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Compression and Coding

Theory and Applications

Part 1: Fundamentals
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Transformation

Ordering (significance)

Transmitter (Encoder) Receiver (Decoder)

Channelinformation 
unit

What is the problem?
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Why is it important?

• The available resources for signal communication and archiving are limited

StandardizationCompression
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Basic steps

Transformation/
Prediction

Extraction of the 
symbols Encoding

• Goal: minimize the amount of resources needed to transmit a source signal from 
the transmitter to the receiver

• Basic steps:
– Reduction of the redundancy in the data

• Transform-based coding
• Prediction-based coding

– Translate the resulting information from to a sequence of symbols suitable for encoding
– Entropy coding of the sequence of symbols

Quantization

Entropy coding
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Basic idea

• Exploit the redundancy among the data samples for an effective representation of 
the data

• Classical coding schemes
– Look at the data as to set of numbers and reduce the mathematical and/or statistical 

redundancy among the samples
• JPEG, MPEG

• Second generation coding schemes
– Adapt the coding scheme to the different image regions featuring some omogeneity for 

optimizing the coding gain given the data
• ROI based coding, JPEG2000

• Model-based coding
– Look at the data as to perceptual information and exploit the way such information is 

processed by the sensory system to improve compression
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Compression modes

• Lossless
– The original information can be recovered without loss from the compressed data
– Low compression factors

• Less than a factor 3 for natural images

• Lossy
– The compression process implies the loss of information that cannot be recovered at the 

decoding
– Basically due to quantization
– Very high compression factors
– Degradation of the perceived quality

⇒ Key point: rate/distortion tradeoff
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Information theoretical limits

• Noisy channel coding theorem
– Information can be transmitted reliably (i.e. without error) over a noisy channel at any 

source rate, R, below a so-called capacity C of the channel
R<C for reliable transmission

• Source coding theorem
– There exists a map from the source waveform to the codewords such that for a given 

distortion D, R(D) bits (per source sample) are sufficient to enable waveform 
reconstruction with an average distortion that is arbitrarily close to D. Therefore, the 
actual rate R has to obey:

R ≥ R(D) for fidelity given by D
R(D): rate distortion function
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Qualitative R(D) curves

• R(D) curves are monotonically no-increasing
– Noteworthy points

• R(0): rate needed for exact reproduction of the source⇔ entropy of the source
• Ropt, Dopt: minimum rate for a given distortion / minimum distortion at a given rate

Information theoretic bound

low complexity coder

medium complexity coder

high complexity coder

D

R
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Entropy Coding

Fundamentals
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Information

• Information
Let X be a Random Variable (RV) and s be a realization of X. Then, the information hold by 

symbol s can be written as

where p(s) is the probability of the symbol s.
– I(s) represents the amount of information carried by the symbol s.

• p(s)=1 → There is no uncertainty on the expectation on value taken by the RV → no 
information is conveyed by the knowledge of the actual value of the RV (current realization). 
This is expressed by the corresponding information being zero → I(s)=0

• p(s)<< (very small) → the value s is highly improbable → it corresponds to a rare event →
knowing that the current realization of the RV is equal to s is highly informative, as an indication 
of a rare event. This is expressed by the corresponding information being very high in value I(s) 
→ infinity

• Summary: symbols that are certain convey no information, while very improbable symbols 
are highly informative

)(log)( 2 spsI −=



11

Information

• Discrete time sources
– Let X be a discrete time ergodic source generating the sequences {xk}{k=1,K} of source 

symbols. 
• The sequences are realizations of the RV {X}
• The source is memoryless if successive samples are statistically independent

– Information
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Information

• Relation to uncertainty
If the K symbols have the same probability

Then the information is

In this case, the uncertainty on the expectation is maximized, because all the symbols are 
equally probable.

