5.4 (Subdifferential of convex analysis). Let F : X →]−∞,+∞] a convex l.s.c.
function, x ∈ dom F. We define the subdifferential in the sense of convex analysis by setting

∂F(x) := {vx ∈ X′ : (vx,−1) ∈ Nepi F(x, F(x))}.
If x /∈ dom F, we will set ∂F(x) = ∅. Equivalently, vx ∈ ∂F(x) if and only if x ∈ dom F and

F(y)− F(x) ≥ 〈vx, y− x〉X′ ,X , for all y ∈ X.

We will set dom ∂F := {x ∈ X : ∂F(x) 6= ∅}.

REMARK 5.5. If f is classically (Fréchet) differentiable at x, then ∂ f (x) = { f ′(x)}. Indeed, if f is
differentiable at x then it is continuous at x, thus subdifferentiable at x. Moreover, given
λ ∈ [0, 1] sufficiently small, we have for all y 6= x

f (x + λ(y− x)) ≤ f (x) + λ[ f (y)− f (x)],

leading to

f (x + λ(y− x))− f (x)− 〈 f ′(x), λ(y− x)〉
λ|y− x| ≤ f (y)− f (x)− 〈 f ′(x), y− x〉

|y− x| .

By letting λ→ 0+, the left hand side vanishes by definition of differential. Multiplying by
|y− x|, we obtain

f (y)− f (x) ≥ 〈 f ′(x), y− x〉,
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hence f ′(x) ∈ ∂ f (x). Conversely, given ξ ∈ ∂ f (x), we have for all t ∈ R with |t| sufficiently
small that

f (x + t(y− x))− f (x)− t〈ξ, y− x〉 ≥ 0.
Assuming t > 0, dividing by t|y− x| > 0 and letting t→ 0+, setting z = x + t(y− x) we have

lim inf
z→0

f (z)− f (x)− 〈ξ, z− x〉
|z− x| ≥ 0.

Assuming t < 0 and performing the same computations, we have

lim sup
z→0

f (z)− f (x)− 〈ξ, z− x〉
|z− x| ≤ 0.

Hence

lim
z→0

f (z)− f (x)− 〈ξ, z− x〉
|z− x| = 0,

and by the uniqueness of the differential, we have ξ = f ′(x).

EXAMPLE 5.6 (Subdifferential of the norm). Let X be a normed real space, and consider
p : X → R, p(x) = ‖x‖X . Then ∂p(0) = BX′(0, 1). Indeed, we have that ϕ ∈ X′ belongs to ∂p(0)
if and only if p(x) ≥ p(0) + 〈ϕ, x〉 for all x ∈ X, hence ‖x‖X ≥ 〈ϕ, x〉. But we have also
p(−x) ≥ p(0) + 〈ϕ,−x〉 for all x ∈ X, thus ‖x‖X ≥ −〈ϕ, x〉. So ϕ ∈ ∂p(0) if and only if
|〈ϕ, x〉| ≤ ‖x‖X , therefore if and only if ϕ ∈ BX′(0, 1).

PROPOSITION 5.7 (Properties of the subdifferential). Let X be a normed space, f : X → R∪ {+∞}
be a proper convex function, x0 ∈ dom f .

(1) if ∂ f (x0) 6= ∅, then ∂ f (x0) is convex and w∗-closed in X′;
(2) assume f l.s.c. and let {(xn, ξn)}n∈N ⊆ X× X′ be such that xn → x strongly in X, ξn ⇀∗ ξ

weakly∗ in X′, and ξn ∈ ∂ f (xn) for all n ∈N, then ξ ∈ ∂ f (x);
(3) if f is continuous at x0 then ∂ f (x0) is bounded, thus w∗-compact;
(4) f (x0) = min

x∈X
f (x) if and only if 0 ∈ ∂ f (x0);

(5) if ∂ f (x0) 6= ∅ then f (x0) = ( f ∗∗ ◦ J)(x0);
(6) if f (x0) = f ∗∗(Jx0) then ∂ f (x0) = ∂( f ∗∗ ◦ J)(x0);
(7) we have ϕ0 ∈ ∂ f (x0) if and only if f (x0) + f ∗(ϕ0) = 〈ϕ0, x0〉X′ ,X . In this case ϕ0 ∈ dom f ∗;
(8) we have ϕ0 ∈ ∂ f (x0) if and only if Jx0 ∈ ∂ f ∗(ϕ0) and f (x0) = f ∗∗ ◦ J(x0).
(9) if f is proper, convex, l.s.c. and X is reflexive, then p∗ ∈ ∂ f (x) if and only if x ∈ ∂ f ∗(p∗).

PROOF.
(1) Given ξ1, ξ2 ∈ ∂ f (x0), λ ∈ [0, 1] we have

f (x)− f (x0) = λ( f (x)− f (x0)) + (1− λ)( f (x)− f (x0))

≥ λ〈ξ1, x− x0〉+ (1− λ)〈ξ2, x− x0〉 = 〈λξ1 + (1− λ)ξ2, x− x0〉,

thus λξ1 + (1− λ)ξ2 ∈ ∂ f (x0), which therefore turns out to be convex. Given
{ξn}n∈N ⊆ ∂ f (x0) w∗-converging to ξ ∈ X′, we have 〈ξn, x− x0〉 → 〈ξ, x− x0〉 for all
x ∈ X, therefore f (x)− f (x0) ≥ 〈ξn, x− x0〉 → 〈ξ, x− x0〉, which yields the w∗-closure.

(2) For all y ∈ X we have

f (y)− f (xn) ≥ 〈ξn, y− xn〉 = 〈ξn − ξ, y− xn〉+ 〈ξ, y− xn〉
= 〈ξn − ξ, y− x〉+ 〈ξn − ξ, x− xn〉+ 〈ξ, y− xn〉
≥ 〈ξn − ξ, y− x〉 − ‖ξn − ξ‖X′ · ‖x− xn‖X + 〈ξ, y− xn〉

The first term of the last line vanishes as n→ +∞ by definition of weak∗ convergence.
The second one vanishes since, by the properties of w∗-convergence, we have that
‖ξn − ξ‖X′ remains bounded (and ‖xn → x‖X → 0 by assumption). The third term
converges to 〈ξ, y− x〉 since ξ ∈ X′ thus it is continuous. So we have for all y ∈ X

f (y)− f (x) ≥ f (y)− lim inf
n→+∞

f (xn) = lim sup
n→∞

f (y)− f (xn) ≥ 〈ξ, y− x〉,

therefore ξ ∈ ∂ f (x).
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(3) We have already proved the w∗-closure of the subdifferential. According to
Banach-Alaoglu theorem, to prove its w∗ compactness it remains to prove its
boundedness. By continuity of f at x0, fixed ε = 1 there exists δ > 0 such that if
‖x− x0‖X ≤ δ then | f (x)− f (x0)| ≤ 1. Let ϕ ∈ ∂ f (x0). Then for all x ∈ B(x0, δ) we
have

〈ϕ, x− x0〉 ≤ f (x)− f (x0) ≤ | f (x)− f (x0)| ≤ 1

and so sup
‖u‖≤δ

|〈ϕ, u〉| ≤ 1, therefore ‖ϕ‖X′ ≤ 1/δ.

(4) Trivial.
(5) Let ξ ∈ ∂ f (x0) and set ψ(x) = f (x0) + 〈ξ, x− x0〉. We have that ψ is a continuous affine

minorant of f such that ψ(x) ≤ f (x) at all x ∈ X and ψ(x0) = f (x0). Since f ∗∗ ◦ J = f is
the largest lower semicontinuous minorant of f , we must have
ψ(x) ≤ f ∗∗ ◦ J(x) ≤ f (x), so at x = x0 we have equality.

(6) Let ϕ ∈ ∂( f ∗∗ ◦ J)(x0). Then

f (x) ≥ f ∗∗ ◦ J(x) ≥ f ∗∗ ◦ J(x0) + 〈ϕ, x− x0〉 = f (x0) + 〈ϕ, x− x0〉,
hence ϕ ∈ ∂ f (x0), therefore ∂( f ∗∗ ◦ J)(x0) ⊆ ∂ f (x0). Conversely, let ϕ ∈ ∂ f (x0). This
implies f (x0) ∈ R. Then

f (x) ≥ f (x0) + 〈ϕ, x− x0〉 = f ∗∗ ◦ J(x0) + 〈ϕ, x− x0〉 =: ψ(x),

Since ψ is a continuous affine minorant of f , we have f ∗∗ ◦ J(x) ≥ ψ(x) thus
ϕ ∈ ∂( f ∗∗ ◦ J)(x0), hence ∂( f ∗∗ ◦ J)(x0) ⊇ ∂ f (x0). Thus equality holds.

(7) By definition, ϕ0 ∈ ∂ f (x0) if and only if for all x ∈ X we have
f (x) ≥ f (x0) + 〈ϕ0, x− x0〉, which is equivalent to

〈ϕ0, x0〉 − f (x0) ≥ 〈ϕ0, x〉 − f (x).

By taking the sup on x ∈ X we have

〈ϕ0, x0〉 − f (x0) ≥ f ∗(ϕ0).

On the other hand, by definition we have 〈ϕ0, x0〉 − f (x0) ≤ f ∗(ϕ0), thus equality
holds.

(8) Suppose Jx0 ∈ ∂ f ∗(ϕ0) and f (x0) = f ∗∗ ◦ J(x0). Applying (7) to f ∗ we have

f ∗(ϕ0) + f ∗∗(Jx0) = 〈Jx0, ϕ0〉
and so, recalling the assumptions,

f ∗(ϕ0) + f (x0) = 〈ϕ0, x0〉,
thus by (7) applied to f we have ϕ0 ∈ ∂ f (x0). Conversely, let ϕ0 ∈ ∂ f (x0). By (7) we
have

f ∗(ϕ0) + f (x0) = 〈ϕ0, x0〉,
and recalling (4) we have f (x0) = f ∗∗ ◦ J(x0) thus

f ∗(ϕ0) + f ∗∗(Jx0) = 〈Jx0, ϕ0〉,
and we conclude by (7) that Jx0 ∈ ∂ f ∗(ϕ0).

(9) Trivial by (8).
�

PROPOSITION 5.8 (Subdifferentiability criterion). Let X be a normed space and f : X → R∪ {+∞}
be a convex function. If there exists x0 ∈ X such that f is continuous at x0, then ∂ f (x) 6= ∅ for all
x ∈ intdom f and in particular ∂ f (x0) 6= ∅.

PROOF. By continuity, f is upper bounded in a neighborhood of x0, hence x0 ∈ intdom f .
Moreover, epi f is a convex set with nonempty interior, thus if admits a supporting hyperplane
at every point of the boundary. So given x ∈ intdom f , we have that there exists
(0, 0) 6= (vx, α) ∈ X′ × [0,+∞[ such that

〈(vx, α), (y, f (y))− (x, f (x))〉 ≤ 0, for all y ∈ dom f .
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If α = 0 we would have 〈vx, y− x〉 ≤ 0 for all y ∈ dom f and since x ∈ intdom f we can choose
δ > 0 such that y− x ∈ B(0, δ), thus obtaining vx = 0, a contradiction. Hence α > 0 and so
vx/|α| ∈ ∂ f (x). �

Summary of Lecture 5

• In the last lectures, from the hyperplanes defining half-spaces containing a given
closed convex set, we moved to the study of continuous affine minorants to convex
l.s.c. functions, defining the convex conjugate. In this lecture, we concentrate on
a special subclass of such hyperplanes, namely, the supporting hyperplanes. Our
aim is to find the corresponding objects for functions.
• A sufficient condition ensuring the existence of supporting hyperplanes at every

point of the boundary of a convex set is the nonemptiness of its interior.
• The information about the supporting hyperplane at a point of a convex set is en-

closed in the normal cone in the sense of convex analysis, while the corresponding
object for functions is the subdifferential in the sense of convex analysis.
• The subdifferential of the convex analysis ∂F(x), roughly speaking, is the set of the

slopes of affine continuous minorants of F passing through (x, F(x)), and if F is
classically differentiable, it reduced to the usual differential.
• We proved several properties of the subdifferential, which follow directly from the

definition. Among them, we recall
– the strong-weak∗ closure of its graph,
– its boundedness, hence w∗-compactness, at every continuity point,
– 0 ∈ ∂F(x) is a necessary and sufficient condition for having a global minimum of

f at x,
– the inversion formula p∗ ∈ ∂ f (x) if and only if x ∈ ∂ f ∗(p∗), for every proper,

convex, l.s.c. function f on a reflexive space
• In analogy with the criterion of existence of supporting hyperplane, we can give a

sufficient condition for the subdifferentiability of a function F in the interior of its
domain, by asking that epi F has nonempty interior. For instance, it is enough to
ask the continuity of F at least at a point of the domain.

6. Lecture of 19 october 2018: Subdifferential calculus and minimization problems (3h)

PROPOSITION 6.1 (Subdifferential calculus). Let X be a real normed space, f , g : X →]−∞,+∞] be
proper convex functions. Then

(1) if λ ≥ 0 we have ∂(λ f )(x0) = λ∂ f (x0);
(2) ∂( f + g)(x) ⊇ ∂ f (x) + ∂g(x), the inclusion may be strict;
(3) if there exists x0 ∈ dom( f ) ∩ dom(g) such that f is continuous at x0 then

∂( f + g)(x) = ∂ f (x) + ∂g(x) for all x ∈ dom( f ) ∩ dom(g).
(4) let Y be a normed space, ȳ ∈ Y, Λ : Y → X be linear and continuous, g be continuous and finite

at Λ(ȳ). Then ∂(g ◦Λ)(y) = Λ∗∂g(Λy) for all y ∈ Y.

PROOF.
(1) Given λ ≥ 0, ξ ∈ X′, we have f (x) ≥ f (x0) + 〈ξ, x− x0〉 if and only if

λ f (x) ≥ λ f (x0) + 〈λξ, x− x0〉, thus ξ ∈ ∂ f (x0) if and only if λξ ∈ ∂(λ f )(x0).
(2) Let ξ f ∈ ∂ f (x0), e ξg ∈ ∂g(x0). Then

( f + g)(x)− ( f + g)(x0) = ( f (x)− f (x0)) + (g(x)− g(x0))

≥ 〈ξ f , x− x0〉+ 〈ξg, x− x0〉 = 〈ξ f + ξg, x− x0〉.

Therefore ξ f + ξg ∈ ∂( f + g)(x0). However the inclusion ∂( f + g)(x) ⊇ ∂ f (x) + ∂g(x)
may be strict, as shown in the example below.

(3) According to (2), we have to prove that given ϕ ∈ ∂( f + g)(x) there exist ϕ1 ∈ ∂ f (x)
and ϕ2 ∈ ∂g(x) such that ϕ = ϕ1 + ϕ2. By assumption, for all y ∈ X we have

f (y) + g(y)− f (x)− g(x) ≥ 〈ϕ, y− x〉.
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Define

A := {(y, a) ∈ X×R : f (y)− f (x)− 〈ϕ, y− x〉 ≤ a}
B := {(z, b) ∈ X×R : b ≤ g(x)− g(z)},

and notice that they are nonempty, for instance we have (x0, 0) ∈ A ∩ B. Since the map
y 7→ ϕ(y) := f (y)− f (x)− 〈ϕ, y− x〉 is convex and A = epi ϕ, we have that A is
convex, moreover, since ϕ is continuous at x0, we have int A 6= ∅. Since f must be
upper bounded in a neighborhood V of x0 by continuity, we have that also ϕ(·) is
upper bounded in a neighborhood of x0, thus there is a constant ax0 such that
(y, ax0) ∈ int A for all y ∈ V. In particular, (x0, ax0) ∈ int A. In the same way, by
convexity z 7→ g(z)− g(x), we have that B is convex.

We prove now that int A ∩ B = ∅. Assume (y, a) ∈ int A ∩ B. Then we have that
there exists ε > 0 such that (y, a− ε) ∈ A, and so we have
f (y)− f (x)− 〈ϕ, y− x〉 ≤ a− ε and a ≤ g(x)− g(y), yielding
f (y) + g(y)− f (x)− g(x) ≤ 〈ϕ, y− x〉 − ε, contradicting ϕ ∈ ∂( f + g)(x).

By Hahn-Banach Theorem, we can separate int A and B by a closed affine
hyperplane, thus there exist ψ ∈ X′, t ∈ R, β ∈ R such that (ψ, t) 6= (0, 0) and

ψ(z) + tb ≤ β ≤ ψ(y) + ta, for all (z, b) ∈ B and (y, a) ∈ int A.

Since A is an epigraph, we can send a→ +∞, thus we must have t ≥ 0. We prove that
t > 0 by contradiction. Assume t = 0, hence necessarily ψ 6= 0 and ψ(z) ≤ β ≤ ψ(y) for
all (z, b) ∈ B and (y, a) ∈ int A. We choose z = x0, b = g(x0)− g(x), y = x0, a = ax0 ,
recalling that (x0, ax0) ∈ int A, obtaining β = ψ(x0), and so we must then have
ψ(x0) ≤ ψ(y), i.e. 0 ≤ ψ(y− x0). Since (y, ax0) ∈ int A for all y in a neighborhood of x0
we have that 0 ≤ ψ(η) for all η in a neighborhood of 0. But this implies ψ = 0, because
if ψ(η) > 0 for some η ∈ B(0, δ) then ψ(−η) < 0 and −η ∈ B(0, δ), leading to a
contradiction, hence t > 0.

Since (x, 0) ∈ A ∩ B, by applying the separation inequality with z = y = x and
a = b = 0 we obtain β = ψ(x). If we take now the separation inequality with
b = g(z)− g(x) and a = f (y)− f (x)− 〈ϕ, y− x〉, we obtain

g(z)− g(x) ≥ 1
t
[ψ(x)− ψ(z)] = 〈ψ

t
, z− x〉

f (y)− f (x) ≥ 1
t

ψ(x)− ψ(y)
t

+ 〈ϕ, y− x〉 = 〈ϕ− ψ

t
, y− x〉.

Setting ξ f = ϕ− ψ

t
∈ ∂ f (x), ξg =

ψ

t
∈ ∂g(x), we have that

ϕ = ξ f + ξg ∈ ∂ f (x) + ∂g(x).

(4) For all z, y ∈ Y, ξ ∈ ∂g(Λy) we have

g ◦Λ(z)− g ◦Λ(y) = g(Λz)− g(Λy) ≥ 〈ξ, Λz−Λy〉 = 〈ξ, Λ(z− y)〉 = 〈Λ∗ξ, z− y〉,
hence Λ∗ξ ∈ ∂(g ◦Λ)(y), so Λ∗∂g(Λy) ⊆ ∂(g ◦Λ)(y).

Conversely, let ξ ∈ ∂(g ◦Λ)(y), hence

g ◦Λ(z) ≥ g ◦Λ(y) + 〈ξ, z− y〉, for all z ∈ Y.

Define:

A :={(x, a) ∈ X×R : g(x) ≤ a} := epi g,

B :={(Λz, b) ∈ X×R : 〈ξ, z− y〉+ g ◦Λ(y) ≥ b, for all z ∈ Y}.
As in (3), we have that A, B are closed, convex and nonempty, moreover int A 6= ∅ and
int A ∩ B = ∅, By Hahn-Banach Theorem, we can separate int A and B by a closed
affine hyperplane, thus there exist ψ ∈ X′, t ∈ R, β ∈ R such that (ψ, t) 6= (0, 0) and

〈ψ, Λz〉X′ ,X + tb ≤ β ≤ 〈ψ, x〉X′ ,X + ta, for all (Λz, b) ∈ B and (x, a) ∈ A.



6. LECTURE OF 19 OCTOBER 2018: SUBDIFFERENTIAL CALCULUS AND MINIMIZATION PROBLEMS (3H) 39

Exactly as before, we can prove that t > 0.

If we take now the separation inequality with b = 〈ξ, z− y〉+ g ◦Λ(y), and recall
that 〈ψ, Λz〉X′ ,X = 〈Λ∗ψ, z〉Y′ ,Y we have

〈Λ∗ψ, z〉Y′ ,Y + t(〈ξ, z− y〉Y′ ,Y + g ◦Λ(y)) ≤ β

thus for all z ∈ Y we must have

〈Λ
∗ψ

t
+ ξ, z〉Y′ ,Y ≤

β

t
− g ◦Λ(y) + 〈ξ, y〉Y′ ,Y,

and this implies Λ∗
ψ

t
+ ξ = 0, otherwise we can send the left hand side to +∞ by

choosing a suitable sequence {zn}n∈N ⊆ Y with |zn| → +∞, while the right hand side
is bounded. We have then

0 ≤ β

t
− g ◦Λ(y) + 〈−Λ∗

ψ

t
, y〉Y′ ,Y,

thus the least β ∈ R that we can take is

β = tg ◦Λ(y)− 〈−ψ

t
, Λy〉X′ ,X .

The other separation inequality with a = g(x) yields ψ(x) + tg(x) ≥ β, thus

g(x)− g(Λy) ≥ 〈−ψ

t
, x−Λy〉X′ ,X , for all x ∈ X,

and so
−ψ

t
∈ ∂g(Λy). We conclude that ξ = Λ∗

(
−ψ

t

)
∈ Λ∗∂g(Λy), thus

Λ∗∂g(Λy) ⊇ ∂(g ◦Λ)(y).
�

EXAMPLE 6.2 (Strict inclusion in the subdifferential of the sum).

O

epi f epi g

Nepi f (0, 0)Nepi g(0, 0)

Let f (x) = −
√
|x|(1 + I]−∞,0])(x) and g(x) = f (−x).

We have 0 ∈ dom f ∩ dom g and ∂ f (0) = ∂g(0) = ∅,
thus ∂ f (0) + ∂g(0) = ∅.

However f (x) + g(x) = I0(x), in particular f + g has
a minimum at 0, hence 0 ∈ ∂( f + g)(0).

Therefore ∂( f + g)(x) 6= ∅ = ∂ f (x) + ∂g(x).

EXAMPLE 6.3 (Normal cone as subdifferential). Let X be a Banach space, K ⊆ X closed and
convex. Then ∂IK(x) = NK(x) if x ∈ K, otherwise ∂IK(x) = ∅. Indeed, if x 6= K we IK(x) = +∞,
thus ∂IK(x) = ∅. Let x ∈ K, hence IK(x) = 0. We have ϕ ∈ ∂IK(x) if and only if

IK(y)− IK(x) = IK(y) ≥ 〈ϕ, y− x〉, for all y ∈ X.

If y /∈ K, the inequality holds for every ϕ, but if y ∈ K we must have 〈ϕ, y− x〉 ≤ 0, hence
ϕ ∈ NK(x).

EXAMPLE 6.4 (Subdifferential of the norm squared). Given an Hilbert space Z, v ∈ Z, and

defined wv(x) =
1
2
‖x− v‖2

H , we want to compute ∂wv(x). We have that ξ ∈ ∂wv(x) if and only if
for all y ∈ H

1
2
‖y− v‖2

H ≥
1
2
‖x− v‖2

H + 〈ξ, y− x〉H ,

equivalently,
1
2
‖y− v‖2

H ≥
1
2
‖x− v‖2

H + 〈ξ, (y− v)− (x− v)〉H ,
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hence
1
2
‖y− v‖2

H − 〈ξ, y− v〉H +
1
2
‖ξ‖2

H ≥
1
2
‖x− v‖2

H − 〈ξ, x− v〉H +
1
2
‖ξ‖2

H ,

thus we must have ‖y− v− ξ‖2
H ≥ ‖x− v− ξ‖2

H for all y ∈ H. We notice that this relation is
satisfied if ξ = x− v, while if we take ξ 6= x− v and y = ξ + v it fails. We conclude that
∂wv(x) = x− v.

LEMMA 6.5 (Jensen’s inequality). Let (Ω, M , µ) be a measure space such that µ(Ω) = 1. Given
g ∈ L1

µ(Ω; R) and a convex function Φ : R→ R we have

Φ
(∫

Ω
g(x) dµ(x)

)
≤
∫

Ω
Φ ◦ g(x) dµ(x).

PROOF. Since Φ is defined on the whole of R, in particular it is continuous at

z0 :=
∫

Ω
g(x) dµ(x), so it is subdifferentiable at z0 and we have a ∈ R such that

Φ(z) ≥ Φ(z0) + a(z− z0) for all z ∈ R, in particular by taking z = g(x) we have

Φ ◦ g(x) ≥ Φ(z0) + a(g(x)− z0) = Φ
(∫

Ω
g(x) dµ(x)

)
+ a

(
g(x)−

∫
Ω

g(x) dµ(x)
)

.

Integrating in x w.r.t. µ, and recalling that µ(Ω) = 1, the thesis follows. �

We will face the problem of the existence of solutions of inf
u∈X

F(u) where X is a normed space,

F : X →]−∞,+∞] a proper, convex, l.s.c. function.
We notice that in Banach reflexive space the following result holds.

PROPOSITION 6.6 (Coercivity in reflexive spaces). Let X be a Banach reflexive space, K ⊂ X.
(1) If K is bounded closed and convex, then it is weak compact (i.e., compact in σ(X, X′))
(2) If K is closed convex (and nonempty) and F is a proper l.s.c. convex functions such that:

(a) if K is unbounded it holds lim
‖x‖→∞

x∈K

F(x) = +∞,

(b) otherwise if K is bounded no additional assumptions,
then F admits a minimum point in K.

PROOF.
(1) We recall that the ball is weak compact in reflexive spaces by Kakutani Theorem. Since

K is convex, weak and strong closure coincides, so K is weakly closed. Being bounded,
it is contained in a closed ball, so it is a closed subset of a weak compact set, and hence
it is compact.

(2) If F is identically +∞ on K, the result is trivial, otherwise there exists x ∈ K, λ ∈ R such
that F(x) = λ. But then

inf
x∈K

F(x) = inf
x∈C

F(x),

where C := K ∩ F−1(]−∞, λ]). C is convex and weakly closed, since F is l.s.c. and
convex, so its sublevels are convex and closed w.r.t. both strong and weak topology,
and K is closed and convex, so weakly closed. If K is bounded, we have that C is convex
and closed w.r.t. both strong and weak topology, so weakly compact and so we can
apply Tonelli-Weierstrass Theorem to conclude. Otherwise, we notice that by
assumption there exists R > 0 such that if ‖x‖ > R we have F(x) > λ, so we consider
C ∩ B(0, R) concluding the proof in the same way of bounded K.

�

EXERCISE 6.7. For every x = (x1, . . . , xd) ∈ Rd, 1 ≤ p < +∞ set

Hp(x) = ‖x‖`p =

(
d

∑
i=1
|xi|p

)1/p

, H∞(x) = ‖x‖`∞ = max
i=1,...,d

|xi|.

Given 1 ≤ p ≤ +∞, x ∈ Rd, r ≥ 0 denote the open p-ball of radius r by

Bp(x, r) := {y ∈ Rd : ‖y− x‖`p ≤ r},
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and set Bp = Bp(0, 1). Assume 1 < p < +∞ and let 1 < q < +∞ be such that
1
p
+

1
q
= 1. Prove

that we have the following relations

H∗p(x∗) = IBq
(x∗), ‖x‖`p = σBq

(x),

H∗1 (x∗) = IB∞
(x∗), ‖x‖`∞ = σB1

(x),

H∗∞(x∗) = IB1
(x∗), ‖x‖`1 = σB∞

(x),

∂Hp(0) = Bq.

DEFINITION 6.8 (Primal and dual problems). Let X be a normed space, F : X →]−∞,+∞] a
proper, convex, l.s.c. function. Given another normed space Y and a proper, convex, l.s.c.
function φ : X×Y →]−∞,+∞] with φ(x, 0) = F(x), we consider the first marginal

h(y) := inf
x∈X

φ(x, y),

i.e., we embed the problem inf
x∈X

F(x) in a family of minimization problems (perturbed problem).

We will call:
- primal problem the minimization of F over X;
- dual problem the maximization of −φ∗(0, ·) over Y′.

According to Lemma 4.16, h is convex and h∗(ϕ) = φ∗(0, ϕ), moreover we have

sup
y∗∈Y′

−φ∗(0, y∗) = sup
y∗∈Y′

−h∗(y∗) = h∗∗ ◦ J(0) = h(0) ≤ h(0) = inf
x∈X

φ(x, 0) = inf
x∈X

F(x).

This quantity is less than +∞ since F is proper, but it can assume the value −∞.

We say that the primal problem is
- normal if h(0) ∈ R and h is l.s.c. at 0.
- stable if ∂h(0) 6= ∅.

DEFINITION 6.9 (Lagrangian function). We introduce the Lagrangian function
L : X×Y′ → [−∞,+∞] of the primal problem by setting

L(x, y∗) = inf
y∈Y
{φ(x, y)− 〈y∗, y〉Y′ ,Y},

i.e., y∗ 7→ L(x, y∗) is the opposite of the conjugate of y∗ 7→ φ(x, y∗) for every fixed x ∈ X. For this
reason, we have that y∗ 7→ L(x, y∗) is u.s.c. and concave for all x ∈ X, while by Lemma 4.16 we
have that x 7→ L(x, y∗) is convex for all y∗ ∈ Y′.

DEFINITION 6.10 (Saddle point). We say that (x̂, ŷ∗) ∈ X×Y′ is a saddle point for L if for every
x ∈ X, y∗ ∈ Y′ it holds

L(x̂, y∗) ≤ L(x̂, ŷ∗) ≤ L(x, ŷ∗).
Equivalently, (x̂, ŷ∗) ∈ X×Y′ is a saddle point for L, if and only if

sup
y∗∈Y′

L(x, ŷ∗) = L(x̂, ŷ∗) = inf
x∈X

L(x, ŷ∗).

Below we collected some consequences of the above definitions.

PROPOSITION 6.11. Same notation of Definition 6.8.
(1) the primal problem can be written as inf

x∈X
sup

y∗∈Y′
{L(x, y∗)};

(2) the dual problem can be written as sup
y∗∈Y′

inf
x∈X
{L(x, y∗)};

(3) In general we have

sup
y∗∈Y′

inf
x∈X
{L(x, y∗)} ≤ inf

x∈X
sup

y∗∈Y′
{L(x, y∗)}.

(4) the primal problem is normal if and only if

sup
y∗∈Y′

−φ∗(0, y∗) = inf
x∈X

φ(x, 0).
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(5) the primal problem is stable if and only if is normal and the dual problem has a solution;
(6) the set of solutions of the dual problem is given by ∂h∗∗ ◦ J(0);
(7) if the primal problem is stable, then the set of solutions of the dual problem if ∂h(0);

PROOF.
(1) We have (recalling Lemma 1.9)

−φ∗(0, y∗) = − sup
x∈X
y∈Y

{
〈y∗, y〉Y′ ,Y − φ(x, y)

}
= inf

x∈X
−[φ(x, ·)]∗(y∗) = inf

x∈X
L(x, y∗).

(2) Similarly, since φ is convex l.s.c.,

φ(x, 0) = [φ(x, ·)]∗∗ ◦ J(0) = sup
y∗∈Y′

{−[φ(x, ·)]∗(y∗)} = sup
y∗∈Y′

L(x, y∗).

(3) See Lemma 1.9.
(4) Suppose that the primal problem is normal, then h∗∗ ◦ J(0) = h̄(0) = h(0) ∈ R.

Conversely, if h∗∗ ◦ J(0) = h̄(0) = h(0) ∈ R then the problem is normal.
(5) Assume that the primal problem is stable, in particular h(0) ∈ R. Then there exists

y∗0 ∈ Y′ such that h(y) ≥ h(0) + 〈y∗0 , y〉Y′ ,Y for all y ∈ Y. By taking the liminf for
‖y‖ → 0 we have

lim inf
‖y‖Y→0

h(y) ≥ h(0),

i.e., the l.s.c. of h at 0, so the primal problem is normal. For all y∗ ∈ Y′, y ∈ Y, recalling
that J0 = 0 in Y′′, we have

−φ∗(0, y∗) = −h∗(y∗) = 〈J0, ϕ〉Y′ ,Y − h∗(y∗) ≤ h∗∗ ◦ J(0) = h(0) ≤ h(y)− 〈y∗0 , y〉Y′ ,Y.

By taking the inf on y ∈ Y we have for all y∗ ∈ Y′

−φ∗(0, y∗) ≤ inf
y∈Y
{h(y)− 〈y∗0 , y〉Y′ ,Y} = − sup

y∈Y
{〈y∗0 , y〉Y′ ,Y − h(y)} = −h∗(y∗0) = −φ∗(0, y∗0),

hence y∗0 solves the dual problem.

Conversely, let the primal problem be normal and let y∗0 be a solution of the dual
problem. Then −h∗(y∗0) ≥ −h∗(y∗) for all y∗ ∈ Y′. We have then

−h∗(y∗0) = sup
y∈Y′
−h∗(y) = h∗∗ ◦ J(0) = h(0).

So h(0) ≤ −〈y∗0 , y〉Y′ ,Y + h(y) for all y ∈ Y, hence the primal problem is stable.
(6) maximize −φ∗(0, ·) = −h∗(·) is the same of minimizing the convex l.s.c. function

h∗ : Y′ → [−∞,+∞], hence the set of solution is given by ∂h∗∗ ◦ J(0).
(7) by the properties of the subdifferential, if the problem is normal then h(0) = h∗∗ ◦ J(0)

thus ∂h(0) = ∂h∗∗ ◦ J(0).
�

We state now an important stability criterion.

LEMMA 6.12 (Stability criterion). Same notation of Definition 6.8. Assume h(0) > −∞ and that there
exists x0 ∈ X such that y 7→ φ(x0, y) is continuous at 0 and φ(x0, 0) ∈ R. Then the primal problem is
stable.

PROOF. The function y 7→ φ(x0, y) is continuous at 0, hence bounded above in an open
neighborhood of V of 0 by a constant K. Given y ∈ V we have

h(y) ≤ inf
x∈X

φ(x, y) ≤ φ(x0, y) ≤ K.

Since h is convex and bounded from above in V, it is also continuous and finite at 0, so epi h has
nonempty interior and there exists a supporting hyperplane to epi h at (0, h(0)), in particular
there are y∗ ∈ Y′, t > 0 such that for every (y, β) ∈ epi h we have

〈y∗, 0〉Y′ ,Y + th(0) ≤ 〈y∗, y〉Y,Y′ + tβ.
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Dividing by t > 0 and taking y = h(y) we have for all y ∈ Y that

h(0) ≤ 〈y
∗

t
, y〉Y,Y′ + h(y),

which concludes the proof since it implies −y∗/t ∈ ∂h(0). �

The most important necessary condition for the convex optimization problem that we are
studying is the following.

THEOREM 6.13 (Extremality conditions). Same notation of Definition 6.8. Assume that the problem is
stable.

(1) let ŷ∗ ∈ Y′ a solution of the dual problem. Given any solution x̂ ∈ X of the primal problem, the
following extremality condition holds

φ(x̂, 0) + φ∗(0, ŷ∗) = 0,

or, equivalently,
(0, ŷ∗) ∈ ∂φ(x̂, 0).

(2) Conversely, given x̂ ∈ X and ŷ∗ ∈ Y′ such that the extremality condition holds, then

φ(x̂, 0) = min
x∈X

φ(x, 0) = max
y∗∈Y′

−φ∗(0, y∗) = −φ∗(0, ŷ∗),

i.e. x̂ ∈ X solves the primal problem and ŷ∗ ∈ Y′ solves the dual problem.

PROOF. By stability of the primal problem we have

sup
y∗∈Y′

−φ∗(0, y∗) = inf
x∈X

φ(x, 0).

Recalling that x̂ ∈ X solves the primal problem and ŷ∗ ∈ Y′ solves the dual problem, the
extremality condition holds.
Conversely, assume that the extremality condition holds for given x̂ ∈ X and ŷ∗ ∈ Y′. By
stability, the dual problem admits a solution, hence

φ(x̂, 0) ≥ inf
x∈X

φ(x, 0) = max
y∗∈Y′

−φ∗(0, y∗) ≥ −φ∗(0, ŷ∗) = φ(x̂, 0),

so equality holds. �

COROLLARY 6.14. If the problem is stable, (û, ϕ̂) ∈ X×Y′ is a saddle point for L if and only if û ∈ X
is a minimizer of the primal problem, ϕ̂ is a maximizer of the dual problem, both the values of the
minimum and maximum are finite, and the extremality relation

φ(û, 0) + φ∗(0, ϕ̂) = 0,

holds. Moreover, if the problem is stable, û ∈ X is a minimizer of the primal problem if and only if there
exists ϕ̂ ∈ Y′ such that (û, ϕ̂) ∈ X×Y′ is a saddle point for L.

PROOF. Suppose that (û, ϕ̂) is a saddle point, then

−φ∗(0, ϕ̂) = inf
u∈X
{L(u, ϕ̂)} = L(û, ϕ̂) = max

ϕ∈Y′
L(û, ϕ) = φ(û, 0),

and so extremality relation follows. Conversely, assuming the extremality relation, since

−φ∗(0, ϕ̂) = inf
u∈X

L(u, ϕ̂) ≤ L(û, ϕ̂) ≤ sup
ϕ∈Y′

L(û, ϕ) = φ(û, 0),

by extremality relation equality holds and so (û, ϕ̂) is a saddle point for L.

Since the problem is stable, there always exists a solution ϕ̂ of the dual problem. Since û ∈ X is a
minimizer if and only if extremality relation between û and ϕ̂ holds, and by the previous part of
the proof we have that (û, ϕ̂) is a saddle point if and only if extremality relations holds, the proof
is completed. �
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REMARK 6.15. We notice that the first statement in the extremality condition is just a necessary
condition for the solution of stable primal problem. Indeed, the existence of x̂ is assumed (the
existence of ŷ∗ follows from stability itself). The second statement ensures its sufficiency: if we
have a pair (x̂, ŷ∗) linked by the extremality conditions, then they solves the primal and the dual
problem.

To have a useful statement, we have to grant a solution of the primal problem, by mean, for
example, of Tonelli-Weierstrass Theorem.

COROLLARY 6.16. Assume that X is a reflexive Banach space, that the primal problem is stable, and

lim
‖x‖→+∞

F(x) = +∞.

Then the primal problem admits a solution (a minimizer), the dual problem admits a solution (a
maximizer), and the extremality relation holds.

PROOF. In reflexive space, the growth condition is equivalent to coercivity, so by
Tonelli-Weierstrass Theorem, the primal problem admits a solution. By stability, also the dual
problem has a solution. Thus extremality condition holds. �

Summary of Lecture 6

• We proved in this lecture the main calculus rules for the subdifferential in the sense
of convex analysis, namely the sum rule and the chain rule w.r.t. linear operators. Both
these sum rules, in order to hold, require a weak separation argument, thus it must
be ensured the nonemptiness of the interior of the epigraph. This is granted by the
continuity assumption.
• We introduced the concept of perturbed problem, i.e., we embed our problem inf

x∈X
F(x),

in a family of problems indexed by variations belonging to another normed space Y.
It is important to stress that the choice of the family of perturbations is not a pri-
ori given. The coupling between the original problem and the variation is enclosed
in a l.s.c. convex proper function φ : X × Y → [−∞,+∞], while h denotes the
value of the solution of the minimization problem related to the variation y, i.e.,
h(y) = inf

x∈X
φ(x, y). We require to recover for y = 0 our original problem, i.e.,

φ(x, 0) = F(x).
• We introduce the dual problem, which a maximization problem in Y′ and the La-

grangian function.
• When the primal problem is normal, primal and dual problem have the same value.

If the problem is stable, then we have a precise description of the solutions of the
dual problem in terms of the subdifferential of h at 0.
• Since stability is related to subdifferentiability, a stability criterion must involve the

existence of supporting hyperplanes to epi h. In particular it can be ensured asking
some continuity property of φ, as usual (thus epi h will have nonempty interior).
• The extremality relations summarize the necessary and sufficient conditions for

optimality in this class of problems.

7. Lecture of 22 october 2018: Special case of convex functionals (3h)

If the functional F has a particular form, the choice of the family of perturbations φ can be done
in a quite standard way.

PROPOSITION 7.1. Let X be a reflexive Banach space, Y be a normed space. Let f : X →]−∞,+∞]
and g : Y →]−∞,+∞] be proper, convex, l.s.c., let Λ : X → Y be a linear and continuous operator.
Assume that:

(1) lim
‖u‖X→+∞

f (u) + g(Λu) = +∞;

(2) there exists u0 ∈ X such that f (u0) < +∞, g(Λu0) < +∞ and g is continuous at Λu0.
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Then if we set

F(u) := f (u) + g(Λu), φ(u, y) = f (u) + g(Λu− y),

the primal problem and the dual problems admit solutions û ∈ X and ϕ̂ ∈ Y′, respectively, and{
f (û) + f ∗(Λ∗ ϕ̂) = 〈Λ∗ ϕ̂, û〉X′ ,X ,
−g(Λû)− g∗(−ϕ̂) = 〈ϕ̂, Λû〉Y′ ,Y,

,

or, equivalently {
−ϕ̂ ∈ ∂g(Λû),
Λ∗ ϕ̂ ∈ ∂ f (û),

where Λ∗ : Y′ → X′ is the adjoint operator of Λ.

PROOF. Under the above assumptions there are solutions both of the primal and of the dual
problem. We have (set p = Λu− y)

φ∗(0, ϕ) = sup
u∈X
y∈Y

〈ϕ, y〉Y′ ,Y − f (u)− g(Λu− y)

= sup
u∈X
p∈Y

〈ϕ, Λu− p〉Y′ ,Y − f (u)− g(p)

= sup
u∈X
p∈Y

〈ϕ, Λu〉Y′ ,Y − 〈ϕ, p〉Y′ ,Y − f (u)− g(p)

= sup
u∈X
p∈Y

〈Λ∗ϕ, u〉Y′ ,Y − f (u) + 〈−ϕ, p〉Y′ ,Y − g(p)

= sup
u∈X

[〈Λ∗ϕ, u〉Y′ ,Y − f (u)] + sup
p∈Y

[〈−ϕ, p〉Y′ ,Y − g(p)]

= f ∗(Λ∗ϕ) + g∗(−ϕ).

