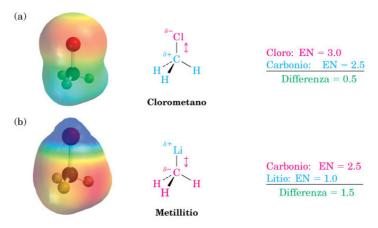
Legame chimico: covalente polare

Legame covalente polare

Il passaggio dal legame covalente al legame ionico è il risultato di una distribuzione elettronica non simmetrica. Il simbolo δ (lettera greca delta minuscola) indica una carica parziale, sia positiva (δ +) per gli atomi poveri di elettroni sia negativa (δ -) per gli atomi ricchi di elettroni.

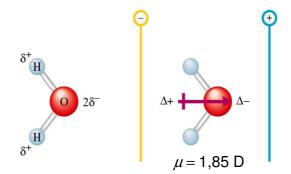
Legame covalente simmetrico Legame covalente Legame ionico polare


Legame chimico: covalente polare

Valori di **elettronegatività** di vari elementi della tavola periodica. In genere, l'elettronegatività aumenta andando da sinistra a destra della tavola periodica e diminuisce andando dall'alto verso il basso. I valori sono basati su una scala arbitraria, con F=4.0 e Cs=0.7. Il carbonio ha una elettronegatività pari a 2.5. Gli elementi colorati in rosso sono i più elettronegativi, quelli in verde hanno valori di elettronegatività intermedi, e quelli in giallo sono i meno elettronegativi.

Legame chimico: covalente polare

Nel clorometano, CH_3CI , il legame C-CI è un legame covalente polare; (b) nel metillitio, CH_3Li , il legame C-Li è un legame covalente polare. Le rappresentazioni generate dal computer, dette **mappe di potenziale elettrostatico**, fanno uso di colori per mostrare le distribuzioni di carica calcolate: rosso per le zone ricche di elettroni, blu per le zone povere di elettroni.


Effetto induttivo: polarizzazione della nuvola elettronica di un legame dovuta alla differenza di elettronegatività degli atomi coinvolti

Legame chimico: covalente polare

Il momento dipolare misura la polarità delle molecole

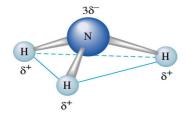
Quando i centri di massa delle cariche positive e negative sono separati la molecola possiede momento dipolare (µ)

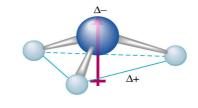
$$\mu$$
 = q x r
1Debye = 3.336 x 10⁻³⁰ Cm

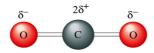
Legame chimico: covalente polare

$$\mu_{HF} = 1.83 \, \mathrm{D}$$

Legame HF = $92 \text{ pm} (92 \times 10^{-12} \text{ m})$


Se il legame fosse ionico μ = (1,6x10⁻¹⁹C) (92x10⁻¹²m)= 1.5 x 10⁻²⁹ C x m (1.5 x 10⁻²⁹ C x m) x (1D/3.336 x 10⁻³⁰ C.m) = 4.4 D


1,83/4,4= 41% carattere ionico



Legame chimico: covalente polare

• La geometria e la simmetria molecolare giocano un ruolo chiave nel determinare μ

• I dipoli si sommano vettorialmente, molecole simmetriche hanno $\mu = 0$

Contributo coppie solitarie

Due coppie solitarie

Acqua,
$$H_2O$$
 (μ = 1.85 D)

Ammoniaca, NH_3 (μ = 1.47 D)

Simmetria molecolare

H

Complessivo

Ammoniaca, NH_3 (μ = 1.47 D)

Simmetria molecolare

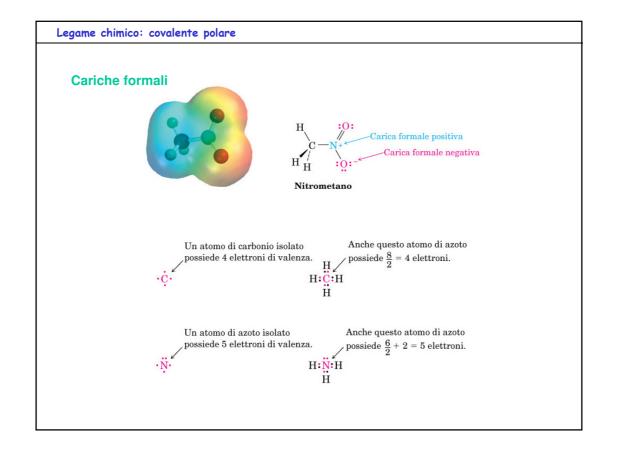
H

Cl

Cl

Cl

H


H

Metano

(μ = 0 D)