The amount of information is the same for all symbols

Same probability Same probability ↔↔ Maximum uncertaintyMaximum uncertainty

K
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Entropy

• Entropy
Let X be a discrete RV: {xk}{k=1,K}. Then, the entropyentropy is defined as

– H(X) represents the average information content of the sourceaverage information content of the source (or the average 
information conveyed by the RV)

– Symbols with same probability (maximum uncertainty)

– It can be shown that this corresponds to the upper bound
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Entropy

• Summary
– The entropy represents the average information conveyed by the source RV

• H(X) is the average information received if one is informed about the value of the RV X has 
taken

– The entropy increases with the degree of uncertaintyincreases with the degree of uncertainty on the expectation of the 
realizations of the RV

• Equivalently: it is the uncertainty about the source output before one is informed about it
– All the discrete sources with a finite number K of possible amplitudes have a finite 

informational entropy that is no greater than log2K bits/symbol
0≤H(X)≤log2K

• The right side equality holds if and only if all probabilities are equal (most unpredictable source)
• Due to unequal symbol probabilities and inter-symbol dependencies H(X) will in general 

be lower than the bound value

• Entropy coding exploits unequal symbol probabilities as well as source memory 
to realize average bit rates approaching H(X) bits/symbol
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Entropy coding

• Goal: Minimize the number of bits needed to represent the values of X.
– We consider the codes that associate to each symbol xk a binary word wk of length lk. 
– A sequence of values produced by the source is coded by aggregating the 

corresponding binary words.

• Bit-rate
– The averageaverage bit-rate to code each symbol emitted by the source is

RX=-∑klklog2pk

– Goal: optimize the codewords to minimize RX
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Shannon theorem

• The Shannon theorem proves that the entropy is a lower boundlower bound for the average 
bitrate RX of a prefix code

• The average rate of a prefix code satisfies

RX ≥ H(X) = -∑kpklog2pk

Moreover, there exists a prefix code such that

RX ≤ H(X)+1

– The lower bound is set by the entropy of the source
– We cannot do better than reaching the entropy of the source

• Redundancy: 

R(X)=log2K-H(X)
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Entropy coding policies

• Fix and variable length codes
– Fix length codes: If log2K is an integer, all symbols could be coded with words of the 

same length lk=log2K bits. 
– Variable length codes: the average code length can be reduced by using shorter binary 

codewords for symbols that occur frequently.

• Variable Length Codes (VLCs)
– Prefix codes

• Huffman coding
• Arithmetic coding

pk large → short codewords

pk small → long codewords
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Prefix codes

• To guarantee that any aggregation of codewords is uniquely decodable the prefix 
condition imposes that no codeword may be the prefix (beginning) of another one

• Example
{w1=0, w2=10, w3=110, w4=101}
→ 1010 can be read as both w2w2 and w4w1: ambiguous!

→ Prefix codes are constructed by building binary trees

1

1

1

10 0

0

0

w1w2w4

0w5w6 1

w3
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Huffman code

• Optimal prefix code tree
– rate approaching the lower bound

• Each symbol is represented by a codeword whose length gets longer as the 
probability of the symbol gets smaller

• Dynamic programming rule that constructs a binary tree from bottom up by 
successively aggregating low probability symbols

Let us consider K symbols with their probability of occurrence sorted by increasing order 
pk ≤pk+1

{(x1,p1),(x2,p2),...,(xK,pK)}
we aggregate x1 and x2 in a single symbol of probability p12=p1+p2.

RecursivityRecursivity: An optimal prefix tree for K symbols can be obtained by constructing an optimal 
prefix tree for the K-1 symbols

{(x12,p12),(x2,p2),...,(xK,pK)}
and by dividing the leafs of p12 in two children corresponding to x1 and x2
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Huffman code

• Example
– {p1=0.05, p2=0.1, p3=0.1, p4=0.15, p5=0.2, p6=0.4}

x6 x5 x4 x3 x2 x1

10

0.15

0.25

10.35

0.6

1

1

1

0

0

0

0

x1 1111

x2 1110

x3 110

x4 101

x5 100

x6 0
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Arithmetic coding

• The symbols are on the number line in the probability interval 0 to 1 in a sequence 
that is known to both encoder and decoder