Extremality relation is
f (û) + g(Λû) + f ∗(Λ∗ ϕ̂) + g∗(−ϕ̂) = 0,

thus,
f (û) + f ∗(Λ∗ ϕ̂) = −(g∗(−ϕ) + g(Λû)).

According to Young’s inequality, the right hand side is always greater or equal of 〈ϕ̂, Λû〉Y′ ,Y,
while the left hand side is always less or equal than 〈Λ∗ ϕ̂, û〉X′ ,X = 〈ϕ̂, Λû〉Y′ ,Y (recall the
definition of adjoint operator). So both the left and the right hand side must be equal to
〈ϕ̂, Λû〉Y′ ,Y = 〈Λ∗ ϕ̂, û〉X′ ,X .

Extremality condition may be also obtained directly by subdifferential calculus rules. Since g ◦Λ
is continuous at u0, we have ∂F(u) = ∂ f (u) + ∂(g ◦Λ)(u) at all x ∈ dom f ∩ dom g ◦Λ,
moreover, since g is continuous at Λu0 we have ∂(g ◦Λ)(u) = Λ∗∂g(Λu). Thus û ∈ X is a
minimizer if and only if 0 ∈ ∂F(û) = ∂ f (û) + Λ∗∂g(Λu). In particular, there exists
−ϕ̂ ∈ ∂g(Λu) ⊆ Y′ such that Λ∗ ϕ̂ ∈ ∂ f (û). �

EXERCISE 7.2. Let Ω be a bounded open subset of Rd and let r, q ∈ L2(Ω; R) be fixed. Define
F : H1

0(Ω; R)→ R by setting

F(u) :=
1
2

∫
Ω
‖∇u(x)‖2 dx +

1
2

∫
Ω
|r(x)− u(x)|2 dx−

∫
Ω

q(x)u(x) dx.

Study the problem of minimization of F on H1
0(Ω).

SOLUTION. Set X = H1
0(Ω; R), X′ = H−1(Ω; R), Y = L2(Ω; Rd), Y′ = Y. The operator

Λ = ∇ : X → Y is linear and continuous. The functions f : X → R and g : Y → R defined as

f (u) :=
1
2
‖r− u‖2

L2 − 〈q, u〉L2 ,

g(p) :=
1
2
‖p‖2

L2 ,
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allow to write F in the form F(u) = f (u) + g(Λu).

We verify now the requirements of the previous result:
(1) We prove strictly convexity of g. Indeed, by triangular inequality, for every λ ∈ [0, 1] we

have
‖λp1 + (1− λ)p2‖Y ≤ λ‖p1‖Y + (1− λ)‖p2‖Y

and since r → r2 is convex and strictly increasing on nonnegative reals

(‖λp1 + (1− λ)p2‖Y)
2 ≤ (λ‖p1‖Y + (1− λ)‖p2‖Y)

2 ≤ λ‖p1‖2
Y + (1− λ)‖p2‖2

Y,

and, by the strict increasing property, equality holds if and only if p1 = p2. We notice
that dom g = Y and g is bounded from above in a neighborhood of every p̄ ∈ Y More
precisely, given p̄ ∈ Y we have that g is bounded from above in B( p̄, δ) by
1
2
‖ p̄‖2

Y + δ‖ p̄‖Y + δ2. Thus g is continuous, and locally Lipschitz, on the whole of Y.

(2) f is the sum between u 7→ −〈q, u〉L2 , which is a linear continuous function in X, hence
convex, l.s.c. and proper, and the composition between the map u 7→ r− u and
s 7→ 1

2‖s‖2
L2 , both of which are convex and continuous (see the proof of the convexity of

g), hence f is proper convex, and continuous.
(3) We prove that if ‖u‖X → +∞ then F(u)→ +∞: indeed

F(u) ≥ 1
2
‖∇u‖2

L2 − ‖q‖L2 · ‖u‖L2 ≥
1
2
‖∇u‖2

L2 − ‖q‖L2 · ‖u‖X .

Since Ω is bounded, according to Poincaré’s inequality we have ‖u‖X ≤ C‖∇u‖L2

where C > 0 is a costant depending only on Ω, so

F(u) ≥ C‖u‖X

(
C
2
‖u‖X − ‖q‖L2

)
→ +∞ if ‖u‖X → +∞.

(4) It is trivial to prove that there exists u0 ∈ X such that f (u0) < +∞, g(Λu0) < +∞ and g
is continuous at Λu0: we can take u0 = 0.

We compute now the conjugate functions f ∗ : X′ → [−∞,+∞] and g∗ : Y′ = Y → R.
We compute g∗ : Y′ = Y → R as follows

g∗(p∗) = sup
p∈Y

{
〈p∗, p〉Y′ ,Y −

1
2

∫
Ω
|p(x)|2 dx

}
=

1
2

sup
p∈Y

{∫
Ω

(
2p∗(x)p(x)− |p(x)|2

)
dx
}

=
1
2

sup
p∈Y

{∫
Ω

(
|p∗(x)|2 − |p∗(x)|2 + 2p∗(x)p(x)− |p(x)|2

)
dx
}

=
1
2

∫
Ω
|p∗(x)|2 dx− 1

2
inf
p∈Y

{∫
Ω

(
|p∗(x)|2 − 2p∗(x)p(x) + |p(x)|2

)
dx
}

=
1
2

∫
Ω
|p∗(x)|2 dx− 1

2
inf
p∈Y

{∫
Ω

(
|p∗(x)− p(x)|2

)
dx
}

=
1
2

∫
Ω
|p∗(x)|2 dx,

thus the sup was attained for p = p∗.

We recall that X ⊆ L2(Ω; R) ⊆ X′, thus

f ∗(u∗) = sup
u∈X

{
〈u∗, u〉X′ ,X −

1
2
‖r− u‖2

L2 + 〈q, u〉L2

}
= sup

u∈X

{
〈u∗, u〉X′ ,X + 〈q, u〉X′ ,X −

1
2
‖r− u‖2

L2

}
= sup

u∈X

{
〈u∗ + q, u〉X′ ,X + 〈r, u〉L2 −

1
2
‖r‖2

L2 −
1
2
‖u‖2

L2

}
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= sup
u∈X

{
〈u∗ + q + r, u〉X′ ,X −

1
2
‖u‖2

L2

}
− 1

2
‖r‖2

L2 .

We notice that if u∗ ∈ L2, we have

f ∗(u∗) = sup
u∈X

{
−1

2
‖u∗ + q + r‖2

L2 + 〈u∗ + q + r, u〉L2 −
1
2
‖u‖2

L2

}
− 1

2
‖r‖2

L2 +
1
2
‖u∗ + q + r‖2

L2

= sup
u∈X

{
−1

2
‖u∗ + q + r− u‖2

L2

}
− 1

2
‖r‖2

L2 +
1
2
‖u∗ + q + r‖2

L2

= −1
2
‖r‖2

L2 +
1
2
‖u∗ + q + r‖2

L2 ,

since X is dense in L2, thus the sup is attained at u = u∗ + q + r. On the other hand, if
u∗ ∈ H−1 \ L2, we have that there exists a sequence {un}H1

0
such that ‖un‖L2 → 0 and

〈u∗, un〉 → +∞, hence f ∗(u∗) + ∞. Hence

f ∗(u∗) =


−1

2
‖r‖2

L2 +
1
2
‖u∗ + q + r‖2

L2 , if u∗ ∈ L2;

+∞, otherwise.

According to Green’s formulas, for every u ∈ X, v ∈ Y′ sufficiently smooth it holds

〈v, Λu〉Y′ ,Y =
∫

Ω
v(x) · ∇u(x) dx = −

∫
Ω

div v(x) · u(x) dx,

and so Λ∗ : Y′ → X′ is Λ∗ = −div, where the divergence must be taken in the distributional
sense.

According to the previous result, both the primal and the dual problems have solutions û ∈ X
and ϕ ∈ Y′, respectively. Moreover, since g = g∗ is strictly convex these solutions are unique. We
have the extremality condition

f (û) + f ∗(Λ∗ ϕ̂) = 〈Λ∗ ϕ̂, û〉X′ ,X ,

−g(Λû)− g∗(−ϕ̂) = 〈ϕ̂, Λû〉Y′ ,Y.

In our case, the first relation implies that f ∗ must be finite at Λ∗ ϕ̂, thus we have Λ∗ ϕ̂ ∈ L2.
The second relation is

−g(∇û)− g∗(−ϕ̂) = 〈ϕ̂,∇û〉L2 ,
which corresponds to

g∗(−ϕ̂) = 〈−ϕ̂,∇û〉L2 − g(∇û),
so since the sup in the computation of g∗ was obtained for p = p∗, we obtain −ϕ̂ = ∇û in L2(Ω).
We can arrive at the same result even directly: the second extremality relation amounts to say

−1
2

∫
Ω
|∇û(x)|2 dx− 1

2

∫
Ω
| − ϕ̂|2 dx =

∫
Ω

ϕ̂(x) · ∇û(x) dx,

thus ∫
Ω
(|∇û(x)|2 + |ϕ̂(x)|2 + 2ϕ̂(x) · ∇û(x)) dx = 0,

hence ϕ̂ +∇û = 0 in L2(Ω).
In the first relation, we have that f ∗(Λ∗ ϕ̂) = 〈Λ∗ ϕ̂, û〉X′ ,X − f (û), and since the sup in the
computation of f ∗ was obtained for u = u∗ + q + r, we have û = Λ∗ ϕ̂ + q + r, hence we obtain{

−Λ∗ ϕ̂ + û = q + r
−ϕ̂ = ∇u

Finally, we have that û solves (weakly in H1):{
−4u + û = q + r, in Ω;
u|∂Ω = 0,
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recalling that div∇u = 4u.

REMARK 7.3. By following the same argument in the opposite sense, we can prove the following
result given an open bounded Ω ⊆ Rd, for every r, q ∈ L2(Ω) the problem{

−4u + u = q + r, in Ω;
u|∂Ω = 0.

admits only one solution û ∈ H1
0(Ω), which is characterized by being the minimizer on H1

0(Ω) of
the following functional

F(u) :=
1
2

∫
Ω
‖∇u(x)‖2 dx +

1
2

∫
Ω
|r(x)− u(x)|2 dx−

∫
Ω

q(x)u(x) dx.

REMARK 7.4. We want to solve the same problem with subdifferential calculus. Recall that,

given an Hilbert space Z, v ∈ Z, and defined wv(x) =
1
2
‖x− v‖2

H , we have ∂wv(x) = x− v. The
functional F defined as

F(u) :=
1
2
‖Λu‖2

L2 dx +
1
2
‖r− u‖2

L2 − 〈q, u〉L2 ,

where Λ = ∇, satisfies all the properties to apply subdifferential calculus, hence the minimizer
are characterized by

Λ∗Λû + û− r− q = 0,
hence −4u + û = q + r.

Summary of Lecture 7

• Although the class of perturbations and the coupling is not a priori given by the
problem, in certain cases there is a standard choice. Namely, if we consider F :
X →] −∞,+∞] which can be written as F(x) = f (x) + g(Λx), where f : X →
]−∞,+∞] is convex and l.s.c., g : Y →]−∞,+∞] convex and l.s.c., Λ : X → Y
linear and continuous. In this relevant case, we choose φ : X × Y →] −∞,+∞]
as φ(x, y) = f (x) + g(Λx − y). We notice that φ is convex, l.s.c. and the stability
criterion is fulfilled if there exists x0 ∈ X such that f (x0) < +∞ and g is continuous
at Λx0. Extremality relations for this problem decouples in a relation involving f , f ∗,
Λ∗ and another involving g, g∗, Λ.

• It is extremely important to familiarize with the example in this section, since it is
a model for many concrete cases.

8. Lecture of 26 october 2018: Complements to the first part (3h)

8.1. Useful tools to conjugate function computation. We will present now some tools and
arguments which turn useful in order to compute in practice the conjugate functions. For some
background remarks on Sobolev spaces, we refer the reader to the Appendix.

Let g : Rn → R be a C1 function, and suppose to have to compute g∗. According to the
definition, we have

g∗(y) = sup
ξ∈Rn

{ξ · y− g(ξ)} .

So we must compute for fixed y the supremum of ξ 7→ q(ξ) := ξ · y− g(ξ). Recalling basic
Calculus results, q ∈ C1(Rn; R), and so to maximize it we must study the limits for ‖ξ‖ → ∞
and then study the critical points, i.e., the points x ∈ Rn where ∇q(x) = 0.

If we assume moreover that g has superlinear growth, i.e.,

lim
‖ξ‖→+∞

g(ξ)
‖ξ‖ = +∞,

we have also

lim
‖ξ‖→+∞

q(ξ) = lim
‖ξ‖→+∞

‖ξ‖
(

ξ

‖ξ‖ · y−
g(ξ)
‖ξ‖

)
≤ lim
‖ξ‖→+∞

‖ξ‖
(
‖y‖ − g(ξ)

‖ξ‖

)
= −∞,
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so the supremum is actually a maximum attained at some critical points belonging to Rn (we
recall that g cannot take value −∞).

The critical point condition ∇q(x) = 0 can be written as y = ∇g(x). If g is convex then q is
concave, thus ∇q(x) = 0 if and only if x is a maximum, hence

g∗(y) + g(x) = x · y,

for every y = ∇g(x). Hence ∂g(x) = {∇g(x)}.
Assume now that the relation y = ∇g(x) is invertible for every y, i.e., for every y the maximum
of q(·) is attained at a unique point x = [∇g]−1(y). This holds if and only if q is strictly concave
(i.e., g is strictly convex). In this case

g∗(y) = sup
ξ∈Rn

{ξ · y− g(ξ)} = ξ̄ · y− g(ξ̄) if and only if y = ∇g(ξ̄).

Let us assume that also g∗ is of class C1 with superlinear growth. Iterating the argument we have

g∗∗(x) = sup
η∈Rn

{η · x− g∗(η)} = η̄ · y− g∗(η) if and only if x = ∇g∗(η̄).

By the regularity of g we obtain g = g∗∗, thus
(1) if y = ∇g(x) then g∗(y) = x · y− g(x), hence g∗∗(x) = g(x) = x · y− g∗(y), and so

x = ∇g∗(y);
(2) if x = ∇g∗(y) then g∗∗(x) = g(x) = x · y− g∗(y), hence g∗(y) = x · y− g(x), and so

y = ∇g(y).
So in this particular case we obtain

∇g∗(y) = x ⇐⇒ ∇g(x) = y,

which is a smooth versione of x ∈ ∂g(y)⇐⇒ y ∈ ∂g(x).

Recalling that (∇g(x),−1) is the normal to epi g at (x, g(x)), and (∇g∗(x),−1) is the normal to
epi g∗ at (y, g∗(y)), from a geometric point of view the above relation yields a relation between
the normals to epi g and epi g∗.

EXAMPLE 8.1. Consider the case n = 1, g : R→ R, g(x) = ex. We have

lim
x→+∞

g(x)
x

= +∞, lim
x→−∞

g(x) = 0.

Set
g∗(y) = sup

x∈R

{x · y− ex} ,

we have g∗(0) = − inf{ex : x ∈ R} = 0. Since

lim
x→+∞

g(x)
x

= +∞,

the supremum in the definition of g∗(y) cannot be attended by the limit ξ → +∞. In the
1-dimensional case, ∇ denotes the ordinary derivative, thus

∇g∗(y) = x ⇐⇒ ∇g(x) = y,

reads as
d

dy
g∗(y) = x ⇐⇒ d

dx
g(x) = y.

In particular, d
dx g(x) = y means ex = y, which can holds only if y > 0 and x = log y. So for y > 0

we have d
dy g∗(y) = log y, hence

g∗(y) =
∫ y

0
log s ds = y log y− y,

recalling that g∗(0) = 0 (be careful: it is an improper integral). In the case y < 0 the map
ξ 7→ ξ · y− eξ admits no critical point x̄ ∈ R, since the equation y = ex has no solution. So the
supremum of ξ 7→ ξ · y− eξ is attained either for ξ → +∞ or for ξ → −∞. Since the case ξ → +∞
has already been excluded, we have immediately that the supremum is achieved for ξ → −∞
and it holds +∞. Finally, we have g∗(y) = +∞ if y < 0, g∗(0) = 0, and g∗(y) = y(log y− 1) if
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y > 0. We notice that since g was strictly increasing, we cannot have normals to epi g whose first
component is negative. This impossibility reflects on the fact that g∗ cannot be finite for y < 0.

In many concrete problems are involved integral functionals, thus it is common the need to
compute the convex conjugate F∗ : X′ → R of functionals

F(u) =
∫

Ω
f (x, u(x)) dx,

where Ω ⊆ Rd and f : Ω×Rm → R∪ {+∞} are measurable, and u ∈ X (X is some normed
space contained in the set of measurable functions from Ω to Rm). By definition,

F∗(u∗) = sup
u∈X

{
〈u∗, u〉X′ ,X +

∫
Ω

f (x, u(x)) dx
}

.

Assume for simplicity that the action 〈u∗, u〉X′ ,X can also be written in integral form (for
instance, this is true if X = Lp(Ω) hence X′ = Lq(Ω) where 1 ≤ p < ∞, 1 < q ≤ +∞ and
1/p + 1/q = 1, with the convention 1/ + ∞ = 0)

〈u∗, u〉X′ ,X =
∫

X
u∗(x)u(x) dx.

In this case we have to compute

F∗(u∗) = sup
u∈X

∫
Ω
[u∗(x)u(x)− f (x, u(x))] dx.

On the other hand, we know that for every p ∈ Rm, x ∈ Ω it holds

u∗(x) · p− f (x, p) ≤ f ∗(x, u∗(x)),

where we denote by
f ∗(x, p) = sup

q∈Rm
p · q− f (x, q)

the conjugate of f only with respect to the second variable, f ∗ : Ω×Rm → R∪ {+∞}. In
particular, we can take p = u(x), and so

u∗(x)u(x)− f (x, u(x)) ≤ f ∗(x, u∗(x)),

Integrating and taking the supremum on u ∈ X, we have

F∗(u∗) ≤
∫

Ω
f ∗(x, u∗(x)) dx.

It is clear the importance of providing sufficient conditions yielding

F(u) =
∫

Ω
f (x, u(x)) dx implies F∗(u∗) =

∫
Ω

f ∗(x, u∗(x)) dx,

since in this case we can compute a conjugate function of the integral functional by computing
the finite-dimension conjugate of f : Ω×Rm → R, i.e., the problem is reduced to the
finite-dimensional case.

This amounts to switch the sup and the integral operator. However, in general, this operation may
be not allowed, since the selections

p(x) ∈ arg sup
p∈Rm

{u∗(x) · p− f (x, p)},

which can be built for every fixed x, could lead to a function x 7→ p(x) not belonging to X, or not
integrabile, and even not measurable. Nevertheless, if the integrand function f is sufficiently
smooth, this case does not occurr.

DEFINITION 8.2. Let Ω be an open subset of Rn and B ⊆ Rp be a Borel set. We say that a
function f : Ω× B→ [−∞,+∞] is a normal integrand on Ω× B if

(1) for a.e. x ∈ Ω the map a 7→ f (x, a) is l.s.c. on B
(2) there exists a Borel map f̃ : Ω× B→ [−∞,+∞] such that f (x, ·) = f̃ (x, ·) for a.e. x ∈ Ω.
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If f , g, { fn}n∈N are normal integrand, then also λ f + g is normal for all λ > 0, and also inf{ f , g},
supn f̃n are normal.

An important class of normal integrand (see Proposition VIII.1.1 in [5]) is given by Carathéodory
functions, i.e., functions f : Ω× B→ [−∞,+∞] satisfying

(1) for a.e. x ∈ Ω the map a 7→ f (x, a) is continuous on B;
(2) for a.e. a ∈ B the map x 7→ f (x, a) is measurable in Ω.

We state now the measurable selection theorem:

THEOREM 8.3. Let Ω be an open subset of Rn, B be a compact subset of Rm, and g be a normal integrand
on Ω× B. Then there exists a measurable function ū : Ω→ B such that for every x ∈ Ω we have

g(x, ū(x)) = min
a∈B

g(x, a).

PROOF. Omitted. See Theorem VIII.1.2 in [5]. �

The following result formalizes the computation of the conjugate of integral functionals

PROPOSITION 8.4. Let Ω be an open bounded subset of Rn. Let 1 ≤ α ≤ +∞, f : Ω×Rm → [0,+∞[
be a normal integrand where v 7→ f (x, v) is convex for all x ∈ Ω. Define F : Lα(Ω, Rm)→ [0,+∞] by
setting

F(u) =
∫

Ω
f (x, u(x)) dx.

Assume that there exists u0 ∈ L∞(Ω, Rm) such that F(u0) < +∞. Then if α′ is the conjugate exponent
of α, i.e., 1/α + 1/α′ = 1, we have

F∗(u∗) =
∫

Ω
f ∗(x, u∗(x)) dx,

for all u∗ ∈ Lα′(Ω, Rm).

PROOF. Fix u∗ ∈ Lα′(Ω, Rm). Define

Φ(x) := sup
ξ∈Rm

[u∗(x) · ξ − f (x, ξ)],

Φn(x) := max
ξ∈Rm

|ξ|≤n

[u∗(x) · ξ − f (x, ξ)].

Clearly {Φn}n∈N is an increasing sequence of functions pointwise convergent to Φ in Ω.
Moreover, for every n ≥ ‖u0‖L∞ we have

Φn(x) ≥ [u∗(x) · u0(x)− f (x, u0(x))] =: Φ̃(x),

since |u0(x)| ≤ ‖u0‖L∞ , and the function Φ̃(·) on the right hand side is integrable because
u0 ∈ L∞(Ω; Rm) ⊆ Lα(Ω; Rm). According to the measurable selection theorem, for every n ∈N

there exists a measurable function ūn : Ω→ Rm such that ‖ūn‖L∞ ≤ n and

Φn(x) = u∗(x) · ūn(x)− f (x, ūn(x)).

This implies that {Φn}n∈N is a (increasing) sequence of measurable functions pointwise
converging to Φ, and then Φ is also measurable. According to Beppo Levi’s Monotone
Convergence Theorem (applied to the nonnegative increasing sequence of measurable functions
{Φn − Φ̃}n∈N pointwise convergent to Φ− Φ̃), we have∫

Ω
Φ(x) dx = sup

n∈N

∫
Ω

Φn(x) dx.

Thus ∫
Ω

Φ(x) dx = sup
n∈N

∫
Ω

Φn(x) dx

= sup
n∈N

∫
Ω

u∗(x) · ūn(x)− f (x, ūn(x)) dx

≤ sup
u∈L∞⊆Lα

∫
Ω

u∗(x) · u(x)− f (x, u(x)) dx
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≤ sup
u∈Lα(Ω;Rm)

∫
Ω

u∗(x) · u(x)− f (x, u(x)) dx = F∗(u∗).

Conversely, since
sup

ξ∈Rm
[u∗(x) · ξ − f (x, ξ)] = Φ(x),

for all u ∈ Lα(Ω; Rm) we have

u∗(x) · u(x)− f (x, u(x)) ≤ Φ(x).

Integrating the above relation and taking the sup on u ∈ Lα(Ω; Rm) we obtain

F∗(u∗) = sup
u∈Lα(Ω;Rm)

∫
Ω
[u∗(x) · u(x)− f (x, u(x))] dx ≤

∫
Ω

Φ(x) dx.

So we have
F∗(u∗) =

∫
Ω

Φ(x) dx =
∫

Ω
f ∗(x, u∗(x)) dx.

�

REMARK 8.5 (Conjugate in H1). We will discuss now a frequent case occurring in the exercises.
Let Ω be a bounded open subset of Rd, and assume to have F : H1(Ω)→]−∞,+∞] given by

F(u) :=
∫

Ω
f (x, u(x)) dx,

where f is a normal integrand, and v 7→ f (x, v) is a convex function. Assume moreover that
there exists u0 ∈ L∞(Ω) such that F(u0) < +∞. Under these assumption we would know how to
conjugate F if F was defined on L2: in fact, we would have F∗ : L2(Ω)→]−∞,+∞] defined by

F∗(u∗) :=
∫

Ω
f ∗(x, u∗(x)) dx.

However, since F is defined on H1(Ω), its conjugate is defined on F∗ : H−1(Ω)→ [−∞,+∞].

We recall that given u∗ ∈ L2(Ω) ⊂ H−1(Ω) and v ∈ H1(Ω) ⊆ L2(Ω), the action of u∗ on v is
given by

〈u∗, v〉H−1,H1 =
∫

Ω
u∗(x)v(x) dx = 〈u∗, v〉L2 .

For every u ∈ H1(Ω) and u∗ ∈ H−1 we have that

F∗(u∗) + F(w) ≥ 〈u∗, w〉H−1,H1 .

Assume that F is the restriction on H1(Ω) of a continuous functional on L2(Ω), still denoted by F

We distinguish now two cases:
(1) For every u∗ ∈ H−1(Ω) \ L2(Ω) there exists a sequence {vn}n∈N ⊆ H1(Ω) and

v ∈ L2(Ω) with vn → v in L2(Ω) such that 〈u∗, vn〉H−1,H1 → +∞. In particular, we have

F∗(u∗) + F(vn) ≥ 〈u∗, vn〉H−1,H1 ,

and by taking the limit for n→ +∞ and recalling that F(vn)→ F(v) < +∞ we have we
obtain F∗(u∗) = +∞.

(2) For every u∗ ∈ L2(Ω) we have

F∗(u∗) = sup
u∈H1(Ω)

〈u∗, u〉H−1,H1 − F(u) = sup
u∈H1(Ω)

〈u∗, u〉L2 − F(u).

Given v ∈ L2(Ω) and ε > 0 there exists u ∈ H1(Ω) such that ‖u− v‖L2 ≤ ε and
|F(u)− F(v)| ≤ ε, so

〈u∗, v〉L2 − F(v) ≤ 〈u∗, u〉+ ‖u∗‖L2‖u− v‖L2 − F(u) + |F(u)− F(v)|
≤ 〈u∗, u〉 − F(u) + ε(1 + ‖u∗‖L2).

We obtain for every ε > 0

〈u∗, v〉L2 − F(v) ≤ sup
u∈H1(Ω)

〈u∗, u〉 − F(u) + ε(1 + ‖u∗‖L2),
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thus
〈u∗, v〉L2 − F(v) ≤ sup

u∈H1(Ω)

〈u∗, u〉 − F(u),

and
sup

v∈L2(Ω)

〈u∗, v〉L2 − F(v) ≤ sup
u∈H1(Ω)

〈u∗, u〉 − F(u),

since the opposite inequality trivially holds, we have equality, thus

F∗(u∗) = sup
u∈L2(Ω)

〈u∗, u〉L2 − F(u),

and so
F∗(u∗) =

∫
Ω

f ∗(x, u∗(x)) dx.

We conclude that in this case if u∗ /∈ L2 automatically F∗(u∗) = +∞ otherwise we compute F∗ as
in the case of F : L2(Ω)→ L2(Ω).

EXERCISE 8.6. We consider the Mossolov’s problem. Let α, β > 0, Ω ⊆ Rd be open and bounded,
q ∈ L2(Ω). Define F : H1

0(Ω; R)→]−∞,+∞] by setting

F(u) :=
α

2

∫
Ω
|∇u(x)|2 dx + β

∫
Ω
|∇u(x)| dx−

∫
Ω

q(x)u(x) dx,

and study inf
u∈H1

0

F(u).

SOLUTION. Set X = H1
0(Ω; R), X′ = H−1(Ω; R), Y = Y′ = L2(Ω; Rd), Λ = ∇ : X → Y and

define f : X → R and g : Y → R by

f (u) = −
∫

Ω
q(x)u(x) dx,

g(p) =
α

2

∫
Ω
|p(x)|2 dx + β

∫
Ω
|p(x)| dx,

thus we have
F(u) = f (u) + g(Λu).

It is easy to see that f and g are continuous and convex functions, that F is coercive and strictly
convex, and Λ∗ = −div : Y′ → X′. Moreover f ∗(u∗) = 0 if and only if u∗ = −q, otherwise
f ∗(u∗) = +∞.

If q = 0 the the unique solution to the problem is û = 0. We assume q 6= 0.

To compute the conjugate of g, we notice that

g(p) =
α

2

∫
Ω
|p(x)|2 dx + β

∫
Ω
|p(x)| dx =

∫
Ω

r(x, p(x)) dx,

where
r(x, a) = r(a) =

α

2
|a|2 + β|a|

for all a ∈ B := Rd. We notice that r(·) is a normal integrand on Ω× B, moreover r(·) ≥ 0 and it
is convex and superlinear, then

g∗(p∗) =
∫

Ω
r∗(p∗(x)) dx.

We will compute now the conjugate of r(·). We notice that r∗(0) = inf
a∈R

r = 0, thus we consider

now a∗ 6= 0. In particular, we write a∗ = µη, where µ = ‖a∗‖ ≥ 0 and ‖η‖ = 1.

r∗(µη) = sup
a∈Rd

{
µ〈η, a〉 − α

2
|a|2 − β|a|

}
.

Since 〈η, a〉 ≤ |a| with equality if and only if a = |a|η, setting λ = |a|, we have

r∗(µη) = sup
a∈Rd

{
(µ− β)|a| − α

2
|a|2
}
= sup

λ≥0

{
(µ− β)λ− α

2
λ2
}

.
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The graph of the map ψ(λ) := (µ− β)λ− α

2
λ2 is a parabola passing through the origin with

downward concavity, thus this map is strictly increasing for λ ≤ µ− β

α
and strictly decreasing

for λ ≥ µ− β

α
.

In particular, if µ− β ≤ 0, the map ψ is strictly decreasing on [0,+∞[, thus its supremum on
[0,+∞[ is achieved at 0 and its value is ψ(0) = 0. If µ− β > 0, the map ψ achieves its unique

maximum on R at
µ− β

α
> 0, its supremum on [0,+∞[ is achieved at

µ− β

α
and its value is

ψ

(
µ− β

α

)
=

(µ− β)2

2α
.

Summarizing, we have:

(1) if ‖a∗‖ ≤ β, then r∗(a∗) = 0 and r∗(a∗) = 〈a∗, a〉 − r(a) if and only if a = 0.

(2) if ‖a∗‖ > β, then r∗(a∗) =
(‖a∗‖ − β)2

2α
and r∗(a∗) = 〈a∗, a〉 − r(a) if and only if

a =
‖a∗‖ − β

α
η =

‖a∗‖ − β

‖a∗‖α a∗.

Thus

r∗(a∗) =


0, if ‖a∗‖ ≤ β;

(‖a∗‖ − β)2

2α
, if ‖a∗‖ ≥ β.

So the dual problem is

sup
p∗∈L2

div p∗=q

−
∫

Ω
r∗(p∗(x)) dx.

The duality theorem holds, and we obtain the extremality relations
f (û) + f ∗(Λ∗ ϕ̂) = 〈ϕ̂, Λû〉Y′ ,Y,

−g(Λû)− g∗(−ϕ̂) = 〈Λ∗ ϕ̂, û〉Y′ ,Y.

In our case, from the first relation, to have a finite value of f ∗ (recalling that f ∗ assumes only the
values 0 or +∞), necessarily Λ∗ ϕ̂ = −q, thus divϕ̂ = q. From the second we have,

−g(∇û)− g∗(−ϕ̂) = 〈ϕ̂,∇û〉L2 ,

which becomes ∫
Ω
(r(∇û) + r∗(−ϕ̂(x)) + ϕ̂ · ∇û(x)) dx = 0

By Young’s inequality, the integrand is always nonnegative, thus for a.e. x ∈ Ω:

r∗(−ϕ̂(x)) = 〈∇û(x),−ϕ̂〉 − r(∇û(x)).

In particular, this implies −ϕ̂(x) = γ∇û(x), γ ∈ R, since both r and r∗ depends only by the
modulus of their arguments.

Recalling that r∗(a∗) = a∗ · a− r(a) if and only if a = λ̄a∗ =
‖a∗‖ − β

‖a∗‖α a∗ for ‖a∗‖ > β, and a = 0

for ‖a∗‖ ≤ β, we obtain

∇û(x) =


0, if ‖φ̂(x)‖ ≤ β

−ϕ̂(x)
‖ϕ̂(x)‖ − β

‖ϕ̂(x)‖α if ‖ϕ̂(x)‖ ≥ β.

where Λ∗ ϕ̂ = −q, so div ϕ̂ = q and φ̂ is the solution of the dual problem.
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8.2. Relaxation and convexification. It may occurr that we are dealing with a problem
infx∈X F(x) where

F(x) :=
∫

Ω
f (x, u(x),∇u(x)) dx

fails to be convex and lower semicontinuous. In this case, even in presence of coercivity of the
functional, the existence of a solution cannot be taken as granted, since Tonelli-Weierstrass
theorem cannot be applied, moreover, the lack of convexity prevents to use any of the necessary
condition we stated. Nevertheless, in many cases the problem is faced by introducing a new
problem, called relaxed problem which exhibits good regularity properties and whose solutions
are connected with the original problem.

We present first a generalization of Tonelli-Weierstrass to non-l.s.c. functionals.

PROPOSITION 8.7. Let X be a reflexive Banach space, and let F : X → R∪ {+∞} be coercive.
Consider the l.s.c. regularization F of F then

(1) F̄ : X → R∪ {+∞} is coercive and l.s.c., thus it admits point of minimum;
(2) every cluster point of a minimizing sequence of F is a minimum of F;
(3) every minimum point of F is the limit of a minimizing sequence of F

PROOF.
(1) By coercivity of F in a reflexive space, for any M > 0 there exists N > 0 such that if

‖y‖X ≥ N then
F(y)
‖y‖X

≥ M Thus, if we take x ∈ X with ‖x‖ > 2N, we have

M ≤ lim inf
y→x

F(y)
‖y‖X

=
F̄(y)
‖x‖X

,

yielding coercivity. By Tonelli-Weierstrass, we have that F̄ has points of minimum.
(2) let {xn}n∈N ⊆ X be a minimizing sequence of F, and assume that xn → x. Thus,

(xn, F(xn)) is a sequence in epi F = epi F wich converges to (x, inf F). By closedness of
epi F, we have that (x, inf F) ∈ epi F, thus F(x) ≤ inf F On the other hand, suppose by
contradiction that there exists y ∈ X such that F(y) < inf F, and let F(y) < a < inf F. By
definition, we have a > F(y) = lim infz→y F(y) ≥ inf F > a, which is a contradiction,
hence F(y) ≥ inf F for all y ∈ X and thus F(x) = inf F, so x is a point of minimum for F.

(3) Since F ≤ F, if x a minimum point of F we must have F(x) ≤ F(y) for all y ∈ X, thus
F(x) ≤ inf F. On the other hand, we have already proved that F(y) ≥ inf F for all
y ∈ X, hence if x is a minimum point for F, then F(x) = inf F. Moreover, we have

F(x) = inf F = lim inf
y→x

F(y),

thus there exists a sequence xn → x such that F(xn)→ inf F.
�

We present here, without proof, a general result on relaxation of integral functionals.

THEOREM 8.8 (Relaxation). Let Φ : [0,+∞[→ [0,+∞[ be a nonnegative, increasing, convex and l.s.c.

function such that lim
t→+∞

Φ(t)
t

= +∞. Let g : Ω×Rm → R be a normal integrand satisfying

Φ(|ξ|) ≤ g(x, ξ) for all (x, ξ) ∈ Ω×Rm. Let 1 ≤ β ≤ +∞, and f : Ω×R` ×Rm → R be a normal
integrand satisfying

(1) if 1 ≤ β < +∞, there exists a1, a2 ∈ L1(Ω), b ≥ 0, c ≥ 1 such that

g(x, ξ) + a2(x) ≤ f (x, s, ξ) ≤ cg(x, ξ) + b|s|β + a1(x).

(2) if β = +∞, there exists a2 ∈ L1(Ω) and, for all k > 0 there exists c ≥ 1 and a1 ∈ L2(Ω) such
that

g(x, ξ) + a2(x) ≤ f (x, s, ξ) ≤ cg(x, ξ) + a1(x), for |s| ≤ k.

(3) for a.e. x ∈ Ω, the restriction of f (x, ·, ·) to R` × dom g(x, ·) is continuous.
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Let G : L1 → Lβ be a map such that if {pn}n∈N converges weakly to p̄ in L1(Ω; Rm), and if

sup
n∈N

∫
Ω

Φ(|pn(x)|) dx < +∞, then {G pn}n∈N converges to G p̄ in Lβ(Ω; Rm). We introduce the

following problems:

(P) inf
p∈LΦ(Ω;Rm)

u=G p

∫
Ω

f (x, u(x), p(x)) dx,

(RP) inf
p∈LΦ(Ω;Rm)

u=G p

∫
Ω

f ∗∗(x, u(x), p(x)) dx,

where

LΦ(Ω) :=
{

p :
∫

Ω
Φ(|p(x)|) dx < +∞

}
.

Then

(1) the problem (RP) has a solution,
(2) the minimum of (RP) equals the infimum of (P),
(3) if (ū, p̄) with ū = G p̄ solves (RP), then there exists a minimizing sequence {(un, pn)}n∈N

for (P) such that un = G pn, un → ū in Lβ, and pn → p̄ weakly in L1,
(4) if {(un, pn)}n∈N is a minimizing sequence for (P), there exists (ū, p̄) with ū = G p̄ which

solves (RP), and a subsequence {(unk , pnk )}k∈N such that un → ū in Lβ, and pn → p̄
weakly in L1.

PROOF. See Theorem 4.1 in Chapter IX of [5] at p.287. �

We consider now a concept of convergence of functionals introduced by De Giorgi in the ’70s.
Our problem is as follows: a sequence of functionals {Fh}h∈N is given. Supposing that x̄n is a
minimum of Fn, we want to give conditions in order to have convergence of x̄n to a point x0 that
is characterized as the minimum of a suitable limit functional F. The main reference for this part
is [2].

DEFINITION 8.9 (Γ-limit). Let X be a separable Banach space endowed with a topology T , and
let {Fh : X → [−∞,+∞]}h∈N be a sequence of functionals. We say that the sequence Fh
Γ-converges to F : X → [−∞,+∞] (or F = Γ− lim Fh) if

(1) For every x ∈ X and every sequence {xn}n∈N ⊆ X converging to x for the topology T
we have

F(x) ≤ lim inf
h→∞

Fh(xh).

(2) For every x ∈ X there exists a sequence {xn}n∈N ⊆ X converging to x for the topology
T we have

F(x) ≥ lim sup
h→∞

Fh(xh).

In order to ensure convergence of the sequence of the minima of Fh, the following definition is
quite natural.

DEFINITION 8.10 (Equicoercivity). Let X be a separable Banach space endowed with a topology
T , and let {Fh : X → [−∞,+∞]}h∈N be a sequence of functionals. We say that {Fh}h∈N is
equicoercive if for every t ∈ R there exists a compact set Kt in the topology T such that
{x ∈ X :∈ Fh(x) ≤ t} ⊆ Kt for all h ∈N.

THEOREM 8.11 (Γ-convergence). Let X be a separable Banach space endowed with a topology T , and
let {Fh : X → [−∞,+∞]}h∈N be a sequence of equicoercive functionals. Then

(1) if the Γ-limit of {Fh}h∈N exists, then it is unique and l.s.c.;
(2) there exists a subsequence {Fhk

}h∈N and F such that F = Γ− lim Fhk
;

(3) if F = Γ− lim Fh, then F + G = Γ− lim Fh + G for all continuous G : X → [−∞,+∞]; there
exists a subsequence {Fhk

}h∈N and F such that F = Γ− lim Fhk
;
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(4) let F = Γ− lim Fh and assume that F admits x0 as unique minimum point. Let {xh}h∈N ⊆ X
and {εh}h∈N ⊆]0,+∞[ be such that εh → 0+ and |Fh(xh)− inf Fh| ≤ εh. Then xh → x0 in
T and Fh(xh)→ F(x0).

PROOF. Omitted, see [2]. �

PROPOSITION 8.12. Let X be a separable Banach space endowed with a topology T , and let
{Fh : X → [−∞,+∞]}h∈N be a sequence of functionals, F : X → [−∞,+∞]. Then

(1) If {Fh}h∈N converges to F uniformly, then Fh Γ-converges to F;
(2) If {Fh}h∈N is a decreasing sequence converging to F pointwise, then Fh Γ-converges to F.

PROOF. Omitted, see [2]. �

9. Some exercises in preparation to the first partial test

EXERCISE 9.1. Let Ω be an open bounded subset of R2. Consider the problem:

inf
u∈H1

0 (Ω)

∫
Ω

(
2 |∇u (x1, x2)|2 + 4∂x2 u (x1, x2) ∂x1 u (x1, x2) +

((
x2

2 + 2
)

u (x1, x2)− 3x1

)2
+

+[∂x1 u(x1, x2)]
2 + 2[∂x2 u(x1, x2)]

2
)

dx1 dx2.

(1) Prove that the problem admits a unique solution.
(2) Formulate the problem in the form F (u) = F(u) + G ◦Λ(u) where F : X →]−∞,+∞],

G : Y →]−∞,+∞], and Λ : X → Y, carefully precising the functional spaces X, Y and
discussing the regularity of F, G, Λ.

(3) Write the dual problem and the extremality relations. Establish if the dual problem
admits an unique solution.

(4) Using the previous results, write down a partial differential equation satisfied by the
minimum.

SOLUTION. Set X = H1
0(Ω; R), X′ = H−1(Ω; R), Y = Y′ = L2(Ω; R2), Λ = ∇ : X → Y,

Λ∗ = −div : Y′ → X′. Denoted by x = (x1, x2), p = (p1, p2), we define
r : R2 → R, r(x) := x2

2 + 2,
q : R2 → R, q(x) := 3x1,

A ∈ Mat2×2(R), A :=
(

3 2
2 4

)
,

f : R2 ×R→ R, f (x, u) := (r(x)u− q(x))2,
g : R2 → R, g(x, p) := 3p2

1 + 4p2 p1(x) + 4p2
2 = 〈Ap, p〉,

With this choices, we set

F(u) :=
∫

Ω
f (x, u(x)) dx =

∫
Ω
(r(x)u(x)− q(x))2 dx = ‖ru− q‖2

L2 ,

G(p) :=
∫

Ω
g(x, p(x)) dx =

∫
Ω

(
3p2

1(x) + 4p2(x)p1(x) + 4p2
2(x)

)
dx = 〈Ap, p〉L2 .