Tetraclorometano

(μ = 0 D)

$$\begin{array}{ll} \textbf{carica formale} &= \begin{pmatrix} numero \ di \\ elettroni \ di \ valenza \\ nell'atomo \ isolato \end{pmatrix} - \begin{pmatrix} Numero \ di \\ elettroni \ di \ valenza \\ nell'atomo \ legato \end{pmatrix} \\ &= \begin{pmatrix} Numero \ di \\ elettroni \ di \\ valenza \end{pmatrix} - \begin{pmatrix} Met \ deg \ li \\ elettroni \\ di \ legame \end{pmatrix} - \begin{pmatrix} Numero \ di \\ elettroni \ di \\ non \ legame \end{pmatrix}$$

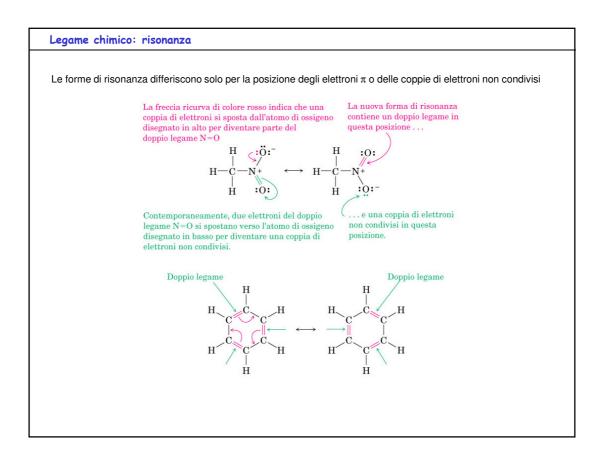
$$CH_3NO_2 = H : \ddot{C} : N$$

Cario	he form	ali su at	omi di ca	rbonio, a	zoto e os	sigeno			
Atomo		С			N			0	
Struttura	-C+	$-\stackrel{ }{\operatorname{c}}-$	-ë-	- <u>N</u> +	- <u>Ņ</u> -	- <u>ÿ</u> -	- <u>ö</u> +	- <u>ö</u> -	–ö:
Numero di legami	3	4	3	4	3	2	3	2	1
Coppie elettroniche non condivise	0	0	1	0	1	2	1	2	3
Carica formale	+1	0	-1	+1	0	-1	+1	0	-1

Legame chimico: risonanza

La risonanza

Doppio legame con questo ossigeno?


N-O 122pm

(N-O 130pm; N=O 116pm)

Forme di risonanza

Ibrido di risonanza

Legame chimico: risonanza

Acetone

Le forme di risonanza non sono necessariamente equivalenti

Anione acetato Forma di risonanza NON corretta

Le forme di risonanza devono essere formule di Lewis corrette e seguire le normali regole di valenza

L'ibrido di risonanza è più stabile di ogni forma di risonanza

Maggiore il numero di forme limite, maggiore la stabilità dell'ibrido

Legame chimico: risonanza

Generalizzazione della risonanza per gruppi di tre atomi comprendenti un legame multiplo

$$\begin{array}{c} 0,1,o\ 2\ \text{elettroni} \\ \\ X \nearrow Y \\ Z \end{array} \longleftrightarrow \begin{array}{c} 0,1,o\ 2\ \text{elettroni} \\ \\ X \nearrow Y \\ Z \end{array}$$

$$\text{Legame multiplo}$$

2,4-Pentandione

Forza di acidi e basi: K_a e pK_a

$$CH_3-C-OH+H_2O \rightleftharpoons CH_3-C-O^-+H_3O^+$$

La reazione di acido acetico con H₂O è un equilibrio:

$$K_{\text{eq}} = \frac{[\text{H}_3\text{O}^+] [\text{CH}_3\text{CO}_2^-]}{[\text{CH}_3\text{CO}_2\text{H}] [\text{H}_2\text{O}]}$$

$$K_a = K_{eq} [H_2O] = \frac{[H_3O^+] [CH_3CO_2^-]}{[CH_3CO_2H]}$$

$$HA + H_2O \Longrightarrow H_3O^+ + A^- \qquad K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

Un elevato valore di K_a identifica un acido forte, un valore basso un acido debole

Legame chimico: acidi e basi

$$pK_a = -\log K_a$$

Più grande è il valore di pK_a, più debole è l'acido

$$CH_3CO_2H < CF_3CO_2H < HCl$$

$$pK_a = 4,76 \qquad pK_a = 0 \qquad pK_a = -7$$

Acido debole Acido molto forte

Forza acida crescente

Qual è il pK_a dell'H₂O?