• Each symbol is assigned a sub-interval equal to its probability

• Goal: create a codeword that is a binary fraction pointing to the interval for the 
symbol being encoded

• Coding additional symbols is a matter of subdividing the probability interval into 
smaller and smaller sub-intervals, always in proportion to the probability of the 
particular symbol sequence
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Arithmetic coding

• Example
p(A)=1/3
p(B)=2/3

0

1

2/3 B

A1/3
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Arithmetic coding

• Example
p(AA)=1/3*1/3=1/9 p(BA)==1/3*2/3=2/9
p(AB)=2/9 p(BB)=4/9

0

1

2/3 B

A

4/9

AA

AB

BA

BB

1/3

1/3

2/3
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Arithmetic coding

• After encoding many symbols
– the  final interval width P is the product of the probabilities of all symbols coded;
– the interval precision, the number of bits required to express an interval of that size, is given 

approximately by -log2(P). 
Therefore, since

P=p1*p2*....*pN
the number of bits of precision is approximately

- log2(P)= -(log2(p1)+log2(p2)+....+ log2(pN))

thus the codestream length will be very nearly equal to the information for the individual symbol 
probabilities, and the average number of bits/symbol will be very close to the bound computed from 
the entropy.

• Adaptive arithmetic coding
– The probability tables for the different symbols can be made adaptive to the source statistics and 

updated during encoding
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Arithmetic coding

• Features
– Does not require integer length codes
– Encodes sequences of symbols
– Each sequence is represented as an interval included in [0,1]
– The longer the sequence, the smaller the interval and the larger the number of bits 

needed to specify the interval
– The average bit rate asymptotically tends to the entropy lower bound when the sequence 

length increases

– On average, performs better than Huffman coding
– Moderate complexity
– Used in JPEG2000
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Coding systems

Transformation

Prediction

Message extraction
definition of the set of 
symbols

Source signal 
(image)

Quantization Entropy coding
Bitstream

reducing the 
number of 
symbols

assigning 
codewords to 
symbols
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Prediction based coding

Prediction

Source signal 
(image)

-

“predicted”
samples

The value of the samples are estimated according to a predefined rule and the resulting 
values are subtracted from the corresponding ones in the original image to obtain the
residual (or error) image. This last one is then quantized and entropy coded. 
• Still images → spatial (intra-frame) prediction
• Image sequences → temporal (inter-frame) prediction

residue (signal to 
encode)

Encoder
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Prediction based coding

∑

residual image
+ reconstructed 

image

reference 
image

• Still images (JPEG lossless)

• Image sequences : motion compensation (MPEG4)

Decoder
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Intra-frame linear prediction

12 34 27 42

21 3 44 1

12 34 27 42

A B C

D X

Xest = aA+bB+cC+dD
E = X - Xest

The error image is quantized and entropy encoded. At the receiver, it is decoded 
and used to recover the original image.

symbol to predict 
or estimate
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Inter-frame prediction

current frame

previous frame

next frame
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Transform based coding

• Given the source signal, il can be convenient to project the data to a different 
domain to improve compression ⇒ transformation

– Discrete Cosine Transform (DCT), used in JPEG
– Discrete Wavelet Transform (DWT), used in JPEG2000

• The transformed coefficients are then to be quantized for mapping to a finite set of 
symbols

• Such symbols can also be mapped to another set of symbols to further improve 
compression performance

– Embedded Zerotree Wavelet based coding (EZW)
– Layered Zero Coding (LZC)
– Multidimensional LZC (for volumetric data, after a 3D DWT)
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Transform based coding

• Consider the signal as a r.v. of N samples: Y[n]

• Project it to an (orthonormal) basis

Y=∑mA[m]gm

A[m]= <Y,gm>

• The coefficients A[m] are quantized and then encoded

AQ[m]=Q{A[m]}

Reconstructed signal (after entropy decoding)

Ydec=∑mAQ[m]gm

– With quantization, the decoded signal is an approximation of the original signal and the 
degree of distortion depends on the strength of the quantization
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Quantization

• A/D conversion quantization

Quantizer

f[n] in L2(Z) discrete function
fq[n] in L2(Z)

fq=Q{f}

ftk tk+1

uniform

rk
a

b

t

f(t)

tk
tk+1
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Scalar quantization

• A scalar quantizer Q approximates X by X˜=Q(X), which takes its values over a 
finite set. 