To prove the convexity of F and G it is enough to check that for a.e. x ∈ Ω, the functions
u 7→ f (x, u) and p 7→ g(x, p) are convex, indeed in this case from the convex inequality

f (x, λu1(x) + (1− λ)u2(x)) ≤ λ f (x, u1(x)) + (1− λ) f (x, u2(x)),

holding at a.e. x ∈ Ω for λ ∈ [0, 1], we obtain the corresponding relation

F(λu1 + (1− λ)u2) ≤ λF(u1) + (1− λ)F(u2),

by integrating on Ω. In the same way, the convexity of g(x, ·) for a.e. x ∈ Ω yields the convexity
of G. We have that for every fixed x ∈ Ω the maps f (x, ·) and g(x, ·) are C∞. Moreover

∂u f (x, u) = 2r(x)(r(x)u− q(x)),

∂2
uu f (x, u) = 2r2(x) > 0,

gradp g(x, p) = 2Ap =

(
6p1 + 4p2
4p1 + 8p2

)
,
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Hessp g(x, p) = 2A =

(
6 4
4 8

)
Since ∂2

uu f > 0 and the eigenvalues of Hesspg are
{

7 +
√

17, 7−
√

17
}

, both stricly positive and
so Hesspg is positive definite, we have that u 7→ f (x, u) e p 7→ g(x, p) are proper and convex for
every fixed x ∈ Ω, hence F and G are convex. Since A is positive definite, we have G(p) ≥ 0 and
G(0) = 0, thus g is proper. Similarly, we have F(u) ≥ 0 and F(0) = ‖q‖L2 < +∞ according to the
boundedness of Ω. Thus also F is proper. Since F and G are convex, the same holds for the
composition G ◦Λ of a convex proper function with a linear one and for the sum of convex
functions F . Moreover, G ◦Λ(0) = G(0) < +∞ and so F (0) < +∞ thus also G ◦Λ and F are
proper. Finally, the strict convexity of G implies that F is strictly convex.

We prove now some regularity properties of F and G. Concerning G, we have
λ−‖p‖2

L2 ≤ G(p) ≤ λ+‖p‖2
L2 , where λ± = 7±

√
17. In particular, for any fixed p̄ ∈ Y, δ > 0, we

have for all p ∈ BL2( p̄, δ)

G(p) ≤ λ+‖p‖2
L2 = λ+(‖p− p̄‖L2 + ‖ p̄‖L2)2 ≤ λ+(δ + ‖ p̄‖L2)2,

in particular, there exists a neighborhood of p̄ and the map G is uniformly upper bounded on
that neighborhood. Thus G is continuous at p̄. By the arbitrariness of p̄, we conclude that G is
continuous.

Concerning F, to prove its continuity in X it is enough to show that it is continuous in L2 since
the convergence in X implies the convergence in L2. We have

F(u) =‖ru− q‖2
L2 ≤ (‖ru‖L2 + ‖q‖L2)2 ≤

(√
‖(ru)2‖L1 + ‖q‖L2

)2

≤
(√
‖r2‖L∞ · ‖u2‖L1 + ‖q‖L2

)2

≤ (‖r‖L∞ · ‖u‖L2 + ‖q‖L2)
2 ,

where we used the Hölder inequality to estimate

‖(ru)2‖L1 ≤ ‖r2‖L∞‖u2‖L1 = ‖r‖2
L∞‖u‖2

L2 .

For any fixed ū ∈ L2 and δ > 0 we then have for all u ∈ BL2(ū, δ)

F(u) ≤ (‖r‖L∞ · ‖u‖L2 + ‖q‖L2)
2

≤ (‖r‖L∞ · (‖u− ū‖L2 + ‖ū‖L2) + ‖q‖L2)
2

≤ (‖r‖L∞ · (δ + ‖ū‖L2) + ‖q‖L2)
2 ,

and so, reasoning exactly as for G, we have that F is continuous in L2 and so also in X.

In order to prove the existence of the solution, by the reflexivity of X, it remains to prove only
that if ‖u‖X → +∞ we have F (u)→ +∞. Since F ≥ 0, we have

F (u) = F(u) + G(∇u) ≥ G(∇u) ≥ λ−‖∇u‖L2 .

By the boundedness of Ω, Poincaré’s inequality yields the existence of a suitable constant C > 0
depending only on Ω such that ‖u‖L2 ≤ C‖∇u‖L2 , and so ‖u‖X ≤ (C + 1)‖∇u‖L2 . We conclude

that F (u) ≥ λ−

C + 1
‖u‖X , and so if ‖u‖X → +∞ we have F (u)→ +∞.

We have that F is convex, proper, l.s.c. and coercive on a reflexive space, thus admits a
minimizer û. Moreover, by the strict convexity, this minimizer is unique.

We want to compute now the conjugate of F and G. Since f , g are Carathéodory functions, to
conjugate F, G as functions defined on L2 it is enough to take the integral of the conjugate of
f (x, ·) and g(x, ·), respectively. Thus we want to compute

f ∗(x, u) = sup
w∈R

{〈w, u〉 − f (x, u)} , g∗(x, p∗) = sup
p∈R2
{〈p∗, p〉 − g(x, p)}
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(the conjugate is taken only w.r.t. u and p, respectively). The map u 7→ f (x, u) is superlinear for
every fixed x, thus the supremum it is attained in R. Moreover, u 7→ f (x, u) is smooth, thus to
detect it we take the derivative in u of the argument of the supremum in f ∗, and find the points
where it vanishes.

d
du

[〈w, u〉 − f (x, u)] = w− 2r(x) (r(x)u− q(x)) = 0,

and so

u =
w− 2q(x)r(x)

2r2(x)
.

We keep track of the fact that, for every fixed x ∈ Ω, the supremum in the formula defining
f ∗(x, w) is attained uniquely at u ∈ R satisfying

w = 2r(x) (r(x)u− q(x)) .

By substitution, we have

f ∗(x, w) =
w(4q(x)r(x) + w)

4r2(x)
,

Since the map f was measurable in x and continuous w.r.t. u, we have that f is a normal
integrand. Moreover, taken u0 ≡ 0, we have F(u0) < +∞. Hence we can compute the conjugate
of F by conjugating the integrand function. Thus if w ∈ L2(Ω), we have

F∗(w) =
∫

Ω
f ∗(x, w(x)) dx =

∫
Ω

w(x)(4q(x)r(x) + w(x))
4r2(x)

dx =
∥∥∥ w

2r

∥∥∥2

L2
+ 2〈 w

2r
, q〉L2 ,

=
∥∥∥ w

2r
+ q
∥∥∥2

L2
− ‖q‖L2 .

otherwise, since F is continuous w.r.t. the L2-norm, we have that F∗(w) = +∞ if w ∈ X′ \ L2.

Thanks to the previous computations on f , we have that the supremum in the definition of
F∗(w) with w ∈ L2 is attained for u ∈ L2 satisfying w = 2r(ru− q) (equality in L2).

In the same way, to compute g∗ we notice that p 7→ g(x, p) is superlinear for every x (indeed, g
does not depend on x), thus the supremum in the expression of g∗ is attained, and by the
smoothness of g to detect it it is enough to study the critical points of the argument of the
supremum in g∗. Thus

∇p[〈p∗, p〉 − g(x, p)] = p∗ − 2Ap = 0,

which implies p =
1
2

A−1 p∗ and so

g∗(x, p∗) =
1
4
〈A−1 p∗, p∗〉.

Thus we have for all p∗ ∈ L2(Ω; Rd)

G∗(p∗) =
∫

Ω
g∗(x, p∗(x)) dx =

1
4

∫
Ω
〈A−1 p∗(x), p∗(x)〉 dx

=
1

32

∫
Ω

(
4p∗21 (x)− 4p∗1(x)p∗2(x) + 3p∗22 (x)

)
dx,

since A−1 =

( 1
2 − 1

4
− 1

4
3
8

)
=

1
8

(
4 −2
−2 3

)
.

We notice that for any w ∈ L2, if we define

uw(x) =
w(x)− 2q(x)r(x)

2r2(x)
for a.e. x ∈ ,

we have that uw ∈ L2(Ω) (since r is bounded away from 0 in Ω) and for a.e. x ∈ Ω it holds
f (x, uw(x)) + f ∗(x, w(x))− w(x)uw(x) = 0. Conversely, by the uniqueness of the point of
supremum in the computation of f ∗, for any given w ∈ L2(Ω) we have that
f (x, u(x)) + f ∗(x, w(x))− w(x)uw(x) = 0 for a.e. x ∈ Ω only if u = uw in L2(Ω).

Similarly, we have
G(p) + G∗(p∗) = 〈p∗, p〉L2
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if and only if p =
1
2

A−1 p∗ in L2.

The dual problem is
sup
ϕ∈Y′

[−F∗(Λ∗ϕ)− G∗(−ϕ)].

Since F, G, Λ are all continuous, the stability criterion is trivially satisfied: we have to find an
element u0 ∈ X such that F(u0) < +∞ and G must be continuous at Λu0. It is enough to take
u0 = 0. Thus the dual problem has a solution ϕ̂. If Λ∗ϕ ∈ H−1(Ω) \ L2(Ω) we have
−F∗(Λ∗ϕ) = −∞ while G∗(−ϕ̂) < +∞, hence since the supremum is attained at ϕ̂, we must
have Λ∗ ϕ̂ = −div ϕ̂ ∈ L2(Ω). We have that ϕ 7→ F∗(Λ∗ϕ) + G∗(−ϕ) is clearly convex and l.s.c.,
and moreover it is strictly convex, since the eigenvalues of A−1 are the inverse of the eigenvalues
of A, so both of them are strictly positive. In particular, the solution ϕ̂ of the dual problem is
unique.

The unique solution û of the primal problem and ϕ̂ of the dual problem are linked by the
extremality conditions 

F(û) + F∗(Λ∗ ϕ̂) = 〈Λ∗ ϕ̂, û〉X′ ,X ,

−G(Λû)− G∗(−ϕ̂) = 〈ϕ̂, Λû〉Y′ ,Y.

Since in our case we have Λ∗ ϕ̂ ∈ L2, these relations become
∫

Ω
( f (û(x)) + f ∗(Λ∗ ϕ̂(x))−Λ∗ ϕ̂(x) · û(x)) dx = 0,

∫
Ω
(g(Λû) + g∗(−ϕ̂)− 〈−ϕ̂(x), Λû(x)〉) dx = 0.

The integrand functions are always nonnegative, and they vanishes if and only if they vanish
a.e. But this implies {

−divϕ̂ = 2r(ru− q),
−ϕ̂ = 2A∇û,

hence we obtain for the minimizer the following PDEs, whose solution must be understood in
the weak sense {

div(2A∇û) = 2r(ru− q),
u|∂Ω = 0.

EXERCISE 9.2. Let Ω be an open bounded subset of R2, q ∈ L2(Ω; R2). Find the projection of q
on the set G := {∇v : v ∈ H1

0(Ω; R)}.

SOLUTION. We notice that G is a vector space of X = L2(Ω; R2). Recalling that u 7→ ‖∇u‖L2

defines a norm on H1
0(Ω) which, thanks to Poincaré’s inequality, is equivalent to the norm of

H1
0(Ω), we have that G is closed in L2. In particular, by the theorem on projection on closed

convex sets in Hilbert spaces, there exists a projection ∇v̄ = πG(q) ∈ G, i.e., a minimizer of
1
2
‖q−∇v‖2

L2 , which is characterized by

〈q−∇v̄,∇v−∇v̄〉L2 ≤ 0,

for all ∇v ∈ G. Since G is a vector space, we have that equality holds. Thus we obtain

〈q−∇v̄,∇w〉 = 0,

for all w ∈ H1
0 , and so

〈q,∇w〉L2 = 〈∇v̄,∇w〉,
This means

〈−div q, w〉H−1,H1
0
= 〈−4v̄, w〉H−1,H1

0
,

which implies that v̄ is the unique solution in the weak sense to

{
4v = div q,
v|∂Ω = 0.
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EXERCISE 9.3. Let Ω be an open bounded subset of R2, q ∈ L2(Ω; R2) be fixed. Set:

C :=
{

v ∈ H1
0(Ω; R) : ‖∇v− q‖L2(Ω;R2) ≤ 1

}
.

Assume intC 6= ∅ and consider the problem

inf
u∈C

∫
Ω

1
2
|u(x)− cos |x||2 dx.

(1) Prove that the problem admits a unique solution.
(2) Formulate the problem in the form F (u) = F(u) + G ◦Λ(u) where F : X →]−∞,+∞],

G : Y →]−∞,+∞], and Λ : X → Y, carefully precising the functional spaces X, Y and
discussing the regularity of F, G, Λ.

(3) Write the dual problem and the extremality relations. Establish if the dual problem
admits an unique solution.

(4) (Not mandatory) Using the previous results, write down a partial differential equation
satisfied by the minimum.

SOLUTION. Set X = H1
0(Ω; R), X′ = H−1(Ω; R), Y = Y′ = L2(Ω; R2), Λ = ∇ : X → Y is linear

and continuous since it is clearly linear, and

‖∇u‖L2 ≤ ‖u‖L2 + ‖∇u‖L2 = ‖u‖H1
0
.

Its adjoint is Λ∗ = −div : Y′ → X′ is also linear and continuous. Define r(x) = cos |x|. We set

G(p) = IBL2 (q,1)(p), F(u) =
1
2
‖u− r‖2

L2 . Clearly F is strictly convex and continuous with respect

to the norm of L2, since we have F(u) =
1
2
‖u− r‖2

L2 , and so also for the norm of X. Since

BL2(q, 1) is closed in L2 and convex we have that G is convex and l.s.c.

We now verify that F is coercive on the reflexive space X. Indeed, it is enough to show that if
‖u‖X → +∞ we have F (u)→ +∞. Since Ω is bounded, we can use Poincaré inequality: there
exists C > 0 depending only on Ω such that

‖u‖H1
0
≤ C · ‖∇u‖L2 .

In particular, since F (u) ≥ G(∇u), if ‖∇u‖L2 > 1 + ‖q‖L2 we have G(∇u) = +∞ and so
coercivity follows.

We have

G∗(p∗) = I∗
BL2 (q,1)

(p) = σBL2 (q,1)(p∗) = sup
p∈BL2 (q,1)

〈p∗, p〉 = sup
η∈BL2 (0,1)

〈p∗, q+ η〉 = 〈p∗, q〉L2 + ‖p∗‖L2 .

The supremum is attained for p = q + η where η =
p∗

‖p∗‖L2
if p∗ 6= 0, otherwise η may be any

element of BL2(0, 1). Given u∗ ∈ H−1 \ L2, we can find a sequence {un}n∈N ⊆ H1
0 such that

un → u in L2 and 〈u∗, un〉X′ ,X → +∞, thus

F∗(u∗) = sup
u∈H1

0

〈u∗, u〉X′ ,X − F(u) ≥ lim sup
n→∞

〈u∗, u〉X′ ,X − F(un) = +∞,

since F(un)→ F(u) by continuity of F in L2. Instead, if u∗ ∈ L2 ⊆ H−1 we can conjugate F∗ as it
was defined in L2, since F is continuous in L2 and X is dense in L2

F∗(u∗) = sup
u∈H1

0

〈u∗, u〉X′ ,X − F(u) = sup
u∈H1

0

〈u∗, u〉L2 − F(u)

= sup
u∈L2
〈u∗, u〉L2 − F(u)

= sup
u∈L2

{
〈u∗, u〉L2 −

1
2
‖u− r‖2

L2

}
= sup

u∈L2

{
1
2
‖u∗‖2

L2 −
1
2
‖u∗‖2

L2 + 〈u∗, u〉L2 − 〈u∗, r〉L2 + 〈u∗, r〉L2 −
1
2
‖u− r‖2

L2

}
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=
1
2
‖u∗‖2

L2 + 〈u∗, r〉L2 + sup
u∈L2

{
−1

2
‖u∗‖2

L2 + 〈u∗, u− r〉L2 −
1
2
‖u− r‖2

L2

}
=

1
2
‖u∗‖2

L2 + 〈u∗, r〉L2 + sup
u∈L2

{
−1

2
‖u∗ − (u− r)‖2

L2

}
=

1
2
‖u∗‖2

L2 + 〈u∗, r〉L2

=
1
2
‖u∗ + r‖2

L2 −
1
2
‖r‖2

L2 ,

and the supremum is achieved for u = u∗ + r.

The dual problem is
sup
ϕ∈Y′

[−F∗(Λ∗ϕ)− G∗(−ϕ)],

which in our case becomes

− inf
ϕ∈L2

divϕ∈L2

1
2
‖ − divϕ + r‖2

L2 −
1
2
‖r‖2

L2 + 〈ϕ, q〉L2 + ‖ϕ‖L2 .

We prove now the stability criterion: since if ψ ∈ int C , then there exists δ > 0 such that
ψ + δξ ∈ C , i.e., ‖∇ψ + δ∇ξ − q‖2

L2 ≤ 1, for all ξ ∈ BH1
0
(0, 1). By possibly replacing ξ by −ξ, we

can always assume that 〈∇ψ− q,∇ξ〉L2 ≥ 0 and, by Poincaré’s inequality, we have that

1 = ‖ξ‖H1
0
≤ C · ‖∇ξ‖L2 .

Thus we have

‖∇ψ− q‖2
L2 +

δ2

C2 ≤‖∇ψ− q‖2
L2 + δ2‖∇ξ‖2

L2 ≤ ‖∇ψ− q‖2
L2 + δ2‖∇ξ‖L2 + 2〈∇ψ− q,∇ξ〉

≤‖∇ψ + δ∇ξ − q‖2
L2 ≤ 1,

which implies that ‖∇ψ− q‖L2 < 1, thus ∇ψ belongs to the interior of BL2(q, 1), and so G is
constantly zero in a suitable small neighborhood of ∇ψ, in particular it is continuous at ∇ψ. We
have that F is continuous at ψ, hence finite at ψ, so stability criterion holds and a solution to the
dual problem exists.

Extremality relations for a solution û of the primal problem and a solution φ̂ of the dual problem
are 

F(û) + F∗(Λ∗ ϕ̂) = 〈Λ∗ ϕ̂, û〉X′ ,X ,

−G(Λû)− G∗(−ϕ̂) = 〈ϕ̂, Λû〉Y′ ,Y,

.

The second extremality condition amounts to say that∇û− q ∈ BL2(0, 1) (to have G(∇û) < +∞)
and ‖ − ϕ̂‖L2 = 〈−ϕ̂, q−∇û〉. More precisely, this conditions states that by Hölder’s inequality

‖ − ϕ̂‖L2 = 〈−ϕ̂, q−∇û〉 ≤ ‖ − ϕ̂‖L2 · ‖q−∇û‖L2 ≤ ‖− ϕ̂‖L2 ,

since ∇û− q ∈ BL2(0, 1). Thus the second extremality condition can be rewritten as

ϕ̂ = λ(∇û− q) where


λ = 0, if ‖q−∇û‖L2 < 1,

λ ≥ 0, if ‖q−∇û‖L2 = 1.

Since the first extremality condition provides û = −div ϕ̂ + r, we obtain the following PDE for û,
to be undestood in the weak sense{

û− r = λ(div q−4û), in Ω,
u|∂Ω = 0,

and so ϕ̂ = λ(∇û− q).

If the dual problem admits the solution ϕ = 0, from the first extremality relation we must have
û = r ∈ C as unique solution of the primal problem, in particular ‖q−∇r‖L2 = ‖q−∇û‖L2 ≤ 1,
thus

• If ‖q−∇r‖L2 < 1, the only solution of the dual problem is ϕ̂ = 0.
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• If ‖q−∇r‖L2 = 1, we have that ϕ̂ = λ(∇r− q) is a nonzero solution of the dual
problem if and only if it is divergence-free, i.e., div q = 4r.

Summarizing, if the dual problem admits the null solution then ‖q−∇r‖L2 ≤ 1 and the dual
problem has 0 as its unique solution, unless div q = 4r and ‖q−∇r‖L2 = 1. In this latter case,
ϕ̂ = λ(∇r− q), λ ≥ 0 are solutions of the dual problem and û = r ∈ C is the unique solution of
the primal problem.

If the dual problem do not admit the null solution, we have necessarily ‖q−∇û‖L2 = 1.





CHAPTER 2

Second part

1. Lecture of 5 november 2018: Differentiation in infinite dimensional spaces (1h)

It is well known that given a differentiable function g : Ω→ R, where Ω is an open subset of Rn,
the point of minimum of f must be searched among the critical points, i.e., the points x ∈ Ω
satisfying d f (x, y) = 0. If the function g ∈ C2, it is possible to study the Hessian matrix of g and
if it is positive definite at a critical point x̄, then x̄ is a minimizer of f . We will now extend the
notion from Rn to possibly infinite-dimensional spaces.

DEFINITION 1.1 (Frechét differential). Let X, Y be normed spaces, Ω ⊆ X be open X. A function
f : Ω→ Y is called Frechét differentiable at x0 ∈ Ω (shortly, F-differentiable at x0) if there exists
A : X → Y linear and continuous such that

lim
‖h‖X→0

f (x0 + h)− f (x0)− Ah
‖h‖X

= 0.

In this case, the operator A is unique and called Frechét differential of f at x0, and is denoted by
A = f ′(x0) = D f (x0).

REMARK 1.2. We recall the following facts:
(1) If the Frechét differential exists, then it is unique.
(2) Every function which is Frechét differentiable at a point, it is also continuous at the

same point.
(3) The differential is invariant if we change the norms on X and Y with equivalent norms.
(4) chain’s rule: if X, Y, Z are normed space, Ω is an open subset of X, x0 ∈ Ω, V is open

subset of Y, f : Ω→ V, g : V → Z, f differentiable at x0 and g differentiable at f (x0),
then g ◦ f : Ω→ Z is differentiable at x0 and

(g ◦ f )′(x0) = g′( f (x0)) ◦ f ′(x0),

which is a linear and continuous operator from X to Z.
(5) if f is constant in Ω then f ′(x) = 0 for all x ∈ Ω (converse holds if Ω is connected)
(6) if f : X → Y is linear and continuous, then f ′(x) = f for all x ∈ X.
(7) if f : X×Y → Z is bilinear and continuous, then it is differentiable at every point and

f ′(x, y)(h, k) = f (h, y) + f (x, k) for all (h, k) ∈ X×Y, indeed by definition

‖ f ((x, y) + (h, k))− f (x, y)− f (h, y)− f (x, k)‖Z
‖h‖X + ‖k‖Y

≤ ‖ f (h, k)‖X
‖h‖X + ‖k‖Y

≤ ‖h‖X‖k‖Y
‖h‖X + ‖k‖Y

∥∥∥∥ f
(

h
‖h‖X

,
k
‖k‖Y

)∥∥∥∥
Z

≤ C‖k‖X → 0,

recalling that f maps bounded sets to bounded sets since it is bilinear and continuous.

DEFINITION 1.3. Let X, Y be normed space, and Ω be an open subset of X. Let f : Ω→ Y be a
function which is Frechét differentiable at all x0 ∈ Ω. We can define a map f ′ : Ω→ L(X, Y),
where L(X, Y) is the space of linear and continuous functions from X to Y, defined by
x 7→ f ′(x). We say that f ∈ C1(Ω; Y) if this map is continuous.

In the case that the dimension of X is greater than 1, the following concept of directional
derivative plays an important role. Given v ∈ X, ‖v‖X 6= 0, we consider

∂v f (x0) = lim
t→0

f (x0 + tv)− f (x0)

t
∈ Y

65
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and study the map v 7→ ∂v f (x0). If this function is linear and continuous from X to Y, it is
possible to define another concept of differential.

DEFINITION 1.4 (Gâteaux differential). Let X, Y be normed space, and let Ω be an open subset
of X. A function f : Ω→ Y is called Gâteaux differentiable at x0 ∈ Ω (shortly, G-differentiable at
x0) if there exists a linear and continuous operator A : X → Y such that

lim
t→0

f (x0 + tv)− f (x0)

t
= Av.

In this case, the operator A is called the Gâteaux differential of f at x0, and we will denote it by
A = f ′G(x0). The map x 7→ f ′G(x) will be called the Gâteaux derivative of f .

REMARK 1.5. If a function admits Gâteaux differential at a point, then it is unique. Even in finite
dimension it is possible to give examples of discontinuous G-differentiable functions (hence in
particular G-differentiable functions that are not F-differentiable). However, from the definition
it easy to see that if a function is F-differentiable then it is also G-differentiable and the two
concepts coincides.

EXAMPLE 1.6. The ground space is R2. Consider the following map f : R2 → R

f (x, y) =


x3y

x6 + y2 , if (x, y) 6= 0,

0, if (x, y) = (0, 0).

We check the limit of f along the curve γ(t) = (t, t3). This curve tends to (0, 0) when t→ 0.

lim
t→0

f (γ(t)) = lim
t→0

t6

2t6 =
1
2
6= 0 = f (0, 0).

So the function is not continuous at the origin, and so it cannot be F-differentiable at (0, 0).
Along the axis, the function is identically zero, so the two partial derivatives vanishes at (0, 0).
We compute the other directional derivatives along vectors v = (vx, vy) with vx 6= 0 and vy 6= 0.

∂v f (0, 0) = lim
t→0

f ((0, 0) + t(vx, vy))− f (0, 0)
t

= lim
t→0

f (t(vx, vy))

t
= lim

t→0

1
t

t4v3
xvy

t6v6
x + t2v2

y

= lim
t→0

tv3
xvy

t4v6
x + v2

y
= 0.

So directional derivatives along every vector exist at (0, 0) and are all 0, so f ′G(0, 0) = 0, but f is
not F-differentiable at (0, 0).

THEOREM 1.7 (Lagrange’s mean value theorem). Let X, Y be normed spaces, Ω open subset of X,
f : Ω→ Y a G-differentiable function in Ω. Let x1, x2 ∈ Ω be such that λx1 + (1− λ)x2 ∈ Ω for all
λ ∈ [0, 1]. Then

‖ f (x2)− f (x1)‖Y ≤ sup
λ∈[0,1]

‖ f ′G(λx2 + (1− λ)x1)‖L(X,Y) · ‖x2 − x1‖X ,

where ‖ · ‖L(X,Y) is the norm of the space of linear and continuous functions from X to Y.

PROOF. Fix ϕ ∈ Y′ and consider the map F : [0, 1]→ R defined by

F(t) = 〈ϕ, f ((1− t)x1 + tx2)〉Y′ ,Y.

This map is derivable, and we have

F′(t) = 〈ϕ, 〈 f ′G((1− t)x1 + tx2), (x2 − x1)〉〉.

According to classical Lagrange’s Mean Value Theorem, there exists θ ∈]0, 1[ such that
F(1)− F(0) = F′(θ), and so

〈ϕ, f (x2)〉Y′ ,Y − 〈ϕ, f (x1)〉Y′ ,Y = 〈ϕ, 〈 f ′G((1− θ)x1 + θx2), (x2 − x1)〉〉
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so we have

|〈ϕ, f (x2)− f (x1)〉Y′ ,Y| ≤ ‖ϕ‖Y′‖ f ′G((1− θ)x1 + θx2)‖L(X,Y)‖x2 − x1‖X .

Since we can always choose ϕ ∈ Y′ such that ‖ϕ‖Y′ = 1 and
〈ϕ, f (x2)− f (x1)〉Y′ ,Y = ‖ f (x2)− f (x1)‖Y, the proof is concluded. �

THEOREM 1.8 (Total differential). Let X, Y be normed spaces, Ω be an open subset of X, f : Ω→ Y be
a G-differentiable function in Ω. If f ′G : Ω→ L(X, Y) is continuous at x0 ∈ Ω then f is F-differentiable
at x0 ∈ Ω and f ′(x0) = f ′G(x0).

PROOF. Consider the function ω : X → Y defined by

ω(h) := f (x0 + h)− f (x0)− 〈 f ′G(x0), h〉.

This map is G-differentiable in a neighbourhood of 0 and ω′G(h) = f ′G(x0 + h)− f ′G(x0). Since
ω(0) = 0, applying the Mean Value’s Theorem, we have

‖ω(h)‖Y ≤ sup
λ∈[0,1]

‖ f ′G(x0 + λh)− f ′G(x0)‖L(X,Y) · ‖h‖X ,

so by the continuity of f ′G, by letting h→ 0 we have

‖ω(h)‖Y
‖h‖X

→ 0,

the thesis follows. �

DEFINITION 1.9. Let X, Y be normed spaces, Ω open subset of X, f : Ω→ Y a G-differentiable
function at x0 ∈ Ω. If f ′G(x0) = 0 we say that x0 is a critical point for f .

DEFINITION 1.10 (Higher order derivatives). Let X, Y be normed spaces, Ω be an open subset of
X, f : Ω→ Y be a F-differentiable function. If the Frechét derivative f ′ : Ω→ L(X, Y) is
F-differentiable at x0 ∈ Ω, then the map [ f ′]′(x0) : X → L(X, Y) will be denoted by f ′′(x0) and
will be called second-order differential of f at x0. If f ′ is F-differentiable in Ω, then
f ′′ : Ω→ L(X,L(X, Y)) is the second order derivative of f . If it is also continuous, then we will say
that f ∈ C2(Ω; Y).

PROPOSITION 1.11. Let X, Y be normed spaces. Then the space L(X,L(X, Y)) is isometrically
isomorphic to the space L2(X× X, Y) of the bilinear and continuous function from X× X to Y endowed
with the norm

‖ϕ‖L2 = sup
‖h‖X≤1
‖k‖X≤1

‖ϕ(h, k)‖Y.

PROOF. Given ψ ∈ L(X,L(X, Y)) we set

ϕ(h, k) = 〈〈ψ, h〉, k〉,

obtaining ϕ ∈ L2(X× X, Y).

Conversely, given ϕ ∈ L2(X× X, Y), for fixed h we have that the map k 7→ ϕ(h, k) is linear and
continuous, and so the map h 7→ ϕ(h, ·) is linear and continuous from X to L(X, Y).

The other statements are trivial. �

PROPOSITION 1.12 (Taylor’s Formula). Let X, Y be normed spaces, Ω be an open subset of X,
f : Ω→ Y of class C2(Ω; Y). Let x0 ∈ Ω, R > 0 such that BX(x0, R) ⊆ Ω. Then for every
h ∈ BX(0, R) we have

f (x0 + h) = f (x0) + 〈 f ′(x0), h〉+ 1
2
〈〈 f ′′(x0), h〉, h〉+ η(h),

where η : BX(0, R)→ Y is a function satisfying

lim
‖h‖X→0

‖η(h)‖Y

‖h‖2
X

= 0.
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PROOF. Fix h ∈ B(0, r), ψ ∈ Y′ and define gh(t) = 〈ψ, f (x0 + th)〉Y′ ,Y for t ∈ [−1, 1]. We have
that gh ∈ C2(]− 1, 1[) and

g′h(t) = 〈ψ, f ′(x0 + th)h〉Y′ ,Y
g′′h (t) = 〈ψ, 〈 f ′′(x0 + th)h, h〉〉Y′ ,Y.

According to classical Taylor’s formula applied to g we have:

〈ψ, f (x0 + th)− f (x0)〉Y′ ,Y = 〈ψ, f (x0 + th)〉Y′ ,Y − 〈ψ, f (x0)〉Y′ ,Y = gh(1)− gh(0) = g′h(0) +
1
2

g′′h (ξh),

for a suitable ξh ∈]0, 1[. This implies

〈ψ, f (x0 + th)− f (x0)〉Y′ ,Y = 〈ψ, f ′(x0)h〉Y′ ,Y +
1
2
〈ψ, 〈 f ′′(x0 + ξhh)h, h〉〉Y′ ,Y

= 〈ψ, f ′(x0)h〉Y′ ,Y +
1
2
〈ψ, 〈 f ′′(x0)h, h〉〉Y′ ,Y +

1
2
〈ψ, 〈[ f ′′(x0 + ξhh)− f ′′(x0)]h, h〉〉Y′ ,Y

= 〈ψ, f ′(x0)h〉Y′ ,Y +
1
2
〈ψ, 〈 f ′′(x0)h, h〉〉Y′ ,Y + η(h)

where η(h) := 1
2 〈ψ, 〈[ f ′′(x0 + ξhh)− f ′′(x0)]h, h〉〉Y′ ,Y. By continuity of f ′′, we have

η(h)/‖h‖2
X → 0 for h→ 0, moreover∣∣∣∣ψ, f (x0 + th)− f (x0)− f ′(x0)h−

1
2
〈 f ′′(x0)h, h〉〉Y′ ,Y

∣∣∣∣ ≤ |〈ψ, η(h)〉| ≤ ‖ψ‖Y′‖η(h)‖Y.

Recalling the arbitrariness of ψ, we have∥∥∥∥ f (x0 + th)− f (x0)− f ′(x0)h−
1
2
〈 f ′′(x0)h, h〉

∥∥∥∥
Y
≤ ‖η(h)‖Y,

which concludes the proof. �

PROPOSITION 1.13. Let X be a normed space, Ω open subset of X, f : X → R be a G-differentiable
function.

(1) If x0 ∈ Ω is a local maximum or minimum for f in Ω then f ′G(x0) = 0.
(2) If f ∈ C2 and x0 ∈ Ω is a relative maximum then 〈〈 f ′′(x0), v〉, v〉 ≤ 0 for all v ∈ X.
(3) If f ∈ C2 and x0 ∈ Ω is a relative minimum then 〈〈 f ′′(x0), v〉, v〉 ≥ 0 for all v ∈ X.
(4) If f ∈ C2 and x0 ∈ Ω satisfies f ′(x0) = 0 and there exists c > 0 such that
〈〈 f ′′(x0), v〉, v〉 ≤ −c‖v‖2

X for all v ∈ X, then x0 is a relative maximum.
(5) If f ∈ C2 and x0 ∈ Ω satisfies f ′(x0) = 0 and there exists c > 0 such that
〈〈 f ′′(x0), v〉, v〉 ≥ c‖v‖2

X for all v ∈ X, then x0 is a relative minimum.

PROOF.
(1) Let x0 be a maximum and v ∈ X. By assumption, there exists δ > 0 such that if
‖v‖X < δ then f (x0 + tv)− f (x0) ≤ 0. Thus

lim sup
t→0+

f (x0 + tv)− f (x0)

t
≥ 0,

By the G-differentiabily assumption, the limit exists and is 〈 f ′G(x0), v〉, so we have
〈 f ′G(x0), v〉 ≥ 0 for all v ∈ BX(0, δ). Since v ∈ BX(0, δ) if and only if −v ∈ BX(0, δ), we
obtain 〈 f ′G(x0),−v〉 ≥ 0, thus 〈 f ′G(x0), v〉 = 0. By the arbitrariness of v, the proof is
conclude. Use a very similar argument when x0 is a minimum.

(2) Let x0 be a relative maximum. Then there exists δ > 0 such that for all v ∈ X with
‖v‖X < δ and for all t ∈ [0, 1] we have

0 ≥ f (x0 + tv)− f (x0) = t2

(
1
2
〈〈 f ′′(x0), v〉, v〉+ ‖v‖2

X
η(tv)
‖tv‖2

X

)
,

where equality is given by Taylor’s formula. Dividing by t2 and letting t→ 0, we obtain
the thesis.

(3) Use the above argument on − f .
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(4) Assume that f ′(x0) = 0 e 〈〈 f ′′(x0), v〉, v〉 ≤ −c‖v‖2
X for all x ∈ X and a suitable c > 0

independent of v. By Taylor’s formula

f (x0 + v)− f (x0) ≤
1
2
〈〈 f ′′(x0), v〉, v〉+ η(v) ≤ − c

2
‖v‖2

X

(
1− η(v)
‖v‖2

X

)
.

Since η(v)/‖v‖2
X → 0 as v→ 0, there exists δ > 0 such that for all ‖v‖X < δ we have

f (x0 + v)− f (x0) < 0, thus x0 is a relative maximum.
(5) Use the above argument on − f .

�

Summary of Lecture 1

• In this lecture we introduced some concepts of derivatives and differentials in an
infinite-dimensional space, namely

– Frechét differential,
– Directional derivatives,
– Gateaux differential.

• It is important to stress that the continuity of the linear operator must be assumed in
this setting, while in the finite-dimensional cases is authomatically granted.
• Directional derivatives amounts to property of the slicing function along lines.
• Gateaux differential amounts to have a linearity and continuity among the direc-

tional derivatives, while Frechét differentials gives the strongest conditions.
• We prove some results, like mean value theorem and Taylor’s formula by a scalar-

ization process, i.e., we consider suitable 1-dimensional functions obtained by ap-
plying elements of the dual to the functions, and applying on the scalarized func-
tion the classical calculus theorem in finite dimension.

2. Lecture of 12 november 2018: Implicit function in infinite-dimensional spaces. (2h)

THEOREM 2.1 (Dini’s implicit function theorem). Let X, Y, Z be Banach spaces, D be open subset of
X×Y, f : D → Z be a continuous function, (x0, y0) ∈ D be such that f (x0, y0) = 0. Assume that in a
neighborhood of (x0, y0) there exists ∂Y f (x, y) (i.e., the Frechét derivative of y 7→ f (x, y)) and is
continuous, and that ∂Y f (x0, y0) is an isomorphism of Y to Z. Then there exist U ⊂ X and V ⊂ Y, which
are neighborhood of x0 and y0 respectively, and an unique continuous function ϕ : U → V such that:

{(x, y) ∈ D : f (x, y) = 0} ∩ (U ×V) = {(x, ϕ(x)) : x ∈ U}, ϕ(x0) = y0.

We will say that ϕ locally explicits f with respect to the variable x in a neighborhood of x0. Moreover, if
f is F-differentiable at (x0, y0), we have

ϕ′(x0) = −
(

∂Y f (x0, y0)
)−1
◦ ∂X f (x0, y0),

where ∂X f (x0, y0) is the Frechét derivative of x 7→ f (x, y0) at x0.

PROOF. Set Q = ∂Y f (x0, y0), by assumption Q : Y → Z is linear, continuous and bijective.
Define the map g : X×Y → Y by setting

g(x, y) = y−Q−1( f (x, y)),

and notice that, given x, we have that y is a fixed point of g(x, ·) : Y → Y if and only if
f (x, y) = 0. Indeed, from y = y−Q−1( f (x, y)) we have Q−1( f (x, y)) = 0. Since Q and Q−1 are
isomorphisms by assumption, this can be true if and only if f (x, y) = 0.

For every fixed x, we have that g(x, ·) : Y → Y is Fréchet differentiable (thus also
G-differentiable), denoted by ∂Yg(x, y) : Y → Y the differential of g(x, ·), we have

∂Yg(x, y) = IdY −Q−1 ◦ ∂Y f (x, y),

and so ∂Yg(x0, y0) = 0 by definition of Q.

By continuity of ∂Y f (x, y), we have that ∂Yg(x, y) is continuous at (x0, y0). Thus for every fixed
0 < α < 1 there exists a neighborhood B(x0, r1)× B(y0, r1) of (x0, y0) contained in D such that
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‖∂Yg(x, y)‖L(Y,Y) ≤ α for every (x, y) ∈ B(x0, r1)× B(y0, r1). Choosen x ∈ B(x0, r1) and
y1, y2 ∈ B(y0, r1), by mean value theorem we have

‖g(x, y1)− g(x, y2)‖Y ≤ sup
t∈[0,1]

‖∂Yg(x, ty1 + (1− t)y2)‖L(Y,Y)‖y1 − y2‖Y ≤ α‖y1 − y2‖,

i.e., g is Lipschitz continuous in the second variable, uniformly w.r.t. the first variable. Moreover,
g(x0, y0) = y0.

Given u : B(x0, r1]→ B(y0, r1] continuous, we set Tu(x) = g(x, u(x)). We have

‖Tu(x)− y0‖Y = ‖g(x, u(x))− g(x0, y0)‖Y

≤ ‖g(x, u(x))− g(x, y0)‖Y + ‖g(x, y0)− g(x0, y0)‖Y

≤ αr1 + ‖g(x, y0)− g(x0, y0)‖Y

Notice that by the continuity of g, there exist δ > 0 such that if |x− x0| < δ we have
‖g(x, y0)− g(x0, y0)‖Y ≤ (1− α)r1. Hence, set E = C0(B(x0, δ], B(y0, r1]) we have for all u ∈ E
that ‖Tu− y0‖Y ≤ r1, and so T maps E into E itself. Since E endowed with the norm of uniform
convergece is a Banach space, and

‖Tu− Tv‖∞ = ‖g(x, u(x))− g(x, v(x))‖∞ ≤ α‖u− v‖∞,

with 0 < α < 1, we have that T is a contraction, thus it admits a unique fixed point ϕ. In
particular, the graph of ϕ is the zero level set of f (possibly intersected with B(x0, δ]× B(y0, r1].

Suppose now that f is differentiable at (x0, y0) and set P := ∂X f (x0, y0). Recalling that
f (x0, y0) = 0, we have

f (x, y) = P(x− x0) + Q(y− y0) + σ(x, y) · (‖x− x0‖X + ‖y− y0‖Y),

where σ(x, y) vanishes for (x, y)→ (x0, y0). Set y = ϕ(x) we have f (x, ϕ(x)) = 0 and
y0 = ϕ(x0), so we obtain

0 = P(x− x0) + Q(ϕ(x)− ϕ(x0)) + σ(x, ϕ(x)) · (‖x− x0‖X + ‖ϕ(x)− ϕ(x0)‖Y),

i.e.,

ϕ(x)− ϕ(x0) = −Q−1P(x− x0)−Q−1(σ(x, ϕ(x)) · (‖x− x0‖X + ‖ϕ(x)− ϕ(x0)‖Y)),

and dividing by ‖x− x0‖X we obtain:

ϕ(x)− ϕ(x0) + Q−1P(x− x0)

‖x− x0‖X
= −Q−1(σ(x, ϕ(x)) ·

(
1 +
‖ϕ(x)− ϕ(x0)‖Y
‖x− x0‖X

)
.

