CUDD.:
Colorado University Decision Diagram Package

Systems Design Laboratory (2023/2024)

Computer Engineering for Robotics and Smart Industry

Luigi Capogrosso Davide Bresolin Tiziano Villa

SDL (Lab) CUDD Lecture 01

1/34

Outline

@ Introduction

@ Basic Architecture
© Basic Functions

@ Example: Half-Adder
@ Variable reordering

G Converting BDDs to ZDDs and Vice Versa

SDL (Lab) CUDD

Lecture 01

2/34

CUDD

@ CUDD is the Colorado University Decision Diagram package.

@ ltis a C/C++ library for creating the following different types of
decision diagrams:

» BDD: Binary Decision Diagrams.
» ZDD: Zero-Suppressed BDDs.
» ADD: Algebraic Decision Diagrams.

@ The slides, source code, and all documentation related to this
lecture are available here:
https://github.com/luigicapogrosso/SDL

SDL (Lab) CubDD Lecture 01

3/34

https://github.com/luigicapogrosso/SDL

Getting CUDD

@ The CUDD package is available via anonymous FTP from
vlsi.colorado.edu.

@ You can download the CUDD package from the server using an
FTP client such as FileZilla or you can use the ftp command
from the command line.

@ Alternatively, you can download the latest version of CUDD
directly from the SDL GitHub repository, so:
$ git clone
https://github.com/luigicapogrosso/SDL.git

SDL (Lab) CUDD Lecture 01 4/34

https://filezilla-project.org/

Getting CUDD (cont'd)

@ The library is tested using GCC (9.4.0) and GNU Make (9.4.0). To
build the library from sources in a clean way, it is preferable that
you set up a build subdirectory, say:

cd SDL/lecture_01/cudd-3.0.0

mkdir objdir && cd objdir
../configure --prefix=$HOME/<path>
make && make install

Ur O

SDL (Lab) CUDD Lecture 01 5/34

Including and linking the CUDD library

@ To build an application that uses the CUDD package, you should
add, in your source code, the following lines:

» #include "cudd.h"
» #include "util.h"

@ To compile and link a C program that uses CUDD:

$ gcc —o main main.c —-lcudd -lutil

@ Or, you can refer to the following Makefile:
https://github.com/luigicapogrosso/SDL/blob/
master/lecture_01/code/Makefile

SDL (Lab) CUDD Lecture 01 6/34

https://github.com/luigicapogrosso/SDL/blob/master/lecture_01/code/Makefile
https://github.com/luigicapogrosso/SDL/blob/master/lecture_01/code/Makefile

o Introduction

@ Basic Architecture
e Basic Functions

© Example: Half-Adder
e Variable reordering

@ Converting BDDs to ZDDs and Vice Versa

«O0>» «F» «Z>» « E>» = Q>

Garbage Collection

@ CUDD has a built-in garbage collection system.

@ When a BDD is not used anymore, its memory can be reclaimed.

@ To facilitate the garbage collector, we need to “reference” and
“dereference” each node in our BDD:
» Cudd_Ref (DdNodex) to reference a node.
» Cudd_RecursiveDeref (DdNodex) to dereference a node and
all its descendants.

SDL (Lab) CUDD Lecture 01 8/34

Complemented arcs

@ Each node of a BDD can be:

» A variable with two children.
» A leaf with a constant value.

@ The two children of a node are referred to as the “then” child and
the “else” child.

@ To assign a value to a BDD, we follow “then”and “else” children
until we reach a leaf:

» The value of our assignment is the value of the leaf we reach.

@ However: “else” children can be complemented:

» When an “else” child is complemented, then we take the
complement of the value of the leaf:

* j.e., if the value of the leaf is 1 and we have traversed an odd number
of complement arcs, the value of our assignment is 0.

SDL (Lab) CUDD Lecture 01 9/34

Complemented arcs: example

@ out = XgX-4

out

@ ‘then” arcs are solid.

@ Normal “else” arcs are dashed. o

@ Complemented “else”arcs are
dotted.

x1

@ The out arc is complemented:

out = Xo + Xq N
= Yo + XoX1

SDL (Lab) CubDD Lecture 01

10/34

The bDdManager

@ The bdManager is the key data structure of CUDD:

» It must be created before calling any other CUDD function.
» It needs to be passed to almost every CUDD function.

