
Toolchain for Network Synthesis

Alex Malfatti, Davide Quaglia

A.A. 2014/2015



Outline

• Introduction

– Network Synthesis

– CASSE

• Methodology

– High-level description

– Intermediate description

– Simulation model

• Toolchain

– Tools

• Exercises

205/05/2015



Introduction

05/05/2015 3



Network Synthesis

• Network synthesis is a design process which

starts from a high-level specification of a 

distributed system and finds an actual

description of its communication infrastructure

in terms of mapping of application tasks onto

network nodes, their spatial displacement, the 

type of channels and protocols among them, 

and the network topology.

05/05/2015 4



CASSE (1)

• Communication Aware Specification and Synthesis
Environment (CASSE), is an extended design flow, 
which addresses the network synthesis, in terms of 
nodes, tasks, data flows, abstract channels, zones, 
and contiguities.

– Tasks

• A task represents a basic functionality of the whole
application; it takes some data as input and provides
some output.

– Data flows

• A data flow (DF) represents communiction between two
tasks; output from the source task is delivered as input 
for the destination task.

– Nodes

• A node can be seen as a container of tasks.

05/05/2015 5



CASSE (2)
– Abstract Channels

• An abstract channel (AC) interconnects two or more 
nodes; referring to the ISO/OSI model and assuming
that the functionality to be designed is at level N, the 
AC contains the physical channel, and all the protocol
entities up to level N-1.

– Zones
• A zone is a partition of the space which contains nodes; 

each zone is characterized by an environmental
attribute.

– Contiguities
• Zones are related by the notion of contiguity defined as

follows:
– Two zones are contiguous if nodes belonging to them can 

communicate each other;

– Contiguity represents not only the physical distance
between zone, but it can be used also to model 
environmental obstacles, like walls.

05/05/2015 6



Methodology

05/05/2015 7



Methodology

• The methodology starts from a high-level

description of the network scenario in which a 

communication infrastructure is already defined.

• The final result is a simulation model of the 

considered scenario.

05/05/2015 8

High-level 

description

Intermediate 

description

Simulation 

model

 UML Deployment 

Diagram

 UML Profiles

 RadCASE

 HIF
 SCNSL



High-level description (1)

• UML Deployment Diagrams

– The deployment diagrams represents the physical
deployment of processes (named Artifacts) on 
containers (named Nodes) connected through UML 
Communication paths.

– Other UML entities can be used in deployment
diagrams, i.e., Devices to model HW nodes, Packages
to group nodes, Dependencies to connect either
Artifacts or Packages together.

• UML Profiles

– The profiles extend the UML semantics.

– The are defined by stereotypes, tag definitions, and 
constraints that are applied to specific model 
elements.

05/05/2015 9



High-level description (2)

UML to NW - Instances

05/05/2015 10

UML Classifier NW Entity

Artifact Task

CommunicationPath Point-to-point Channel

Dependency DataFlow/Contiguity

Device Shared Channel

Node Node

Package Zone



High-level description (3)

UML to NW - Bindings

05/05/2015 11

UML NW

Node ← Artifact Node ← Task

CommunicationPath ← Node Point-to-point Channel ← Node

Device ← Dependency ← Node Shared Channel ← Node

Package ← any UML Classifier Zone ← any NW Entity

Dependency ← Artifact DataFlow ← Task

Dependency ← Zone Contiguity ← Zone



Intermediate description

• RadCASE

– radCase is an integrated tool suite for developing, 
testing and integrating embedded software 
applications based on Model Driven Architecture 
approach.

• Heterogeneous Intermediate Format (HIF)

– HIF is a HW/SW description language structured
as XML tree of classes. Each class describes a 
specific component or functionality that is tipically
provided by hardware description languages (e.g., 
VHDL, Verilog, and SystemC).

– It provides designers with a convenient way to 
automatically manipulate HW/SW descriptions.

05/05/2015 12



Simulation model

• SystemC Network Simulation Library (SCNSL)

– SCNSL is an extension of SystemC to allow

modelling packet-based networks such as 

wireless networks, Ethernet, and fieldbus.

– SCNSL provides primitives to model packet 

transmission, reception, contention on the 

channel and wireless path loss.

– The use of SCNSL together with SystemC allows 

the easy and complete modeling of distributed 

applications of networked embedded systems 

such as wireless sensor networks, routers, and 

distributed plant controllers.

05/05/2015 13



Not yet implemented in the current methodology

• Broadcast transmission

• Directionality specification for Point-to-point

Channels (CommunicationPath in UML 

Deployment Diagram)

– Only «halfDuplex» or «fullDuplex» transmission

modes are available for point-to-point channels

• Protocols definition

– Communicators in SCNSL will not be 

automatically created

05/05/2015 14



Toolchain

05/05/2015 15



UML2SCNSL Toolchain

uml2rad

customize4scnsl

UML

Deployment 

diagram
RadCASE HIF

hif2scrad2hif +

univercm2hdl

RadCASE

design

Papyrus

SCNSL

Network Simulation

05/05/2015 16



Tools

• Papyrus

• HIFSuite

– uml2rad

– rad2hif + univercm2hdl

– customize4scnsl

– hif2sc

• SCNSL

05/05/2015 17



Tools (1)

• Papyrus

– Papyrus is an Eclipse plug-in tool for editing UML 
and generating a textual description (e.g., XML) 
from UML models.

05/05/2015 18

– Papyrus provides a 

user-friendly and free 

editor for modeling

of UML Deployment 

diagram, supporting

profiles, such as

MARTE and the 

Network profile.