Since σ(x, ϕ(x)) vanishes for x → x0, and Q is an isomorphism, it is sufficient to prove that the
function

‖ϕ(x)− ϕ(x0)‖Y
‖x− x0‖X

is bounded in a neighborhood of x0. We have:

‖ϕ(x)− ϕ(x0)‖Y
‖x− x0‖X

≤
∥∥∥∥Q−1P

(
x− x0

‖x− x0‖X

)∥∥∥∥
Y
+

+‖Q−1(σ(x, ϕ(x))‖Y ·
(

1 +
‖ϕ(x)− ϕ(x0)‖Y
‖x− x0‖X

)
≤ ‖Q−1P‖L(X,Y) + ‖Q−1‖L(Z,Y) · ‖σ(x, ϕ(x))‖Z +

+‖Q−1(σ(x, ϕ(x)))‖Y ·
‖ϕ(x)− ϕ(x0)‖Y
‖x− x0‖X

.

For x sufficiently near to x0, we can assume ‖Q−1‖L(Z,Y) · ‖σ(x, ϕ(x))‖Z ≤ 1/2. So by
substituting the previous inequality and rearranging the terms we have

‖ϕ(x)− ϕ(x0)‖Y
‖x− x0‖X

≤ 2‖Q−1P‖L(X,Y) + 1,

the thesis follows. �
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THEOREM 2.2 (Inverse Function’s Theorem). Let X, Y be Banach spaces. Let Ω be an open subset of
X, x0 ∈ Ω, f : Ω→ Y be of class C1. If the differential of f at x0 is an homeomorphism from X to Y, then
there exist a neighborhood U of x0 and an unique map g : f (U)→ U such that g( f (x)) = x for all
x ∈ U and f (g(y)) = y for all y ∈ f (U). Moreover, g is differentiable at f (x0) and
Dg( f (x0)) = (D f (x0))

−1.

PROOF. Apply Dini’s Theorem to the map F(x, y) = f (x)− y. �

Implicit function theorem has the following consequence:

COROLLARY 2.3. Let X, Y be Banach spaces. Let Ω be an open subset of X, x0 ∈ Ω, f : Ω→ Y be a C1

map. If the differential of D f (x0) : X → Y is an homeomorphism, then there exists an neighborhood U of
x0 and a neighborhood V of y0 = f (x0) such that for every y ∈ V the equation y = f (x) admits a unique
solution x ∈ U.

PROOF. We have x = ϕ(y) where ϕ : V → U is the implicit function defined by F(x, y) = 0
with F(x, y) = f (x)− y by explicing the x-variable as a function of y-variable. �

REMARK 2.4.
(1) The formula providing the differential of the implicit function can be formally derived

assuming the existence of a Frechét differentiable function ϕ implicitely defined by f in
a neighborhood of x0 and writing the Taylor’s formula of the map x 7→ f (x, ϕ(x))
around x0, and then proceed as in the second part of the proof.

(2) The strategy of the first part of the proof can be interpreted as follows. We fix x
sufficiently near to x0 and we try to solve the equation f (x, y) = 0 in y. We use Taylor’s
formula

f (x, y) = f (x, y0) + ∂Y f (x, y0)(y− y0) + ω(|y− y0|),
where ω : [0,+∞[→ [0,+∞[ is a strictly increasing continuous function satisfying
ω(0) = 0. On the other hands, continuity assumptions implies (by possibly changing
the modulus ω)

f (x, y) = f (x0, y0) + ∂Y f (x0, y0)(y− y0) + ω(|x− x0|+ |y− y0|),
i.e.

Q−1 f (x, y) = y− y0 + Q−1ω(|x− x0|+ |y− y0|),
and so (by possibly changing again the modulus ω)

y ' y−Q−1 f (x, y) = g(x, y).

Thus for fixed x, g(x, y) can be viewed as an approximate solution to f (x, y) = 0. All the
other passages shows that indeed the fixed points y of g(x, ·) are exactly the points for
which f (x, y) = 0, and that we can collect all these solutions for fixed x in a graph of a
continuous function of x.

We recall the following result in Functional Analysis.

THEOREM 2.5 (Open mapping theorem). Let X, Y be Banach spaces and A : X → Y linear and
continuous. The following are equivalent:

(1) A is surjective (i.e., A(X) = Y);
(2) A is open at every point, i.e., the image of open set is open;
(3) there exists a constant M > 0 such that for every y ∈ Y there esists x ∈ X with y = Ax and
‖x‖X ≤ M‖y‖Y. In this case, we will define

reg A = inf{M > 0 : for all y ∈ Y there exists x ∈ X with y = Ax and ‖x‖X ≤ M‖y‖Y}.

PROOF. Omitted. See Theorem II.5 p. 28 in [3]. �

REMARK 2.6. We can interpret reg A as follows. Given y ∈ BY(0, 1) ⊆ Y, we consider the set
A−1y of all x ∈ X such that Ax = y. This set is nonempty by surjectivity, moreover it is closed by
continuity, and convex by linearity. Then reg A := sup

y∈B(0,1)
inf

x∈A−1y
‖x‖.
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Next theorem will allow us to relax the assumption f ∈ C1 (we will follow the approach in [8]) in
the Inverse Function Theorem.

THEOREM 2.7 (Graves). Let X, Y be Banach spaces, x0 ∈ X, y0 ∈ Y, ε > 0, f ∈ C0(BX(x0, ε); Y) with
f (x0) = y0. Let A : X → Y be a linear, continuous and surjective operator, and let M > reg A.
Suppose that there exists 0 < δ < 1/M such that

‖ f (x1)− f (x2)− A(x1 − x2)‖Y ≤ δ‖x1 − x2‖X ,

for all x1, x2 ∈ BX(x0, ε). Then the equation y = f (x) admits a solution x ∈ B(x0, ε) for all

y ∈ BY(y0, cε) where c =
1
M
− δ.

PROOF. without loss of generality, up to translation, we can assume x0 = 0 and
y0 = f (x0) = 0. Let y ∈ BY(y0, cε) where c, M, δ, ε are as in the statement.

We define by induction a sequence as follows. Set x0 = 0 and, by surjectivity, from open
mapping theorem there exists x1 ∈ X such that A(x1) = y and ‖x1‖X ≤ M‖y‖Y ≤ ε.

Assume to have defined xi, i = 1, . . . , n− 1, such that for every i = 1, . . . , n− 1 it holds

y− f (xi−1) = A(xi − xi−i), ‖xi − xi−1‖X ≤ M(δM)i−1‖y‖Y.

In particular, we have xi ∈ B(x0, ε), since

‖xi‖X ≤
i

∑
j=1
‖xi − xi−1‖ ≤ M

i

∑
j=1

(δM)i−1‖y‖Y ≤ M
∞

∑
j=1

(δM)i−1‖y‖Y

=
M

1−Mδ
‖y‖Y =

‖y‖Y
c
≤ ε.

Define xn ∈ X as follows. By surjectivity, there exists xn such that

y− f (xn−1) = A(xn − xn−i),

since there exists ξn such that Aξn = y− f (xn−1), and then it is enough to set xn = ξn + xn−1.
Moreover, we have also (recalling the inductive step)

‖ξn‖X = ‖xn − xn−1‖X ≤ M‖y− f (xn−1)‖Y = M‖A(xn−1)− A(xn−2) + f (xn−2)− f (xn−1)‖Y

= M‖ f (xn−2)− f (xn−1)− A(xn−2 − xn−1)‖Y ≤ Mδ‖xn−2 − xn−1‖X

≤ MδM(δM)n−1‖y‖Y = M(δM)n‖y‖Y,

thus we have as before xi ∈ B(x0, ε).

Since
∞

∑
n=1
‖xi − xi−1‖X =

M‖y‖Y
1− δM

< +∞, we have that {xn}n∈N is a Cauchy sequence in X, thus

converges to x ∈ X and by passing to the limit in y− f (xn−1) = A(xn − xn−1), we have
y = f (x). �

DEFINITION 2.8 (Strict differentiability). Let X, Y be Banach spaces, ε > 0, f ∈ C0(BX(x0, ε); Y).
We say that f is strictly differentiable at x0 if there exists a linear continuous and surjective
operator A : X → Y such that

lim
x1→x0x2→x0

‖ f (x1)− f (x2)− A(x1 − x2)‖Y
‖x1 − x2‖X

= 0.

A function satisfying the above relation is trivially differentiable at x0, and A = D f (x0) is its
differential at x0.

REMARK 2.9.
(1) Not every differentiable function is strictly differentiable: indeed, if in R we consider

f (x) = x2 sin(1/x) for x 6= 0 and f (0) = 0, we have that f is differentiable at 0 with
derivative equal to 0, however if we take the sequences xn = [(n + 1/2)π]−1 and

yn = xn+1, we have that xn, yn → 0, but
f (xn)− f (yn)

|xn − yn|
has no limit for n→ +∞.
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0

y = Ax

A1

F1

A2

F2

A3ȳ

x̄

FIGURE 1. Geometrical idea of the proof of Graves’ Theorem in R: we consider
a linear operator A satisfying the assumptions, then we construct a sequence as
follows. The first point is the origin, then we look for the intersection of the
line y = Ax with y = ȳ to determine A1, and consider F1 which is the point of
graph f with the same first component of A1. A2 is defined as the intersection
of the line parallel to y = Ax and passing through F1 with the line y = ȳ, and
F2 is the point of graph f with the same first component of A2. We repeat the
construction: given An−1 and Fn−1, we define An as the intersection between the
line parallel to y = Ax and passing through Fn−1 and y = ȳ, then Fn will be the
point of graph f with the same first component of An. The assumptions grant
that the sequence of the first components of An converges to limit point x̄ which
will satisfy ȳ = f (x̄).

(2) C1-regularity around x0 is a sufficient condition for strict differentiability at x0.
However it is not necessary. For example, consider the function f : [−1, 1]→ R whose
epigraph is

epi f := co
(
{(±1/k, β) : β ≥ 1/k2, k ∈N} ∪ {0} × [0,+∞[

)
.

Clearly, this map is not differentiable at 1/k for every k ∈N, thus is not C1 in any
neighborhood of the origin. Given x, y ∈]− 1, 1[ and ε > 0, there is δ > 0 such that if
x, y ∈ B(0, δ) then

| f (x)− f (y)|
|x− y| ≤ ε.

Indeed, it is easy to see that f is Lipschitz continuous with constant
1 + 2k

k(1 + k)
on

B(0, 1/k), thus for k sufficiently large
1 + 2k

k(1 + k)
< ε and δ = 1/k. This implies that f is

strictly differentiable at 0 and D f (0) = 0 even if f is not C1 in any neighborhood of the
origin.

(3) Graves’ Theorem requires a sort of uniform approximate differentiability of the map f .
Indeed, if we require that the condition in Graves’ Theorem must hold for every ε > 0
and δ > 0 then we have that f must be strictly differentiable.
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COROLLARY 2.10. Let X, Y be Banach spaces, x0 ∈ X and f : X → Y be strictly differentiable at x0.
Suppose that D f (x0) : X → Y is surjective. Then there exist a neighborhood U of x0 and a constant
c > 0 such that for all τ > 0 with B(x, τ) ⊆ U it holds

BY( f (x), cτ) ⊆ f (BX(x, τ)), for all x ∈ U.

In other words, f is locally uniformly open at every point in a neighborhood of x0.

PROOF. By strict differentiability, we can choose ε > 0 such that

‖ f (x1)− f (x2)− A(x1 − x2)‖Y ≤ δ‖x1 − x2‖X ,

is satisfied with 0 < δ < 1/M and A = D f (x0) for all x1, x2 ∈ B(x0, ε). According to Graves’
Theorem, y = f (x) admits a solution x ∈ B(x0, ε) for all y ∈ B( f (x0), cε), where c = 1/M− δ.
This means that

BY( f (x0), cε) ⊆ f (BX(x0, ε)).
Given x̄ ∈ BX(x0, ε) and τ > 0 auch that BX(x̄, τ) ⊆ BX(x0, ε), define f̃ (x) = f (x + x̄)− f (x̄) for
all x ∈ BX(0, τ). We have that f̃ is strictly differentiable at 0 and D f̃ (0) is surjective. But then

BY( f (x̄), cτ) ⊆ f (BX(x̄, τ)),

as desired. �

Now we can introduce a notion of tangent space to the zero-level set of a map f : X → Y. To have
a properly notion of tangent space to Z at x0 with f (x0) = 0, we must have an affine space
containing x0 and such that the distance between the points x of this affine space and Z if of
higher order with respect to ‖x− x0‖.

THEOREM 2.11 (Lyusternik). Let X, Y be Banach spaces, Ω be an open subset of X, x0 ∈ Ω and
f : Ω→ Y be an F-differentiable function with f (x0) = 0. Assume that f ′ is continuous at x0 and that
f ′(x0) : X → Y is surjective with ker f ′(x0) 6= {0}. Set

Z := {x ∈ Ω : f (x) = 0},
then for all ε > 0 there exists δ > 0 such that B(x0, δ) ⊆ Ω and

dist(x, Z) ≤ ε‖x− x0‖, for all x ∈
(

x0 + ker f ′(x0)
)
∩ B(x0, δ).

PROOF. Since f ′ is continuous at x0, we have that f is strictly differentiable at x0. Without
loss of generality, we may assume x0 = 0 and f (x0) = 0. Let U be a neighborhood of x0 = 0. For
every ε > 0 there exists δ1 > 0 such that B(x, ε‖x‖X) ⊆ U for all x ∈ B(0, δ1). Moreover, for all
x ∈ ker f ′(x0) ∩ B(0, δ1), recalling that x0 = 0 and f (x0) = 0, we have

0 = lim
x→x0

x∈ker f ′(x0)

‖ f (x)− f (x0)− f ′(x0)(x− x0)‖
‖x− x0‖

= lim
x→x0

‖ f (x)− f ′(x0)(x)‖
‖x‖ = lim

x→x0

‖ f (x)‖
‖x‖ ,

and so for all c > 0 there exists 0 < δ2 ≤ δ1 such that ‖ f (x)‖ ≤ cε‖x‖ for all
x ∈ ker f ′(x0) ∩ B(0, δ2). In particular, we can take 0 < δ ≤ δ2 so small that the Corollary of
Graves’ Theorem applies with τ = ε‖x‖, so

BY( f (x), cε‖x‖) ⊂ f (B(x, ε‖x‖)), for every x ∈ ker f ′(x0) ∩ B(0, δ),

thus, in particular, from
0 ∈ BY( f (x), cε‖x‖) ⊂ f (B(x, ε‖x‖)),

we obtain the existence of x̃ ∈ B(x, ε‖x‖) ∩ Z hence

dist(x, Z) ≤ ‖x̃− x‖ ≤ ε‖x‖ = ε‖x− x0‖,
as desired. �

REMARK 2.12. We can give a smooth, finite-dimensional version of the Lyusternik’s Theorem as
follows. Let X = Rn, Ω ⊆ X be open, Y = Rk, x0 ∈ Ω, f : Ω→ Rk be a C1 function such that
f (x0) = 0. Assume that k ≤ rank (Jac f (x0)) < n and set Z := {x ∈ Ω : f (x) = 0}. Then

lim
x→x0

x−x0∈ker Jac f (x0)

dist(x, Z)
‖x− x0‖

= 0.
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LEMMA 2.13 (Orthogonality relations). Let X, Y be Banach spaces, A : X → Y be a linear, continuous
and surjective operator. Then A∗(Y′) = (ker A)⊥, where

(ker A)⊥ := {η ∈ X′ : 〈η, x〉X′ ,X = 0 for all x ∈ ker A}.

PROOF. Let η ∈ A∗(Y′), in particular η = A∗ψ for a suitable ψ ∈ Y′. Then

〈η, x〉X′ ,X = 〈A∗ψ, x〉X′ ,X = 〈ψ, Ax〉X′ ,X = 0, for all x ∈ ker A,

thus η ∈ (ker A)⊥, and so A∗(Y′) ⊆ (ker A)⊥.

Conversely, let η ∈ (ker A)⊥. Since 〈η, x〉 = 0 for all x ∈ ker A, we must have ker η ⊇ ker A.
Given y ∈ Y, we prove that η is constant on A−1(y). Indeed, by surjectivity, there exists x̄ ∈ X
such that A(x̄) = y and so A−1(y) = x̄ + ker A. Since ker η ⊇ ker A, we have that η(x) = η(x̄)
for all x ∈ A−1(y).

So it is well defined the map ψ : Y → R, with ψ(y) = η(x) for all x ∈ A−1(y).
The map ψ is linear: given y1, y2 ∈ Y, α ∈ R, by surjectivity there exist x1, x2 ∈ X with y1 = Ax1
and y2 = Ax2. Then y1 + αy2 = A(x1 + αx2), thus

ψ(y1 + αy2) = η(x1 + αx2) = η(x1) + αη(x2) = ψ(y1) + αψ(y2).

We prove now that ψ is continuous. Let G be open in R. We have

ψ−1(G) = {y ∈ Y : ψ(y) ∈ G} = {Ax ∈ Y : x ∈ X, η(x) ∈ G} = A({x ∈ X : η(x) ∈ G})
= A(η−1(G)).

By continuity, η−1(G) is open in X, and by open mapping theorem, A is open, hence
ψ−1(G) = A(η−1(G)) is open, and so ψ is continuous. Finally, for every x ∈ X we have
ψ(Ax) = η(x) hence η = A∗ψ ∈ A∗(Y′), so A∗(Y′) ⊇ (ker A)⊥. �

The following theorem generalized the classical necessary condition for constrained minima
given by Lagrange multipliers rule to the infinite-dimensional case.

THEOREM 2.14 (Lagrange multipliers). Let X, Y be real Banach spaces, and let F : X → R,
Φ : X → Y be functions of class C1. Define Z = {x ∈ X : Φ(x) = 0}, fix x0 ∈ Z, and assume that
Φ′(x0) : X → Y has closed image in Y. If x0 is a point of relative maximum or minimum for F|Z, then
there exist (λ0, ϕ) ∈ R×Y′, (λ0, ϕ) 6= (0, 0), such that in X′ if holds

λ0F′(x0) + (Φ′(x0))
∗ϕ = 0,

moreover, if Φ′(x0) is surjective, we can choose λ0 = −1.

PROOF. Set K = Φ′(x0)X, i.e., the image of Φ′(x0). By assumption, we have that K is closed.

(1) Assume K 6= Y, i.e., Φ′(x0) is not surjective. In particular, there exists ȳ ∈ Y \ K, and by
Hahn-Banach we can separate {ȳ} from K by ϕ ∈ Y′, ϕ 6= 0, thus φ(ȳ) ≤ φ(y) for all
y ∈ K. Since K is a vector space, we have φ(ȳ) ≤ φ(ky) = kφ(y) for all y ∈ K, k ∈ R.
This implies φ|K = 0. Thus we choose λ0 = 0 and we obtain for all x ∈ X

〈λ0F′(x0), x〉+ 〈(Φ′(x0))
∗ϕ, x〉 = 〈ϕ, (Φ′(x0)x〉 = 0,

as desired.

(2) Assume now K = Y, i.e., Φ′(x0) is surjective, and ker Φ′(x0) = {0}. Then
Φ′(x0) : X → Y is an isomorphism, and so (Φ′(x0))

∗ : Y′ → X′ is isomorphism.
Choosing λ0 = −1 and ϕ = [(Φ′(x0))

∗]−1F′(x0) yields the thesis in this case.

(3) Assume now K = Y, i.e., Φ′(x0) is surjective, but ker Φ′(x0) 6= {0}. We apply
Lyusternik’s Theorem to Φ. Set Tx0 = x0 + ker Φ′(x0), we have

lim
v→x0
v∈Tx0

dist (v, Z)
‖v− x0‖X

= 0.
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Choose v = x0 + th, where t ∈ R \ {0} and h ∈ ker Φ′(x0), ‖h‖X = 1. We have

lim
t→0

dist (x0 + th, Z)
|t| = 0.

For every t 6= 0 there exists xt ∈ Z such that

‖x0 + th− xt‖X ≤ dist (x0 + th, Z) + t2,

thus, by setting r(t) = x0 + th− xt, we have r(0) = 0 and

‖r′(0)‖X = lim
t→0

∥∥∥∥ r(t)− r(0)
t

∥∥∥∥
X
≤ lim

t→0

dist (x0 + th, Z)
|t| + |t| = 0.

Define now f (t) = F(xt) = F(x0 + th− r(t)). By assumption, f has a maximum or a
minimum at t = 0, thus f ′(0) = 0, i.e., F′(x0)h = 0. Since this holds for every
h ∈ ker Φ′(x0) ∩ BX(0, 1), by linearity it holds for every h ∈ ker Φ′(x0), i.e.,
F′(x0) ∈ (ker Φ′(x0))

⊥. By the orthogonality relations, we have that F′(x0) belongs to
(Φ′(x0))

∗Y′, thus we can choose λ0 = −1 and ϕ ∈ [(Φ′(x0))
∗]−1F′(x0) ⊆ Y′.

�

We will introduce now a class of important infinite-dimensional operators. We recall that if V, W
are sets, then VW denotes the set of all maps ψ : W → V.

DEFINITION 2.15 (Superposition operators). Let Ω be an open subset of Rd, B a Borel subset of
Rp, f : Ω× B→ R a Carathéodory function. Given u : Ω→ B, define a map Φ : BΩ → RΩ by
setting Φ(u)(x) = f (x, u(x)). The map Φ is called a superposition operator.

PROPOSITION 2.16 (First properties of superposition operators). Let Ω be an open subset of Rd

such that L d(Ω) < +∞, f : Ω×Rp → R be a Carathéodory function. Define Φ : (Rp)Ω → RΩ by
setting Φ(u)(x) = f (x, u(x)).

(1) If u : Ω→ Rp is measurable, then Φ(u) is measurable.
(2) If un → u in measure, then Φ(un)→ Φ(u) in measure.
(3) If there exists p, q ≥ 1 such that

| f (x, t)| ≤ a(x) + b|t|p/q,

where a ∈ Lq(Ω; [0,+∞[) and b ≥ 0, then Φ : Lp(Ω; Rp)→ Lq(Ω; R) is continuous.

PROOF.
(1) Since u is measurable, there exists a sequence of simple functions {un}n∈N pointwise

converging to u. The map x 7→ f (x, un(x)) is measurable, indeed, if un =
N(n)

∑
j=1

c(n)χA(n)

we have

f (x, un(x)) =
N(n)

∑
j=1

f (x, c(n))χA(n)(x).

Since f is continuous w.r.t. the second variable, we can pass to the limit w.r.t. n thus
x 7→ f (x, u(x)) is measurable as pointwise limit of measurable function.

(2) By assumption, there is a set N ⊆ Ω such that L d(N ) = 0 and for all x /∈ N the map
f (x, ·) is continuous. We have to prove that for all fixed ε > 0, we have

lim
n→+∞

L d ({x ∈ Ω \ N : |Φ(un)(x)−Φ(u)(x)| > ε}) = 0.

For any k ∈N \ {0} we define

Ωk :=
{

x ∈ Ω \ N : f
(

x, B(u(x), 1/k)
)
⊆ B( f (x, u(x)), ε)

}
=
{

x ∈ Ω \ N : | f (x, α)− f (x, u(x))| ≤ ε for all α ∈ B(u(x), 1/k)
}

.
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Using the continuity of f (x, ·) for all x ∈ Ω \ N , we have

Ωk =

{
x ∈ Ω \ N : sup

h∈N

| f (x, α
(k)
h )− f (x, u(x))| ≤ ε

}
,

where {α(k)h }h∈N is a countable set dense in B(u(x), 1/k) (e.g. B(u(x), 1/k) ∩Qp). Since

the map x 7→ | f (x, α
(k)
h )− f (x, u(x))| is measurable, its pointwise supremum on h is

also measurable, and so Ωk is measurable since it is sublevel of a measurable function.

We have Ωk ⊆ Ωk+1. Moreover, by continuity of f (x, ·) on Ω \ N , we have
∞⋃

k=1

Ωk = Ω \ N . In particular, we have L d(Ω \Ωk)→ 0+ as k→ +∞. Fix η > 0, then

there exists k̄ > 0 such that for k ≥ k̄ we have L d(Ω \Ωk) ≤ η/2. Set
An :=

{
x ∈ Ω : un(x) ∈ B(u(x), 1/k̄)

}
and, since un converges to u in measure, there

exists n̄ > 0 such that for all n ≥ n̄ we have L d(Ω \ An) < η/2.

If x ∈ An ∩Ωk̄ we have un(x) ∈ B(u(x), 1/k̄) and so | f (x, un(x))− f (x, u(x))| ≤ ε,
on the other hand L d(Ω \ (An ∩Ωk̄)) = L d(Ω \ An) +L d(Ω \Ωk̄) ≤ η.

Thus, for all η > 0 there exists n̄ > 0 such that for all n ≥ n̄

L d ({x ∈ Ω \ N : |Φ(un)(x)−Φ(u)(x)| > ε}) ≤ L d(Ω \ (An ∩Ωk̄)) ≤ η,

which completes the proof.
(3) Assume now that there exists p, q ≥ 1, a ∈ Lq(Ω; [0,+∞[), b ≥ 0, such that
| f (x, t)| ≤ a(x) + b|t|p/q. Given u ∈ Lp(Ω; Rp) we have

|Φ(u)(x)| = | f (x, u(x))| ≤ a(x) + b|u(x)|p/q,

hence
‖Φ(u)‖Lq = ‖a(·)‖Lq + b‖u(·)‖p/q

Lp < +∞.

Let now a sequence {un}n∈N with un → u in Lp. We have1

|Φ(un)(x)−Φ(u)(x)|q ≤ 2q−1 [|Φ(un)(x)|q + |Φ(u)(x)|q]

≤ 2q−1
[
(a(x) + b|un(x)|p/q)q + (a(x) + b|u(x)|p/q)q

]
≤ 4q−1 [2aq(x) + bq|un(x)|p + bq|u(x)|p]
≤ 4q−1 [2aq(x) + bq|(un(x)− u(x)) + u(x))|p + bq|u(x)|p]

≤ 4q−1
[
2aq(x) + bq2p−1|un(x)− u(x)|p + (2p−1 + bq)|u(x)|p

]
≤ C [aq(x) + |un(x)− u(x)|p + |u(x)|p] ,

where C > 0 is a suitable constant depending on p, q, b. Fix now ε, η > 0. Since Φ(un)
converges in measure to Φ(u), there exists n̄ > 0 such that set

En := {x ∈ Ω : |Φ(un)(x)−Φ(u)(x)| ≥ ε1/q},
we have L d(En) < η for all n > n̄. Moreover, we can increase n̄ in order to have also
‖un − u‖Lp ≤ ε for all n > n̄ We have∫
Ω
|Φ(un)(x)−Φ(u)(x)|q dx =

=
∫

En
|Φ(un)(x)−Φ(u)(x)|q dx +

∫
Ω\En

|Φ(un)(x)−Φ(u)(x)|q dx

1During all this computation, we use the following fact. Given v, w ∈ R, w 6= 0, s ≥ 1, we have
|v− w|s
|v|s + |w|s ≤

(|v|+ |w|)s

|v|s + |w|s =

(
|v|
|w| + 1

)s

(
|v|
|w|

)s
+ 1

. By setting t = |v|
|w| , we have that

|v− w|s
|v|s + |w|s ≤ sup

t∈[0,+∞[

(t + 1)s

ts + 1
≤ 2s−1, as it can easily verified

by taking derivatives.
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≤ C
∫

En
[aq(x) + |un(x)− u(x)|p + |u(x)|p] dx + εη

≤ C
∫

En
[aq(x) + |u(x)|p] dx + C‖un − u‖p

Lp + εη

≤ C
∫

En
[aq(x) + |u(x)|p] dx + (C + η)ε

Since aq(·) + |u(·)|p ∈ L1, and L d(En) < η, for η sufficiently small we have∫
En

[aq(x) + |u(x)|p] dx < ε, thus for n sufficiently large we have∫
Ω
|Φ(un)(x)−Φ(u)(x)|q dx ≤ (2C + η)ε,

hence we have convergence in Lq.
�

We present now two results about the differentiability of the superposition operator. For further
details and the proofs, we refer the reader to [1].

PROPOSITION 2.17 (Differentiability of the superposition operator, case p > 2). Let Ω be open in
Rd, f : Ω×R→ R be a Carathéodory function. Suppose that there exists p > 2 such that:

(1) the following estimate holds

| f (x, t)| ≤ a(x) + b|t|p−1,

where a ∈ Lp/(p−1)(Ω; [0,+∞[) and b ≥ 0;
(2) ∂t f exists and it is a Carathéodory function;
(3) the following estimate holds

|∂t f (x, t)| ≤ α(x) + β|t|p−2,

where α ∈ Lp/(p−2)(Ω; [0,+∞[) and β ≥ 0.
Then Φ : Lp(Ω; R)→ Lp/(p−1)(Ω; R) is F-differentiable at every point u of its domain and

[Φ′(u)v](x) = ∂t f (x, u(x))v(x)

PROOF. Denote by q = p
p−1 the conjugate exponent to p.

Recalling the properties of the superposition operator, we can define a continuous map

Ψ : Lp → L
p

p−2 by setting
Ψ(u)(x) = ∂t f (x, u(x)).

By Hölder’s inequality, we have

‖Ψ(u)v‖Lq ≤ ‖Ψ(u)‖
L

p
p−2
· ‖v‖Lp ,

in particular the map v 7→ Ψ(u)v is linear and continuous from Lp to Lq. Given u, v ∈ Lp, we
define ωu : Lp → Lq by

ωu(v) := Φ(u + v)−Φ(v)−Ψ(u)v,
and recall that prove that Φ is F-differentiable at u with Φ′F(u) = Ψ(u) amounts to prove that

lim
‖v‖Lp→0

‖ωu(v)‖Lq

‖v‖Lp
= 0.

We have

‖ωu(v)‖q
Lq =

∫
Ω
| f (x, u(x) + v(x))− f (x, u(x))− ∂t f (x, u(x))v(x)|q dx

=
∫

Ω

∣∣∣∣∫ 1

0
[∂t f (x, u(x) + τv(x))− ∂t f (x, u(x))] v(x) dτ

∣∣∣∣q dx

=
∫

Ω
|zuv(x)v(x)|q dx,
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≤‖v‖q
Lp · ‖zuv‖q

L
p

p−2
,

where

zuv(x) :=
∫ 1

0
[∂t f (x, u(x) + τv(x))− ∂t f (x, u(x))] dτ.

To conclude the proof we have to show that

lim
‖v‖Lp→0

‖zuv‖
L

p
p−2

= 0.

Indeed, ∫
Ω
|zuv(x)|

p
p−2 dx =

∫
Ω

∣∣∣∣∫ 1

0
[∂t f (x, u(x) + τv(x))− ∂t f (x, u(x))] dτ

∣∣∣∣
p

p−2

dx

≤
∫ 1

0
‖Ψ(u + τv)−Ψ(u))‖

p
p−2

L
p

p−2
dτ

The above integrand tends to 0 as ‖v‖Lp → 0 by the continuity of Ψ, thus we have just to prove
that Dominated Convergence Theorem applies to pass to the limit under the integral sign. To
this aim, we use the growth condition on ∂t f , hence

‖Ψ(u + τv)−Ψ(u))‖
L

p
p−2
≤
(

2‖α‖
L

p
p−2

+ β‖ |u + τv|p−2‖
L

p
p−2

+ β‖ |u|p−2‖
L

p
p−2

)
≤
(

2‖α‖
L

p
p−2

+ β‖u + τv‖
1

p−2
Lp + β‖u‖

1
p−2
Lp

)
≤
(

2‖α‖
L

p
p−2

+ β (‖u‖Lp + ‖τv‖Lp)
1

p−2 + β‖u‖
1

p−2
Lp

)
.

Thus for ‖v‖Lp ≤ 1, since τ ∈ [0, 1], there exists a constant C = Cp,u,β,α > 0 independent on v
such that

‖Ψ(u + τv)−Ψ(u))‖
L

p
p−2
≤ Cp,u,β,α,

for all ‖v‖Lp ≤ 1 and τ ∈ [0, 1]. Since we are integrating on [0, 1] constants are integrable, thus
Dominated Convergence Theorem applies and we obtain

lim
‖v‖Lp→0

‖zuv‖
L

p
p−2

= 0,

as desired. �

When p = 2 the result is weaker.

PROPOSITION 2.18 (Differentiability of the superposition operator, case p = 2). Let Ω be open in
Rd, f : Ω×R→ R be a Carathéodory function. Assume that

(1) we have
| f (x, t)| ≤ a(x) + b|t|,

where a ∈ L2(Ω; [0,+∞[) and b ≥ 0;
(2) ∂t f exists and it is a Carathéodory function;
(3) we have

|∂t f (x, t)| ≤ M,
for a suitable M ≥ 0.

Then Φ : L2(Ω; R)→ L2(Ω; R) is G-differentiable at every point u of its domain and

[Φ′G(u)v](x) = ∂t f (x, u(x))v(x).

In the same hypothesis, Φ is F-differentiable at u0 if and only if f (x, t) = h(x) + tk(x) where h ∈ L2(Ω)
and k ∈ L∞(Ω) are suitable functions. In that case, Φ is F-differentiable at every point of the domain.

PROOF. Omitted, see [1]. �

Summary of Lecture 2
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• In this lecture we proved the Implicit Function Theorem in Banach spaces, deduc-
ing from it the inverse function theorem.
• We introduced also the concept of strict differentiability, which is an intermediate

concept between Frechét differentiability and being C1.
• We gave also a proper concept of tangent space in Lyusternik’s theorem.
• We arrived to a Lagrange’s Multiplier Rule for smooth constrained problems in

Banach spaces.

3. Lecture of 19 november 2018: Necessary conditions in Calculus of Variations (3h)

We review now some results from functional Analysis, see [3] for further details.

DEFINITION 3.1 (Convolution). Let f ∈ L1(Rd), ϕ ∈ C∞
c (Rd). Then the map f ∗ ϕ : Rd → R

defined by

f ∗ ϕ(x) :=
∫

Rd
f (y)ϕ(x− y) dy,

is well-defined and is call the product of convolution between f and ϕ. We have f ∗ ϕ ∈ C∞. We
have the following properties for f ∈ L1(Rd), ϕ, ψ ∈ C∞

c (Rd).

(1) f ∗ ϕ = ϕ ∗ f ;
(2) ∂j( f ∗ ϕ) = f ∗ (∂j ϕ);
(3) 〈u, ψ ∗ ϕ〉 = 〈u ∗ ψ, ϕ〉.

DEFINITION 3.2 (Mollifiers). A sequence of mollifiers on Rd is a sequence of functions

{ρn}n∈N ⊆ C∞
c (Rd; [0,+∞[) such that supp ρn ⊆ B(0, 1/n) and

∫
Rd

ρn(x) dx = 1 for all n ∈N.

LEMMA 3.3 (Fundamental Lemma of Calculus of Variations). Let Ω ⊆ Rd be open, α ∈ L1
loc(Ω).

Suppose that for all ϕ ∈ C∞
c (Ω) it holds ∫

Ω
α(x)ϕ(x) dx = 0.

Then α = 0 a.e. in Ω.

PROOF. Let Ω′ be an open bounded set such that Ω′ ⊆ Ω. In particular, there exists n̄ > 0
such that for n < n̄ we have that Ω′ + B(0, 1/n) ⊆ Ω. For all ϕ ∈ C∞

c (Ω′), we have that
ρn ∗ ϕ ∈ C∞

c (Ω). We have for all n ≥ n̄ and all ϕ ∈ C∞
c (Ω′) that

0 = 〈α, ρn ∗ ϕ〉 = 〈α ∗ ρn, ϕ〉.

Assume by contradiction that there exists x̄ ∈ Ω′ such that α ∗ ρn(x̄) 6= 0. Without loss of
generality, we assume α ∗ ρn(x̄) > 0 (the other case can be trated similarly). Thus there exists
δ > 0 such that U = B(x̄, δ) ⊆ Ω′, α ∗ ρn(y) > 0 for all y ∈ U. If we take ϕ(x) = ρk(x− x̄) with
k ∈N, k > 1/δ, then supp ϕ ⊆ U, thus α ∗ ρn(x) > 0 on supp ϕ. Moreover, there exists a set of
positive measure M ⊆ supp ϕ such that ϕ > 0 on M. Hence

〈α ∗ ρn, ϕ〉 =
∫

supp ϕ
α ∗ ρn(x)ϕ(x) dx ≥

∫
M

α ∗ ρn(x)ϕ(x) dx > 0,

contradicting 〈α ∗ ρn, ϕ〉 = 0. So αn ∗ ρn = 0 on Ω′. By letting n→ ∞, and recalling that α ∗ ρn
converges to α in L1(Ω′), and hence pointwise a.e., we have that α is a.e. equal to a constant in
Ω′, thus by the arbitrariness of Ω′, the same holds on Ω. �

COROLLARY 3.4. Let Ω ⊆ Rd be open, α ∈ L1
loc(Ω). Suppose that for all ϕ ∈ C∞

c (Ω) and
j ∈ {1, . . . , d} it holds ∫

Ω
α(x)∂j ϕ(x) dx = 0.

Then there exists c ∈ R such that α = c a.e. in Ω.
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PROOF. Let Ω′ be an open bounded set such that Ω′ ⊆ Ω. In particular, there exists n̄ > 0
such that for n < n̄ we have that Ω′ + B(0, 1/n) ⊆ Ω. For all ϕ ∈ C∞

c (Ω′), we have that
ρn ∗ ϕ ∈ C∞

c (Ω) and so also ∂j (ρn ∗ ϕ) ∈ C∞
c (Ω). We have for n ≥ n̄ and every ϕ ∈ C∞

c (Ω′)

0 = 〈α, ∂j(ρn ∗ ϕ)〉 = 〈α ∗ ρn, ∂j ϕ〉 = 〈∂j(α ∗ ρn), ϕ〉
Hence, by the Fundamental Lemma of Calculus of Variations, we have that the smooth map
∂j(α ∗ ρn) vanishes on Ω′. By the arbitrariness of j and the smoothness of ∂j(α ∗ ρn), we have that
α ∗ ρn is constant on Ω′. By letting n→ ∞, and recalling that α ∗ ρn converges to α in L1(Ω′), and
hence pointwise a.e., we have that α is a.e. equal to a constant in Ω′, thus by the arbitrariness of
Ω′, the same holds on Ω. �

COROLLARY 3.5 (Du Bois-Reymond Lemma). Let D = [a, b] be a compact interval in R,
α, β ∈ L1(D; Rd). Assume that for all ϕ ∈ C∞

c (D; Rd) we have∫
D
[α(x)ϕ(x) + β(x)ϕ′(x)] dx = 0.

Then β ∈W1,1(D; Rd) e β′ = α.

PROOF. After integration by parts, we have for all ϕ ∈ C∞
c (D; Rd)∫

D
[α(x)ϕ(x) + β(x)ϕ′(x)] dx = −

∫
D

[∫ x

a
α(s) ds

]
ϕ′(x) dx +

∫
D

β(x)ϕ′(x) dx

=
∫

D

[
β(x)−

∫ x

a
α(s) ds

]
ϕ′(x) dx.

Thus there exists c ∈ R such that
β(x)−

∫ s

a
α(s) ds = c,

hence
β(x) = c +

∫ s

a
α(s) ds.

�

REMARK 3.6.
(1) Since the functions of C∞

c (Rd), are dense for the uniform convergence in C0
c (Ω) and

C1
c (Ω) and the functions, the above results is still true if we replace in the statement

C∞
c (Ω) with C1

c (Ω) or , just in the case of the Fundamental Lemma of Calculus of
Variations, even by C0

c (Ω).
(2) The vector-valued case, i.e. α ∈ L1

loc(Ω; Rm) can be treated in the same way. For
example, let α ∈ L1

loc(Ω). Suppose that for all ϕ ∈ C∞
c (Ω) it holds∫

Ω
α(x)ϕ(x) dx = 0.

Since α(x) = (α1(x), . . . , αm(x)), and ϕ(x) = (ϕ1(x), . . . , ϕm(x)), if we choose
j ∈ {1, . . . , m} and ϕi ≡ 0 if i 6= j and ϕj ∈ C∞

c (Ω), we have that

0 = 〈α, ϕ〉 =
∫

Ω
αj(x)ϕj(x) dx,

thus by the fundamental lemma in one dimension, we have αj = 0 a.e. By the
arbitrariness of j, we obtain α = 0 a.e.

For this part, we refer mainly to [9] and [10].

DEFINITION 3.7 (Basic problem of Calculus of Variations). Let I :=]a, b[⊆ R be an interval of R,
L : I ×Rd ×Rd → R be a measurable function. We will denote the arguments of L by (t, x, v),
where t ∈ I, x ∈ Rd, v ∈ Rd. Let X be a vector subspace of C0(I; Rd), and assume that all the
maps of X are a.e. differentiable in I.

We consider the following problem (which will be called the basic problem of Calculus of
Variations):

inf
x(·)∈X

J(x), J(x) =
∫

I
L(t, x(t), ẋ(t)) dt.



82 2. SECOND PART

THEOREM 3.8 (Euler’s Equations). Consider the basic problem of C.o.V. with
X = C0(I; Rd) ∩ C2(I; Rd), L ∈ C2. If x(·) ∈ X is a solution, then satisfies Euler’s equations:

d
dt

∂L
∂v1

(t, x(t), ẋ(t)) =
∂L
∂x1

(t, x(t), ẋ(t)),

...
d
dt

∂L
∂vj

(t, x(t), ẋ(t)) =
∂L
∂xj

(t, x(t), ẋ(t)), j = 2, ..., d− 1,

...
d
dt

∂L
∂vd

(t, x(t), ẋ(t)) =
∂L
∂xd

(t, x(t), ẋ(t)).

In general, we will call extremal every map solving Euler’s equation. Notice that an extremal is not
necessarily a maximum or a minimum of J(·).