• The quantization operation can be characterized by the MSE between the original 
and the quantized signals

• Suppose that X takes its values in [a, b], which may correspond to the whole real
axis. We decompose [a, b] in K intervals {( yk-1, yk]}1≤k ≤ K of variable length, with
y0=a and yK=b. 

• A scalar quantizer approximates all x ∈( yk-1, yk] by xk:

( ] ( )1, ,k k kx y y Q x x−∀ ∈ =
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Scalar quantization

• The intervals (yk-1, yk] are called quantization bins. 

• Rounding off integers is an example where the quantization bins 

(yk-1, yk]=(k-1/2, k+1/2] 

have size 1and xk=k for any k∈Z.

• High resolution quantization
– Let p(x) be the probability density of the random source X. The mean-square 

quantization error is
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HRQ

– A quantizer is said to have a high resolution if p(x) is approximately constant on each 
quantization bin. This is the case if the sizes k are sufficiently small relative to the rate of 
variation of p(x), so that one can neglect these variations in each quantization bin.

x

p(x)

0

Δp(x)

Δk

HRQ: Δp(x)→0
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Scalar quantization

• Teorem 10.4 (Mallat): For a high-resolution quantizer, the mean-square error d is 
minimized when xk=(yk+yk+1)/2, which yields

2

1

1
12

K

k k
k

d p
=

= Δ∑
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Uniform quantizer
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High resolution quantization

• Definition: A quantizer is said to be high resolution if p(f) is approximately constant 
on each quantization bin of size δk

– p(f) is the pdf of the random variable f

fa btk tk+1

p(f) Such an hypothesis is in 
general NOT true for low bit-
rate coding (high compression 
rates) where the size of the 
quantization bin is large with 
respect to the pdf of the 
quantized variable
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Low bit rate coding

• The quantization step is large → many quantized coefficients are set to zero

• The zero-bin interval [-T,T] corresponds to the threshold for significance of the 
coefficients at the considered precision (level of quantization)

• Efficient coding can be obtained by splitting the encoding phase in two successive 
steps:

– Encoding of the positions of the zero and no-zero coefficients (significance map)
– Encoding of the amplitude of the no-zero (significant) coefficients

Wavelet-based coding

f

p(f)
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Quantization

• A/D conversion quantization

Quantizer

f in L2(R) discrete function
f in L2(Z)

X=Q{y}

yyk yk+1

uniform perceptual

rk

fq=Q{f}

f
The sensitivity of the eye decreases 
increasing the background intensity 
(Weber law)
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Quantization revisited

• To analyze the error due to quantization we need a measure for the distortion

D=E{||Y-YQ||2}= ∑mE{||A[n]-AQ[n]||2}

• The distortion depends on the resolution of the quantization (the quantization step size), 
which rules the number of bits needed to represent the quantized coefficients. This gives an 
intuition of the functional relation between D and R: D=D(R)

• Design of the quantizer. Under the assumption of high resolution quantization
– The RMS value of the distortion D is minimized when the reconstruction level is the average of the 

bin boundary values

– D(R) is minimal for uniform scalar quantization and given by

D(R)=Δ2/12= σ22-2R

Δ being the quantization step size and σ the source variance

1
, 2

k k
q k

t t
f −+

=
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Quantization

original 5 levels

10 levels 50 levels
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Embedded Coding

Part 2
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Embedded transform coding

• For rapid transmission or fast image browsing, one should quickly provide a coarse 
image version which is progressively enhanced as more bits are received and 
decoded

• Guideline: The decomposition coefficients are sorted and the most significant bits
of the largest coefficients are sent first

• The embedding of the information is obtained by a Successive Approximation 
Quantization (SAQ) strategy