@ To initialize the DdManager, we use the following function:

DdManager * Cudd_Init(
unsigned int numVars,
unsigned int numVarsZ,
unsigned int numSlots,
unsigned int cacheSize ,
unsigned long maxMemory

//
//
//
//
//

initial number of BDD wvariables (i.e., subtables)
initial number of ZDD wvariables (i.e., subtables)
initial size of the unique tables

initial size of the cache

target mazimum memory occupation.(0 means unlimited)

SDL (Lab)

CubDD Lecture 01

11/34

The DdManager: C code

#include<stdio.h>
#include"cudd.h"

int main ()
{
DdManager* manager = Cudd_Init (0, O,
CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, O0);
if (manager == NULL)
{
printf ("Error when initalizing CUDD.\n");
return 1;

return 0;

SDL (Lab) CUDD Lecture 01 12/34

The DdNode

@ The DdNode is the core building block of BDDs:

struct DdNode {
DdHalfWord index; // Index of the wvariable reprented by this node
DdHalfWord ref; // reference count
DdNode *next ; // next pointer for unique table
union {
CUDD_VALUETYPE value; // for constant nodes
DdChildren kids; // for internal nodes
} type;
&

@ index is a unique index for the variable represented by this node.
» It is permanent: if we reorder variables, the idx remains the same.

@ ref stores the reference count for this node.

» It is incremented by cCudd_Ref () and decremented by
Cudd_Recursive_Deref ().

SDL (Lab) CUDD Lecture 01 13/34

o Introduction

e Basic Architecture
© Basic Functions

© Example: Half-Adder
e Variable reordering

@ Converting BDDs to ZDDs and Vice Versa

«O0>» «F» «Z>» « E>» = Q>

BDD of Boolean functions

@ Common manipulations of BDDs can be accomplished by
calling operators on variables.

@ The CUDD package includes Boolean functions that can be used

for BDD operations such as: NOT, AND, NAND, OR, NOR,
Exclusive-OR, XNOR, and etc.

SDL (Lab) CUDD Lecture 01 15/34

BDD for the NOT Boolean function

@ For the NOT Boolean function, we use Cudd_Not ().

@ The truth table for a NOT:

Xq | f
0|1
110

@ Exercise: write the code to build the BDD for the function f = —x;.

SDL (Lab) CUDD Lecture 01 16/34

BDD for the AND Boolean function

@ For the AND Boolean function, we use Cudd_bddAnd ().

@ The truth table for an AND:

@ Exercise: write the code to build the BDD for the function
f=X1 A\ Xo.

SDL (Lab) CUDD Lecture 01 17/34

BDD for the NAND Boolean function

@ For the NAND Boolean function, we use Cudd_bddNand ().

@ The truth table for a NAND:

@ Exercise: write the code to build the BDD for the function
f= —\(X1 A Xo).

SDL (Lab) CUDD Lecture 01 18/34

BDD for the OR Boolean function

@ For the OR Boolean function, we use Cudd_bddor ().

@ The truth table for a logic OR:

@ Exercise: write the code to build the BDD for the function
f=X1VXo.

SDL (Lab) CubDD Lecture 01

19/34

BDD for the NOR Boolean function

@ For the NOR Boolean function, we use cudd_bddNor ().

@ The truth table for a NOR:

@ Exercise: write the code to build the BDD for the function
f= —\(X1 V Xo).

SDL (Lab) CUDD Lecture 01 20/34

BDD for Exclusive-OR Boolean function

@ For the Exclusive-OR Boolean function, we use
Cudd_bddXor ().

@ The truth table for an Exclusive-OR:

@ Exercise: write the code to build the BDD for the function
f=x1o x2.

SDL (Lab) CubDD Lecture 01

21/34

BDD for the XNOR Boolean function

@ For the XNOR Boolean function, we use Cudd_bddXnor ().

@ The truth table for an XNOR:

@ Exercise: write the code to build the BDD for the function
f==(x1 ©xo).

SDL (Lab) CUDD Lecture 01 22/34

o Introduction

e Basic Architecture
e Basic Functions

@ Example: Half-Adder
e Variable reordering

@ Converting BDDs to ZDDs and Vice Versa

«O0>» «F» «Z>» « E>» = Q>

The Half-Adder circuit

This is the schematic of a half-
adder circuit that we want to com-
pile into an OBDD. It has the follow-

ing truth table:

X1 Xz | sum carry

0 O 0 0
0o 1 1 0
1 0 1 0
1 1 0 1
Lecture 01 24/34

CUDD

SDL (Lab)

Create the BDD for sum

DdNode *x1 = Cudd_bddIthVar (manager, O0);
DdNode *x2 Cudd_bddIthVar (manager, 1);

DdNode =*andl;

andl = Cudd_bddAnd (manager, x1, Cudd_Not (x2));

Cudd_Ref (andl) ;

DdNode =*and2;

and2 = Cudd_bddAnd (manager, Cudd_Not (x1),
Cudd_Ref (and2) ;

DdNode =*sum;

sum = Cudd_bddOr (manager, andl, and2);
Cudd_Ref (sum) ;

Cudd_RecursiveDeref (manager, andl);
Cudd_RecursiveDeref (manager, and2);

@ Exercise: write the code for carry.

SDL (Lab) CUDD

x2);

Lecture 01

25/34

Restricting the BDD

@ Restricting a BDD means assigning a truth value to some of
the variables.

@ The cudd_bddrRestrict () function returns the restricted BDD.

DdNode % Cudd_bddRestrict (
DdManager * manager, // DD manager
DdNode * BDD, // The BDD to restrict
DdNode % restrictBy) // The BDD to restrict by.