PROOF. For every ϕ ∈ C∞
c (I; Rd) define gϕ(λ) = J(x + λϕ) with λ ∈ R. By assumption, gϕ

has a minimum at λ = 0, moreover gϕ is differentiable at 0. Differentiating under the integral
(which is possible since all the data are smooth) yields

g′ϕ(λ) =
d

dλ

∫
I

L(t, x(t) + λϕ(t), ẋ(t) + λϕ̇(t)) dt

=
∫

I
[∇xL(t, x(t) + λϕ(t), ẋ(t) + λϕ̇(t))ϕ(t) +∇vL(t, x(t) + λϕ(t), ẋ(t) + λϕ̇(t))ϕ̇(t)] dt,

where ∇x = (∂x1 , . . . , ∂xd) and ∇v = (∂v1 , . . . , ∂vd). Evaluating at λ = 0 and recalling that
g′ϕ(0) = 0 we have for all ϕ ∈ C∞

c (I)

0 =
∫

I
[∇xL(t, x(t), ẋ(t))ϕ(t) +∇vL(t, x(t), ẋ(t))ϕ̇(t)] dt,

thus by Du Bois-Reymond Lemma

∇xL(t, x(t), ẋ(t)) =
d
dt
∇vL(t, x(t), ẋ(t)),

as desired. �

REMARK 3.9. Functions ϕ(·) used in the above proof were classically called variations of the
solution x(·), this gave the names Calculus of Variations and, later, Variational Analysis.

The basic technique is to embed the infinite-dimensional problem in a one-dimensional problem
by considering smooth perturbations of x(·) parameterized by the one-dimensional parameter λ
and such that for λ = 0 we recover x(·). The perturbation x(·) 7→ x(·) + λϕ(·) for fixed
ϕ ∈ C∞

c (I) is the simplest one. More generally, we can consider smooth perturbations
x(·) 7→ xλ(·), and the corresponding map λ 7→ L(t, xλ(t), ẋλ(t)).

This strategy has been implemented in the following theorem, that we present in a very
simplified version.

THEOREM 3.10 (Noether). Consider the basic problem of C.o.V. with X = C0(I; Rd) ∩ C2(I; Rd),
L ∈ C2. Assume that

(1) there exists a C1 map S : R×Rd → Rd such that S(0, x) = x;

(2) L is invariant w.r.t. the action of S, i.e., L
(

t, S(λ, x(t)),
d
dt

S(λ, x(t))
)
= L(t, x(t), ẋ(t)).

Then given a solution x(·) of the problem, there exists C ∈ R such that for all t ∈ I

∇vL(t, x(t), ẋ(t)) · d
dλ

[S(λ, x(t))]|λ=0 = C.

PROOF. We will write xλ(·) = S(λ, x(·)). Straightforward computation yields:

d
dλ

[L(t, xλ(t),ẋλ(t))] =
[
∇xL(t, xλ(t), ẋλ(t))

d
dλ

xλ(t) +∇vL(t, xλ(t), ẋλ(t))
d

dλ
ẋλ(t)

]
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=

[
∇xL(t, xλ(t), ẋλ(t))

d
dλ

xλ(t) +∇vL(t, xλ(t), ẋλ(t))
d

dλ

d
dt

xλ(t)
]

= ∇xL(t, xλ(t), ẋλ(t)) ·
[

d
dλ

xλ(t)
]
+∇vL(t, xλ(t), ẋλ(t)) ·

d
dt

[
d

dλ
xλ(t)

]
,

recalling that, by smoothness, the derivatives in λ and in t can be switched.
Assume now that x(·) is a solution of Euler’s equations, and that the Lagrangian is invariant

with respect to the map λ 7→ xλ(·). This implies that
d

dλ
[L(t, xλ(t), ẋλ(t))] = 0, moreover

∇vL(t, x(t), ẋ(t)) = ∇vL(t, xλ(t), ẋλ(t)) and ∇xL(t, x(t), ẋ(t)) = ∇xL(t, xλ(t), ẋλ(t)) by the
smoothness of L.

0 =
d

dλ
[L(t, xλ(t), ẋλ(t))]

=
d
dt

[∇vL(t, x(t), ẋ(t))] ·
[

d
dλ

xλ(t)
]
+ [∇vL(t, x(t), ẋ(t))] · d

dt

[
d

dλ
ẋλ(t)

]
=

d
dt

[
∇vL(t, x(t), ẋ(t)) · d

dλ
xλ(t)

]
.

Evaluating at λ = 0, we obtain that there exists C ∈ R such that for all t ∈ I

∇vL(t, x(t), ẋ(t)) · d
dλ

[xλ(t)]|λ=0 = C.

�

If the Lagrangian is invariant w.r.t. translation in time, we have the following result.

PROPOSITION 3.11 (Erdmann’s condition). Consider the basic problem of C.o.V. with
X = C0(I; Rd) ∩ C2(I; Rd), L ∈ C2. Assume that L is autonomous, namely ∂tL = 0, i.e., L does not
depend explicitely on t. W Then if x(·) is an extremal, Erdmann’s condition holds:

L(x(t), ẋ(t))− ẋ(t) · ∇vL(x(t), ẋ(t)) = cost.

PROOF. Deriving, we have
d
dt

[L(x(t), ẋ(t))− ẋ(t) · ∇vL(x(t), ẋ(t))] =

= ∇x L(x(t), ẋ(t)) · ẋ(t) +∇vL(x(t), ẋ(t)) · ẍ(t)− ẍ(t) · ∇vL(x(t), ẋ(t))− ẋ(t) · d
dt
∇vL(x(t), ẋ(t))

=

[
∇x L(x(t), ẋ(t))− d

dt
∇vL(x(t), ẋ(t))

]
· ẋ(t) = 0,

where we used Euler’s equation in the last step. �

Summary of Lecture 3

• In this lecture we introduced the basic problem of Calculus of Variation, i.e., the
minimization of an integral functional J(·) with sufficiently smooth integrands
(Lagrangian function) on a set of smooth functions. We will mainly treat the 1-
dimensional case.
• We postponed the problem of the existence of minimizers, concentrating on the

problem of deriving suitable necessary conditions.
• By the assumptions on the smoothness of the data, we can use the necessary con-

dition J′G(x̄(·)) = 0, where the set of variations used to compute the directional
derivatives is given by compactly supported smooth functions.
• The above condition, together with Du Bois-Reymond Lemma, yields the cele-

brated Euler-Lagrange equations (in integral form).
• Smoothness of the data allows a further differentiation, obtaining classical Euler-

Lagrange equations in differential form.
• In presence of symmetries in the lagrangian function, i.e., invariance of the lagrangian

w.r.t. some transformation groups, we have the conservation of relevan quantities
along the minimizers. For invariance w.r.t. action on the space variables, this is
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expressed by Noether theorem, while for autonomous lagrangian (i.e., invariance
in time) it is expressed by Erdmann’s condition.

4. Lecture of 23 november 2018: Classical problems in C.o.V., conjugate points, sufficient
conditions.(3h)

EXAMPLE 4.1 (Minimal surfaces). Consider the soap bubble problem. In R3, with variables
denoted by (t, x, y), consider two rings in the planes t = a e t = b centeted on t-axis of radius A
and B, respectively. Assume that a soap bubble surface joins the two rings. According to
D’Alembert’s principle, the equilibrium position minimizes the potential energy, which, in our
case, amounts to minimize the area of the revolution surface joining the two rings. Assuming
that the surface is generated by the rotation of the graph of a smooth map t 7→ x(t) around the
t-axis, we have to minimize

J(x) = 2π
∫ b

a
x(t)

√
1 + ẋ2(t) dt.

The Lagrangian is L = L(x, v) = x
√

1 + v2, thus by Erdmann’s condition,

x(t)
√

1 + ẋ2(t)− ẋ(t)
x(t)ẋ(t)√
1 + ẋ2(t)

= C.

Then
x(t)(1 + ẋ2(t))− x(t)ẋ2(t)√

1 + ẋ2(t)
= C,

and so
x(t)√

1 + ẋ2(t)
= C.

Squaring and assuming C 6= 0 (otherwise we have the trivial solution x(t) ≡ 0, we have

x2(t)
C2 = 1 + ẋ2(t),

thus

ẋ(t) =

√
x2(t)

C2 − 1.

This equation can be solved by separating the variables, and its solution is

x(t) = C cosh
(

t + K
C

)
,

where K, C are constant to be choosen in order to match x(a) = A e x(b) = B (for some choiches
of A and B there may be no solutions). The curve x(·) is called catenary, and the surface of
revolution obtained in this way are called catenoids.

EXAMPLE 4.2 (Brachistocrone). Consider the vertical plane xz, where the x-axis is horizonthal
and the z-axis is vertical and oriented downwards. Consider the two points O = (0, 0) and
P = (1, a) with a > 0. We look for a function z : [0, 1]→ R representing the trajectory along
which a point particle starting from O with null initial velocity will arrive in P minimizing the
travelling time (we assume there is no friction). In particular, it holds z(0) = 0 and z(1) = a.
Without loss of generality, by physical reasons, we may assume that z(·) is not decreasing (recall
that the axis z is pointing downwards). Assume moreover z ∈ C2(]0, 1[) ∩ C0([0, 1]).

The length of an infinitesimal arc of the trajectory is ds =
√

1 + ż2(x) dx. Denoted by v(x) the
velocity of the point particle at (x, z(x)), the conservation of mechanical energy yields that
E = 1

2 mv2(x)−mgz(x) is costant along the motion. At x = 0 we have v = 0, since we have null
initial velocity, and z(0) = 0, thus E = 0 for all 0 ≤ x ≤ 1. Thus v(x) =

√
2gz(x). The

infinitesimal time needed to travel along the infinitesimal arc is then

dt =
ds
v

=

√
1 + ż2(x)

2gz(x)
,
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and so the total time of travel is

T(z) =
1√
2g

∫ 1

0

√
1 + ż2(x)

z(x)
dx.

The integrand is the Lagrangian function

L(z, v) :=

√
1 + v2

z
,

which does not depend on t, hence we are in the autonomous case, so Erdmann’s condition
holds, yielding √

1 + ż2(x)
z(x)

− ż(x) · ż(x)√
(1 + ż2(x))z(x)

= C.

Recalling that z(x) > 0, we have

1 = C
√

z(x)(1 + ż2(x)),

so C > 0 and we obtain the nonlinear ordinary differential equation

1
C2 = z(x)

(
1 +

(
dz
dx

(x)
)2
)

.

Recalling that ż ≥ 0, we have
dz
dx

=

√
1− C2z(x)
C
√

z(x)
.

This equation can be solved by separation of variables∫ C
√

z dz√
1− C2z

=
∫

dx = x.

We make the following substitutions: first w =
√

1− C2z, C2z = 1− w2, dz = −2w dw/C2,
second w = cos η, dw = − sin η dη.

x =
∫ C

√
z dz√

1− C2z
= − 2

C2

∫ √
1− w2 dw

= − 2
C2

∫ √
1− w2 dw =

2
C2

∫
sin2 η dη = − 2

C2

∫ cos 2η − 1
2

dη = − sin 2η

2C2 +
η

C2 + cost.

We have finally (θ = 2η) 
x(θ) =

1
2C2 (θ − sin θ) + cost

z(θ) =
1− w2

C2 =
1

2C2 (1− cos θ)

Since we want x > 0 for θ > 0 and at θ = 0 we want x = 0, we have
x(θ) =

1
2C2 (θ − sin θ),

z(θ) =
1− w2

C2 =
1

2C2 (1− cos θ),

i.e., a family of cycloids. The value of C is calculated by finding θ̄ such that x(θ̄) = 1, z(θ̄) = a,
and substituting this value of θ in the equation for z(·). Clearly we have θ̄ 6= 0, since a 6= 0, and
x(θ) > 0 for all θ > 0. So we have z(θ̄)/x(θ̄) = a, and finally

a =
1− cos θ̄

θ̄ − sin θ̄
,

C =

√
θ̄ − sin θ̄

2
.
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REMARK 4.3. The proof of Euler’s equation is based on the single-variabile map
gϕ(λ) := J(x + λϕ) where ϕ is a fixed admissible variation, ϕ ∈ C1

0(I), which must satisfy the
necessary condition g′(0) = 0 since x(·) is a minimum by assumption. However, since 0 is a
minimum for g, when g is twice differentiable, we must have also g′′(0) ≥ 0 according to
Taylor’s formula, thus obtaining a second-order necessary condition.

PROPOSITION 4.4 (Legendre’s necessary condition). Consider the basic problem of C.o.V. with
X = C0( Ī; Rd) ∩ C2(I; Rd) and L ∈ C2. If x(·) is a solution, then P(t) := ∂2

vvL(t, x(t), ẋ(t)) ≥ 0 for
all t ∈ [a, b].

PROOF. Let x(·) be a solution. Consider an admissible variation ϕ ∈ C1
c (R

d), set
xλ(t) = x(t) + λϕ(t), and let gϕ(λ) = J(xλ). By Euler’s equations we have g′ϕ(0) = 0. The
second derivative of gϕ is

g′′ϕ(λ) =
d

dλ

∫
I
[∂xL(t, xλ(t), ẋλ(t))ϕ(t) + ∂vL(t, xλ(t), ẋλ(t))ϕ̇(t)] dt

=
∫

I

[
∂xxL(t, xλ(t), ẋλ(t))ϕ2(t) + ∂xvL(t, xλ(t), ẋλ(t))ϕ(t)ϕ̇(t)+

+ ∂vxL(t, xλ(t), ẋλ(t))ϕ(t)ϕ̇(t) + ∂vvL(t, xλ(t), ẋλ(t))ϕ̇2(t)
]

dt

=
∫

I

[
∂xxL(t, xλ(t), ẋλ(t))ϕ2(t) + ∂xvL(t, xλ(t), ẋλ(t))2ϕ(t)ϕ̇(t) + P(t)ϕ̇2(t)

]
dt.

Since 2ϕ(t)ϕ̇(x) =
d
dt
[ϕ2(t)], integration by parts yields

g′′(0) =
∫

I

[
∂xxL(t, x(t), ẋ(t))ϕ2(t) + ∂xvL(t, x(t), ẋ(t))

d
dt
(ϕ2(t)) + P(t)ϕ̇2(t)

]
dt

=
∫

I

[
∂xxL(t, x(t), ẋ(t))ϕ2(t)− d

dt
∂xvL(t, x(t), ẋ(t))ϕ2(t) + P(t)ϕ̇2(t)

]
dt

=
∫

I

[(
∂xxL(t, x(t), ẋ(t))− d

dt
∂xvL(t, x(t), ẋ(t))

)
ϕ2(t) + P(t)ϕ̇2(t)

]
dt

=
∫

I

[
Q(t)ϕ2(t) + P(t)ϕ̇2(t)

]
dt

Since 0 is a minimum for g, we have g′′(0) ≥ 0, so for every admissible variation∫
I

[
Q(t)ϕ2(t) + P(t)ϕ̇2(t)

]
dt ≥ 0.

Assume by contradiction that there exists τ ∈]a, b[ such that P(τ) < 0. By continuity, there exists
δ > 0 such that B(τ, 2δ) ⊆ I, P < 0 on B(τ, 2δ), and we set Iδ = B(τ, δ). Given ε > 0, take a map
hε ∈ Lip( Ī), hε = 0 in I \ Iδ, |h′ε(t)| = χIδ

(t) for a.e t ∈ I, and ‖hε‖∞ ≤ ε. An example of such map
can be constructed as follows: fix a set of N > 2δ/ε points Aε = {t1, . . . , tN} ⊂ Iδ such that

max
i=1,...,N

min
j=1,...,N

j 6=i

|ti − tj| < ε and consider hε(t) := dist(t, Aε ∪ (I \ Iδ)). By taking a sequence of

mollifiers ρn, for n sufficiently large we have Iδ + B(0, 1/n) ⊆ B(τ, 2δ). Then, for n sufficiently
large, we have ∫

I

[
Q(t)[hε ∗ ρn]

2(t) + P(t)[ḣε ∗ ρn]
2(t)

]
dt ≥ 0.

We have that hε ∗ ρn converges uniformly to hε on I, thus for n sufficiently large
‖hε ∗ ρn‖∞ ≤ 2‖hε‖∞ = 2ε, and hε ∗ ρn → ḣε = χIδ

1 in L1. So for n sufficiently large

0 ≤
∫

I

[
Q(t)[hε ∗ ρn]

2(t) + P(t)[ḣε ∗ ρn]
2(t)

]
dt ≤ 4ε2‖Q‖∞ +

∫
I

P(t)[ḣε ∗ ρn]
2(t)] dt,

By letting n→ ∞,

0 ≤ 4ε2‖Q‖∞ +
∫

Iδ

P(t) dt,

and by arbitrariness of ε > 0 ∫
Iδ

P(t) dt ≥ 0,
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contradicting the fact that P < 0 on Iδ. �

REMARK 4.5. Under the assumptions of Legendre’s necessary condition, we have seen that if
x(·) is a solution, and set g(λ) = J(x + λϕ) where ϕ ∈ C2

c (]a, b[) is an admissible variation,

gϕ(λ) := J(x + λϕ),

P(t) := ∂2
vvL(t, x(t), ẋ(t)),

Q(t) := ∂2
xxL(t, x(t), ẋ(t))− d

dt
∂2

xvL(t, x(t), ẋ(t)),

where ϕ ∈ C1
c (]a, b[) is any admissible variation, we obtain g′ϕ(0) = 0, which implies Euler’s

equations, and from the necessary condition g′′ϕ(0) ≥ 0, i.e.,

g′′ϕ(0) =
∫

I

[
Q(t)ϕ2(t) + P(t)ϕ̇2(t)

]
dt ≥ 0,

we obtain the necessary condition P(t) ≥ 0, t ∈ [a, b].

Since Taylor’s formula for function of one variable yields the sufficient condition g′(0) = 0 and
g′′(0) > 0 for the function g to have a minimum at 0, in order to have a second-order necessary
condition, a natural conjecture, firstly proposed by Legendre himself, would be: assume that x(·)
solves Euler’s equations and that P(t) > 0, then x(·) is a local minimum in the C1-norm for J(·).
However, Legendre’s conjecture is false, as shown by the following counterexample.

EXAMPLE 4.6 (Conjugate points). In the plane (t, x), let A = (0, 0) and B = (T, 0), T > 0, two
points. We want to travel from A to B minimizing the functional

J(x(·)) :=
∫ T

0
(ẋ2(t)− x2(t)) dt.

Euler’s equation yields 2ẍ(t) = −2x(t), which has to be coupled with boundery conditions
x(0) = x(T) = 0, so the trajectory x̄(t) ≡ 0 is an extremal, moreover

P(t) = ∂vvL(t, x̄(t),˙̄x(t)) = 2 > 0,

thus may we conclude that x̄(t) ≡ 0 solves the problem?

Assume T ≤ 1. Hölder’s inequality yields for every 0 ≤ t ≤ T

|x(t)| ≤
∣∣∣∣∫ t

0
ẋ(s) ds

∣∣∣∣ ≤ ∫ t

0
|ẋ(s)|2 ds · t1/2 ≤

(∫ T

0
ẋ2(s) ds

)1/2

.

Thus, squaring and integrating in [0, T]∫ T

0
x2(t) dt ≤

∫ T

0

(∫ T

0
ẋ2(s) ds

)
dt = T

∫ T

0
ẋ2(s) ds ≤

∫ T

0
ẋ2(t) dt.

Recalling that T ≤ 1, we have

J(x) =
∫ T

0
ẋ2(t) dt−

∫ T

0
x2(t) dt ≥ 0,

and since J(x̄) = 0, we have proved that x̄ is a minimum.

Assume now T ≥ 4. We ask if also in this case it holds J(x) ≥ J(x̄) = 0. Consider x̃(t) = t(T− t).
this trajectory is smooth and satisfies boundary condition. Moreover

J(x̃) =
∫ T

0
( ˙̃x2(t)− x̃2(t)) dt =

∫ T

0
(T − 2t)2 − t2(T − t)2 dt =

T3

3
− T5

30
< 0,

thus x̄ is no longer a minimum, hence the conjecture fails.

REMARK 4.7. The (wrong) proof that Legendre proposed for that conjecture was as follows.
Given any differentiable map w(·), we must have for all ϕ ∈ C1

c (I)∫ b

a

d
dt
(w(t)ϕ2(t)) dt = 0.
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Thus, assuming that P(t) > 0, we have

g′′(0) = g′′(0) +
∫ b

a

d
dt
(w(t)ϕ2(t)) dt =

∫
I

[
Q(t)ϕ2(t) + P(t)ϕ̇2(t) +

d
dt
(w(t)ϕ2(t))

]
dt

=
∫

I

[
Q(t)ϕ2(t) + P(t)ϕ̇2(t) + w′(t)ϕ2(t) + 2ϕ(t)ϕ̇(t)w(t)

]
dt

=
∫

I
P(t)

[
w′(t) + Q(t)

P(t)
ϕ2(t) + 2

ϕ(t)w(t)
P(t)

ϕ̇(t) + ϕ̇2(t)
]

dt

If we choose w(·) to be a solution of

w′(t) + Q
P(t)

=

(
w(t)
P(t)

)2

,

we obtain

g′′ϕ(0) =
∫

I
P(t)

[
w(t)
P(t)

ϕ(t) + ϕ̇(t)
]2

dt.

so the sufficient condition g′′ϕ(0) > 0. This argument fails in supposing the global existence on
[a, b] of a solution of

w′(t) + Q
P(t)

=

(
w(t)
P(t)

)2

,

while in general this solution enjoys only local existence of solution.

Assuming L ∈ C3, the change of variable w(t) = − u̇(t)P(t)
u(t)

for u 6= 0 gives the Jacobi’s equation

− d
dt
(P(t)u̇(t)) + Q(t)u(t) = 0,

the solution of this equation can be used to reconstruct w(·) if u(·) does not vanish in I.

EXAMPLE 4.8. In the previous example, we have P(t) = −Q(t) = 2 for every trajecetory, thus
according to Legendre’s argument, we have to solve

w′(t) =
w2(t)

2
+ 2,

which yields w(t) = 2 tan(t + c), c ∈ R, hence there is no possible choice of c to have such
solution defined on the whole of [0, T] for T ≥ π, while for 0 < T < 1 we can globally define
w(·) and, indeed, making this argument working. In this case, the Jacobi’s equation is simply
ü(t) = u(t), whose solution is u(t) = A sin(t + φ), A, φ ∈ R, and, again, for every choice of A, φ,
we have that u(t) vanishes in I =]0, T[ for T ≥ π.

DEFINITION 4.9 (Conjugate points). Consider the basic problem of C.o.V. with
X = C0( Ī; Rd) ∩ C2(I; Rd) and L ∈ C3, I =]a, b[, and let x(·) ∈ X be an extremal. Define

P(t) := ∂2
vvL(t, x(t), ẋ(t)),

Q(t) := ∂2
xxL(t, x(t), ẋ(t))− d

dt
∂2

xvL(t, x(t), ẋ(t)),

We say that a < c ≤ b is a conjugate point to a along x(·) if there exists a nonconstant solution of
Jacobi’s equation

− d
dt
(P(t)u̇(t)) + Q(t)u(t) = 0,

satisfying u(a) = u(c) = 0 (thus u̇(a) 6= 0, otherwise we have the constant solution u = 0). Since
u = 0 is solution, all nontrivial solution of the Jacobi’s equations differs only for a multiplicative
constant.

PROPOSITION 4.10 (Jacobi’s necessay condition on conjugate points). Consider the basic problem
of C.o.V. with X = C0( Ī; Rd) ∩ C2(I; Rd) and L ∈ C3, I =]a, b[, and let x(·) ∈ X be an extremal. Then
there are no conjugate points to a in ]a, b[.

PROOF. Omitted. �
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THEOREM 4.11 (Jacobi’s sufficient condition). Consider the basic problem of C.o.V. with
X = C0( Ī; Rd) ∩ C2(I; Rd) and L ∈ C3, I =]a, b[, and let x(·) ∈ X be an extremal. Define

P(t) := ∂2
vvL(t, x(t), ẋ(t)),

Q(t) := ∂2
xxL(t, x(t), ẋ(t))− d

dt
∂2

xvL(t, x(t), ẋ(t)),

Suppose that there are no conjugate points to a in ]a, b] and P(t) > 0 for all t ∈ [a, b]. Then x̄(·) is a local
minimum.

PROOF. By assumption, given a solution of the Jacobi’s equation u which never vanishes in

]a, b], we can use the change of variables w(t) = − u̇(t)P(t)
u(t)

, finding a global solution of

w′(t) + Q
P(t)

=

(
w(t)
P(t)

)2

.

Then Legendre’s argument applies. Set gϕ(λ) = J(x + λϕ) for all ϕ ∈ C1
c (I) we have

g′′ϕ(0) = g′′(0) +
∫ b

a

d
dt
(w(t)ϕ2(t)) dt =

∫
I

[
Q(t)ϕ2(t) + P(t)ϕ̇2(t) +

d
dt
(w(t)ϕ2(t))

]
dt

=
∫

I

[
Q(t)ϕ2(t) + P(t)ϕ̇2(t) + w′(t)ϕ2(t) + 2ϕ(t)ϕ̇(t)w(t)

]
dt

=
∫

I
P(t)

[
w′(t) + Q(t)

P(t)
ϕ2(t) + 2

ϕ(t)w(t)
P(t)

ϕ̇(t) + ϕ̇2(t)
]

dt

=
∫

I
P(t)

[
w(t)
P(t)

ϕ(t) + ϕ̇(t)
]2

dt > 0.

�

Up to now, we have searched solutions in X = C0([a, b]) ∩ C2(]a, b[). However it is easy to give
very simple examples showing that this choice is too restrictive.

EXAMPLE 4.12. Consider the functional

J(x) :=
∫ 1

−1
x2(t)(ẋ2(t)− 1)2 dt,

that we want to minimize with boundary condition x(−1) = 0 e x(1) = 1. Trivially, J(x) ≥ 0.

Let x(·) ∈ C0([−1, 1]) ∩ C1(]− 1, 1[) satisfying the boundary conditions. Then

1 = x(1)− x(−1) =
∫ 1

−1
ẋ(t) dt.

If ẋ(t) > 1/2 or ẋ(t) < 1/2 for every t ∈]− 1, 1[ this clearly cannot happen. So there exist
t1, t2 ∈]− 1, 1[ where ẋ(t1) > 1/2 and ẋ(t2) < 1/2. Since ẋ(·) ∈ C0(]− 1, 1[), according to the
theorem of intermediate values, there exists τ ∈]− 1, 1[ with ẋ(τ) = 1/2. In particular, there
exists an open interval V ⊆]− 1, 1[ such that τ ∈ V and ẋ(t) ∈ [1/4, 3/4] for all t ∈ V. This
implies that x(·) is strictly increasing in V, so it can vanish in V in at most one point. So in V we
have x(t) 6= 0 a.e., and this implies J(x) > 0.

Define now the Lipschitz map x(t) = 0 if t ∈ [−1, 0] and x(t) = t if t ∈ [0, 1]. This map fulfills the
boundary conditions and its derivative exists a.e. in ]− 1, 1[ and satisfies ẋ(t) = χ]0,1[(t) for a.e.
t ∈ [−1, 1], so it make sense to compute J(·) on it (indeed, x(·) ∈ X := Lip([−1, 1])), obtaining
J(x(·)) = 0. We conclude that this curves is a (nonsmooth) minimizer of J in X := Lip([−1, 1]). It
is easy to see that in X there are infinite minimizers.

DEFINITION 4.13. Given a compact interval [a, b] ⊆ R we define

PWS([a, b]) :=

{
x ∈ C0([a, b]) :

there exists a finite set T ⊆]a, b[ such that x ∈ C1(]a, b[\T)
and there exist finite lim

t→t̄±
ẋ(t) for all t̄ ∈ T

}
,



90 2. SECOND PART

Lip([a, b]) :=

x ∈ C0([a, b]) : sup
t,s∈[a,b]

t 6=s

|x(s)− x(t)|
|s− t| < +∞

 ,

AC([a, b]) :=

x ∈ C0([a, b]) :
there exists v ∈ L1(]a, b[) such that

x(t) = x(a) +
∫ t

a
v(s) ds for all s ∈ [a, b]

 .

The element of PWS([a, b]) are called piecewise-smooth functions, the elements of Lip([a, b]) are
called Lipschitz continuous function, the elements of AC([a, b]) are called absolutely continuous
functions. Rademacher’s Theorem, states that a Lipschitz continuous function defined on a
finite-dimensional space is differentiable a.e., moreover we have Lip([a, b]) = W1,∞([a, b]). We
have also W1,1([a, b]) = AC([a, b]) ⊃ Lip([a, b]).

REMARK 4.14. On PWS([a, b]), Lip([a, b]), and AC([a, b]), it make sense to write the functional of
C.o.V., since all of them are space of continuous and a.e. differentiable functions on [a, b].
Performing the same computation of the derivation of Euler’s equations, we obtain

0 =
∫

I
[∇xL(t, x(t), ẋ(t))ϕ(t) +∇vL(t, x(t), ẋ(t))ϕ̇(t)] dt,

=
∫

I

[
−
(∫ t

a
∇xL(s, x(s), ẋ(s)) ds

)
ϕ̇(t) +∇vL(t, x(t), ẋ(t))ϕ̇(t)

]
dt,

=
∫

I

[
∇vL(t, x(t), ẋ(t))−

∫ t

a
∇xL(s, x(s), ẋ(s)) ds

]
ϕ̇(t) dt,

so by Du Bois-Raymond Lemma we have that there exists c ∈ R such that for a.e. t ∈ [a, b] the
following Euler’s Equation in integral form holds

∇vL(t, x(t), ẋ(t)) = c +
∫ t

a
∇xL(s, x(s), ẋ(s)) ds.

When x(·) and L are sufficiently smooth, we can derive in t, obtaining the classical Euler’s
equation. The curves x(·) satisfying Euler’s Equation in integral form are sometimes called weak
extremals or extremals in the weak sense. Notice that being a solution of Euler’s Equation in
integral form is stronger than being an a.e. solution of the classical Euler’s Equation.

EXAMPLE 4.15. Consider the minimization of the functional

J(x) =
∫ 1

0
ẋ2(t) dt,

subject to x(0) = 0, x(1) = 1. According to Jensen’s Inequality, by convexity of r 7→ r2, we have(∫ 1

0
ẋ(t) dt

)2

≤
∫ 1

0
ẋ2(t) dt,

and, since if x(·) ∈ AC([0, 1]) the right hand side is (x(1)− x(0))2, we have J(x) ≥ 1 for every
x ∈ AC([0, 1]).
Classical Euler’s equation is ẍ(t) = 0, and so the only extremal in C0([0, 1]) ∩ C2(]0, 1[) satisfying
the boundary conditions is x(t) = t, and we have that this is a minimum according to Jensen’s
inequality.
In PSW([0, 1]), Euler’s equation in the weak sense is 2ẋ(t) = c, for a suitable constant c, hence
we obtain again as unique solution x(t) = t. Instead, we notice that if we consider the a.e.
solutions of the classical Euler’s requation, i.e., the piecewise smooth functions satisfying
ẍ(t) = 0 a.e. and respecting boundary condition, we obtain that any piecewise linear map
satisfying the boundary condition is an a.e. solution of the classical Euler’s equation. In

particular, for 0 < ε < 1 if we take xε(t) =
1
ε

χ[1−1/ε,1](t)(x− 1 + ε), we have that ẍε = 0 a.e., the

boundary condition are fulfilled, and J(xε) = 1/ε > 1.

THEOREM 4.16. Consider the basic problem of C.o.V. with L ∈ C1. If (x, v) 7→ L(t, x, v) is convex, then
every weak extremal is a global minimum. If moreover it is strictly convex, then the minimum is unique.
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PROOF. By smoothness assumptions on L, epi L admits a supporting hyperplane at each
point, moreover

L(t, x2, v2)− L(t, x1, v1) ≥ 〈∇x,vL(t, x1, v1), (x2 − x1, v2 − v1)〉.

Let x̄ be a weak extremal and y any other admissible curve. We define the generalized moment

p(t) = ∇vL(t, x̄(t), ˙̄x(t)),

thus Euler’s equation in the weak form gives (in the weak sense)

∇xL(s, x(s), ẋ(s)) = ṗ(t).

Thus

J(y)− J(x̄) =
∫ b

a
[L(t, y(t), ẏ(t))− L(t, x̄(t), ˙̄x(t))] dt

≥
∫ b

a
〈∇x,vL(t, x̄(t), ˙̄x(t)), (y(t)− x̄(t), ẏ(t)− ˙̄x(t))〉 dt

=
∫ b

a
〈( ṗ(t), p(t)), (y(t)− x̄(t), ẏ(t)− ˙̄x(t))〉 dt

=
∫ b

a
(〈 ṗ(t), y(t)− x̄(t)〉+ 〈p(t), ẏ(t)− ˙̄x(t)〉) dt

= [〈p(t), y(t)− x̄(t)〉]t=b
t=a = 0.

�

EXAMPLE 4.17. Consider the minimization of the functional

J(x) :=
∫ 1

0
(x2(t) + (ẋ2(t)− 1)2) dt,

subject to x(0) = 0, x(1) = 0. Trivially, for every x(·) ∈ AC([0, 1]) we have J(x) > 0. We prove
that infimum on Lip([a, b]) is actually 0. A minimizing sequence is given by the triangular wave

xn(t) =
∫ t

0
sign(sin(2nπs)) ds,

so |ẋn| = 1 a.e. in [0, 1], and ‖xn‖∞ = 1
2n , so J(xn) ≤ 1

2n . The infimum is not achieved, and notice
that the Lagrangian is not convex in v.

EXAMPLE 4.18. Consider the minimization of the functional

J(x) :=
∫ 1

0
(x2(t) + g(ẋ)) dt,

where g(v) = v + χ]−∞,0](v)v2, and subject to x(0) = 0, x(1) = 1. We have for all x(·) ∈ AC

J(x) ≥
∫ 1

0

[
ẋ(t) + χ]−∞,0](ẋ(t))ẋ2(t)

]
dt ≥ x(1)− x(0) = 1,

and to have equality we must have x(t) ≡ 0, which is not an admissible curve. Thus J(x) > 1 for
all x(·) admissible. A minimizing sequence in Lip([0, 1]) such that J(xn)→ 1 can be obtained by
taking

xn(t) = χ[0,1−1/n](t)
1
n

(
x− 1 +

1
n

)
.

REMARK 4.19. When we take X = AC([a, b]), unless to what happens in Lip([a, b]), PSW([a, b]),
C2(]a, b[) ∩ C0([a, b]), the functional can be no longer G-differentiable. Thus we may have no
longer validity of Euler’s equation not even in the weak form. This implies that if may occurs
that minima in AC cannot be detected by using Euler’s equation.

DEFINITION 4.20. We say that the functional

J(x) =
∫ b

a
L(t, x(t), ẋ(t)) dt,



92 2. SECOND PART

to be minimized with boundary conditions x(a) = xa and x(b) = xb, exhibits Lavrent’ev
phenomenon if

inf
x∈AC([a,b])

x(a)=xa
x(b)=xb

J(x) < inf
x∈Lip([a,b])

x(a)=xa
x(b)=xb

J(x).

REMARK 4.21. In particular, if Lavrent’ev phenomenon occurs, the usual numerical methods of
minimization with finite elements (that are functions in W1,∞) will not be able to approximate
the minimum. Lavrent’ev phenomenon may occurs even for polynomial Lagrangians, thus is not
related to Lagrangian’s smoothness.

EXAMPLE 4.22. The following smooth functional exhibit Lavrent’ev phenomenon (proved in
1926):

(1) Mania, (1934): L(t, x, v) = (t− x3)2v6, x(0) = 0, x(1) = 1;
(2) Ball-Nizel, (1984): L(t, x, v) = rv3 + (x2 − t3)6v14, for r > 0, coupled with x(0) = 0,

x(1) = k admits as minimizer in AC([0, 1]) x(t) = kt2/3 /∈ Lip([a, b]). But then
∂xL(t, x(t), ẋ(t)) /∈ L1, thus not even the weak form of Euler’s equation holds.

PROPOSITION 4.23 (C1 smoothness of minimizers). Consider the basic problem of C.o.V. with
X = Lip. Assume that che L(t, x, ·) is strictly convex and C1, then every minimizer x̄ is C1.

PROOF. By assumption we have

x̄(t) = x̄(a) +
∫ t

a
˙̄x(s) ds,

where ˙̄x ∈ L∞. We want to construct a map v̄ ∈ C0 such that

x̄(t) = x̄(a) +
∫ t

a
v̄(s) ds.

Define
S := {t ∈ [a, b] : ˙̄x(t) exists and weak Euler’s equation holds}.

We have meas(S) = b− a, and so S is dense in [a, b]. Consider now the limit

lim
τ→t
τ∈S

˙̄x(t).

If this limit exists at every t, we can define

v̄(t) = lim
τ→t
τ∈S

˙̄x(t),

noticing that ˙̄x(t) = ˙̄x(t) for every t ∈ S and v̄ ∈ C0(]a, b[), as desired.

By contradiction, let t ∈]a, b[ be such that the above limit does not exists. Since ˙̄x is bounded in S
(by Lipschitz continuity of x̄(·)), there are sequences {ti}i∈N and {si}i∈N in S such that ti → t,
si → t but

v1(t) := lim
i→∞

˙̄x(ti) 6= lim
i→∞

˙̄x(si) =: v2.

At ti, si weak Euler’s equation holds, thus

∂vL(ti, x(ti), ˙̄x(ti)) = C +
∫ ti

a
∂xL(s, x(s), ˙̄x(s)) ds,

∂vL(si, x(si), ˙̄x(si)) = C +
∫ si

a
∂xL(s, x(s), ˙̄x(s)) ds,

by passing to the limit for i→ ∞ and recalling the continuity of ∂vL, we have
∂vL(t, x(t), v1) = ∂vL(t, x(t), v2). Since L(t, x, ·) is strictly convex, we have

L(t, x̄(t), v1)− L(t, x̄(t), v2) > 〈∂vL(t, x̄(t), v2), v1 − v2〉 = 〈∂vL(t, x̄(t), v1), v1 − v2〉
= −[〈∂vL(t, x̄(t), v1), v2 − v1〉] > −[L(t, x̄(t), v2)− L(t, x̄(t), v1)]

= L(t, x̄(t), v1)− L(t, x̄(t), v2),

which leads to a contradiction. �
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THEOREM 4.24 (Hilbert-Weierstrass, 1890). Consider the basic problem of C.o.V. with X = Lip.
Assume that L ∈ C2, and ∂2

vvL > 0 globally. Then every minimizer is C2. if L ∈ Cr, r > 2 then the
minimizer is Cr.

PROOF. Applying the previous result, we have that x̄ ∈ C1. So

p(t) := ∂vL(t, x̄(t), ˙̄x(t)) = C +
∫ t

a
∂xL(s, x̄(s), ˙̄x(s)) ds

is of class C1. Since ∂vvL > 0 Dini’s Implicit Function Theorem applies, thus we obtain ˙̄x(t) as a
C1 function of the other variables, so x̄ ∈ C2. The remaining part of the statement can be proved
by induction. �

THEOREM 4.25 (Tonelli’s Existence Theorem). Consider the basic problem of C.o.V. with
X = AC([a, b]), L continuous, v 7→ L(t, x, v) convex and such that there exist α > 0, β ∈ R, p > 1
with L(t, x, v) ≥ α|v|p + β. Then the minimization problem admits a solution x̄(·) ∈ AC([a, b]).

PROOF. Let p′ be such that 1/p + 1/p′ = 1. To avoid triviality, we assume inf
x∈X

J(x) < +∞.

Let {xi}i∈N be a minimizing sequence. Since for i sufficiently large

0 ≤
∫ b

a
α|ẋ(t)|p dt + β(b− a) ≤

∫ b

a
L(t, xi(t), ẋi(t)) = J(xi) ≤ 2 inf

x∈X
J(x) < +∞,

we have that {ẋi}i∈N is bounded in the reflexive space Lp (here we use p > 1), thus we may
assume up to passing a subsequence that there exists v̄ ∈ Lp such that xi ⇀ v̄ weakly in Lp. Since
xi(a) = xa, xi(b) = xb for all i ∈N and

xi(t) = xa +
∫ b

0
χ[0,t](s) ẋi(s) ds = xa + 〈χ[0,t], ẋi〉Lp′ ,Lp ,

by passing to the limit and using weak convergence, we have

lim
i→∞

xi(t) = xa + 〈χ[0,t], v〉Lp′ ,Lp = xa +
∫ t

0
v(s) ds,

thus xi(·) converges pointwise to

x̄(t) = xa +
∫ t

0
v(s) ds,

and we have that x̄(·) ∈ AC([a, b]) and satisfies the boundary conditions.

Given a ≤ s ≤ t ≤ b, we have by Hölder inequality

|xi(t)− xi(s)| ≤
∫ s

t
|ẋi(w)| dw ≤

∫ b

a
χ[s,t](w)|ẋi(w)| dw ≤ |t− s|1/p′‖ẋi‖Lp

≤
(

2 inf
x∈X

J(x)

)
|t− s|1/p′ .

We obtain that the sequence {xi}i∈N is equibounded and equicontinuous (since it is equi-Hölder
continuous), thus it converges uniformly to its pointwise limit x̄(·).
We prove now that x̄(·) is a solution. Given M > 0, define

SM := {t ∈ [a, b] : | ˙̄x(t)| ≤ M},
and introduce the convex conjugate of L w.r.t. v, i.e. the Hamiltonian function defined by

H(t, x, p) = sup
v∈Rn
〈p, v〉 − L(t, x, v).