$$K_a = \frac{[\text{H}_3\text{O}^+] [\text{OH}^-]}{[\text{H}_2\text{O}]}$$
 $K_a = \frac{(10^{-7})(10^{-7})}{(55,5)} = 1.8 \times 10^{-16}$ p $K_a = 15.7$

Quanto è concentrata l' $\rm H_2O$? 1 mole di $\rm H_2O$ ha la massa di 18g e occupa 18cm³ per cui in 1 dm³ vi saranno 1000/18=55.56mol

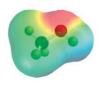
$$\left[H_3O^+\right] = K_a \frac{\left[AH\right]}{\left[A^-\right]}$$

 $pH = pK_a + \log\left(\frac{\left[A^{-}\right]}{\left[AH\right]}\right)$

A pH maggiore del suo pK_a l'acido sarà più solubile, A^{\cdot} è più solubile che non l'acido indissociato

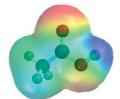
Legame chimico: acidi e basi

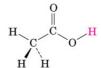
	Acido	Nome	p <i>K</i> _a	Base coniugata	Nome	
Acido più debole	CH₃CH₂OH	Etanolo	16.00	$\mathrm{CH_{3}CH_{2}O^{-}}$	Ione etossido	Base più forte
	H_2O	Acqua	15.74	HO-	Ione idrossido	
	HCN	Acido cianidrico	9.31	CN-	Ione cianuro	★
	CH_3CO_2H	Acido acetico	4.76	$\mathrm{CH_{3}CO_{2}^{-}}$	Ione acetato	
	HF	Acido fluoridrico	3.45	\mathbf{F}^{-}	Ione fluoruro	
	HNO_3	Acido nitrico	-1.3	$\mathrm{NO_3}^-$	Ione nitrato	
Acido più forte	HCl	Acido cloridrico	-7.0	Cl-	Ione cloruro	Base più debo


Prevedere l'andamento delle reazioni acido-base usando i valori di pKa

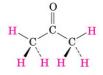
I prodotti devono essere più stabili (meno forti, meno reattivi) dei reagenti

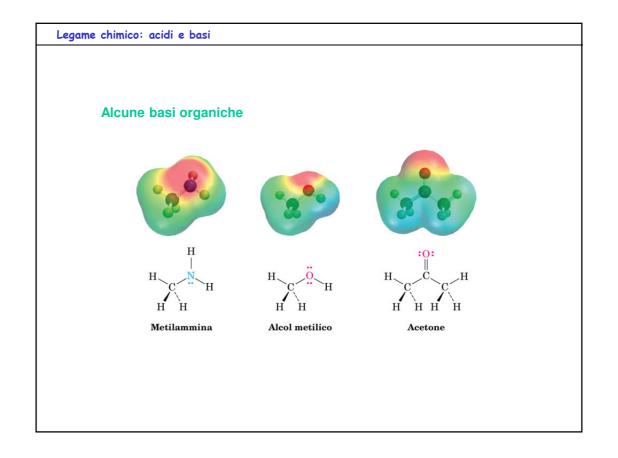
Acido Base Acido Base più forte più debole più debole


Legame chimico: acidi e basi


Alcuni acidi organici



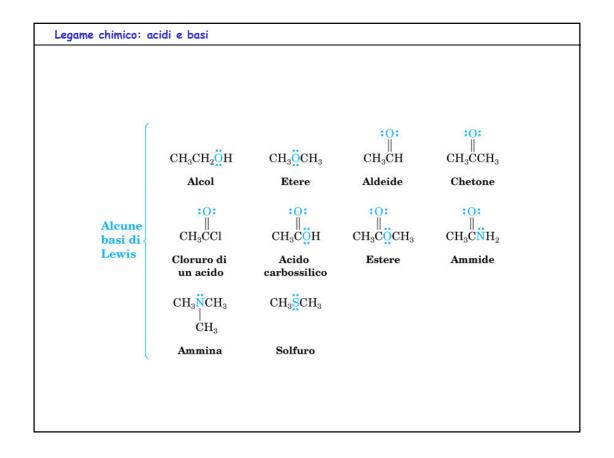

Alcol metilico $pK_a = 15.54$



Acido acetico $pK_a = 4.76$

Acetone $pK_a = 19.3$

Acidi e basi secondo Lewis


Acido: acquista una coppia di elettroni Base: cede una coppia di elettroni

Base di Lewis Acido di Lewis

Legame chimico: acidi e basi

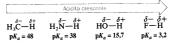
Reazioni di alcuni acidi di Lewis con alcune basi di Lewis. Gli acidi di Lewis accettano una coppia di elettroni; le basi di Lewis cedono una coppia di elettroni. Notare come il movimento degli elettroni dalla base di Lewis all'acido di Lewis viene indicato per mezzo delle frecce ricurve.