@ BDD is the original BDD to restrict.
@ restrictBy is the truth assignment of the variables.

SDL (Lab) CUDD Lecture 01 26/34

Print the truth table

DdNode xrestrictBy;
restrictBy = Cudd_bddAnd (manager, x1, Cudd_Not (x2));
Cudd_Ref (restrictBy) ;

DdNode *testSum;

testSum = Cudd_bddRestrict (manager, sum, restrictBy);
Cudd_Ref (testSum) ;

DdNode =*testCarry;

testCarry = Cudd_bddRestrict (manager, carry, restrictBy);
Cudd_Ref (testCarry) ;

printf("xl = 1, x2 = 0: sum = %d, carry = %d\n",
1 - Cudd_IsComplement (testSum),
1 - Cudd_IsComplement (testCarry));
Cudd_RecursiveDeref (manager, restrictBy);

Cudd_RecursiveDeref (manager, testSum);
Cudd_RecursiveDeref (manager, testCarry);

@ Exercise: Write the code for the complete truth table.

SDL (Lab) CubDD Lecture 01

27/34

Print the BDD with graphviz

@ The function cudd_DumpDot () dumps the BDD to a file in
GraphViz format.

@ The .dot file can be converted to a PDF by the command dot:

$ dot -0 —-Tpdf half_adder.dot

SDL (Lab) CUDD Lecture 01 28/34

Print the BDD: C code

char xinputNames|[2];

inputNames[0] = "x1";
inputNames[1l] = "x2";
char xoutputNames|[2];
outputNames[0] = "sum";
outputNames[1l] = "carry";

DdNode xoutputs[2];

outputs[0] = sum;
Cudd_Ref (outputs[0]);
outputs[l] = carry;

Cudd_Ref (outputs[1]);
FILE «f = fopen("half_adder.dot", "w");

Cudd_DumpDot (manager, 2, outputs, inputNames,

Cudd_RecursiveDeref (manager, outputs([0]);
Cudd_RecursiveDeref (manager, outputs[1l]);
fclose (f);

SDL (Lab) CUDD

outputNames,

Lecture 01

£);

29/34

Variable reordering

@ The order of variables can have a tremendous effect on the
size of BDDs.

@ CUDD provides a rich set of tools for reordering BDDs:

» Automatic reordering (using heuristics) when the number of nodes
in the BDD passes a certain threshold.

» Manual reordering using different heuristics.

» Manual reordering with a user-specified variable order.

@ The function Cudd_ShuffleHeap () is used to define the
variable order:

int Cudd_ShuffleHeap (
DdManager * manager, // DD manager
int * permutation // required variable permutation

)

SDL (Lab) CUDD Lecture 01 30/34

Exercise: play with the variable order!

@ Create the BDD for the function x4 Xo + X3X4 + X5Xs.

@ Try the following variable orders and compare the results:
X1 < Xo< Xz< X4 <Xs5< Xp
> X1 < X3 < X5 < Xo< Xq4< Xp

HINTS
@ int Cudd_ReadPerm(manager, x2->index) returns the
position of variable x2 in the order.
@ int Cudd_ReadNodeCount (manager) returns the number of
nodes in the BDD.

SDL (Lab) CubDD Lecture 01 31/34

Converting BDDs to ZDDs

@ Many applications first build a set of BDDs and then derive
ZDDs from the BDDs.

@ These applications should create the manager with 0 ZDD
variables and create the BDDs.

@ Then they should call Cudd_zddvarsFromBddvars () to create
the necessary ZDD variables—whose number is known once the
BDDs are available.

SDL (Lab) CUDD Lecture 01 32/34

Converting BDDs to ZDDs (cont'd)

@ The simplest conversion from BDDs to ZDDs is a simple change
of representation, which preserves the functions.

@ Simply put, given a BDD for f, a ZDD for f is requested. In this
case the correspondence between the BDD variables and ZDD
variables is one-to-one.

@ Hence, cudd_zddvarsFromBddvars () should be called with
the multiplicity parameter equal to 1.

@ The conversion can then be performed by calling:
Cudd_zddPortFromBdd ().

@ The inverse transformation is performed by calling:
Cudd_zddPortToBdd ().

SDL (Lab) CUDD Lecture 01 33/34

The N-Queens problem

SDL (Lab)

@ The N-Queens problem is the

problem of placing N
non-attacking queens on an
N x N chessboard.

Our implementation of these
benchmarks is based on the
description of Kunkle10. We
construct a ZDD row-by-row to
represent whether the row is in a
legal state.

On the accumulated ZDD we then
count the number of satisfying
assignments.

CubDD Lecture 01 34/34

https://dl.acm.org/doi/abs/10.1145/1837210.1837222

	Introduction
	Basic Architecture
	Basic Functions
	Example: Half-Adder
	Variable reordering
	Converting BDDs to ZDDs and Vice Versa