1. Set an initial threshold T
2. Scan the coefficients to get the significance map (SM(T))
3. Encode the SM(T) by entropy coding
4. Encode the amplitude of the significant coefficients (at the current precision set by T)
5. Halve the threshold: T-> T/2
6. If threshold > 1 go back to point 2
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Embedded transform coding

• The subband coefficients are quantized uniformly with step 2n which is 
progressively reduced in the following scans

• The largest value for the threshold is chosen to obtain at least one no zero symbol

• The information on the sign of the significant coefficients is enclosed in the 
significance map

– Possible choice for the symbols in the significance map: 

bm(p,q) = 0 if |am(p,q)| ≤ T 
bm(p,q) = 1    if am(p,q) > T
bm(p,q) = 2    if am(p,q) < -T
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Encoding the significance map

• Significant coefficient
– Any coefficient |am(p,q)|>T which is NOT quantized to zero

• Significance map
– Binary image whose values bm(p,q) are defined as follows
– bm(p,q) = 0 if |am(p,q)|≤T 
– bm(p,q) = 1 if |am(p,q)|>T

• The significance map can then be encoded by
– Run-lenght coding

• Store in the random variables Z and I the length of the sequences of zeros and ones and 
encode such symbols via an entropy coder (Huffman or Arithmetic)

– More complex algorithms (Zerotrees )
• Link the appearance of zeros across scales to obtain new symbols which summarize the 

significance of a tree of coefficients at a time, improving the efficiency of the entropy coder
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Run-length coding

• Every code word is made up of a pair (g, l) where g is the gray level, and l is the 
number of pixels with that gray level (length, or “run”).

• E.g.,
• 56 56 56 82 82 82 83 80
• 56 56 56 56 56 80 80 80

– creates the run-length code (56, 3)(82, 3)(83, 1)(80, 4)(56, 5).

• The code is calculated row by row.

• Very efficient coding for binary data.
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Run-length coding
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Run-length coding
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Run-length coding

Compression Achieved

Original image requires 3 bits per pixel (in total -
8x8x3=192 bits).

Compressed image has 29 runs and needs 3+3=6 bits 
per run (in total - 174 bits or 2.72 bits per pixel).
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SM: Encoding the amplitude

• The amplitude of the significant coefficients is uniformly quantized with step Δ and entropy 
coded (Huffman or Arithmetic)

– The coefficients in a given subband (j,k) are random variables for which a pdf can be defined and 
exploited for entropy coding

• Example

1 3 4 0
5 2 7 8
4 5 1 1
0 2 4 3

0 1 1 0
1 0 1 1
1 1 0 0
0 0 1 1

T=2

0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 1

1 2 1 1 1 4 4 2

realizations of the rv Z realizations of the rv I

significance map

sequence of symbols

entropy coding
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ETC algorithm

• 1. Initialization
– Set the initial value of the threshold to the first power of two greater than the largest 

subband value (magnitude)

• 2. Significance map
– Store the significance map and the sign of the no zero coefficients

• 3. Quantization refinement
– Update the values of the coefficients that were already classified as significant during 

the previous steps

• 4. Precision refinement
– Halve the threshold value and go back to point 2.
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Embedded Transform Coding

Initialization

Encoding the 
Significance map

Quantization 
refinement

Precision refinement

end?no

n=⎣sup log2 |a[m]|⎦
m

Exploitation of 
residual correlation 
among subband
coefficients

Layered Zero
Coding (LZC)

Zerotree 
Coding (EZW)

Decrease the quantization bin: n→n-1

Update the value of the significant coefficients
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Embedded Zerotree Wavelet (EZW) Coder

• A quantization and coding strategy

• Incorporates characteristics of wavelet decomposition

• Outperform some generic approach

• Fundamental concept of other wavelet-based coder

• Can be decomposed into two parts:
– Significant map coding using zerotree
– Successive approximation quantization

2011/5/11 Y.-H. Huang 55
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EZW – basic concepts

• The definition of the zero-tree: 
– There are  coefficients in different subbands that represent  the same spatial location in 

the image and this spatial relation can be depicted by a quad tree except for the root 
node at top left corner representing the DC coefficient which only has three children 
nodes. 