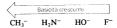
Possibile attacco in più posizioni

Legame chimico: acidi e basi

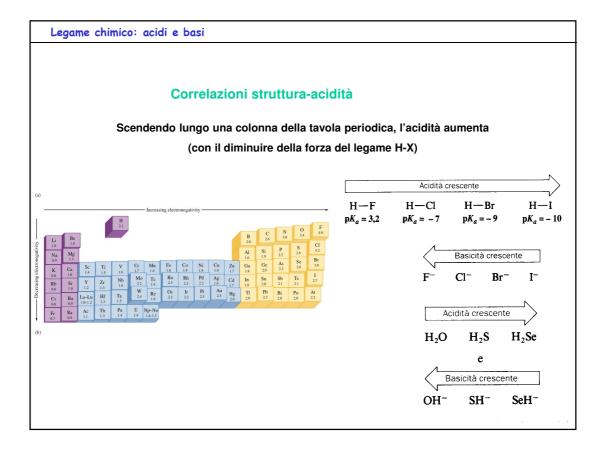
Correlazioni struttura-acidità

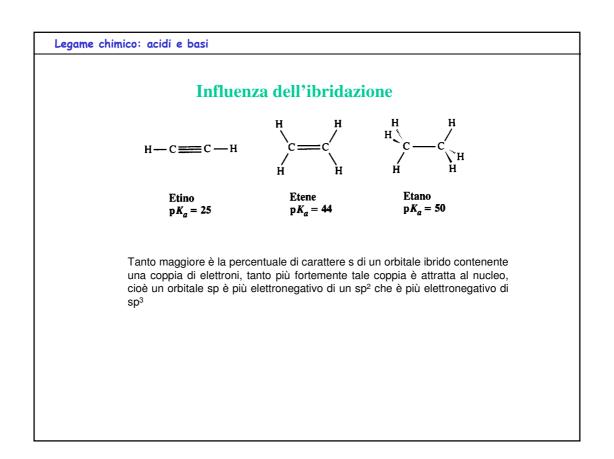
Lungo una riga della tabella periodica, le forze di legame sono pressoché paragonabili.


Fattore dominante : elettronegatività dell'atomo legato ad H.


- Polarità del legame con il protone nell'acido indissociato
- Stabilità della base coniugata

Poiché il fluoro è l'elemento più elettronegativo, il legame H—F è il più polarizzato e l'idrogeno di H—F è il più positivo. Pertanto H—F è l'acido più forte:




Poiché H—F è l'acido più forte, la sua base coniugata, F-, è la base più debole; inoltre per la sua elettronegatività lo ione fluoruiro sostiene più facilmente la carica negativa e questo contribuisce a rendere lo ione F- una base debole.

Lo ione CH_3^- è l'anione meno stabile di tutti, in quanto il carbonio per la sua scarsa elettronegatività stabilizza di meno la carica negativa. Questo anione è perciò la base più forte.

Effetti induttivi

L'effetto elettronico che trae origine dalle differenze di elettronegatività degli atomi e dalla conseguente polarizzazione dei legami si chiama effetto induttivo e si indica con +I (effetto di rilascio) e -I (effetto di attrazione).

I si trasmette attraverso i legami e dipende dalla distanza.

CH₃-C-OH
Acido acetico
$$pK_a = 4,76$$

CH₃-CH₂-OH
Alcol etilico
 $pK_a = 15,9$

CH₃-C-O-H
CH₃-CH₂-O-H
Acido niù forte
Acido niù forte
Acido niù forte
Acido niù forte

$$\begin{array}{cccc} CH_3-\hat{C}-\overset{\wedge}{\leftarrow}O-\overset{\leftarrow}{\leftarrow}H & CH_3-CH_2-O-\overset{\leftarrow}{\leftarrow}H \\ \text{Acido più forte} & \text{Acido più debole} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ CH_3-\hat{C}-\overset{\wedge}{\leftarrow}O^{\delta-} & CH_3-CH_2-\overset{\leftarrow}{\leftarrow}O^- \\ & & & & & \\ Base più debole & & Base più forte \\ \end{array}$$

$$\begin{array}{ccccc} O & O & O \\ CH_3 - C & OH & Cl - CH_2 - C & OH \\ pK_a = 4,76 & pK_a = 2,86 \end{array}$$

Legame chimico: rappresentazioni

Composto	Struttura di Kekulé	Struttura a scheletro	
Isoprene, C_5H_8	H H H H		
${\it Metilicicloes ano, C_7H_{14}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Fenolo, C_6H_6O	H C C OH	Ol	