Since L was continuous, recalling that the integrand is normal, and that we have weak
convergence, by Fenchel-Moreau we have also∫

SM

L(t, x̄(t), ˙̄x(t)) dt =
∫

SM

sup
p∈Rn

[〈p, ˙̄x(t)〉 − H(t, x(t), p)] dt

= sup
p∈L∞

∫
SM

[〈p(t), ˙̄x(t)〉 − H(t, x(t), p(t))] dt
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= sup
p∈L∞

lim
i→∞

∫
SM

[〈p(t), ˙̄xi(t)〉 dt−
∫

SM

lim
i→∞

H(t, xi(t), p(t)) dt

= sup
p∈L∞

lim
i→∞

∫
SM

[〈p(t), ˙̄xi(t)〉 dt− lim sup
i→∞

∫
SM

H(t, xi(t), p(t)) dt (Lemma di Fatou)

= sup
p∈L∞

lim inf
i→∞

∫
SM

[〈p(t), ˙̄xi(t)〉 − H(t, xi(t), p(t))] dt

≤ lim inf
i→∞

sup
p∈L∞

∫
SM

[〈p(t), ˙̄xi(t)〉 − H(t, xi(t), p(t))] dt

= lim inf
i→∞

∫
SM

L(t, xi(t), ˙̄xi(t))] dt

= lim inf
i→∞

J(xi)−
∫
[a,b]\SM

L(t, xi(t), ˙̄xi(t)) dt

≤ lim inf J(xi)− C meas([a, b] \ SM)

recalling that L(t, x, v) ≥ C. By letting M→ +∞, we have∫ b

a
L(t, x̄(t), ˙̄x(t)) dt ≤ lim inf J(xi),

which concludes the proof. �

THEOREM 4.26 (Clarke - Vinter, 1985). Consider the basic problem of C.o.V. with X = AC([a, b]), L
continuous, v 7→ L(t, x, v) convex and such that there exist α > 0, β ∈ R, p > 1 with
L(t, x, v) ≥ α|v|p + β. If L does not depend on t, then every solution is Lipschitz continuous (and so the
Lavrent’ev phenomenon does not occurr).

PROOF. Omitted. �

REMARK 4.27. We point out the following particular case of Lagrange’s multiplier theorem
applied to constrained optimization problem. Suppose that we want to minimize∫ b

a
L(t, x(t), ẋ(t)) dt subject to the integral constraint

∫ b

a
f (t, x(t), ẋ(t)) dt = 0 Then if x̄(·) is a

solution, it is an extremal w.r.t. the new Lagrangian λ0L + λ f where (λ0, λ) 6= (0, 0) and
λ0 ∈ {0, 1}.

EXAMPLE 4.28 (Dido’s problem). The legend say that Dido was the first-born daugther of Belus,
king of Tyre, and married Acerbas (called also Sychaeus), who was a priest of Heracles, the
wealthier of all the Phoenicians. Dido’s brother, Pygmalion, blinded by greed, caught by
surprise Sychaeus in the temple, during a sacrifice, and murdered him in front of the altar. For
much time he kept hidden his murder, letting his sister to hope for the return of her husband.
But Sychaeus’ ghost, dead without an honorable burial, came in a Dido’s dream showing her the
altar where was murdered, and advicing her to flee away keeping with her the treasure that he
had hidden in a secret place. Dido left Tyre with many followers and start a long journey,
passing also by Cyprus and Malta.

The goddess Juno had promised them a new land where to establish a new city. Arrived on
Lybic coasts, Dido obtained from Berber king Iarbas the permit to settle down, occupying as
much land “as could be encompassed by an oxhide”; indeed the ancient name of Chartage was
“Byrsa”, that in greek means “oxhide” and in phoenician “fortified place”.

Dido chose a peninsula, cut the oxhide in many fine strips, and in this way was able to
encompass a large portion of land that will be the first settlement of the powerful town of
Carthage. She encompassed an area of about 22 stadion (a stadion is about 185, 27 m2).

Dido’s problem (or isoperimetric problem) ask the shape that Dido had to choose in order to
encompass the largest area possible, i.e., among all curves of fixed length with the extremals on a
line, which is the one encompassing the largest area?
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Dido’s problem can be reformulated as problem of C.o.V. as follows: minimize

J(x) = −A(x) := −
∫ b

a
x(t),

where x(a) = x(b) = 0, x(t) > 0 with the constraint∫ b

a

√
1 + ẋ(t) dt = ` > b− a.

We consider the extremals of the Lagrangian

L(t, x, v) := −λ0x + λ
√

1 + v2.

If ` > b− a then λ0 6= 0, thus we can choose λ0 = 1. Euler’s equation gives

d
dt

[
λ

ẋ√
1 + ẋ2

]
= −1,

thus
λẋ√

1 + ẋ2
= −t + C.

Squaring, we have

ẋ =
c− t√

λ2 − (c− t)2
,

so x(t) =
√

λ2 − (c− t)2 + K and finally

(x− K)2 + (t− c)2 = λ2.

This implies that the solution is the half circle joining x(a) a x(b).

So among all the curves of the same length, the one encompassing the largest area is the circle.

THEOREM 4.29 (Karush-Kuhn-Tucker). Let f : Rn → R, gi : Rn → R, hj : Rn → R be C1

functions, i = 1, . . . , m, j = 1, . . . , l. Let x̄ be a local minimum for f constrained to

C := {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, per ogni i = 1, . . . , m, j = 1, . . . , l}.
Suppose that one of these condition holds (constraint qualification):

(1) f convex, gi convex, hi affine (Slater’s condition);
(2) for every subset of constraints, the rank of the matrix built by the active inequality constraints

and equality constraints has constant rank.
Define L : Rn ×Rm+l → R as

L(x, λ) = f (x) +
m

∑
i=1

λigi(x) +
l

∑
j=1

λjhj(x),

then there exists λ̄ ∈ Rm+l such that:
(1) ∇L(x̄, λ̄) = 0 stationarity;
(2) x̄ ∈ C admissibility;
(3) λ̄i ≥ 0, i = 1, . . . , m;
(4) λ̄igi(x̄) = 0, i = 1, . . . , m.

PROOF. Omitted. �

THEOREM 4.30 (Fritz John). Let X be a Banach space, f : X → R, gi : X → R, hj : X → R be C1

functions, i = 1, . . . , m, j = 1, . . . , l. Let x̄ be a local minimum for f constrained to

C := {x ∈ X : gi(x) ≤ 0, hj(x) = 0, per ogni i = 1, . . . , m, j = 1, . . . , l}.

Then there exist λ0 ∈ {0, 1}, λ̄ ∈ Rm+l con (λ0, λ̄) 6= 0 such that if we define

L(x, λ) = λ0 f (x) +
m

∑
i=1

λigi(x) +
l

∑
j=1

λjhj(x),

it holds
(1) ∇L(x̄, λ̄) = 0 stationarity;
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(2) x̄ ∈ C admissibility;
(3) λ̄i ≥ 0, i = 1, . . . , m;
(4) λ̄igi(x̄) = 0, i = 1, . . . , m.

PROOF. Omitted. �

Summary of Lecture 4

• If we ask for sufficiently smoothness, we can move from first-order necessary con-
dition to higher order necessary condition (Legendre condition), however try to
strenghten this condition to a sufficient condition in general fails due to the possi-
ble presence of conjugate points.
• Roughly speaking, conjugate points are points where the minimizers solution to EL

equation loose their optimality as minimizers (e.g. antipodal points on a sphere for
the geodesic distance). Conjugate points in physical systems have a strong physical
meaning.
• If it is possible to exclude the presence of conjugate points, then Jacobi sufficient

condition applies.
• In this lecture we meet also three classical problem in Calculus of Variation, nemely:

Soap bubble problem (minimal revolution surface), Brachistocrone problem, Dido’s
problem (isoperimetric problem).
• They can be solved explicitely by using Euler-Lagrange equations or Erdmann’s

conditions.
• However in some cases, the restriction to work in spaces of smooth curves prevents

to detect the true physical minimizer.
• Indeed, existence of minimizers heavly relies on the space of curves we are inter-

ested in. The usual way to face the problem is to prove existence in the broad space
of AC curves by mean of the Tonelli-Weierstrass theorem, and then prove some
regularity property of the minimizers.
• Unfortunately, it may happen that the infimum on AC curves is stricly less than

infimum on Lipschitz or smoother curves. This is called Lavrentiev’ phenomenon.
• Some convexity or growth condition could help to improve the regularity of the

minimizers, also with the help of the necessary conditions.



CHAPTER 3

Third part

1. Lecture of 3 december 2018: Generalized gradients (3h)

REMARK 1.1. Up to now we considered cases where L is assumed to be smooth. But the
situation dramatically change if the differentiability of L is dropped. A basic example of this
situation can be given by adding to the problem a constraint such as ẋ(t) ∈ V for a.e. t ∈ [a, b],
where V is given. In this case we can define a new Lagrangian L̃(t, x, v) = L(t, x, v) + IV(v),
which does not fulfills the smoothness assumptions required up to now. This motivates the need
for other differential tools.

DEFINITION 1.2 (Bouligand tangent cone). Let X be a normed space, E ⊆ X be a set, x ∈ E. We
define the Bouligand tangent cone to E at x by setting

TF
E (x) :=

{
λw ∈ X : λ ≥ 0 and ∃{yn}n∈N ⊂ E, yn → x, w = lim

n→+∞

yn − x
‖yn − x‖

}
.

The set TF
E (x) is a cone, i.e., given λ > 0, w ∈ TF

E (x) we have λw ∈ TF
E (x). However it is not

necessarily convex. Another characterization can be given as follows: w ∈ TF
E (x) if and only if

lim inf
t→0

dE(x + tw)

t
= 0.

DEFINITION 1.3 (Polar cone). Given a (possibly nonconvex) cone C ⊂ X, the polar cone of C is

C◦ := {x∗ ∈ X′ : 〈x∗, x〉X′ ,X ≤ 0 for all x ∈ C}.
We have always that C◦ is w∗-closed and convex.

REMARK 1.4. If C is convex then [TF
C(x)]◦ = NC(x).

We recall here some differentiability properties of convex functions.

PROPOSITION 1.5. Let X be a real normed space, f : X → R be a convex function which is
G-differentiable at x0. Then ∂ f (x0) = { f ′G(x0)}. Conversely, if f is convex and continuous at x0 and
∂ f (x0) = {ϕ0}, then f is G-differentiable at x0 and f ′G(x0) = ϕ0.

PROOF. For all ξ ∈ ∂ f (x0), v ∈ X and h ∈ R we have

f (x0 + hv)− f (x0) ≥ h〈ξ, v〉.
Hence, by G-differentiability at x0 we can divide by h > 0 and take the limit

〈 f ′G(x0), v〉X′ ,X = lim
h→0+

f (x0 + hv)− f (x0)

h
≥ 〈ξ, v〉X′ ,X .

On the other hand, dividing by h < 0 and taking the limit

〈 f ′G(x0), v〉X′ ,X = lim
h→0−

f (x0 + hv)− f (x0)

h
≤ 〈ξ, v〉X′ ,X ,

and so 〈 f ′G(x0), v〉X′ ,X = 〈ξ, v〉X′ ,X . By the arbitrariness of v, we have f ′G(x0) = ξ.

We omit the proof of the second part. �

THEOREM 1.6 (Mazur’s differentiability theorem). Let X be a separable Banach space, D ⊆ X be a
nonempty open convex subset of X, and f : D → R be a convex continuous function. Then f is
G-differentiable on D0 ⊆ D, where D0 is dense in D and it is a countable union of open dense sets.

PROOF. Omitted. �

97
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PROPOSITION 1.7. Let X be a normed real space, K ⊆ X be a nonempty conves set, and f : K → R be a
G-differentiable function. The following are equivalent:

(1) f is convex;
(2) f (ξ) ≥ f (x) + f ′G(x)(ξ − x) for all ξ, x ∈ K;
(3) the G-differential f ′G : K → X′ is a monotone operator, i.e., for all u, v ∈ K we have

[ f ′G(u)− f ′G(v)](u− v) ≥ 0.

PROOF. Omitted. �

One of the most important aims of any extension of differentiability theory beyond the smooth,
or the convex case, is to adapt to the nonsmooth case the usual necessary condition for the
minimizers F′(x̄) = 0 in something like 0 ∈ ∂F(x̄). Moving from convex analysis, in the past 30
years a new field of Analysis, called Nonsmooth Analysis or Variational Analysis, has been
developed, in order to face optimization problems by mean of generalized differentiation tools.
In the case of nonsmooth and nonconvex problems, others generalized gradients have been
introduced, in many cases deeply related to the structure of the functional spaces in which the
problem is stated.

Curiosity: Alexander Davidovich Ioffe, one of the worldwide most important experts of
Nonsmooth Analysis, during a conference in Rome in 2009 said that up to his knowledge there
were about 60 non-equivalent definitions of “generalized gradients”. We will not dare to aim at
it, and modestly will give an insight only on the most application-oriented used definitions. The
recent treatise by Boris Mordukhovich, “Variational Analysis”, 2006, Springer-Verlag, in two
handy volumes, of 595 and 627 pages, respectively, is an attempt of systematic exposition of the
topic (references amounts to 1379 items between articles, books and various publications).

Following Ioffe’s approach, we start listing some “desiderable” properies that a “reasonable”
subdifferential ∂ should enjoy. For simplicity we restrict ourselves to Banach spaces.

DEFINITION 1.8 (Subdifferential axioms). Let X, Y be Banach spaces, f , g : X →]−∞,+∞],
h : Y →]−∞,+∞] be functions. Then ∂ must satisfy:

(S0) substantiality: ∂ f (x) = ∅ if x /∈ dom f .
(S1) localizability: ∂ f (x) = ∂g(x) if f = g in a neighborhood of x.

(S3a) contiguity I: if f is convex, then

∂ f (x) = {x∗ ∈ X′ : f (x + h)− f (x) ≥ 〈x∗, h〉 for every h ∈ X}.

(S3b) contiguity II: if f is C1,1 in a neighborhood of x then ∂ f (x) = { f ′(x)}.
(S4) optimality: if x is a minimum for f , then 0 ∈ ∂ f (x).

(S5a) calculability I: if g(x) = λh(Ax + b) + 〈`, x〉+ α, where λ > 0, A : X → Y is linear and
surjective, b ∈ Y, ` ∈ X′, α ∈ R, then ∂g(x) = λA∗∂h(Ax + b) + `.

(S5b) calculability II: if p : X×Y →]−∞,+∞] is a function such that p(x, y) = f (x) + h(y),
then ∂p(x, y) ⊆ ∂ f (x)× ∂h(y).

(S6) boundedness: if f is Lipschitz continuous in a neighborhood of x with Lipschitz constant
K, then ‖x∗‖X′ ≤ K for all x∗ ∈ ∂ f (x).

These axioms are shared by a broad class of subdifferential of common use, and by all the
subdifferential that we subject of our study. Finer classifications can be done, but they will be not
matter of this course. We will introduce some subdifferential commonly used, by startinf from
some possible more or less natural generalization of the subdifferential (or equivalentely of the
normal cone) in the senso of convex analysis, and we will restrict ourselves to the Hilbert space
case.

REMARK 1.9. Let X be an Hilbert space, C 6= ∅ a closed convex set. Given x ∈ X there exists a
unique y ∈ C such that ‖x− y‖ = dC(x) := min{‖x− z‖ : z ∈ C}. Such a y is the projection of x
on C and it will be denoted by πC(x). This geometrical concept can be expressed also as follows:
the ball centered at

x = πC(x) + dC(x)
x− πC(x)
‖x− πC(x)‖
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e di raggio rx = dC(x) intersects C in a unique point y = πC(x), i.e. B(x, dC(x)) ∩ C = {πC(x)}.
Given v ∈ X \ {0}, and r ≥ 0 such that rv/‖v‖ = x− πC(x), we know that

v
‖v‖ ∈ NC(πC(x))

and so, by cone property, v ∈ NC(πC(x)). We can also say that the ball centered at

y + dC

(
y + r

v
‖v‖

)
of radius r = dC

(
y + r

v
‖v‖

)
intersects C in the unique point y, i.e.

B
(

y + r
v
‖v‖ , r

)
∩ C = {y}.

This implies that the distance of the points z ∈ C from the center of the sphere is larger than r,

and equality holds only at y:
∥∥∥∥z−

(
y + r

v
‖v‖

)∥∥∥∥2
≥ r2 =

∥∥∥∥r
v
‖v‖

∥∥∥∥2
and so∥∥∥∥z− y− r

v
‖v‖

∥∥∥∥2
−
∥∥∥∥r

v
‖v‖

∥∥∥∥2
≥ 0, hence

0 ≤ 〈z− y, z− y− 2rv/‖v‖〉 = −2r
〈

v
‖v‖ , z− y

〉
+ ‖z− y‖2

that for r > 0 can be rewritten as

〈v, z− y〉 ≤ 1
2r
‖v‖ · ‖z− y‖2

for all z ∈ C. We set σy,v = 1/(2r). In the convex case, this construction holds for all

x = r
v
‖v‖ + y, so it holds for every r > 0, and so passing to the limit for r → +∞ we recover the

formula
〈v, z− y〉 ≤ 0

for every z ∈ C, v ∈ NC(y). In the nonconvex case, the above relation may no longer hold true
for all r > 0.

DEFINITION 1.10 (Proximal normal cone). Let X be an Hilbert space, K be a nonempty closed
set. Given y ∈ K we say that v is a proximal normal to K at y if there exists σy,v ≥ 0 such that

〈v, z− y〉 ≤ σy,v‖v‖ · ‖z− y‖2

for all z ∈ C. The set of all proximal normal to K at y will be called the proximal normal cone to
K at y and will be denoted by NP

K (y). It is a convex cone in X′ = X. We notice that the points
y + rv such that r < 1/(2σy,v) have unique projection on K and such projection is exactly y.

Exactly as in the convex case, we define:

DEFINITION 1.11 (Proximal subdifferential). Let X be an Hilbert space, f : X →]−∞,+∞] be a
l.s.c. function. We say that ξx ∈ X′ = X is a proximal subdifferential of f at x and we will write
ξx ∈ ∂P f (x) if (ξx,−1) ∈ NP

epi f (x, f (x)), i.e. if there exist δ ≥ 0 and σ ≥ 0 such that

β− f (x) ≥ 〈ξx, y− x〉 − σ(‖y− x‖2 + ‖β− f (x)‖2),

for all y ∈ dom f ∩ B(x, δ), β ≥ f (y). In particular

f (y)− f (x) ≥ 〈ξx, y− x〉 − σ(‖y− x‖2 + ‖ f (y)− f (x)‖2),

for all y ∈ dom f ∩ B(x, δ).

PROPOSITION 1.12 (Localization of proximal subdifferential). Let X be an Hilbert space,
f : X →]−∞,+∞] is a l.s.c. function. We have that ξx ∈ ∂P f (x) if there exist δ ≥ 0 and σ ≥ 0 such
that

f (y)− f (x) ≥ 〈ξx, y− x〉 − σ‖y− x‖2,
for all y ∈ dom f ∩ B(x, δ).

PROOF. Omitted, see [7]. �

THEOREM 1.13 (Clarke’s Density Thereom). Let X be an Hilbert space, f : X →]−∞,+∞] be a
l.s.c. function. There exists a set D which is dense in dom f such that ∂ f (x) 6= ∅ for all x ∈ D.
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PROOF. Omitted, see [7]. �

THEOREM 1.14 (Fuzzy sum rule). Let X be an Hilbert space, f1, f2 : X →]−∞,+∞] be two l.s.c.
function, x ∈ dom f1 ∩ dom f2, ζ ∈ ∂( f + g)(x). Always we have ∂ f (x) + ∂g(x) ⊆ ∂( f + g)(x). If
we suppose that at least one of these conditions holds

(1) f1, f2 are weakly l.s.c.;
(2) f1 is Lipschitz continuous in a neighborhood of x,

then for every ε > 0 there exist δ > 0, x1, x2 ∈ B(x, δ) with | f (xi)− f (x)| < ε, i = 1, 2 satisfying

ζ ∈ ∂P f1(x1) + ∂P f2(x2) + εB(0, 1).

PROOF. Omitted, see [7]. �

REMARK 1.15. Under suitable assumptions it is also possible to prove a fuzzy chain rule, see [7].

REMARK 1.16. The proximal normal cone is an intresting and significative geometrical object,
however:

(1) it is strictly related to the Hilbertian scalar product (inducing a norm which is smooth
in X \ {0});

(2) without extra assuptions, the normal cone at a point is convex, but it may be not closed.
Moreover limits of normals may fail to be normals (i.e. the proximal normal cone has
not closed graph);

(3) f (x) = −|x|3/2 is a function in f ∈ C1(R) \ C1,1(R), however ∂P f (0) = ∅;
(4) fuzzy sum and chain rules are not intuitive and difficult to use: in general we are not

allowed to pass to the limit as ε→ 0+ since ∂ f1(x) and ∂ f2(x) may be even empty!

To circumvent (some of) these difficulties, the following definition is quite natural.

DEFINITION 1.17 (Limiting normal cone). Let X be an Hilbert space, C be closed and nonempty,
x ∈ C. The limiting (or Mordukhovich) normal cone to C at x is defined by

NL
C(x) = {ζ : exist xi → x, ζi ⇀ ζ, with ζi ∈ NP

C (xi)}.
In the same way as before, it is possible to define the limiting subgradient: we say that
ξx ∈ X′ = X is a limiting subdifferential to f : X → R∪ {+∞} at x ∈ dom f and we will write
ξx ∈ ∂L f (x) if (ξx,−1) ∈ NL

epi f (x, f (x)). Calculus rules have been developed for this
subdifferential, among which we recall the following: given a l.s.c. function f and a Lipschitz
function g it holds ∂( f + g)(x) ⊆ ∂ f (x) + ∂g(x) (exact sum rule). Of course we have
NP

C (x) ⊂ NL
C(x). When C is convex all these cones reduces to the normal cone in the sense of

convex analysis.

Nowadays this cone is the most used in particular in a special class of Banach spaces called
(Asplund space), whose tractation is outside the matters of this course. To have a subdifferential
working in a general Banach space it is necessary to introduce another object. The definition of
this object is quite complicated, thus we will give a simplified definition in the Hilbert space case.

DEFINITION 1.18 (Clarke’s normal cone). Let X be an Hilbert space, C be closed and nonempty,
x ∈ C. We define the Clarke’s normal cone NC

C (x) = coNL
C(x). Given f : X → R∪ {+∞} and

x ∈ dom f , we say that ξx ∈ X′ = X is a Clarke’s generalized gradient and write ξx ∈ ∂ f (x) if
(ξx,−1) ∈ NC

epi f (x, f (x)).

THEOREM 1.19 (Clarke’s generalized gradient in finite dimension). Let X = Rn,
f : Rn →]−∞,+∞] be a locally Lipschitz continuous function in a neighborhood of x ∈ Rn. Then

∂ f (x) = co{v ∈ Rn : yi ∈ dom(∇ f (x)), lim
i→+∞

∇ f (yi) = v}.

PROOF. Omitted, see [7] �

The advantages of Clarke’s cone are its closedness and convexity, moreover it is possible to give
simple and intuitive calculus rules. Moreover, for Lipschitz continuous functions it captures all
the relevant information. The main drawback is that it can be very large, becoming useless for
practical purpouses.
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THEOREM 1.20 (Nonsmooth Euler’s equations). Let ` : Rn → R be a locally Lipschitz continuous
function, L : Rn ×Rn → R be a globally Lipschitz continuous function. Consider the problem of
minimizing the functional

`(x(b)) +
∫ b

a
L(x(t), ẋ(t)) dt,

on functions x ∈ AC([a, b]) with x(a) = xa. Then if x(·) solves the problem, there exists p ∈ AC([a, b])
satisfying for a.e t ∈]a, b[ ( ṗ(t), p(t)) ∈ ∂CL(x(t), ẋ(t)) and −p(b) ∈ ∂L`(x(b)).

PROOF. Omitted, see [6] or [7]. �

Summary of Lecture 1

• Various kinds of generalized differentiation have been proposed in order to deal
with nonconvex and nonsmooth minimization problems.
• Although many possible generalization of subdifferentability are possible, there are

some basic properties which every reasonable subdifferential must enjoy in order to
be considered useful for the optimization purpouses.
• A (possible) way to construct new subdifferentials or normal cones from old ones

is to proceed by successive operations of closure and convexification, i.e., taking
all cluster points of sequences in the graph of the subdifferential computed in the
neighboring points of the point of interests, and then considering its convex hull.
• The starting point, leading to the construction of the proximal normal cone, is to

consider a concept of local projection in a suitable neighborhood of a closed set
(compare with the convex case, where the projection is globally well defined).

2. Lecture of 7 december 2018: Introduction to Control Theory and Differential Inclusions
(3h)

EXAMPLE 2.1. Assume to have a trolley cart of mass m = 1 which is free to slide along a straight
line truck without friction. Suppose that at the time t0 = 0 the trolley is at the position x0 with
speed v0.

If no external forces are acting on the system, the equation of the motion is ẍ = 0, and so
x(t) = x0 + v0t. Suppose now that there is an external agent (controller), who is able to pull or
push the cart with a time-depending force u(t) ∈ [−1, 1]. The motion equation becomes ẍ = u,
which can be reduced to a first-order system of differential equations by setting ẋ1 = x2, ẋ2 = u.
If the force u changes, the time law xu(t) (and possibly also the trajectory) of the trolley will
change. We may consider the problem to minimize a certain functional of the trajectory
J = J(xu(·)) by acting on the control u.

EXAMPLE 2.2. Consider a fish population in a lake. A model describing the variation in time of
the number of fishes in the lake is given by logistic equation ẋ = x(α− x), where α is the
maximum number of fishes that can be supported by lake resources

Suppose to manage a fishery, and be intentioned to send a certain number of fishers (in number
u) to catch some fishes. The evolution of the systemcan be described to ẋ = x(α− x)− kxu,
where k ≥ 0 is a parameter measuring the efficiency of fishers. We can have the goal to maximize
the amount of fish catched in a fixed period (in this case, maybe, to catch everything
immediately is not an optimal strategy) or similar goals.

EXAMPLE 2.3. Assume to have to park a car in a free parking space on the side of a road. We can
act on steer and on the spped, however the steer angle is bounded. Common experience tells us
that we can solve the problem by multiple manouvers. But can we mathematically prove that it is
always possible to park the car if the size of the park space is enough?

Control theory related problems arise in many fields of human activities: engineering,
economics, logistics and transportation, biology and even social sciences. A control system is a
system subjected to an external influence possibly varying in time. The input variables are
elaborated to produce the output variables, and the external agent acts in the elaboration
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influencing output in order to achieve some goals (for example, maximization or minimization
of functionals depending on output variables).

We will treat the case in which the system is ruled by an ordinary differential equation
ẋ(t) = f (t, x(t), u(t)) where u(t) ∈ U is the variable controlled by the external agent. The aim
will be to find an optimal strategy (or optimal control) u∗ minimizing a certain cost related to the
trajectory of the ODE starting from a suitable initial condition.

In the real-world systems, frequently arise situation in which the measurements are affected by
errors (in time or on the position), thus a natural question is how much the optimal strategy is
robust, i.e. sensitive to errors.

We will recall some basic results from ODE theory.

THEOREM 2.4 (Parametric contraction lemma). Let X, T be complete metric spaces, 0 < α < 1,
φ : T × X → X be continuous and such that

dX(φ(t, x1), φ(t, x2)) ≤ αdX(x1, x2),

for all x1, x2 ∈ X, t ∈ T. Then for every t there exists a unique x = x(t) such that x(t) = φ(t, x(t)). The
map t 7→ x(t) is continuous, and

dX(y, x(t)) ≤ 1
1− α

dX(y, φ(t, y)).

PROOF. Fix t ∈ T, and let x0 ∈ X. Set x1 = φ(t, x0) and xn = φ(t, xn−1) for n ≥ 1. We prove
that the sequence {xn}n∈N is a Cauchy sequence in the complete space X: given m, n ∈N, m ≥ n

dX(xn+1, xn) = dX(φ(t, xn), φ(t, xn−1)) ≤ αdX(xn, xn−1) ≤ αndX(x1, x0)

dX(xm, xn) ≤
m−1

∑
j=n

dX(xj+1, xj) ≤
m−1

∑
j=n

αjdX(x1, x0) ≤ dX(x1, x0)
∞

∑
j=n

αj = dX(x1, x0)
αn

1− α

thus for n, m→ ∞ we have dX(xm, xn)→ 0. So {xn}n∈N converges in X to an element denoted
by x = x(t). Recalling the continuity of φ, we have

φ(t, x(t)) = φ(t, lim
n→∞

xn) = lim
n→∞

φ(t, xn) = lim
n→∞

xn+1 = x(t).

Uniqueness: given x1(t), x2(t) satisfying xi(t) = φ(t, xi(t)), i = 1, 2 we have

dX(x1(t), x2(t)) = dX(φ(t, x1(t)), φ(t, x2(t))) ≤ αdX(x1(t), x2(t)),

and so dX(x1(t), x2(t)) = 0 because α > 0.

Choose now y = x0 and construct the sequence x1 = φ(t, x0) and xn = φ(t, xn−1) for n ≥ 1. Then

dX(xn, y) ≤
n−1

∑
j=0

αjdX(x1, x) ≤
∞

∑
j=0

αjdX(y, φ(t, y))

Since xn → x(t) as n→ +∞, by passing to the limit in the above equation we obtain the thesis.

We prove now that t 7→ x(t) is continuous. Let tn → t. The above relation becomes

dX(y, x(λ)) ≤ 1
1− α

dX(y, φ(λ, y)).

Choose y = x(t) and λ = tn. We have

dX(x(t), x(tn)) ≤
1

1− α
dX(x(t), φ(tn, x(t))).

Since tn → t and φ is continuous, we have φ(tn, x(t))→ φ(t, x(t)) = x(t), and so for n→ ∞ the
right hand side tends to 0, thus x(tn)→ x(t). �

THEOREM 2.5 (Brouwer’s fixed point theorem). Let B ⊆ Rn be homeomorphic to the unit ball in Rn,
and f : B→ B continuous. Then there exists x̄ ∈ B such that f (x̄) = x̄.
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LEMMA 2.6 (Gronwall). Let I = [a, b[ be an interval of R with a < b ≤ +∞. Suppose that there are
given u ∈ C0(I; R), α, β ∈ L1(I; R), β(t) ≥ 0 for a.e. t ∈ I, satisfying

u(t) ≤ α(t) +
∫ t

a
β(s)u(s) ds, ∀t ∈ I.

Then

u(t) ≤ α(t) +
∫ t

a
α(s)β(s) exp

(∫ t

s
β(r) dr

)
ds, t ∈ I.

PROOF. Define the following absolutely continuous function

v(s) = exp
(
−
∫ s

a
β(r)dr

) ∫ s

a
β(r)u(r) dr, s ∈ I.

Deriving, and recalling the sign of β, we have for a.e. s ∈ I

v′(s) =
(

u(s)−
∫ s

a
β(r)u(r) dr

)
β(s) exp

(
−
∫ s

a
β(r) dr

)
≤ α(s)β(s) exp

(
−
∫ s

a
β(r) dr

)
.

Since v(a) = 0, integrating we obtain

v(t) ≤
∫ t

a
α(s)β(s) exp

(
−
∫ s

a
β(r) dr

)
ds.

We notice that ∫ t

a
β(s)u(s) ds = exp

(∫ t

a
β(r) dr

)
v(t)

≤
∫ t

a
α(s)β(s) exp


∫ t

a
β(r) dr−

∫ s

a
β(r) dr︸ ︷︷ ︸

=
∫ t

s β(r) dr

ds,

and so the thesis follows recalling the inequality given in the assumptions. �

THEOREM 2.7 (Existence of solutions). Let Ω be an open subset of R×Rn, (t0, x0) ∈ Ω,
g : Ω→ Rn a function such that

(E1) for all x the map t→ g(t, x) defined on Ωx := {t ∈ R : (t, x) ∈ Ω} is measurable;
(E2) for a.e. t the map x → g(t, x) defined on Ωt := {x ∈ Rn : (t, x) ∈ Ω} is continuous;
(E3) for every compact set K ⊂ Ω there exist CK, LK such that ‖g(t, x)‖ ≤ CK,

‖g(t, x1)− g(t, x2)‖ ≤ LK‖x1 − x2‖ for all (t, x), (t, x1), (t, x2) ∈ K.

Then there exists ε > 0 such that the Cauchy problem ẋ = g(t, x), x(t0) = x0 admits a solution x(·)
defined for t ∈ [t0, t0 + ε[.

If moreover Ω = R×Rn and there exist constants C, L such that ‖g(t, x)‖ ≤ C,
‖g(t, x1)− g(t, x2)‖ ≤ L‖x− y‖ for all (t, x), (t, x1), (t, x2) ∈ R×Rn, then the above Cauchy
problems admits a unique solution x(·) defined on [t0,+∞[. Moreover, the solution depends countinously
on the initial data x0.

PROOF. Omitted. �

COROLLARY 2.8 (Uniqueness). Same assumptions of the previous result. If x1(·) and x2(·) are
solutions of the Cauchy problem ẋ = g(t, x), x(t0) = x0 defined on [t0, t1[ and [t0, t2[ respectively, then
x1(t) = x2(t) for all t ∈ [t0, min{t1, t2}].

PROOF. Omitted. �
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3. Lecture of 10 december 2018: Differential inclusions (3h)

DEFINITION 3.1 (Hausdorff distance). Let X be a Banach space, A, A′ ⊆ X be compact,
nonempty sets. The Hausdorff distance between A and A′ is given by

dH(A, A′) = max{dist(x, A′), dist(x′, A) : x ∈ A, x′ ∈ A′}
= inf

ρ>0
{ρ : A ⊂ B(A′, ρ) e A′ ⊂ B(A, ρ)},

where B(K, r) := {y ∈ X : dist(y, K) ≤ r}. The Hausdorff distance is a metric on the sets of
nonempty compact subsets of X.

DEFINITION 3.2 (Set-valued maps). Let X, Y be Banach spaces. A multifunction or set-valued
function F from X to Y is a map associating to every x ∈ X a set F(x) ⊂ Y, i.e. a map F : X → 2Y.
We will write also F : X ⇒ Y. The domain of F is the set dom F := {x ∈ X : F(x) 6= ∅}, while the
graph of F is the set

graph F := {(x, y) : x ∈ dom F, y ∈ F(x)}.
We say that F

(1) is closed valued if F(x) is closed for every x;
(2) is compact valued if F(x) is compact and nonempty for every x;
(3) is bounded if there exists a bounded set B ⊆ Y such that F(x) ⊆ B for all x ∈ X;
(4) has closed graph if graph F is closed in X×Y;
(5) is upper semicontinuous (u.s.c) at x0 ∈ X if for every open set A containing F(x0) there

exists a neighborhood Ω of x0 such that F(x) ⊆ A for all x ∈ Ω;
(6) is lower semicontinuous (l.s.c) at x0 ∈ X if for all y0 ∈ F(x0) and for every neighborhood

M of y0 there exists a neighborhood Ω of x0 such that F(x) ∩M 6= ∅ for all x ∈ Ω;
(7) is continuous if it is both u.s.c. and l.s.c. If F is compact valued, this is equivalent to say

that
lim
y→x

dH(F(y), F(x)) = 0,

i.e., F is continuous w.r.t. the topology induced by Hausdorff metric;
(8) is Lipschitz continuous if there exists K > 0 such that

F(x1) ⊆ F(x2) + K‖x1 − x2‖BX(0, 1),

for all x1, x2 ∈ X.

DEFINITION 3.3 (Measurability of set-valued maps). Let F : Rm ⇒ Rn be a set-valued map. We
say that F is measurable if for every C ⊆ Rn closed, the set

{x ∈ Rm : F(x) ∩ C 6= ∅}

is measurable.

PROPOSITION 3.4 (U.s.c. and closedness of the graph).
• The graph of an u.s.c. set-valued map F : X ⇒ Y with closed domain and closed images is

closed. The converse is true if there exists a compact S ⊆ Y such that F(x) ⊆ S for all x ∈ X.
• If X is locally compact, and the restriction F|K of F to K has compact graph for every K ⊆ X,

then F is u.s.c.

PROOF. Omitted. �

DEFINITION 3.5 (Selections). Let F : Rm ⇒ Rn be a set-valued map. A selection of F is a map
f : Rm → Rn such that f (x) ∈ F(x) for all x ∈ X.

LEMMA 3.6. Let U be a compact subset of Rm and f : Rn ×U → Rn be a continuous function. Then
F : Rn ⇒ Rn defined by F(x) := { f (x, u) : u ∈ U} is continuous.

PROOF. Let x ∈ Rn and ε > 0 be fixed. For all u ∈ U we notice that the map

(y, v) 7→ f (y, v)− f (x, u)
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is continuous and vanishes when (y, v) = (x, u). Thus there exists δu > 0 such that

| f (y, v)− f (x, u)| < ε

2
for every |y− x| < δu. By continuity, there exists ρu > 0 such that | f (y, v)− f (x, u)| < ε for
|y− x| < δu, |v− u| < ρu. By compactness, U can be covered by finitely many balls B(ui, ρui ),
i = 1, . . . , N. Set δ = min{δu1 , . . . , δuN} > 0, we have dH(F(y), F(x)) ≤ ε for all |y− x| < δ.
Hence F is continuous at x and, by arbitrariness of x, the proof is concluded. �

THEOREM 3.7 (Carathéodory). Let A ⊆ Rn be closed. Then for every x ∈ co A there exist

λi = λi(x) ∈ [0, 1], and xi = xi(x) ∈ A, i = 1, ..., n + 1 such that
n+1

∑
i=1

λixi = x.

PROOF. Omitted. �

THEOREM 3.8 (Ekeland’s Variational Principle). Let X be a complete metric space,
ψ : X →]−∞,+∞] be a l.s.c. function not identially equal to +∞ and bounded from below (i.e. there
exists m ∈ R such that ψ(x) ≥ m for every x ∈ X). Then for all ε > 0, x0 ∈ X there exists x∞ ∈ X such
that

(1) ψ(x∞) + εd(x0, x∞) ≤ ψ(x0);

(2) ψ(x∞) < ψ(x) + εd(x, x∞) for all x ∈ X \ {x∞}.

PROOF. For every x, y ∈ X we define the partial order

y �X x if and only if ψ(y) + εd(x, y) ≤ ψ(x),

noticing that for all x, y,∈ X we have x �X x, if x �X y and y �X x then y = x and by triangle
inequality if x �X y and y �X z then x �X z. Notice that ψ : X →]−∞,+∞] is order preserving,
i.e., if x1 �X x2 we have ψ(x1) ≤ ψ(x2).

To prove the theorem, given x0 ∈ X we must find x∞ ∈ X such that x∞ �X x0 and x∞ is minimal
w.r.t. �X , i.e. if y 6= x∞ then y �X x, i.e.,

ψ(y) > ψ(x∞)− εd(x∞, y).

Set
S(x) := {y ∈ X : ψ(y) ≤ ψ(x)− εd(x, y)} = {y ∈ X : y �X x} =:]−∞, x],

where in the right hand side we use the order notation.
Since x ∈ S(x) for every x ∈ X, such sets are nonempty, moreover they are also closed since S(x)
is the ψ(x)-sublevel1 of the l.s.c. function y 7→ ψ(y) + εd(x, y).

The theorem is proved if given x0 ∈ X, we can find x∞ ∈ S(x0) such that S(x∞) = {x∞}, because
this means that if y 6= x∞ we cannot2 have y �X x∞, and so x∞ is minimal.

Let x0 be arbitrary, we construct a sequence by recurrence. Given xn, we define xn+1 as follows:
We choose xn+1 ∈ S(xn) such that

ψ(xn+1) ≤ inf
x∈S(xn)

ψ(x) +
1
2n .

The existence of such an element comes from the definition of inf.

For any y ∈ S(xn+1) (i.e., y �X xn+1), since xn+1 ∈ S(xn) (i.e., xn+1 �X xn), we have y �X xn and
so y ∈ S(xn), thus S(xn) ⊇ S(xn+1) for every n ∈N.

Given y ∈ S(xn), and recalling that y, xn ∈ S(xn−1), we have

ψ(y) + εd(y, xn) ≤︸︷︷︸
y�X xn

ψ(xn) ≤︸︷︷︸
by def. of xn

inf
x∈S(xn−1)

ψ(x) +
1

2n−1 ≤︸︷︷︸
y∈S(xn−1)

ψ(y) +
1

2n−1 ,

1Indeed given a sequence {yn}n∈N ⊆ S(x) converging to y ∈ X then we can pass to the lim inf in ψ(yn) ≤ ψ(x)−
εd(x, yn), and, recalling that ψ is l.s.c., we have ψ(y) ≤ lim infn→∞ ψ(yn) ≤ ψ(x)− εd(x, y), and so y ∈ S(x).

2Be careful: y /∈ S(x∞) means y �X x, but this does not mean y �X x, since the order relation is not total.
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hence for every y ∈ S(xn) we have d(y, xn) ≤
1

ε2n−1 , thus the diameter of S(xn) tends to zero.

This implies that {xn}n∈N is a Cauchy sequence, since xn, xm ∈ S(xn) for all m ≥ n, thus it

converges to an element x∞ ∈
∞⋂

n=1

S(xn), moreover if y ∈
∞⋂

n=1

S(xn) then by passing to the limit in

d(y, xn) ≤ 1/(ε2n+1) we have y = x∞, so S(x∞) ⊆ {x∞} =
∞⋂

n=1

S(xn), and since x∞ ∈ S(x∞)

equality holds. �

COROLLARY 3.9 (Localized form of Ekeland’s Variational Principle). Let X be a complete metric
space, ψ : X →]−∞,+∞] be a l.s.c. function not identially equal to +∞ and bounded from below. Then
for all ε, δ > 0 and x ∈ X satisfying ψ(x) ≤ inf

x∈X
ψ(x) + ε there exist x ∈ X and x∞ ∈ X such that

(1) ψ(x∞) ≤ ψ(x0) and d(x∞, x0) < δ;

(2) ψ(x∞) < ψ(x) +
ε

δ
d(x, x∞) for all x ∈ X \ {x∞}.