• Zero-tree Hypothesis
– If a wavelet coefficient c at a coarse scale is insignificant with respect to a given 

threshold T, i.e. |c|<T then all wavelet coefficients of the same orientation at finer scales 
are also likely to be insignificant with respect to T.

• Successive Approximations Quantization (SAQ)
– A refinement process
– Multi-pass scanning of coefficient using successive decreasing threshold
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Embedded Zerotree Wavelet-based coder

…. look at the notes…
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Significant Map Coding Using Zerotree

2011/5/11 Y.-H. Huang 58

Four types of Label
1.Positive significant
2.Negative significant
3.Isolated zero
4.Zero tree root

For each coefficient:
Give a label based on 
predefine threshold T
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EZW

HH3LH3

HL3
LH2

HL2

HH2

2D

bj
k[p,q]= 

1 if 2n ≤dj
k[p,q] <2n+1

-1 if -2n+ 1 < dj
k[p,q] ≤ -2n

0 otherwise
{

Significance map:

inter-band dependencies ⇒quad-trees
Primary pass ⇒ ZTR, IZ, POS,NEG

Encoding the SM

ZTR:1/3(4j-1) symbols

Secondary pass ⇒ HIGH,LOW
Quantization refinement

quad-tree

→ trees of zeros ↔ zerotrees
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Significant Map Coding Using Zerotree

• Scan order :

60

From lower subband to 
higher subband
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EZW algorithm

Dominant pass

Subordinate pass

Initialization (set T0)

Quantization 
refinement 
(T0=T0/2)

T0=1
no

Assigns symbols POS, NEG, IZ, ZTR to coefficients
Replaces POS and NEG coefs with zeros and adds their values in a 
secondary list and assigns them a reconstruction value equal to the mid 
point of the current uncertainty interval

Refines the values assigned to POS and NEG changing the 
reconstruction value to the mid point of either the upper or the lower 
subinterval (symbols 1 and 0, respectively) 
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EZW – the algorithm

• In the dominant_pass
– All the coefficients are scanned in a special order 
– If the coefficient is a zero tree root, it will be encoded as ZTR. All its descendants don’t 

need to be encoded – they will be reconstructed as zero at this threshold level
– If the coefficient itself is insignificant but one of its descendants is significant, it is 

encoded as IZ (isolated zero). 
– If the coefficient is significant then it is encoded as POS (positive) or NEG (negative) 

depends on its sign. 

This encoding of the zero tree produces significant compression because gray level 
images resulting from natural sources typically result in DWTs with many ZTR 
symbols. Each ZTR indicates that no more bits are needed for encoding the 
descendants of the corresponding coefficient
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EZW – the algorithm

• At the end of dominant_pass
– all the coefficients that are in absolute value larger than the current threshold are 

extracted and placed without their sign on the subordinate list and their positions in the 
image are filled with zeroes. This will prevent them from being coded again. 

• In the subordinate_pass
– All the values in the subordinate list are refined. this gives rise to some juggling with 

uncertainty intervals and it outputs next most significant bit of all the coefficients in the 
subordinate list. 
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Here MAX() means the maximum coefficient value in the image and y(x,y) denotes the 
coefficient. With this threshold we enter the main coding loop

The main loop ends when the threshold reaches a minimum value, which could be specified to 
control the encoding performance, a “0” minimum value gives the lossless reconstruction of the 
image

EZW – the algorithm

The initial threshold t0 is decided as:



65

EZW : Dominant Pass

|c(x,y,z)|≥Qi c(x,y,z)>0yes s(x,y,z)=POSyes

s(x,y,z)=NEG
no

all children are insignificant?

no

s(x,y,z)=ZTR s(x,y,z)=IZ

yes no

Prob (IZ)>Prob(ZTR)

s(x,y,z)=IZ s(x,y,z)=ZTR

yes no

start

encode(primprob,s(x,y,z)) end

yesno any child?
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Tn 1.5 x Tn 2 x Tn=Tn+1

