Qualche esercizio di Analisi funzionale A.A. 2011/12, Marco Squassina - Foglio N.4 / Esercizi vari

Pb 1. Si provi che per ogni M > 0 esiste $f \in C([0,1])$ con $||f||_{L^1(0,1)} = 1$ e f(0) > M.

Pb 2. Sia $(a_n) \subset \mathbb{R}^+$ con $a_n \to 0$. Sia $f_n : I \to \mathbb{R}$ definita da $f_n(x) = a_n$ se $x \in (a_n^{-1}, 2a_n^{-1})$ e $f_n(x) = 0$ altrove. Si studi il passaggio al limite sotto il segno di integrale per I = [0, 1] e $I = \mathbb{R}$.

Pb 3. Sia X is sottospazio delle funzioni di $L^2(-1,1)$ costanti quasi ovungue. Chi è X^{\perp} ?

Pb 4. L'insieme $B = \{ f \in L^2(0,1) : \int_0^1 (1+x) f^2 < 1 \}$ è limitato?

Pb 5. Sia $f_n: [0,\infty) \to \mathbb{R}$, $f_n(x) = 0$ su [0,n) e $f_n(x) = 1$ su $[n,+\infty)$. Si calcoli il limite puntuale f della successione (f_n) e di $\mathcal{L}^1(\{x: |f_n(x) - f(x)| > \varepsilon\})$, per ogni $\varepsilon > 0$.

Pb 6. Sia $f:[0,1]\to\mathbb{R}$, f(x)=0 per $x\in\mathbb{Q}$ e f(x)=1 per $x\in[0,1]\setminus\mathbb{Q}$. Si trovi $g:[0,1]\to\mathbb{R}$ continua con g=f q.o.

Pb 7. Siano $\varphi \in L^{3/2}([0,1])$ e $\psi \in L^m([0,1])$ per m>1. Sia $f_n:[0,1] \to \mathbb{R}$ una successione di funzioni misurabili tali che $|f_n| \le \varphi \psi$ e $f_n \to f$ per $n \to \infty$ puntualmente q.o. Dire per quali valori di m>1 si ha $\int_0^1 f_n \to \int_0^1 f$ per $n \to \infty$.

Pb 8. Siano $\alpha > 0$ e $f: \mathbb{R}^+ \to \mathbb{R}^+$ una funzione continua tale che $f(x) \le \frac{1}{x^\alpha}$ per ogni $x \ge 1$. Dire per quali valori di $\alpha > 0$ si ha che $f \in L^4(\mathbb{R}^+)$ giustificando l'affermazione.

Pb 9. Sia $f: E \to \mathbb{R}^+$ integrabile con $\int_E f \le 9$. Si dimostri che $\mathcal{L}^1(\{x \in E: f(x) \ge 3\}) \le 3$.

Pb 10. Sia (\mathbb{R}, d) dove $d(x, y) = \frac{|x-y|}{1+|x-y|}$. Si provi che d è una metrica.

Pb 11. In riferimento al **Pb 10**, si dica se (\mathbb{R}, d) è limitato o illimitato.

Pb 12. In riferimento al **Pb 10**, si dica se (\mathbb{R}, d) è o no compatto.

Pb 13. Sia

$$c_0 = \Big\{ x = (\xi_1, \dots, \xi_n, \dots) : \xi_j \in \mathbb{C}, \; \xi_j \to 0 \; \text{per} \; j \to \infty \Big\}.$$

Si mostri che c_0 è un sottoinsieme chiuso di ℓ_∞ ,

$$\ell_{\infty} = \Big\{ x = (\xi_1, \dots, \xi_n, \dots) : \xi_j \in \mathbb{C}, \ \|x\|_{\infty} = \sup_{j \in \mathbb{N}} |\xi_j| < \infty \Big\}.$$

se munito della norma $\|\cdot\|_{\infty}$.

Pb 14. Sia, per ogni $j \ge 1$,

$$M_j := \left\{ f \in L^2(0,1) : \int_0^1 |f|^2 \le j \right\}.$$

Provare che M_j è un sottoinsieme chiuso di $L^1(0,1)$.

Pb 15. Sia $E = \{f \in C([0,1]) : f(1) = 0\}$ munito della norma del sup e sia

$$Tf := \int_0^1 f.$$

Mostrare che $T \in (C([0,1]))^*$ con norma ||T|| = 1 e per ogni $f \in E$ con $f \neq 0$, si ha $Tf < ||f||_{\infty}$.

Pb 16. Sia X spazio di Hilbert e C sottospazio chiuso. Se $P_C: X \to C$ denota la proiezione su C, si provi

$$(Px, y) = (x, Py), \quad \forall x, y \in X.$$

Pb 17. Sia *X* spazio di Hilbert $\xi, \eta \in X$, e $T: X \to X$ l'operatore definito ponendo

$$Tx := (x, \xi)\eta, \quad \forall x \in X.$$

Calcolare la norma di *T* e determinare l'operatore aggiunto di *T*. Dire quando *T* risulta autoaggiunto.

Pb 18. Mostrare che $E_{\alpha} = \{ f \in C([0,1]) : f(0) = \alpha \}$ è denso in $L^2(0,1)$ per ogni $\alpha \in \mathbb{R}$.

Verona, 15 dicembre 2011