PROOF. Apply Ekeland’s Variational Principle with ε/δ instead of δ: from

ψ(x∞) +
ε

δ
d(x0, x∞) ≤ ψ(x0)

by the choice of x0 we deduce

ψ(x∞) +
ε

δ
d(x0, x∞) ≤ inf

x∈X
ψ(x) + ε ≤ ψ(x∞) + ε,

i.e. d(x0, x∞) ≤ δ. All the other conclusions are the same. �
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REMARK 3.10. Ekeland’s Variational Principle’s statement in R2 may be also expressed as
follows: given a point A of the graph of ψ and an angle 0 < α < π/2, let C be the cone of vertex
A, half-wideness α, axis parallel to y axis, and having A as point of maximum for the
y-coordinate. Then there exists A′ ∈ graph ψ ∩ C such that the graph of ψ, without the point A′,
is entirely contained in the complementar of the cone C ′ = C + A′ − A, i.e., the translated of C
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along the vector ~v = A′ − A. For a comparison with the statement of the theorem, in this case we
have tan α = 1/ε.

DEFINITION 3.11. Let Ω be an open subset of R×Rn, U be a compact subset of Rm,
f : Ω×Rm → Rn be continuous, The set of admissible controls is

U := {u : R→ U : u measurable}.

We say that an absolutely continuous function x : [a, b]→ Rn is an admissible trajectory for the
control system

ẋ = f (t, x, u), u(·) ∈ U ,

if {(t, x(t)) : t ∈ [a, b]} ⊆ Ω and there exists u(·) ∈ U such that ẋ(t) = f (t, x(t), u(t)) for a.e.
t ∈ [a, b].

To the control system we associate the differential inclusion ẋ ∈ F(t, x) where F : Ω ⇒ Rn is
defined by

F(t, x) := { f (t, x, v) : v ∈ U}.

We recall the following result.

THEOREM 3.12 (Lusin). Let h ∈ L1([a, b]). Then

(1) for every ε > 0 there exists a compact set K ⊆ [a, b] and g ∈ C0(K) such that h = g on K and
meas([a, b] \ K) < ε;

(2) there exists a sequence of pairwise disjoint compacts {Kh}h∈N such that g ∈ C0(Kh) for all
h ∈N, g = h on every Kh and

meas

(
[a, b] \

⋃
h∈N

Kh

)
= 0.

The link between admissible trajectories for the control system and trajectories of the differential
inclusions is clarified in the following result.

THEOREM 3.13 (Filippov’s Lemma on Implicit Functions). Let Ω be an open subset of R×Rn, U be
a compact subset of Rm, f : Ω×Rm → Rn be continuous. A curve x ∈ AC([a, b]; Rn) satisfies
ẋ(t) ∈ F(t, x(t)) for a.e. t ∈ [a, b], where F(t, x) := { f (t, x, v) : v ∈ U}, if and only if there exists
u(·) ∈ U such that ẋ(t) = f (t, x(t), u(t)) for a.e. t ∈ [a, b].

PROOF. Clearly, if there exists u(·) ∈ U such that ẋ(t) = f (t, x(t), u(t)) for a.e. t ∈ [a, b], then
ẋ(t) = F(t, x(t)) for a.e. t ∈ [a, b]. We prove the converse implication. Let w̄ ∈ U be fixed and
define the set-valued map

W(t) :=

{
{w ∈ U : ẋ(t) = f (t, x(t), w)}, if ẋ(t) ∈ F(t, x),
{w̄}, otherwise.

Notice that the sets W(t) are compact. Indeed, in the case ẋ /∈ F(t, x) this is trivial, otherwise
since W(t) = [ẋ(t)− f (t, x(t), ·)]−1(0) with f continuous, they are closed. Moreover, W(t) ⊆ U
so they are also bounded, thus compact. Define the following map ψ : L1([a, b]; Rm)→ R:

ψ(v) :=
∫ b

a
d(v(t), W(t)) dt.

We prove that this is a well-posed definition, i.e., t 7→ d(v(t), W(t)) is an element of
L1([a, b]; Rm). After having proved this, it will be enough to prove that there exists
v∞ ∈ L1([a, b]; Rm) with ψ(v∞) = 0. Indeed, in this case v∞(t) ∈W(t) for a.e. t ∈ [a, b], thus
proving the theorem.

Step 1: There exists a sequence of compact sets {Km}m∈N with Km ∩ Kj = ∅ and

meas

(
[a, b] \

⋃
m∈N

Km

)
= 0 such that ẋ|Km , v|Km ∈ C0(Km) for every m ∈N.
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Proof of Step 1: Since x(·) ∈ AC([a, b]), we have that ẋ and v belong to L1([a, b]). According to
Lusin’s Theorem, there exist {Ih}h∈N and {Jk}k∈N sequence of compact sets contained in [a, b]
such that ẋ ∈ C0(Ih), v ∈ C0(Jh) and

meas

(
[a, b] \

⋃
h∈N

Ih

)
= meas

(
[a, b] \

⋃
k∈N

Jk

)
= 0.

In particular, there exist N1, N2 ⊆ [a, b] with meas(N1) = meas(N2) = 0 such that

[a, b] = N1 ∪
⋃

h∈N

Ih = N2 ∪
⋃

k∈N

Jk.

By taking the intersection, we have

[a, b] =

(
N1 ∪

⋃
h∈N

Ih

)
∩
(

N2 ∪
⋃

k∈N

Jk

)

=

(
N1 ∩

⋃
k∈N

Jk

)
∪
(

N2 ∩
⋃

h∈N

Ih

)
∪ (N1 ∩ N2) ∪

( ⋃
h∈N

Ih ∩
⋃

k∈N

Jk

)
⊆ N1 ∪ N2 ∪

⋃
h,k∈N

Ih ∩ Jk

⊆ N1 ∪ N2 ∪
⋃

h,k∈N
Ih∩Jk 6=∅

Ih ∩ Jk.

For every m = (h, k) ∈N2 set Km = Ih ∩ Jk. If Km is nonempty, then it is compact and
ẋ|Km , v|Km ∈ C0(Km) for every m ∈N. After having expunged by the list all the indexes m for
which Km = ∅, Step 1 is proved. �

Step 2: There exists L > 0 such that d(v(t), W(t)) ≤ ‖v(t)‖+ L for every t ∈ Km, m ∈N.

Proof of Step 2: If t ∈ Km then v(t) is continuous. Since W(t) ⊆ U and U is compact, there exists
L > 0 such that

sup{‖w‖ : w ∈W(t)} ≤ sup{‖w‖ : w ∈ U} ≤ L,

and so

d(v(t), W(t)) = inf
w∈W(t)

‖v(t)− w‖ ≤ inf
w∈W(t)

‖v(t)− 0‖+ ‖0− w‖ = ‖v(t)‖+ inf
w∈W(t)

‖w‖ = ‖v(t)‖+ L.

This ends the proof of Step 2. �

Step 3: The map t 7→ d(v(t), W(t)) is measurable.

Proof of Step 3: To prove the measurability of t 7→ d(v(t), W(t)), it is enough to prove that its
restriction to every set Km is measurable. To this aim, we will prove that d(v(·), W(·)) is l.s.c. on
Km. Let t∞ ∈ Km and {tn}n∈N be a sequence in Km such that

lim inf
t→t∞
t∈Km

d(v(·), W(·)) = lim
n→∞

d(v(tn), W(tn)).

For every n, let wn ∈W(tn) be such that d(v(tn), W(tn)) = ‖v(tn)− wn‖. Such an element exists
since the map h(p) := ‖v(tn)− p‖ is continuous (notice that here v(tn) is fixed) and W(tn) is
compact. The sequence {wn}n∈N is contained in the compact set U, thus, up to possibly taking a
subsequence, we have wn → w∞. Moreover, for every n ∈N we have ẋ(tn) = f (tn, x(tn), wn).
Recalling that the map ẋ(·) is continuous in Km, by passing to the limit n→ ∞ we have
ẋ(t∞) = f (t∞, x(t∞), w∞), and so w∞ ∈W(t∞). But then

lim inf
t→t∞
t∈Km

d(v(t), W(t)) = lim
n→∞

d(v(tn), W(tn)) = ‖v(t∞)− w∞‖ ≥ d(v(t∞), W(t∞)),

which proves l.s.c. at t∞. �

Step 4: The map ψ : L1([a, b])→ R satisfies Ekeland’s Variational Principle’s assumptions.
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Proof of Step 4: Clearly ψ is bounded from below, moreover

ψ(v) =
∫ b

a
d(v(t), W(t)) dt ≤

∫ b

a
(‖v(t)‖+ L) dt ≤ ‖v‖L1 + L(b− a) < +∞.

We prove that ψ is l.s.c. Let {vn}n∈N an arbitrary sequence in L1 with vn → v. By Fatou’s
Lemma, since d(vn(·), W(·)) is measurable and nonnegative, we have∫ b

a
lim inf

n→∞
d(vn(t), W(t)) dt ≤ lim inf

n→∞

∫ b

a
d(vn(t), W(t)) dt = lim inf

n→∞
ψ(vn).

Fix ε > 0. For a.e. t ∈ [a, b] we have vn(t)→ v(t) and there exists wn ∈W(t) such that
d(vn(t), W(t)) > ‖vn(t)− wn‖ − ε. By compactness, up to possibly taking a subsequence,
wn → w∞ ∈W(t), and so

lim inf
n→∞

d(vn(t), W(t)) ≥ ‖v(t)− w∞‖ − ε ≥ d(v(t), W(t))− ε.

By the arbitrariness of ε > 0 we have lim infn→∞ d(vn(t), W(t)) ≥ d(v(t), W(t)), and so

ψ(v) =
∫ b

a
d(v(t), W(t)) dt ≤

∫ b

a
lim inf

n→∞
d(vn(t), W(t)) dt ≤ lim inf

n→∞
ψ(vn).

Since this holds true for every subsequence, we have

ψ(v) ≤ lim inf
vn→v

ψ(vn),

and so ψ is l.s.c. �

Step 5: There exists v∞ ∈ L1([a, b]; Rm) with ψ(v∞) = 0, and this concludes the proof of the
theorem.

According to Ekeland’s Variational Principle, there exists v∞ ∈ L1 such that
ψ(v∞) < ψ(v) + 1

2‖v− v∞‖L1 for all v ∈ L1. Assume by contradiction that ψ(v∞) > 0. Then
there exists m such that ∫

Km
d(v∞(t), W(t)) dt > 0.

Let {qj}j∈N be a sequence dense in Rm, and set

Aj := {t ∈ Kn : d(v∞(t), qj) < 2/3 · d(v∞(t), W(t)) e d(qj, W(t)) ≤ 2/3 · d(v∞(t), W(t))}.

Clearly,
⋃

j∈N

Aj = {t ∈ Kn : v∞(t) /∈W(t)}. The sets Aj are measurable, since

d(v∞(t), qj) = |v∞(t)− qj| and d(v∞(t), W(t)) are measurable functions (see Step 3). We will
construct now a map v(t) contradicting Ekeland’s Variational Principle. Since ψ(v∞) > 0, there
is at least a ̄ ∈N with A ̄ of strictly positive measure. Set v(t) = v∞(t) if t /∈ A ̄ and v(t) = q ̄ if
t ∈ A. We have that v(t) is measurable, we will prove that this contradicts Ekeland’s Variational
Principle. We have

‖v− v∞‖L1 =
∫

A ̄

|qj − v∞(t)| dt ≤ 2
3

∫
A ̄

d(v∞(t), W(t)) dt.

Thus we obtain

ψ(v)− ψ(v∞) =
∫ b

a
(d(v(t), W(t))− d(v∞(t), W(t))) dt =

∫
A ̄

(
d(q ̄, W(t))− d(v∞(t), W(t))

)
dt

<
∫

A ̄

2
3

d(v∞, W(t)) dt−
∫

A ̄

d(v∞(t), W(t)) dt

= −1
3

∫
A ̄

d(v∞(t), W(t)) dt < −1
2
‖v− v∞‖L1 .

However, according to Ekeland’s Variational Principle, we have
ψ(v)− ψ(v∞) > − 1

2‖v− v∞‖L1 . �
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4. Lecture of 14 december 2018: Closure of the set of admissible trajectories (3h)

REMARK 4.1. We are going to treat now the problem of the closure of the set of admissible
trajectories, i.e., providing sufficient conditions ensuring that the uniform limit of a sequence of
admissible trajectories will be an admissible trajectory. In general this property fails.

EXAMPLE 4.2. Consider ẋ(t) = u(t) for a.e. t ∈ [0, 1] where u(t) ∈ {−1, 1}. It is easy to construct
a sequence of admissible trajectories {xn}n∈N such that ‖xn‖∞ → 0, however x∞(t) ≡ 0 is not an
admissible trajectory.

THEOREM 4.3 (Closedness of the set of admissible trajectories). Assume that the set-valued map
F : [a, b]×Rn ⇒ Rn associated to the system is continuous with compact and convex values. Then the
set of trajectories x(·) ∈ AC([a, b]; Rn) such that ẋ(t) ∈ F(t, x(t)) for a.e. t ∈ [a, b] is closed in
C0([a, b]; Rn).

PROOF. Let {xn(·)}n∈N ⊂ AC([a, b]; Rn) be a sequence of AC curves satisfying
ẋn(t) ∈ F(t, xn(t)) for a.e. t ∈ [a, b] and uniformly convergent to x(·) ∈ C0([a, b]; Rn). In
particular, for n sufficiently large there exists a compact set K ⊆ [a, b]×Rn such that
(t, xn(t)) ∈ K per ogni t ∈ [a, b]. Thus we have equiboundedness of the trajectories. By
continuity of F, this implies boundedness of F on [a, b]× K, so equi-Lipschitz continuity of xn(·).
This implies that x(·) is Lipschitz continuous, and so a.e. differentiable in [a, b].

To end the proof, is thus enough to show that for all τ ∈]a, b[, where ẋ(τ) exists, we have
ẋ(τ) ∈ F(τ, x(τ)). By contradiction, let τ ∈]a, b[ be such that this property is not true. We strictly
separate the compact and convex sets F(τ, x(τ)) and {ẋ(τ)} by an affine hyperplane, thus there
exists ε > 0, p ∈ Rn, ‖p‖ = 1 such that

〈p, y〉 ≤ 〈p, ẋ〉 − 4ε,

for all y ∈ F(τ, x(τ)). By continuity of F, there exists δ > 0 such that if |t− τ| < δ and
|x′ − x(τ)| < δ then

〈p, y〉 ≤ 〈p, ẋ〉 − 3ε,

for all y ∈ F(t, x′).

Recalling that the map t 7→ x(t) is differentiable at τ, we can choose τ′ ∈ [τ, τ + δ[ such that∣∣∣∣ x(τ′)− x(τ)
τ′ − τ

− ẋ(τ)
∣∣∣∣ < ε.

Moreover, by uniform convergence, we can choose n sufficiently large such that∣∣∣∣ x(τ′)− x(τ)
τ′ − τ

− xn(τ′)− xn(τ)

τ′ − τ

∣∣∣∣ < ε.

This implies

〈p,
xn(τ′)− xn(τ)

τ′ − τ
〉 = 〈p, ẋ(τ)〉+ 〈p,

xn(τ′)− xn(τ)

τ′ − τ
− ẋ(τ)〉

≥ 〈p, ẋ(τ)〉 −
∣∣∣∣ xn(τ′)− xn(τ)

τ′ − τ
− ẋ(τ)

∣∣∣∣
= 〈p, ẋ(τ)〉 −

∣∣∣∣ xn(τ′)− xn(τ)

τ′ − τ
+

x(τ′)− x(τ)
τ′ − τ

− x(τ′)− x(τ)
τ′ − τ

− ẋ(τ)
∣∣∣∣

≥ 〈p, ẋ(τ)〉 −
∣∣∣∣ xn(τ′)− xn(τ)

τ′ − τ
− x(τ′)− x(τ)

τ′ − τ

∣∣∣∣− ∣∣∣∣ x(τ′)− x(τ)
τ′ − τ

− ẋ(τ)
∣∣∣∣

≥ 〈p, ẋ(τ)〉 − 2ε.

However, recalling that 〈p, y〉 ≤ 〈p, ẋ〉 − 3ε for all y ∈ F(t, x′), we have also

〈p,
xn(τ′)− xn(τ)

τ′ − τ
〉 = 1

τ′ − τ

∫ τ′

τ
〈p, ẋn(s)〉 ds ≤ 〈p, ẋ(τ)〉 − 3ε.

and so 〈p, ẋ(τ)〉 − 2ε ≤ 〈p, ẋ(τ)〉 − 3ε, which is a contradiction. �
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REMARK 4.4. Notice that the statement requires the convexity of F(t, x), not the convexity of U.
These two facts in general are not equivalent.

THEOREM 4.5 (Continuity of Input-Output Map). Let U be a compact subset of Rm,
f : R×Rn ×U → Rn be a continuous function such that x 7→ f (t, x, u) is of class C1. Assume also
that there exist C, L > 0 such that | f (t, x, u)| ≤ C and ‖∂x f (t, x, u)‖ ≤ L for all
(t, x, u) ∈ R×Rn ×U. Fix x̄ ∈ Rn. The input-output map is the function associating to every control
u(·) ∈ L1([0, T]; U) the unique solution xu(·) ∈ C0([0, T]; Rn) of ẋ(t) = f (t, x(t), u(t)) with
x(0) = x̄. In the above assumptions, the input-output map is continuous.

PROOF. In the above assumption we have existence and uniqueness for the solution of the
Cauchy problem for every T > 0. Set Λ = L1([0, T]; U) and X = C0([0, T]; Rn), define
Φ : Λ× X → X by setting

Φ(u, w)(t) = x̄ +
∫ t

0
f (s, w(s), u(s)) ds.

The theorem is proved if we show that Φ satisfies the assumptions of the parametric contraction
lemma, in this case xu(·) is the fixed point of w 7→ Φ(u, w). We endow X with the equivalent
norm ‖w‖X = max{e−2Lt|w(t)| : t ∈ [0, T]}.
We prove that u 7→ Φ(u, w) is continuous. Let {uk}k∈N be a sequence in Λ converging to u ∈ Λ.
We have

|Φ(uk, w)(t)−Φ(u, w)(t)| ≤
∫ T

0
| f (s, w(s), uk(s))− f (t, w(s), u(s))| ds.

From every subsequence {uk′} of {uk}k∈N is possible to extract a subsequence {uk′′} a.e.
pointwise converging to u, and by the boundedness of f is possible to use the Dominated
Convergence Theorem

lim
k′′→∞

|Φ(uk′′ , w)(t)−Φ(u, w)(t)| ≤
∫ T

0
lim

k′′→∞
| f (s, w(s), uk′′(s))− f (s, w(s), u(s))| dt = 0,

By arbitrariness of {uk′}, we conclude that

lim
k→∞
‖Φ(uk, w)−Φ(u, w)‖∞ = 0.

Suppose now that w, w′ ∈ X and set ‖w− w′‖X = δ. Then |w(s)− w′(s)| ≤ δe2Ls for every
0 ≤ s ≤ T. We thus have

e−2Lt|Φ(u, w)(t)−Φ(u, w′)(t)| ≤ e−2Lt
∫ t

0
| f (s, w(s), u(s))− f (s, w′(s), u(s))| ds

≤ e−2Lt
∫ t

0
L|w(s)− w′(s)| ds ≤ e−2Lt

∫ t

0
Lδe2Ls ds <

δ

2
.

So ‖Φ(u, w)−Φ(u, w′)‖X ≤
1
2
‖w− w′‖X . The thesis follows by parametric contraction

lemma. �

REMARK 4.6. In the above assumptions, the input-output map is continuous, but not Lipschitz
continuous. It becomes Lipschitz contininuous if we endow Λ with the metric of the convergence
in measure, i.e. for every u1, u2 ∈ Λ we define d(u1, u2) = meas{t ∈ [0, T] : u1(t) 6= u2(t)}.

We recall now some results about ordinary differential equations.

DEFINITION 4.7 (Adjoint system). Consider the system{
ẋ(t) = A(t)x(t),
x(0) = x0,

where A(t) ∈ Matn×n(R). The adjoint system is ṗ(t) = −p(t)A(t). We will call fundamental matrix
associated to the system the matrix M(t, s) ∈ Matn×n(R) defined as the solution of{

∂t M(t, s) = A(t)M(t, s),
M(s, s) = IdRn ,
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PROPOSITION 4.8. In the previous notation, we have:

(1) Suppose ‖A(t)‖ ≤ L. then the solutions of the system satisfy |x(t)| ≤ eL(t−t0)|x0|.
(2) We have M(t, s)M(s, t) = IdRn .
(3) Given the system {

ẋ(t) = A(t)x(t) + h(t),
x(τ) = xτ ,

its solution is

x(t) = M(t, τ)xτ +
∫ t

τ
M(t, s)h(s) ds.

(4) If A(t) ≡ A is constant, then M(t, s) = eA(t−s).
(5) The i-th column of M(t, τ) solves{

ẋ(t) = A(t)x(t),
x(τ) = ~ei,

(6) The map A(·) 7→ M(·, τ) is continuous from L1([a, b]; Matn×n(R)) to C0([a, b]; Matn×n(R)).

PROOF. Omitted. �

We will study now further regularity properties of the input-output map. In particular, we will
study the differentiability w.r.t. the initial point and w.r.t. the controls. In the first case, we will
set g(t, x) := f (t, x, u(t)).

THEOREM 4.9 (Differentiability w.r.t. initial state). Consider the equation ẋ(t) = g(t, x(t)) with
x(t0) = x0 and denote with x(t, x0) its solution. Let g ∈ C0(R×Rn) be of class C1 in the x-variable
and such that |g| ≤ M, |∂xg| ≤ L. Let v0 ∈ Rn be fixed, with |v0| = 1. Let vx0(t) be the solution of
v̇(t) = ∂xg(t, x(t, x0))v(t) with initial condition v(t0) = v0. Then x(t, x0) is differentiable at x0 and the
directional derivatives satisfy

vx0(t) := lim
ε→0

x(t, x0 + εv̄)− x(t, x0)

ε

with uniform convergence in [t0, T].

PROOF. For sufficiently small ε ≥ 0, define xε(t, v0) = x(t, x0 + εv0) and
yε(t, v0) = x(t, x0) + εvx0(t). To prove the theorem, it is enough to show that

lim
ε

xε(t, v0)− yε(t, v0)

ε
= 0.

Notice that xε(·, v0) is a fix point of w 7→ Φ(x0 + εv0, w) defined by

Φ(x0 + εv0, w) = x0 + εv0 +
∫ t

t0

g(s, w(s)) ds,

which is a contraction (α = 1/2) w.r.t. to the previously defined norm ‖ · ‖X . According to
parametric contraction lemma

1
ε
‖yε − xε‖X ≤

2
ε
‖yε −Φ(yε, u + ε∆u)‖X

Thus it is enough to prove that

lim
ε→0

sup
t∈[t0,T]

1
ε

∣∣∣∣x0 + εv0 +
∫ t

t0

g(s, yε(t, v0)) ds− yε(t, v0)

∣∣∣∣ = 0

Notice that

g(s, yε(s, v0)) = g(s, x(s, x0) + εvx0(s)) = g(s, x(s, x0)) +
∫ 1

0

d
dσ

(g(s, x(s, x0) + εσvx0(s))) dσ

= g(s, x(s, x0)) +
∫ 1

0
∂xg(s, x(s, x0) + εσvx0(s))εvx0(s) dσ,

vx0(t)− vx0(0) =
∫ t

t0

∂xg(s, x(s, x0))vx0(s) ds.
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Thus ∣∣∣∣x0 + εv0 +
∫ t

t0

g(s, yε(t, v0)) ds− yε(t, v0)

∣∣∣∣ =
=

∣∣∣∣x0 + εv0 +
∫ t

t0

g(s, x(s, x0)) ds +
∫ t

t0

∫ 1

0
∂xg(s, x(s, x0) + εσvx0(s))εvx0(s) dσ ds+

−x(t, x0)− εvx0(t)|

=

∣∣∣∣x0 +
∫ t

t0

g(s, x(s, x0)) ds− x(t, v0) + ε(v0 − vx0(t))+

+
∫ t

t0

∫ 1

0
∂xg(s, x(s, x0) + εσv(s))εvx0(s) dσ ds

∣∣∣∣
=ε

∣∣∣∣− ∫ t

t0

∂xg(s, x(s, x0))vx0(s) ds +
∫ t

t0

∫ 1

0
∂xg(s, x(s, x0) + εσvx0(s))vx0(s) dσ ds

∣∣∣∣
=ε

∣∣∣∣− ∫ t

t0

∫ 1

0
∂xg(s, x(s, x0))vx0(s) dσ ds +

∫ t

t0

∫ 1

0
∂xg(s, x(s, x0) + εσvx0(s))vx0(s) dσ ds

∣∣∣∣
=ε

∣∣∣∣∫ t

t0

∫ 1

0
[∂xg(s, x(s, x0) + εσvx0(s))− ∂xg(s, x(s, x0))] vx0(s) dσ ds

∣∣∣∣
Consedered a compact neighborhood of the trajectory x(t, x0), we can pass to the limit
(uniformly) under the integral sign by the regularity of g applying the Dominated Convergence
Theorem, the statement on the directional derivatives thus follows.

To prove the differentiability, is is sufficient to apply the Total Differential Theorem proving that
the directional derivatives are continuous st x0. Consider a sequence {ξn}n∈N with ξn → x0. We
prove that vξn(t)→ vx0(t). By parametric contraction lemma, we already know that x(·, ξt)
uniformly converges to x(·, x0) in [t0, T]. Set An(t) = ∂xg(t, x(t, ξn)) and A(t) = ∂xg(t, x(t, x0)).
For n sufficiently large, we have ‖An(t)− A(t)‖ ≤ K and so, by dominated convergence

lim
n→∞

‖An − A‖L1 = lim
n→∞

∫ T

t0

‖An(t)− A(t)‖ dt =
∫ T

t0

lim
n→∞

‖An(t)− A(t)‖ dt = 0.

By the properties of fundamental matrix, Mn(t, τ) uniformly converges to M(t, τ) where Mn and
M are the fundamental matrices of the systems solved by vξn and vx0 , respectively (i.e., ruled by
g(t, x(t, ξn)) and g(t, x(t, x0)) respectively). Therefore, vξn(·) uniformly converges to vx0(·). �

REMARK 4.10. In the same way as above, it can be proved that the input-output map is
differentiable also w.r.t. the initial time t0

5. Lecture of 17 december 2018: Dependence w.r.t. controls. Density. (3h)

PROPOSITION 5.1. Assume the hypothesis on f to grant local existence and uniqueness, consider
ẋ(t) = f (t, x(t), u(t)), x(0) = x0, and denote by x(t, u) its solution evaluated at time t. Suppose that
(x, u)→ f (t, x, u) is of class C1 and that there exists L > 0 such that ‖∂x f ‖∞ + ‖∂u f ‖∞ ≤ L. Let
∆u ∈ L∞. Then there exists

lim
ε→0

x(t, u + ε∆u)− x(t, u)
ε

=
∂

∂ε
x(t, u + ε∆u)|ε=0 =

∫ t

0
M(t, s)∂u f (s, x(s, u), u(s))∆u(s) ds

where M(t, s) is the fundamental matrix of v̇(t) = ∂x f (t, x(t, u), u(t))v(t).

PROOF. Let z(t) be the solution of{
ż(t) = A(t)z(t) + ∂u f (t, x(t, u), u(t))∆u(t),
z(0) = 0,

where A(t) := ∂x f (t, x(t, u), u(t)). We have

z(t) =
∫ t

0
M(t, s)∂u f (s, x(s, u), u(s))∆u(s) ds.
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Thus it is enough to prove that
∂

∂ε
x(t, u + ε∆u)|ε=0 = z(t)

uniformly in [0, T], i.e.,

lim
ε→0

x(t, u + ε∆u)− x(t, u)− εz(t)
ε

= 0.

Set xε(t) = x(t, u + ε∆u) and yε(t) = x(t, u) + εz(t), we estimate |xε(t)− yε(t)|. The map xε(·) is
a fixed point of

w 7→ Φ(w, u + ε∆u) = x0 +
∫ t

0
f (s, w(s), u(s) + ε∆u(s)) ds.

and Φ is a contraction (α = 1/2) w.r.t. the norm ‖ · ‖X previously defined. By parametric
contraction lemma

1
ε
‖xε − yε‖X ≤

2
ε
‖Φ(x0 + εv0, yε)− yε‖X .

So it is sufficient to prove that

lim
ε→0

sup
t∈[0,T]

1
ε

∣∣∣∣x0 +
∫ t

t0

f (s, yε(t, v0), u(s) + ∆u(s)) ds− yε(t)
∣∣∣∣ = 0.

We have
1
ε

∣∣∣∣x0 +
∫ t

0
f (s, yε(s), u(s) + ε∆u(s)) ds− yε(t)

∣∣∣∣ =
=

1
ε

∣∣∣∣x0 +
∫ t

0
f (s, yε(s), u(s) + ε∆u(s)) ds− x(t, u)− εz(t)

∣∣∣∣
=

1
ε

∣∣∣∣x0 +
∫ t

0
f (s, x(s, u) + εz(s), u(s) + ∆u(s)) ds− x0 −

∫ t

0
f (s, x(s, u), u(s)) ds− εz(t)

∣∣∣∣
=

1
ε

∣∣∣∣∫ t

0
[ f (s, x(s, u) + εz(s), u(s) + ε∆u(s))− f (s, x(s, u), u(s))] ds− εz(t)

∣∣∣∣
=

1
ε

∣∣∣∣∫ t

0

∫ 1

0

d
dσ

[ f (s, x(s, u) + σεz(s), u(s) + σε∆u(s))] ds− εz(t)
∣∣∣∣

=
1
ε

∣∣∣∣∫ t

0

∫ 1

0
[∂x f (s, x(s, u) + σεz(s), u(s) + σε∆u(s))]εz(s) ds+

+
∫ t

0

∫ 1

0
[∂u f (s, x(s, u) + σεz(s), u(s) + σε∆u(s))]ε∆u(s) ds+

−
∫ t

0
A(s)εz(s) + ∂u f (s, x(s, u), u(s))ε∆u(s) ds

∣∣∣∣
≤
∫ t

0

∫ 1

0
|∂x f (s, x(s, u) + σεz(s), u(s) + σε∆u(s))− A(s)| · |z(s)| ds+

+
∫ t

0

∫ 1

0
|∂u f (s, x(s, u) + σεz(s), u(s) + σε∆u(s))− ∂u f (s, x(s, u), u(s))| · |∆u(s)| ds

By Dominated Convergence Theorem, the limit is 0. The assumption of boundedness of the
derivatives of f can be relaxed, requiring only their continuity. �

We will consider now the following problem: given a control system with admissible control
value set U, is it possible to construct another system approximatively equivalent to the give one
with smaller control value set U′ ⊆ U?

THEOREM 5.2 (Density of the trajectories). Assume the hypothesis on f to grant local existence and
uniqueness, let ẋ(t) = f (t, x(t), u(t)), where u(t) ∈ U and U ⊆ Rm is compact.

(1) The set of solutions generated by piecewise constant controls is dense (w.r.t. uniform
convergence) in the set of solutions.
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(2) Let U′ ⊆ U be closed and such that for every t, x we have

co{ f (t, x, u) : u ∈ U′} ⊇ { f (t, x, u) : u ∈ U}.
Then every trajectory of the original system generated by a measurable control u(·) satisfying
u(t) ∈ U a.e. can be approximated in the uniform convergence norm by a trajectory generated
by a measurable control u′(·) satisfying u′(t) ∈ U′.

PROOF. Let L > 0 be such that | f (t, x1, u)− f (t, x2, u)| ≤ L|x1 − x2|.
The first assertion follows from the result about continuous dependence of the input-output map
on controls: indeed, the piecewise constant functions are dense in L1 according to the L1-norm,
thus given a control u(·), generating the trajectory xu(·), it is possible to construct a sequenceof
piecewise constant controls {un}n∈N converging in L1 to u. The corresponding solutions xn(·)
are uniformly convergent to xu(·).
Suppose now to have a trajectory xu of the original system, generated by a control u(·) ∈ U , and
let us prove that we can uniformly approximate it by trajectories generated by controls taking
values in U′.

Define the function ψ(t) := eLt − 1 and for every ε > 0 we define the tubular neighborhood of
the trajectory xu(·) by setting

Γε := {(t, x) : t ∈ [0, T], |x− x(t)| ≤ εψ(t)}.
Consider the set

F := {u′ : [0, τ]→ U′ measurable : (t, xu′(t)) ∈ Γε for all t ∈ [0, τ]}.
On F we define the following partial order: u′1 ≺ u′2 if dom(u′1) ⊆ dom(u′2) and u′2|dom(u′1)

= u′1.

Given a totally ordered chain {u′i : i ∈ I}, set dom(u′∞) =
⋃
i∈I

u′i and if t ∈ dom(u′∞), set

u′(t) = u′i(t) where i satisfies t ∈ dom(u′i). Such u′∞ is an upper bound of the chain, so by Zorn’s
lemma there are maximal elements.

Let ū be a maximal in F . If dom(ū) = [0, T] the proof is finished. Otherwise, suppose by
contradiction that intdom(ū) =]0, τ[ with τ < T, for all t ∈]0, τ[ holds |xu(t)− xū(t)| ≤ εψ(t)

with equality at t = τ. Set w = f (τ, xu(τ), u(τ)), v =
xu(τ)− xū(τ)

|xu(τ)− xū(τ)|
We prove that we can

choose uτ ∈ U′ such that

〈 f (τ, xu(τ), uτ), v〉 > 〈w, v〉 − εL
2

.

Indeed, by convexity assumption, w =
n

∑
i=0

αi f (τ, xu(τ), vi) with αi ∈ [0, 1], vi ∈ U′, i = 0, . . . , n

and
n

∑
i=0

αi = 1. If by contradiction for every i = 0, . . . , n we had

〈 f (τ, xu(τ), vi), v〉 < 〈w, v〉,
by multiplying for αi and summing up

〈w, v〉 =
n

∑
i=0

αi〈 f (τ, xu(τ), vi), v〉 <
n

∑
i=0

αi〈w, v〉 = 〈w, v〉,

which leads to a contradiction. So the choiche of uτ is always possible.

We prove now that there exists δ > 0 such that if we set ū(t) = ui in [τ, τ + δ[, the solution xū is
contained in Γε. This will conclude the proof contradicting the maximality of ū, indeed it will be
a proper extension of ū to [0, τ + δ[. To this aim, we estimate the right derivative at τ of
|xu(t)− xū(t)| − δψ(t): it will be enough to show that such a derivative is negative. Indeed,

d
dt
[
|xū(t)− xu(t)| − εψ(t)

]
t=τ+

= 〈w− f (τ, xū(τ), uτ), v〉 − εLeLτ

= 〈w− f (τ, xu(τ), uτ), v〉+ 〈 f (τ, xu(τ), uτ)− f (τ, xū(τ), v〉 − εLeLτ
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≤ εL
2

+ | f (τ, xu(τ), uτ)− f (τ, xū(τ)| − εLeLτ

≤ εL
2

+ L|xu(τ)− xū(τ)| − εLeLτ

≤ εL
2

+ εLψ(τ)− εLeLτ

=
εL
2

+ εL(eLτ − 1)− εLeLτ

≤ − εL
2
≤ 0.

�

REMARK 5.3. The assumptions of the previous theorem require

co { f (t, x, u) : u ∈ U′} ⊇ { f (t, x, u) : u ∈ U}.

In general it is not true that this is granted by taking U′ ⊆ U such that co(U′) = co(U). In other
words, to convexify the set of admissible velocities is not enough to convexify the set of
admissible control values.

However if the system is affine w.r.t. u, i.e., f (t, x, u) = A(t, x) + B(t, x)u then this is enough:
given U′ ⊆ U such that co(U′) = co(U) we have

co{ f (t, x, u) : u ∈ U′} = { f (t, x, u) : u ∈ co(U′)} = { f (t, x, u) : u ∈ co(U)} ⊇ { f (t, x, u) : u ∈ U}.

DEFINITION 5.4. Consider the control system ẋ(t) = f (t, x(t), u(t)), x(0) = x̄, where
u(·) ∈ U := {u : [0,+∞[→ U measurable} Define the reachable set from x̄ at time t:

Rx̄(t) = {x(t) : x(·) is solution of the system }.

In general, Rx̄(t) is not compact, not even if U is compact.

PROPOSITION 5.5 (Compactness of the reachable set). Assume the hypothesis on f to grant local
existence and uniqueness. Consider the control system ẋ(t) = f (t, x(t), u(t)), x(0) = x̄, with
u(·) ∈ U := {u : [0,+∞[→ U measurable} and set F(t, x) := { f (t, x(t), u(t)) : u ∈ U }. Suppose
that F(t, x) is compact and convex, and that the graphs of the solutions are all contained up to time t in a
common compact K. Then Rx̄(t) is compact.

PROOF. Since Rx̄(t) ⊆ K, such a set is bounded. We prove its closedness. Suppose to have a
sequence {ξn}n∈N in Rx̄(t). Then ξi = xui (t) where xui (·) is the solution generated by the
control ui ∈ U . Since all the trajectories are contained in a common compact set, the set of their
velocities must be bounded, by smoothness of f . So these trajectories are equibounded and
equiLipschitz continuous by continuity of F and compactness of F(t, x). Thus up to a
subsequence they uniformly converges to x∞(·), and in particular ξi → ξ∞ = x∞(t). By
convexity, we have that x∞(·) is a solution, and so ξ∞ ∈ Rx̄(t). �

DEFINITION 5.6 (Chattering controls). Assume the hypothesis on f to grant local existence and
uniqueness. Consider the control system ẋ(t) = f (t, x(t), u(t)), x(0) = x̄, with
u(·) ∈ U := {u : [0,+∞[→ U measurable} and set F(t, x) := { f (t, x(t), u(t)) : u ∈ U }. Let
F](t, x) := co(F(t, x)). Consider a new set of controls

U] := {u] = (θ0, . . . , θn, u0, . . . , un) ∈ [0, 1]n+1 ×Un+1},

and set for every u] ∈ U]

f ](t, x, u]) =
n

∑
i=0

θi f (t, x, ui).

By Carathéodory’s Theorem, we have

F](t, x) := { f ](t, x(t), u](t)) : u] ∈ U ]},

where U ] := {u] : [0,+∞[→ U] measurable} is called the set of chattering controls.
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COROLLARY 5.7. Assume the hypothesis on f to grant local existence and uniqueness. Consider the
control system ẋ(t) = f (t, x(t), u(t)), x(0) = x̄, where u(·) ∈ U := {u : [0,+∞[→ U measurable}.
Suppose that U is compact and that the graphs of solutions up to time t are all contained in a common
compact K. Then R]

x̄(t) = Rx̄(t), where R]
x̄(t) is the reachable set for ẋ(t) = f ](t, x(t), u](t)),

x(0) = x̄, where u](·) ∈ U ].

PROOF. We can identify U with a subset of U], since the map u 7→ (1, 0, . . . , 0, u, u, . . . , u) is
bijective. This implies that we can identify U with a subset of U ] and Rx̄(t) with a subset of
R]

x̄(t). We will always made this identification in the following of the proof. Trivially U ⊆ U],
and so Rx̄(t) ⊆ R]

x̄(t). According to the previous result, we have that R]
x̄(t) is closed, so

Rx̄(t) ⊆ R]
x̄(t). Moreover, we have co(F(t, x)) ⊇ F](t, x), so the trajectories generated by U are

dense in the set of the trajectories of the system generated by U ], thus Rx̄(t) ⊇ R]
x̄(t), the thesis

follows. �

COROLLARY 5.8 (Bang-bang Theorem). In the above assumptions, suppose
ẋ(t) = A(t)x(t) + h(t, u(t)). If A(·) and h are continuous and U is compact then R]

x(t) = Rx(t).

PROOF. Omitted. �

REMARK 5.9. In the three previous results, the assumtpions requiring that the graphs of the
considered trajectories must be contained in a common compact can be replaced by the
following condition of uniform growth: there exists C > 0 such that | f (t, x, u)| ≤ C(1 + |x|) for all
(t, x, u). Indeed, in this case we have |ẋ| ≤ C(1 + |x|), so if x(t) 6= 0 we have

d
dt
|x(t)| ≤

∣∣∣∣ d
dt
|x(t)|

∣∣∣∣ ≤ C(1 + |x|)

Thus if x(t) 6= 0 we have |x(t)| ≤ r(t) where ṙ(t) = C(1 + r(t)), r(0) = |x(0)|. Solving this
equation, we have that if |x(t)| 6= 0 we have |x(t)| ≤ eCt(|x̄|+ 1)− 1 ≤ eCT(|x̄|+ 1)− 1 := R.
Thus x(t) ∈ B(0, R), which is compact.

6. Lecture of 21 december 2018: Pontryagin’s Maximum Principle and Dynamic Programming
Principle (3h)

DEFINITION 6.1 (Mayer and Bolza problems). Suppose to have a control system
ẋ(t) = f (t, x(t), u(t)), x(0) = x̄ with U := {u : [0, T]→ U measurable }, a cost function
ψ : R×Rn → R, and a set S̃ ⊆ Rn+1 called target set.

The Mayer’s problem is to determine a control (called optimal control) realizing

inf
u∈U

ψ(T, x(T))

among all the admissible trajectories of the system satisfying (T, x(T)) ∈ S̃.
In many cases, we have S̃ = R× S, where S ⊆ Rn is a given closed set. In this case the endpoint
constraint (T, x(T)) ∈ S simply becomes x(T) ∈ S. With a slightly abuse of terminology, in this
case we will called also S the target set.

The Bolza’s problem is to determine a control realizing

inf
u∈U

∫ T

0
L(t, x(t), u(t)) dt + ψ(T, x(T)),

where L : R×Rn ×Rm → R is a function called current cost among all the admissible
trajectories of the system satisfying (T, x(T)) ∈ S̃.

Bolza’s problem can be reformulated as Mayer’s problem by considering the new auxiliary
variable x0, and adding to the system the equation ẋ0(t) = L(t, x(t), u(t)) with x0(0) = 0.
Defined a new cost Ψ(x0, x) = x0 + ψ(x), and a new target set S = R× S̃, the problem set up in
Rn+2 is a Mayer’s problem.