LOW HIGH

EZW : Subordinate Pass

• Concerns significant coefficients

• Refines the value of the significant coefficients by setting the resolution at the
current quantization level
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Example

T0=32
x=63
uncertainty interval=[32,64]

32 644840 56

reconstruction value at the end of 
the dominant pass

63>48 → HIGH (symbol=1)
reconstruction value after 
the subordinate pass

update: at the beginning of the 2° dominant pass the 63→32 (previous T0 value), so that the 
value that goes in the list is 63-32=31. This is refined as in the next page

Dominant pass

Subordinate pass
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Example

T0=16
x=63 looks like 0 for primary pass (can become a ZTR!)
uncertainty interval=[16,32]

16 322420 28

this dominant pass does not 
concern x!

31>24 → HIGH (symbol=1)
set of symbols assigned by the subordinate passes 1,1
reconstruction value after the subordinate pass: 32+28=60

update: value that goes into the list: 63-(32+16)=15

Dominant pass

Subordinate pass

……………
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Example
• T0=32

• End of 1° dominant pass: 48

• End of 1° subordinate pass: 56 first value seen by the decoder

• Update: new value in the list to be refined: 63-32=31

• T0=16

• End of 2° dominant pass: -----------

• End of 2° subordinate pass: 2° update: 31-> 28

• New value seen by the decoder: 32+28=60

• Update: new value in the list to be refined: 63-32-16=15

• T0=8

• End of 3° dominant pass: -----------

• End of 3° subordinate pass: 3° update: 15->14

• New value seen by the decoder: 32+16+14=62

• Update: new value in the list to be refined: 63-32-16-8=7 …….

• …….

• Final value seen by the decoder: 32+16+8+4+2+1=63
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Algorithm

threshold = initial_threshold; do 
{ 
dominant_pass(image); 
subordinate_pass(image); 
threshold = threshold/2; 
} 
while (threshold > minimum_threshold); 



71

Dominant pass

/* * Dominant pass */ 
initialize_fifo(); 
while (fifo_not_empty) 
{ 
get_coded_coefficient_from_fifo(); 
if coefficient was coded as P, N or Z then 
{ 
code_next_scan_coefficient(); 
put_coded_coefficient_in_fifo(); 
if coefficient was coded as P or N then 
{
add abs(coefficient)  to subordinate list; 
set coefficient position to zero; } } } 
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Subordinate pass

/* * Subordinate pass */ 

subordinate_threshold = current_threshold/2; 

for all elements on subordinate list do { 

if (coefficient > subordinate_threshold) { 

output a one; 

coefficient = coefficient-subordinate_threshold; 

} 

else output a zero; 

} 
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EZW Example (1/2)
T0 = 32
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EZW Example (2/2)

After this two step, we finish one 
iteration.

Ti = Ti/2(reduce the threshold)

Repeat until target fidelity or bit-
rate is achieve

T0 = 32
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Bitstream

Qp-1 Qp-2 ... Q0header

LL,n ... LH,n HL,n-1 ... HH,n-1 ... LH,1 ... HH,1

Primary Pass Secondary Pass

p=total number of bitplanes
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The Limitations of EZW algorithm 

• It is not possible to encode sub-images because the entire image must be 
transformed before the encoding can start. 

• EZW algorithm is computational expensive
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Layered Zero Coding

• Proposed by Taubman and Zakhor in 1994 [Multirate 3D subband coding of video]

• Idea: multirate coding of subbands

• Advantages
– Large control over birate granularity
– Lower computational complexity than EZW

• Basic idea: Progressive quantization and coding of each subband in a sequence of 
N layers representing progressively finer quantization step sizes

– N quantizers: Q1 (rougher), …., Qn (finer)
– L quantization layers: L1, L2,…., Ln

• Gudelines: 
– Each quantizer operates on the subband samples and produces a sequence of symbols. 