Tools (2)

• uml2rad

– uml2rad is a tool which converts UML 

descriptions, obtained from Papyrus, in a radCASE

representation; this description can be 

manipulated to implement functional parts of the 

network (e.g., tasks implementation).

• rad2hif + univercm2hdl

– rad2hif and univercm2hdl are tools whose

combined usage generates an HIF representation

from the radCASE one; the final description

obtained includes all the informations about

network instances and bindings between them.

05/05/2015 19



Tools (3)

• customize4scnsl

– customize4scnsl is a tool which analyzes the 

HIF description obtained in this point of the 

toolchain, and generates a new HIF 

representation compliant with SCNSL specifics.

• hif2sc

– hif2sc is a HIFSuite back-end tool which

converts an HIF description into SystemC code.

– In our case the result of the translation is a SCNSL 

description of the Network infrastructure and, 

eventually, of its functionality.

• SCNSL

05/05/2015 20



Exercises

05/05/2015 21



Setup Exercises
• In order to setup the tools for the exercises, go to the 

“/tmp/” directory and untar the 
«exercises_nesLab3.tar.gz».

• “exercises_nesLab3” contains the following directories:
– Tools

• hifsuite  set of tools for the “uml2scnsl” toolchain

• Papyrus  Eclipse plug-in to create/edit UML models

– uml2scnsl
• 0.UML_Examples  where to put the «.uml» files

• 1.uml2rad  files generated by uml2rad tool

• 2.rad2hif  files generated by rad2hif tool

• 3.univercm2hdl  files generated by univercm2hdl tool

• 4.customize4scnsl  files generated by customize4scnsl tool

• 5.hif2sc  files generated by hif2sc tool

• 6.scnsl  SCNSL source codes

21/04/2015 22

1$ tar –xzvf exercises_nesLab3.tar.gz



Setup Exercises - HIFSuite

• Move to the “Tools/” directory, inside the 
unpacked directory.

• Export in the environment the paths to HIFSuite
tools and SystemC. A script, namely “env-
setup.sh”, is provided to help this task: edit it 
(e.g., emacs, gedit, etc.) and then source it.

– In the script you have to replace 
<HIFSUITE_PATH> with your current path to 
the hifsuite directory (e.g., 
“/tmp/exercises_nesLab3/Tools/hifsuite”).

21/04/2015 23

1$ emacs ./hifsuite/env-setup.sh

2$ source ./hifsuite/env-setup.sh

1$ cd Tools



Setup Exercises - Papyrus

• Run the Windows 7 Virtual Machine and copy 

wherever you want the Papyrus directory. 

• Launch “Papurus.exe”.

– Ensure that Java Runtime Environment (JRE) 32 bit 

is installed.

• Create the workspace inside the folder shared 

with Linux:

– “//10.0.2.4/qemu/workspace“

05/05/2015 24



Setup Exercises – uml2scnsl

• In the “uml2scnsl/” directory there is a script, 

namely “uml2scnsl.sh”, which takes as parameter 

the name of the «.uml» file representing the 

UML model of the Network Scenario.

– Before to run the script, you have to modify it
replacing <HIFSUITE_PATH> with your current 

path to the hifsuite directory, as done before.

• When the script has finished its execution, the 

resulting scnsl source code is putted in the 

corresponding scnsl directory (e.g., 

“6.scnsl/NWScenario_name/src/hif_globals.cc”)

05/05/2015 25

1$ ./uml2scnsl.sh NWScenario_name



Exercise 1: Two Nodes

1. Model the scenario above in UML by using Papyrus + 
NW Profile.

– Sensor  «sensing» behavior

– Collector  «collection» behavior

– Ch  «fullDuplex» point-to-point channel

– n0 and n1 in two distinct zones

2. Generate the corresponding SCNSL code by using the 
uml2scnsl toolchain. 

3. Compile and execute it.

05/05/2015 26

Ch

n0

Sensor

n1

Collector



Exercise 2: Three Nodes with Router

05/05/2015 27

Ch

n0

Sensor

n1

Router

n2

Collector

1. Model the scenario above in UML by using Papyrus + NW Profile.
– Sensor  «sensing» behavior

– Router  «routing» behavior

– Collector  «collection» behavior

– Ch  shared channel

– n0 and n1 in a distinct zone with respect to n2

2. Generate the corresponding SCNSL code by using the uml2scnsl toolchain. 

3. Compile and execute it.

Hint: in Papyrus use Dependencies to link 

Nodes with Devices (wireless channels).



05/05/2015 28

Exercise 3: Temperature monitoring

for Building Automation (1)

n0 n1 n4>n2

1. Model the scenario above in UML by using Papyrus + NW Profile.
– c  «control» behavior

– sn (0≤n≤3)  «sensing» behavior

– Chn (0≤n≤3)  «fullDuplex» point-to-point channel

– Each node in a distinct zone

2. Generate the corresponding SCNSL code by using the uml2scnsl toolchain. 

3. Compile and execute it.

Ch0

S2

Ch1

Ch3>

C S0 S1 S3

n3

Ch2>



05/05/2015 29

Exercise 3: Temperature monitoring

for Building Automation (2)

4. Change the current point-to-point transmission to a shared
one in the UML description.

– Ch  shared channel

5. Generate the corresponding SCNSL code by using the 
uml2scnsl toolchain. 

6. Compile and execute it
– What can you say about the Packet Loss Rate (PLR)? Why?

Ch

n0 n1 n4>n2

S2C S0 S1 S3

n3