The existence of optimal controls in many cases can be proved easily through standard
arguments of l.s.c. and compactness.
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THEOREM 6.2 (Existence of optimal controls). Consider a Mayer’s problem with closed target
S̃ ⊆∈ Rn+1 and l.s.c. cost function ψ(·). Assume one of the following conditions

(1) Rx̄(T) is compact and ({T} × Rx̄(T)) ∩ S̃ 6= ∅;
(2) the dynamics f is continuous, satisfying | f (t, x, u)| ≤ C(1 + |x|) for a certain C > 0, and the

associated set-valued map has convex values.
(3) Rx̄(T) is closed, ({T} × Rx̄(T)) ∩ S̃ 6= ∅, and ψ(·) is coercive;

Then there exists an optimal control.

PROOF.
(1) By compactness of Rx̄(T) and closedness of S̃, we have that {T} × Rx̄(T) ∩ S̃ is

compact. Since ψ(·) is l.s.c., it admits a minimum (T, xT) ∈ {T} × Rx̄(T) ∩ S̃. Recalling
that xT ∈ Rx̄(T), this implies that there exists a control u∗(·) generating an admissible
trajectory whose endpoint is xT .

(2) Consider a minimizing sequence un : [0, T]→ U of admissible controls, generating the
corresponding sequence of trajectories xn(·), i.e., such that

lim
n→+∞

ψ(T, xn(T)) = inf
u∈U

ψ(T, xu(T)) and (T, xu(T)) ∈ S̃. The growth condition on f

ensures that there exists a compact set K such that xn(t) ∈ K for all t ∈ [0, T], n ∈N,
thus by the smoothness of f , we have that xn(·) are equiLipschitz continuous and
equibounded, thus, up to a not relabeled subsequence, we may assume that {xn(·)}n∈N

uniformly converges to x∞(·). The growth condition implies the compactness of F(t, x),
and by assumption we have that F(t, x) is convex, thus x∞(·) is an admissible trajectory,
and so it is generated by an admissible control u∞(·). Thus, recalling l.s.c. of ψ,

inf
u∈U

ψ(T, xu(T)) = lim
n→+∞

ψ(T, xn(T)) ≥ ψ(T, x∞(T)) ≥ inf
u∈U

ψ(T, xu(T)),

we conclude that x∞(·) is an optimal trajectory and u∞(·) is an optimal control.

(3) Same as in item 1., recalling that a lower semicontinuous coercive function admits a
minimum on every closed sets.

�

LEMMA 6.3 (Lebesgue points). Let g ∈ L1([0, T]; R). Then for a.e. τ ∈ [0, T] we have

lim
ε→0+

1
2ε

∫ τ+ε

τ−ε
|g(t)− g(τ)| dt = 0.

The points τ where the above limit exists and vanishes are called Lebesgue’s point of g.

PROOF. Omitted. �

We will now state in a simplified form the following result, yielding necessary conditions enjoyed
by an optimal control.

THEOREM 6.4 (Pontryagin’ Maximum Principle). Consider a Mayer’s problem with
φ(x(T)) = −ψ(x(T)). Suppose f ∈ C0, φ differentiable, and x 7→ f (t, x, u) of class C1. Let
u∗ ∈ L∞([0, T]; Rm) an optimal control generating the optimal trajectory x∗(·). Let p∗(·) be the solution
of the adjoint system {

ṗ(t) = −p(t)∂x f (t, x∗(t), u∗(t))
p(T) = ∇φ(x∗(T))

Then for a.e. t ∈ [0, T] we have

〈p∗(t), f (t, x∗(t), u∗(t))〉 = max
u∈U
〈p∗(t), f (t, x∗(t), u)〉.

PROOF. Since t 7→ g(t) := f (t, x∗(t), u∗(t)) is in L1, it is enough to prove the statement for all
Lebesgue points of g. Let τ ∈ [0, T] be a Lebesgue’s point of g. We will prove the result for t = τ.
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Given ε > 0, set uε(t) = u∗(t)(1− χ[τ−ε,τ[) + ωχ]τ−ε,τ] where ω ∈ U is arbitrary. Let xε(·) be the
trajectory generated by uε. Recalling that xε(τ − ε) = x∗(τ − ε), we have

xε(τ) = xε(τ − ε) +
∫ τ

τ−ε
f (t, xε(t), ω) dt,

x∗(τ) = x∗(τ − ε) +
∫ τ

τ−ε
f (t, x∗(t), u∗(t)) dt,

xε(τ)− x∗(τ)
ε

=
1
ε

∫ τ

τ−ε
[ f (t, xε(t), ω)− f (t, x∗(t), u∗(t))] dt

=
1
ε

∫ τ

τ−ε
[ f (t, xε(t), ω)− f (τ, x∗(τ), u∗(τ))] dt+

+
1
ε

∫ τ

τ−ε
[ f (τ, x∗(τ), u∗(τ))− f (t, x∗(t), u∗(t))] dt

By definition of Lebesgue’s point, for ε→ 0+ the second term in the right hand side vanishes. By
Dominated Convergence Theorem,

lim
ε→0+

xε(τ)− x∗(τ)
ε

= f (τ, x∗(τ), ω)− f (τ, x∗(τ), u∗(τ)) =: ξ.

In the time interval [τ, T], we have that xε(·) satisfy the same differential equation of x(·), but
with a different inital data xε(τ) 6= x∗(τ). By the theorem about the differentiability of the
input-output map w.r.t. initial data, denoted by yε(·) the trajectory generated by u∗ starting from
x∗(τ) + εξ at time τ, we have that for t ≥ τ it holds

lim
ε→0

yε(t)− x∗(t)
ε

= v(t)

where v̇(t) = ∂x f (t, x∗(t), u∗(t))v(t) and v(τ) = ξ. If x∗(·) is optimal, then φ(yε(T)) ≤ φ(x∗(τ))
for all ε > 0. Since φ is differentiable, we have

0 ≥ d
dε

φ(yε(T)) = 〈∇φ(yε(T)), v(T)〉.

Moreover, we notice that

d
dt
〈p(t), v(t)〉 = −〈p(t)∂x f (t, x∗(t), u∗(t)), v(t)〉+ 〈p(t), ∂x f (t, x∗(t), u∗(t))v(t)〉 = 0.

thus 〈p(t), v(t)〉 is costant at all t ∈ [τ, T] and 〈p(T), v(T)〉 = 〈p(τ), v(τ)〉. By definition,
p(T) = ∇φ(x∗(T)) and v(τ) = ξ = f (τ, x∗(τ), ω)− f (τ, x∗(τ), u∗(τ)). Thus

〈p(τ), ξ〉 = 〈p(τ), f (τ, x∗(τ), ω)− f (τ, x∗(τ), u∗(τ))〉 = 〈∇φ(x∗(T)), v(T)〉 ≤ 0

so for all ω ∈ U we have

〈p(τ), f (τ, x∗(τ), ω)〉 ≤ 〈p(τ), f (τ, x∗(τ), u∗(τ))〉,

the thesis follows. �

REMARK 6.5. In many applications and exercise, we will try to construct an optimal control
candidate by solving the adjoint system and defining

u∗(t) = arg max
u∈U
〈p∗(t), f (t, x∗(t), u)〉.

The Pontryagin’s Maximum Principle yields only necessary conditions, not sufficient ones.
However in many cases it leads to isolate good candidates.

DEFINITION 6.6. Suppose that a Mayer’s problem with target S ⊆ Rn+1 and terminal constraint
(T, x(T)) ∈ S is given. Consider the admissible trajectories xs,y(·) such that xs,y(s) = y and
(T, xs,y(T)) ∈ S . We define the value function V(s, y) = infu∈U ψ(T, xs,y(T)).

THEOREM 6.7 (Dynamic Programming Principle). In the hypothesis granting existence and
uniqueness of the trajectories, suppose that S is closed. Then the value function V is nondecreasing along
the admissible trajectories, and it is constant along the optimal trajectories.
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PROOF. Let x(·) be an admissible trajectory generated by the control u(·), t0 < t1, x(t1) = x1
e x(t0) = x0. Suppose by contradiction that there exists ε > 0 such that V(t1, x1) = V(t0, x0)− ε.
Thus by definition there exists an admissible control v(·) such that, for the trajectory xv(·)
generated by v and satisfying xv(t1) = x1, we will have ψ(T, xv(T)) < V(t1, x1) + ε/2. But in
this case we can define a new control û(t) = u(t) for t0 ≤ t < t1 and û(t) = v(t) for t1 ≤ t ≤ T,
and let x̂(·) be its associated trajectory satisfying x̂(t0) = x0. Since x̂(t1) = x1, we have

ψ(T, x̂(T)) < V(t1, x1) +
ε

2
= V(t0, x0)−

ε

2
,

contradicting the definition of V(t0, x0).

If u∗ is an optimal control and x∗ is an optimal trajectory satisfying x∗(t0) = x0, then necessarily
V(t0, x0) = ψ(T, x∗(T)). Since V is nondecreasing along the admissible trajectories, we have
V(T, x∗(T)) ≥ V(t, x∗(t)) ≥ V(t0, x0) for every t0 < t < T, but since the first and the last terms
of this inequality are equal, we have equality. �

THEOREM 6.8. In the assumptions of the previous theorem, let Q ⊆ Rn+1 be an open set such that
Q ∩ S 6= ∅. If V ∈ C1(Q) then, defined the Hamiltonian function

H(t, x, p) := min
u∈U
〈p, f (t, x, u)〉,

the Hamilton-Jacobi-Bellman equation holds:
∂tV(t, x) + H(t, x, ∂xV) = 0,

V(T, x) = ψ(x).

PROOF. By assumption, along the admissible trajectories we have

d
dt

V(t, y(t)) ≥ 0,

i.e., 〈∂xV(t, y(t)), f (t, y(t), u(t))〉 ≥ 0 so the left hand side in the Hamilton-Jacobi-Bellman
equation is nonnegative. By contradiction, assume that it is strictly positive, i.e., there exists
θ > 0 such that for all ω ∈ U, t0, x0 it holds

∂tV(t0, x0) + 〈∂xV(t0, x0), f (t0, x0, ω) > θ.

By continuity, for every (t, x) in a neighborhood W of (t0, x0) we have

∂tV(t, x) + 〈∂xV(t, x), f (t, x, ω) > θ.

Let u ∈ U be an admissible control, and let xu(·) be its corresponding trajectory such that
xu(t0) = x0. There exists δ > 0 sufficiently small such that (t, xu(t)) ∈W for all u ∈ U . Thus for
all u ∈ U we have

V(t + δ, xu(t + δ))−V(t0, x0) =
∫ t0+δ

t0

d
dt

V(t, xu(t)) dt

=
∫ t0+δ

t0

[∂tV(t, xu(t)) + 〈∂xV(t, xu(t)), f (t, xu(t), u(t))] dt > δθ.

By taking the infimum on u, we have

inf
u∈U

V(t + δ, xu(t + δ)) ≥ V(t0, x0) + δθ.

However, the infimum w.r.t. u of the left hand side is attained on optimal trajectories, and its
value is V(t0, x0) by the dynamic programming principle, and this leads to a contradiction. �

REMARK 6.9. If we have a Bolza problem with running cost L(t, x, u), the Hamiltonian function
becomes

H(t, x, p) = min
u∈U

[〈p, f (t, x, u)〉+ L(t, x, u)].

The minimum time problem corresponds to the case ψ ≡ 0, L(t, x, u) ≡ 1.
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REMARK 6.10. The dynamic programming principle provides additional conditions to be used
in addition to Pontryagin Maximum Principle in particular in the cases where disambiguation is
needed (for instance, when p(t) = 0). It can be proved that the value function is characterized to
be the solution of this equation, i.e., if the cost found by using a control u(·) coincides with the
value of the solution of the HAmilton-Jacobi equation, then u is optimal.

REMARK 6.11. In almost all the case of interest, the value function is not C1, thus a classic
solution of Hamilton-Jacobi may not exists. Nonsmooth analysis allows to interpret such an
equation by mean of generalized gradients, thus defining solutions (enjoying also uniqueness
property) of such an equation, which are called viscosity solutions.

Linear Quadratic Regulator (LQR) is control system widely used in modeling, and it can be
considered as a prototype of many problems.

DEFINITION 6.12 (LQR - finite time horizon). Let Q, M ∈ Matn×n(R) be positive semidefinite
symmetric matrices, R ∈ Matm×m(R) be a positive definite symmetric matrix, A ∈ Matn×n(R),
B ∈ Matn×m matrices, t0, T ∈ R, t0 < T. Consider the control system in Rn{

ẋ(t) = Ax(t) + Bu(t),
x(t0) = x0 ∈ Rn,

with u ∈ Rm.
Our aim is to minimize the following cost (also called performance index):

JT(u(·)) =
∫ T

t0

〈(Qx(t), x(t)〉+ 〈Ru(t), u(t)〉) dt + 〈Mx(T), x(T)〉.

The matricex Q, M, R are called respectively the current state cost, the final state cost, and the input
cost matrix.

In order to solve the problem, we use the dynamic programming principle. Indeed, for
t0 ≤ t ≤ T we define

Vt(x) = inf
u(·)

{∫ T

t
(〈Qx(s), x(s)〉+ 〈Ru(s), u(s)〉) ds + 〈Mx(T), x(T)〉

}
,

subject to ẋ(s) = Ax(s) + Bu(s) and x(t) = x. We have in particular that VT(x) = 〈Mx, x〉 for all
x ∈ Rn.

We notice the following facts: given λ ∈ R, we have Vt(λx) = λ2Vt(x), x 7→ Vt(x) is continuous,
and

Vt(x1) + Vt(x2) =
1
2
[Vt(x1 + x2) + Vt(x1 − x2)].

Indeed, since the system is linear, if x(·) is a solution associated to some control u(·) and starting
from x, then also λx(·) is a solution associated to the control λu(·) and starting from λx. Thus

Vt(λx) = inf
u(·)

{∫ T

t
(〈Qλx(s), λx(s)〉+ 〈Rλu(s), λu(s)〉) ds + 〈Mλx(T), λx(T)〉

}
,

subject to ẋ(s) = Ax(s) + Bu(s) and x(t) = x, hence Vt(λx) = λ2Vt(x). The other property can
be verified similarly. Finally, the continuity w.r.t. x is given by the linearity of the system.

In general, a continuous map W(·) : Rd → R satisfying W(λx) = λ2W(x) and

W(x1) + W(x2) =
1
2
[W(x1 + x2) + W(x1 − x2)],

satisfies also W(x) = 〈Px, x〉, where P = (pij)i,j=1,...,d ∈ Matd×d(R) is the symmetric matrix

defined by pii = W(~ei) and pij = pji =
1
4
[W(xi + xj)−W(xi − xj)].

In this way we obtain that Vt(x) = 〈P(t)x, x〉 where t 7→ P(t) is a continuous map and P(t) is a
symmetric matrix for every t ∈ [t0, T]. In particular, we have also ∂tVt(x) = 〈Ṗ(t)x, x〉 and
∂xVt(x) = 2P(t)x.
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Our problem is a special case of Bolza problem where L(t, x, u) = 〈Qx, x〉+ 〈Ru, u〉, and so

H(t, x, p) = min
u

[〈p, Ax + Bu〉+ 〈Qx, x〉+ 〈Ru, u〉] = 〈p, Ax〉+ 〈Qx, x〉+ min
u

[〈p, Bu〉+ 〈Ru, u〉]

The function to be minimized is strictly convex, smooth and coercive in u, thus the minimum is
characterized bu putting the differential equal to zero, i.e. BT p + 2Ru = 0, and so

u = −1
2

R−1BT p. The Hamilton-Jacobi equation is given by ∂tVt(x) + H(t, x, ∂xVt(x)) = 0, i.e.

〈Ṗ(t)x, x〉+ 〈2P(t)x, Ax〉+ 〈Qx, x〉 − 〈2P(t)x, BR−1BT P(t)x〉+ 〈BT P(t)x, R−1BT P(t)x〉 = 0,

i.e. recalling that P(t) = PT(t)

〈Ṗ(t)x, x〉+〈AT PT(t)x, x〉+ 〈P(t)Ax, x〉+
+ 〈Qx, x〉 − 〈2P(t)BR−1BT P(t)x, x〉+ 〈P(t)BR−1BT P(t)x, x〉 = 0,

holding for every x, hence we obtain the matrix Riccati equation

Ṗ(t) + AT P(t) + P(t)A + Q− P(t)BR−1BT P(t) = 0,

coupled with terminal condition P(T) = M. Moreover, the optimal control is linear and is given
by u(t) = −R−1BT P(t)x(t).

All the previous consideraton easily extends to smooth time-depending matrices A = A(t),
B = B(t), R = R(t), Q = Q(t).

Now we will discuss the case of infinite time horizon, i.e., T → +∞.

DEFINITION 6.13 (LQR - infinite time horizon). Let Q, M ∈ Matn×n(R) be positive semidefinite
symmetric matrices, R ∈ Matm×m(R) be a positive definite symmetric matrix, A ∈ Matn×n(R),
B ∈ Matn×m matrices, t0, T ∈ R, t0 < T. Consider the control system in Rn{

ẋ(t) = Ax(t) + Bu(t),
x(t0) = x0 ∈ Rn,

with u ∈ Rm.
Our aim is to minimize the following cost:

J∞(u(·)) =
∫ +∞

t0

〈(Qx(t), x(t)〉+ 〈Ru(t), u(t)〉) dt.

It is clear in this case, since the integral is over an half line, that it may happen that
J(u(·)) ≡ +∞, thus the minimization problems has no meaningful sense.

To tackle this difficulty, we make the following strong assumption (complete controllability): for
every τ > 0, x ∈ Rn there exists a control steering x to 0 in time τ. It can be proved (Kalman rank
controllability condition) that this is equivalent to ask

rank[B|AB|A2B| . . . |An−1B] = n.

If T0 ≤ T1 we have∫ T0

t0

〈(Qx(t), x(t)〉+ 〈Ru(t), u(t)〉) dt ≤
∫ T1

t0

〈(Qx(t), x(t)〉+ 〈Ru(t), u(t)〉) dt,

thus it make sense to approximate the infinite horizon problem with a sequence of finite-horizon
problems: the map T 7→ JT(u(·)) is monotone increasing, thus J∞(u(·)) can be written as limit
for T 7→ +∞ of JT(u(·)) (it can be +∞).

We thus consider the matrix solution P(t, T) of
Ṗ(t) + AT P(t) + P(t)A + Q− P(t)BR−1BT P(t) = 0,

P(T) = 0
,

and we notice that if we set

Vt(x, T) = inf
u(·)

{∫ T

t
(〈Qx(s), x(s)〉+ 〈Ru(s), u(s)〉) ds

}
,
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we obtain Vt(x, T) = 〈P(t, T)x, x〉 and the map T 7→ Vt(x, T) is monotone increasing. Thus we
have existence of the limit

P̄(t) = lim
T→+∞

P(t, T).

By using standard flow properties for ODE, it can be proved that P̄(t) solves
˙̄P(t) + AT P̄(t) + P̄(t)A + Q− P̄(t)BR−1BT P̄(t) = 0, t > t0,

moreover Vt(x, ∞) = 〈P̄(t)x, x〉.
Given a control ũ defined on [t, t + τ] and steering x(t) to 0 in time τ (the existence of such a
control is due to complete controllability assumption), we can extend ũ(·) to all [t,+∞[ by
setting ũ(s) = 0 for s > t + τ, thus we have that J∞(ũ(t)) < +∞. This ensures that the infimum
of J∞(·) is finite. Set now ū(t) = −R−1BT P(t)x(t). We want to prove that it is optimal. Assume
that there exists û(·) such that J∞(û(·)) < J∞(ū). It turns out that there exists T such that we
have for the restrictions

JT(û(·)) < JT(ū)
but this is impossible, since ū(·) achieves the minimum of JT(·).





APPENDIX A

Background remarks

1. Remarks on ordered set

DEFINITION 1.1 (Partial order relation). Let X be a set. A relation �X on X is called a partial
order relation on X if it is reflexive, antisymmetric and transitive, i.e., for all x, y, z ∈ X we have

• x �X x,
• if x �X y and y �X x then y = x,
• if x �X y and y �X z then x �X z.

The pair (X,�X) where X is a set an �X is a partial relation on it, is called partially ordered set or
poset. We will write also y �X x to say x �X y.

DEFINITION 1.2 (Totally ordered chains and sets). Let (X,�X) be a partially ordered set. A
subset S ⊆ X is totally ordered (or a totally ordered chain) if for every x, y ∈ S with x 6= y either
x �X y or y �X x, i.e., every pair of elements of S are comparable by �X . If the whole of X is a
totally ordered chain, we will say that �X is a total order relation on X, and X is called a totally
ordered set.

DEFINITION 1.3 (Minimality, maximality, upper and lower bounds). Let (X,�X) be a partially
ordered set, S ⊆ X. We say that

• m ∈ X is minimal for �X if x �X m implies x = m.
• M ∈ X is maximal for �X if x �X M implies x = M.
• x ∈ X is a lower bound for S if x �X s for all x ∈ S.
• x ∈ X is an upper bound for S if x �X s for all x ∈ S.

LEMMA 1.4 (Zorn). Let (X,�X) be a partially ordered set. Assume that every totally ordered chain S of
X admits an upper bound xS ∈ S. Then in X there are maximal elements for �X .

DEFINITION 1.5 (Infimum and supremum). Let (X,�X) be a partially ordered set, S ⊆ X.
• We say that S has an infimum if there exists z ∈ X such that

(1) z �X s for every s ∈ S,
(2) for any x ∈ X satisfying x �X s for all s ∈ S we have x �X z.

If such a z exists then it is necessarily unique (assume to have z1, z2 ∈ X satisfying the
above properties, then we have z1 �X z2 and z2 �X z1, so z1 = z2), and it will be called
the infimum of S w.r.t. �X and denoted by inf S.
• We say that S has an supremum if there exists z ∈ X such that

(1) z �X s for every s ∈ S,
(2) for any x ∈ X satisfying x �X s for all s ∈ S we have x �X z.

If such a z exists then it is necessarily unique (assume to have z1, z2 ∈ X satisfying the
above properties, then we have z1 �X z2 and z2 �X z1, so z1 = z2), and it will be called
the supremum of S w.r.t. �X and denoted by sup S.

REMARK 1.6. Let X be a set, (Y,�Y) be a partially ordered set, f : X → Y be a map. We will use
the following notation

inf
x∈X

f (x) = inf { f (x) : x ∈ X} ,

sup
x∈X

f (x) = sup { f (x) : x ∈ X} ,

noticing that in both cases the set { f (x) : x ∈ X} ⊆ Y, and the infimum and supremum are
considered w.r.t. �Y.
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DEFINITION 1.7 (Lattices). Let (X,�X) be a partially ordered set. We say that
• (X,�X) is a join-semilattice if for every x1, x2 ∈ X the set {x1, x2} admits a supremum.

In this case we define x1 ∨ x2 = sup{x1, x2},
• (X,�X) is a meet-semilattice if for every x1, x2 ∈ X the set {x1, x2} admits an infimum. In

this case we define x1 ∧ x2 = inf{x1, x2},
• (X,�X) is a lattice if is both a join-semilattice and a meet-semilattice.

By induction, (X,�X) is a join-semilattice (resp. meet-semilattice, lattice) if and only if every
finite subset of X admits a supremum (resp. an infimum, both a supremum and an infimum). We
say furthermore that

• (X,�X) is a complete join-semilattice if every S ⊆ X admits a supremum.
• (X,�X) is a complete meet-semilattice if every S ⊆ X admits an infimum.
• (X,�X) is a complete lattice if every S ⊆ X admits both an infimum and a supremum.

EXAMPLE 1.8.
• The extended real line R∪ {±∞} = [−∞,+∞] is a complete lattice with respect to the

usual order relation, in view of the topological completeness of real line. We set
inf ∅ = +∞ and sup ∅ = −∞.
• Given a set S, the power set P(S) := {F : F ⊆ S} is a complete lattice: given A ⊆ P(S)

we have
supA =

⋃
A∈A

A, infA =
⋂

A∈A
A.

If A = ∅, we take sup ∅ = ∅ and inf ∅ = S.

DEFINITION 1.9 (Order topology). On a totally ordered set (X,�X) we can define the open
intervals w.r.t. the order

]x, y[ := {t ∈ X : x �X t �X y, t 6= x, t 6= y},
]x,+∞[ := {t ∈ X : x �X t, t 6= x},
]−∞, x[ := {t ∈ X : t �X x, t 6= x},

]−∞,+∞[ := X.

The order topology is the topology generated by all the open intervals w.r.t. the order.

2. Remarks on weak topology

We refer to Chapter 3 of [4] for all the proofs and further details on this section.

DEFINITION 2.1 (Weak topology). Let X be a set, (Yi, τi)i∈I be a family of topological spaces and
F = { fi}i∈I be a family of functions such that fi : X → Yi. Since there exists at least one
topology τX on X such that the functions fi : X → Yi become continuous for all i ∈ I (it is
sufficient to take the discrete topology τX = P(X)), and recalling that the intersection of an
arbitrary family of topologies is still a topology, there exists a coarser topology τX on X such that
the functions fi : X → Yi become continuous for all i ∈ I. This topology is the intersection of all
the topologies whith such a property, and it will be called the weak topology σ(X, F ) w.r.t. F .

PROPOSITION 2.2 (Basis for the weak topology). Let X be a set, (Yi, τi)i∈I be a family of topological
spaces and F = { fi}i∈I be a family of functions such that fi : X → Yi. Then a basis for the weak
topology w.r.t. F is given by

B :=

⋂
j∈J

f−1
j (Aj) : J ⊆ I, J finite , Aj open subset of Yj for all j ∈ J

 ,

in the sense that every open set of the weak topology w.r.t. F can be written as an arbitrary union of
elements in B.

PROPOSITION 2.3 (Continuity for the weak topology). Let X be a set, (Yi, τi)i∈I be a family of
topological spaces and F = { fi}i∈I be a family of functions such that fi : X → Yi. Let (Z, τZ) be another
topological space. Then a map g : Z → X, where X is equipped with the weak topology w.r.t. F , is
continuous if and only if fi ◦ g : Z → Yi is continuous for all i ∈ I.
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We consider now the following particular case:
• Yi = R for all i ∈ I, thus F ⊆ YX := { f : X → Y : f function};
• X is a normed space, endowed to the topology given by its norm ‖ · ‖X (we will call it

the strong topology on X);
• F = X′ := {` : X → R : ` is linear and continuous w.r.t. the strong topology on X.}

DEFINITION 2.4 (Weak topology on normed spaces). Let X be a normed space, the topology
σ(X, X′) is called the weak topology on X (we omit to specify w.r.t. X′). Given a sequence {xk}k∈N

in X and x ∈ X we say that xk weakly converges to x if if converges w.r.t. σ(X, X′). In this case, x is
the weak limit of {xk}k∈N and we will write xk ⇀ x.

THEOREM 2.5 (Properties of the weak topology on a normed space). Let X be a normed space. The
weak topology σ(X, X′) enjoys the following properties:

(1) The weak topology is Hausdorff (equivalently, if the weak limit exists, then it is unique).
(2) xk ⇀ x if and only if 〈`, xk〉X′ ,X → 〈`, x〉X′ ,X in R for all ` ∈ X′.
(3) Given x0 ∈ X, a basis of neighborhoods of x0 for σ(X, X′) is given by finite intersection of sets

of the form
V`,r := {x ∈ X : |〈`, x− x0〉X′ ,X | < r}

where r > 0, ` ∈ X′.
(4) If xn → x strongly (i.e., according to the norm of X, equivalently if ‖xn − x‖X → 0) then

xn ⇀ x, the converse in general does not hold.
(5) If xn ⇀ x then ‖xn‖X is bounded and ‖x‖X ≤ lim inf

n→∞
‖xn‖X .

(6) If xn ⇀ x and ‖ fn − f ‖X′ → 0 then fn(xn)→ f (x).
(7) The weak and the strong topology coincide on X if and only if X is finite-dimensional, otherwise

the weak topology is strictly coarser than the strong topology.
(8) A convex set C ⊆ X is closed w.r.t. the strong topology if and only if it is closed w.r.t. the weak

topology σ(X, X′).

PROPOSITION 2.6. Let E and F be two Banach spaces and let T : E→ F be a linear operator. Then T is
continuous in the strong topologies on E and F if and only if it is continuous from E endowed with
σ(E, E′) topology into F endowed with σ(F, F′).

EXERCISE 2.7. Let X be an infinite-dimensional normed space.
• the set S := {x ∈ X : ‖x‖X = 1} is not closed w.r.t. σ(X, X′) and its closure w.r.t. the

weak topology is {x ∈ X : ‖x‖X ≤ 1};
• the set B(0, 1) := {x ∈ X : ‖x‖ < 1} is not open w.r.t. σ(X, X′) and its interior w.r.t. the

weak topology is empty.

DEFINITION 2.8 (Bidual space). Let X be a normed space. We define its bidual space X′′ by setting

X′′ = (X′)′ = { f : X′ → R : f is linear and continuous }.
Given x ∈ X, we define the evaluation on x δx : X′ → R by setting δx(`) = `(x) for all ` ∈ X′

PROPOSITION 2.9 (Properties of the evaluation). Let X be a normed space, for all x ∈ X we have
δx ∈ X′′. The map J : X → X′′ defined as J(x) = δx is linear and continuous w.r.t. the strong and weak
topologies on X and X′′, and we will write

δx(`) = 〈J(x), `〉X′′ ,X = 〈Jx, `〉X′′ ,X .

DEFINITION 2.10 (Reflexive spaces). We say that a normed space is reflexive if J : X → X′′ is an
homeomorphism.

DEFINITION 2.11 (Weak∗ topology). Let X be a normed space. The weak∗ topology σ(X′, X) on X′

is the weak topology on X′ w.r.t. F = {Jx : x ∈ X} ⊆ X′′. Given a sequence {x∗k}k∈N in X′ and
x∗ ∈ X′ we say that x∗k weakly∗ converges to x∗ if if converges w.r.t. σ(X′, X). In this case, x∗ is the
weak∗ limit of {x∗k}k∈N and we will write x∗k ⇀ x∗.

PROPOSITION 2.12. Let X be a normed space. The following properties hold:
(1) the weak∗ topology is Hausdorff;
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(2) given f ∈ X′, a basis for the set of neighborhoods of f in the weak∗ topology is given by

V = { f ∈ X′ : |〈 f − f0, xi〉X′ ,X | < ε, for all i ∈ I},
where I is finite, xi ∈ X for all i ∈ I and ε > 0;

Let { fn}n∈N be a sequence in X′, f ∈ X′, {xn}n∈N be a sequence, x ∈ X. Then:
(1) fn ⇀∗ f (i.e., fn weakly∗ converges to f ) if and only if 〈 fn, x〉X′ ,X → 〈 f , x〉X′ ,X for all x ∈ X;
(2) If fn → f strongly, then fn ⇀ f weakly in σ(X′, X′′), and if fn ⇀ f weakly in σ(X′, X′′) then

fn ⇀∗ f (i.e., weakly∗, or in σ(X′, X));
(3) If fn ⇀∗ f , then ‖ fn‖ is bounded and ‖ f ‖ ≤ lim inf ‖ fn‖;
(4) If fn ⇀∗ f and xn → x strongly in X, then 〈 fn, xn〉 → 〈 f , x〉.

We recall now the following fundamental theorems:

THEOREM 2.13 (Banach-Alaoglu-Bourbaki). The closed unit ball B′ := {x∗ ∈ X′ : ‖x∗‖X′ ≤ 1} of
X′ is weakly∗-compact.

THEOREM 2.14 (Kakutani). The closed unit ball B := {x ∈ X : ‖x‖X ≤ 1} of X is weakly compact if
and only if X is reflexive.

3. Remarks on Sobolev spaces

Let I be a nonempty open interval of R. Assume that ψ : I → R is of class C1(I). Then, according
to the formula of integration by parts we have for every ϕ ∈ C1

c (I) (i.e. ϕ ∈ C1(I) is zero outside
a compact subset of I):∫

I
ϕ(x)ψ′(x) dx = [ϕ(x)ψ(x)]x=sup I

x=inf I −
∫

I
ϕ′(x)ψ(x) dx = −

∫
I

ϕ′(x)ψ(x) dx,

since lim
x→inf I

ϕ(x) = lim
x→sup I

ϕ(x) = 0. We notice that the last term require much less regularity on

ψ to be defined, since it does not require ψ to be C1(I), but just L1
loc(I) (i.e. for every K compact

subset of I we have ψ ∈ L1(K).
This suggest the following:

DEFINITION 3.1 (Weak derivative in R). Let I be a nonempty open interval of R. Let f : I → R

be a function of L1
loc(I). We say that g ∈ L1

loc(I) is the weak derivative or derivative in the weak sense
of f if for every ϕ ∈ C1

c (I) we have∫
I

g(x) ϕ(x) dx = −
∫

I
f (x) ϕ′(x) dx.

If a function g satisfies the above relation, then is unique and will be denoted by f ′. For smooth
functions, the weak derivative and the classical one coicide.

The above definition can be easily extended to the several variable’s case:

DEFINITION 3.2 (Weak derivative). Let Ω be a nonempty open subset of Rn. Let f : Ω→ R be a
function of L1

loc(Ω). We say that gi ∈ L1
loc(I) is the i-th weak partial derivative or i-th partial

derivative in the weak sense of f if for every ϕ ∈ C1
c (I) we have∫

I
gi(x) ϕ(x) dx = −

∫
I

f (x) ∂xi ϕ(x) dx.

If a function gi satisfies the above relation, then is unique and will be denoted by ∂xi f . For
smooth functions, the weak derivative and the classical one coincide.

DEFINITION 3.3 (Sobolev space). Let Ω be a nonempty open subset of Rn, 1 ≤ p ≤ ∞, we define
the Sobolev space W1,p(Ω):

W1,p(Ω; R) := { f ∈ Lp(Ω; R) : ∇ f := (∂x1 f , . . . , ∂xn f ) ∈ Lp(Ω; Rn)}.

If p = 2 we set H1(Ω; R) = W1,2(Ω; R). Sobolev spaces are Banach spaces when equipped with
the norm:

‖ f ‖W1,p(Ω;R) := ‖ f ‖Lp(Ω;R) + ‖∇ f ‖Lp(Ω;Rn).
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In the case 1 < p < +∞ we can use also the equivalent norm:

‖ f ‖W1,p(Ω;R) :=

(
‖ f ‖p

Lp(Ω;R)
+

n

∑
i=1
‖∂xi f ‖p

Lp(Ω;R)

)1/p

.

The space H1(Ω; R) is an Hilbert space with the scalar product:

〈 f1, f2〉H1(Ω;R) := 〈 f1, f2〉L2(Ω;R) + 〈∇ f1,∇ f2〉L2(Ω;Rn)

The space W1,p(Ω; R) is separable for 1 ≤ p < +∞ and reflexive for 1 < p < +∞.

THEOREM 3.4 (Approximation by smooth functions). Let Ω be an open subset of Rn, u ∈W1,p(Ω)
with 1 ≤ p < +∞. Then for any open subset ω compactly contained in Ω there exists a sequence
{un}n∈N ⊆ C∞

c (Rn) such that un|Ω → u in Lp(Ω) and ∇un|ω → ∇u|ω in Lp(ω; Rn). If Ω = Rn or
Ω has Lipschitz continuous boundary, there exists a sequence {un}n∈N ⊆ C∞

c (Rn) such that un|Ω → u
in W1,p(Ω).

THEOREM 3.5 (Characterization of Sobolev space). Let Ω be an open subset of Rn, u ∈ Lp(Ω; R)
with 1 < p ≤ +∞ and let p′ be such that 1/p + 1/p′ = 1. The following are equivalent:

(1) u ∈W1,p(Ω; R);
(2) there exists C > 0 such that for every ϕ ∈ C∞

c (Ω; R) and i = 1, . . . , n it holds:∣∣∣∣∫|Ω u(x)∂xi ϕ(x) dx
∣∣∣∣ ≤ C‖ϕ′‖Lp′ (Ω;R)

.

(3) There exists C > 0 such that for every open subset ω compactly contained in Ω and h ∈ R with
|h| ≤ infy∈∂Ω dist(y, ω) it holds (τhu(x) = u(x + h))

‖τhu− u‖Lp(ω) ≤ C|h|

Moreover, we can take C = ‖∇u‖Lp(Ω;Rn).

In the case p = 1, we have still that (2) and (3) are equivalent, and (1) implies both of them.
Function satisfying just (2) or (3) are called function of bounded variation and form the set BV(Ω).

COROLLARY 3.6. If u ∈W1,p(Ω) and ∇u = 0 a.e., then u is constant on each connected component of
Ω.

PROPOSITION 3.7 (product rule). Let Ω be an open subset of Rn. If u, v ∈ L∞(Ω) ∩W1,p(Ω) with
1 ≤ p ≤ ∞ then uv ∈W1,p(Ω) ∩ L∞(Ω) and ∂xi (uv) = v∂xi u + u∂xi v for every i = 1, . . . , n.

DEFINITION 3.8 (Higher order Sobolev spaces). Given Ω ⊆ Rn open and nonempty, and m > 1
we define by induction the following spaces:

Wm,p(Ω; R) := {u ∈ Lp(Ω, R) : ∇u ∈Wm−1,p(Ω; Rn)}.

and set Hm(Ω; R) = Wm,2(R). We norm Wm,p(Ω; R) by summing all the Lp norm af all the
(mixed) derivatives of order from 0 up to m, obtaining also in this case a Banach space. In a
similar way, Hm is an Hilbert space.

THEOREM 3.9 (Sobolev embedding theorem). Let 1 ≤ p < n, and set 1
p∗ =

1
p −

1
n . Then for every

q ∈ [p, p∗]
W1,p(Rn; R) ⊆ Lq(Rn; R)

with continuous injection, and there exists C = Cn,p > 0 such that

‖u‖
L

1
p−

1
n (Rn ;R)

≤ C‖∇u‖Lp(Ω;Rn), for every u ∈W1,p(Rn; R).

THEOREM 3.10 (Limit case p = n). For every q ∈ [n, ∞[

W1,n(Rn; R) ⊆ Lq(Rn; R)

with continuous injection.
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THEOREM 3.11 (Morrey). Let p > n, then

W1,p(Rn; R) ⊆ L∞(Rn; R)

with continuous injection, and there exists C = Cn,p > 0 such that for every W1,p(Rn; R) we have

|u(y)− u(x)| ≤ C|x− y|α‖∇u‖Lp ,

with α = 1− (n/p). This means that in this case every function of W1,p(Rn; R) admits an Hölder
continuous representative.

THEOREM 3.12. Assume that Ω is an open subset of Rn with ∂Ω bounded and of class C1, or Ω is an
half space. Let 1 ≤ p ≤ ∞. Then

W1,p(Ω) ⊂ Lp∗(Ω), for p < n;

W1,n(Ω) ⊂ Lq(Ω), for n ≤ q < ∞;

W1,p(Ω) ⊂ L∞(Ω), for p > n;

where 1
p∗ =

1
p −

1
n , and all the injections are continuous. Moreover, if p > n there exists C = Cn,p,Ω > 0

such that for every W1,p(Rn; R) we have

|u(y)− u(x)| ≤ C|x− y|α‖u‖W1,p ,

with α = 1− (n/p).

THEOREM 3.13 (Rellich-Kondrachov). Assume that Ω is an open bounded subset of Rn of class C1.
Let 1 ≤ p ≤ ∞. Then

W1,p(Ω) ⊂ Lp∗(Ω), for p < n;

W1,n(Ω) ⊂ Lq(Ω), for n ≤ q < ∞;

W1,p(Ω) ⊂ C0(Ω), for p > n;

where 1
p∗ =

1
p −

1
n , and all the injections are compact. In particular, for all p, N we have

W1,p(Ω) ⊂ Lp(Ω) with compact injection.

In many cases there may arise the problem of giving value 0 at the boundary of a set. This notion
must be handled with care, since the boundary of an open C1 subset of Rn is a set of null
measure in Rn.
We proceed in a different way:

DEFINITION 3.14 (Null trace at the boundary). We denote by W1,p
0 (Ω) the closure of C1

c (Ω) with
respect to the norm of W1,p(Ω). With this definition, we have that u ∈W1,p(Ω) ∩ C0(Ω̄) with
1 ≤ p < +∞ belongs to W1,p

0 (Ω) if and only if u = 0 on Ω, thus recovering the classical
definition. We set H1

0(Ω) = W1,2
0 (Ω). The space W1,p

0 (Ω) inherits the norm of W1,p(Ω) and is a
Banach space. The space H1

0(Ω) equipped with the scalar product of H1(Ω) is an Hilbert space.

THEOREM 3.15 (Poincaré’s inequality). Assume 1 ≤ p < ∞ and that Ω is bounded. Then there exists
C = C(Ω, p) > 0 such that

‖u‖Lp ≤ C‖∇u‖Lp(Ω;Rd), for all u ∈W1,p
0 (Ω).

In particular, ‖∇u‖Lp defines on W1,p
0 (Ω) an equivalent norm on W1,p

0 . In the case of H1
0(Ω), the scalar

product 〈∇u1,∇u2〉L2 is a scalar product that induces on H1
0(Ω) a norm equivalent to the norm of

H1
0(Ω).

REMARK 3.16. Poincaré inequality holds also if Ω has finite measure or if it has bounded
projection to a straigth line.
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DEFINITION 3.17 (Dual spaces). For 1 ≤ p < +∞ we set W−1,p′ = (W1,p
0 )′, where 1

p + 1
p′ = 1,

and by H−1(Ω) the dual of H1
0(Ω). We identify L2(Ω) with its dual, but we do not identify H1

0
with its dual. We have

H1
0(Ω) ⊂ L2(Ω) ⊂ H−1(Ω),

with continuous and dense injections.

PROPOSITION 3.18 (Characterization of the dual). Let F ∈W−1,p′(Ω) with 1 ≤ p < +∞. Then
there exists f0, . . . fn ∈ Lp′(Ω) such that

〈F, v〉
W−1,p′ ,W1,p

0
=
∫

Ω
f0(x) v(x) dx +

n

∑
i=1

∫
Ω

fi(x)∂xi v(x) dx, for all v ∈W1,p
0 ,

and ‖F‖W−1,p′ = maxi=1,...,n ‖ fi‖Lp′ . Moreover, if Ω is bounded, we can take f0 = 0.
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