The symbols for quantizer Q1 are encoded into layer L1
– The information necessary to recover symbols for quantizer Qn, given the symbols for 

quantizers Qn-1,…,Q1 are already known, is encoded into layer Ln
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LZC

• Thus, the decoder is able to recover the subband samples as encoded by any 
quantizer Qn by decoding layers L1,…Ln only.

• Constraint for coding gain: the total number of bits required to encode the layers 
L1,…,Ln be approximately the same as the number of bits required to encode the 
output of quantizer Qn alone. If this condition is satisfied the multirate property is 
obtained without sacrificing coding efficiency.

• How: exploiting dependencies among quantization layers and/or subbands
– Statistical dependencies among quantization layers
– Statistical dependencies among spatially/temporally adjacent subbands
– Statistical dependencies among hierarchies of subband coefficients
– Exploiting the presence of large number of zeros in the subbands
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LZC

• It can be proved that the coding efficiency condition is met if the set of quantizers
satisfy the following condition

• Interpretation: every quantization interval of Qn is contained in some quantization 
interval of Qn-1

• Furthermore, arithmetic coding must be used to encode each quantization layer Ln

( )

[ ]( ) [ ]( )( ) [ ]
1

,

, 1,

,  for 

\ 0, , 2
n n

n n k

n Q x i n Q x i

Q x k x I

P X I I x i n
−−

= ∈

∈ = ∀ ∀ ≥



80

LZC: design of quantizers

• The set of uniform quantizers with dead-zone having progressively halved step 
size is chosen

• Then, each successive quantization layer doubles the precision with which 
subband sample values are quantized
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Layer Zero Coding (LZC)

Significant?

Start

magnitude 
refinement

end

zero coding

Sign Coding (SC)

noyes

• coefficient to code : 
– c(x,y,z)

• p quantifizers :
– Qp-1 >...> Qi >…> Q0
– Qi = 2i

– p = subband bit depth

• significance state :
– s(x,y,z) = {0,1}
– coefficient not significant (s = 0)

∀ j = p-1,…, i, |c(x,y,z)| < Qj
– coefficient significant (s = 1)

∃ j = p-1,…, i such that |c(x,y,z)| ≥ Qj
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LZC

s(x,y,z)=0

|c(x,y,z)|≥Qi

yes

c(x,y,z)≥0

start setContext(ctx)

encode(1,ctx)

encode(1,sign)encode(0,sign)

yes

encode(0,ctx)

c(x,y,z)≥Qi

encode(1,ref)encode(0,ref)
yes

no

no

no
no

yes

end

encode(1,.) code "1"
encode(0,.) code "0"

s(x,y,z)=1

the coefficient is still insignificant: use zero coding mode

Bitplan encoding



83

Layered-Zero Coding

• Exploits both intra-band and inter-band residual correlations
– Intra-band dependencies are modeled by introducing conditional probabilities in entropy 

coding (context-adaptive arithmetic coding). The probability of a symbol is conditioned 
to the significance state of its neighbors;

– Inter-band dependencies are modeled similarly: the probability of a symbol is 
conditioned to the significance state of it ancestor

– … look at the notes…

5

421

6 7

3

8
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Layered Zero Coding
Encoding the SM ⇒ Zero Coding

a-priori information ⇒ spatial or other 
kinds of dependencies among coefficients

Conditioning terms: κ(k,l,j)

• spatial (intra-band)
• inter-band

⇒ context-adaptive arithmetic coding

⇒ magnitude refinement
Quantization refinement

5

421

6 7

3

8

Neighborhood ⇒ Context
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Spatial contextes

• Contextes 2D

5

421

6 7

3

8

coefficient to code
neighbor

and are composed )(

1.

2.

Scanning order :
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Bitstream

Qp-1 Qp-2 ... Q0header

marker

LL,n ... HH,n LH,n-1 ... HH,n-1 ... LH,1 ... HH,1

p=total number of bitplanes
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Coding artifacts at low rates

JPEG WaveletsOriginal



88

Scalability by quality

H encoded data
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Scalability by resolution
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Object-based processing
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