2D Discrete Fourier Transform (DFT)
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Circular convolution

« Finite length signals (N, samples) — circular or periodic convolution

— the summation is over 1 period Nt

— the resultis a N, period sequence clk]= flk]®glk] = E flnlglk —n]

n=0

« The circular convolution is equivalent to the linear convolution of the zero-
padded equal length sequences

fIm]* glm] < F[k]G[k]

JLm] glm] ‘ ‘ STm]*glm]
B R I B I
Length=P Length=Q Length=P+Q-1

For the convolution property to hold, M must be greater than or equal to P+Q-1.




Convolution

Zero padding SfIm]* g[m] < F[k]G[k]
flm] glm]
I U B
4-point DFT I I
(M=4)
Fk] G[k]




In words

Given 2 sequences of length N and M, let y[k] be their linear convolution

WK = ST hk) = S STndhlk -n]

N=—00

y[k] is also equal to the circular convolution of the two suitably zero padded

sequences making them consist of the same number of samples
N, -1

clk]= fIkKI®HKk]= Y fIn]hlk -n]
Ny=N,+N, -1: lenng=gh of the zero-padded seq

In this way, the linear convolution between two sequences having a different length
(filtering) can be computed by the DFT (which rests on the circular convolution)
— The procedure is the following

Pad f[n] with N-1 zeros and h[n] with N-1 zeros

Find Y[r] as the product of F[r] and H[r] (which are the DFTs of the corresponding zero-padded
signals)

Find the inverse DFT of Y]r]

Allows to perform linear filtering using DFT




2D Discrete Fourier Transform

Fourier transform of a 2D signal defined over a discrete finite 2D grid of size
MxN

or equivalently

Fourier transform of a 2D set of samples forming a bidimensional sequence

As in the 1D case, 2D-DFT, though a self-consistent transform, can be
considered as a mean of calculating the transform of a 2D sampled signal

defined over a discrete grid

The signal is periodized along both dimensions and the 2D-DFT can be
regarded as a sampled version of the 2D DTFT




2D Discrete Fourier Transform (2D DFT)

« 2D Fourier (discrete time) Transform (DTFT) [Gonzalez]

F(u,v)= E E fm, n]e_jzﬂ(umwn) a-periodic signal

M0 e o0 periodic transform

« 2D Discrete Fourier Transform (DFT)

o (ko
] MJANI —J2ﬂ(ﬁm+ﬁ”) periodized signal
= M_N f [ma n]e periodic and sampled
m=0 n=0 transform

2D DFT can be regarded as a sampled version of 2D DTFT.




2D DFT: Periodicity

 A|[M,N] point DFT is periodic with period [M,N]

— Proof
I - ome o)
| =— m,n|e
[%,!] MNm:On:Of[ ]
Flk+M.1+N]=—L 3 S S
+ M, [+ N|=—— m,nle
| ] MNn;n=of[ ]
M-1N-1 -j2rn| —m+—n| -j2x m+—n
=L f[m,n]e] ( )ej )
MN m=0 n=0
= F[k,[]

(In what follows: spatial coordinates=k,l, frequency coordinates: u,v)




2D DFT: Periodicity

« Periodicity
Flu,v]=Flu+mM ,v]= Flu,v+nN]|= Flu+mM,v+nN]
flk, 0= flk+mM,l]= flk,l+nN]= flk+mM,l +nN]

« This has important consequences on the implementation and energy
compaction property

— 1D FIN -u]=F"lu]
fIk] real>F[u] is F[u] The two inverted periods meet here
Hermitian I
symmetric

M u
0 M/2




Periodicity: 1D

Skl = Flu] changing the sign of every other
2ok sample of the DFT puts F[0] at
flkle M < Flu-u,] the center of the interval [0,M]
A Uk .~ Mk
u, = % — eﬂ”M = eﬂﬂzM =e/™ = (1)
M

(-1 flk] < Flu —7]

4 Flu] The two inverted periods meet here

1] | { ‘ AENEal ‘ | ‘ 1.,

0 M/2 M Y

It 1s more practical to have one complete period positioned in [0, M-1]
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Periodicity in 2D
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fft2

0,127=1/M,1/N

Periodicity

fftshift(fft2)
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e m
VAN,

DFT periods

MxN values
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Periodicity: 2D

data contain one centered

Fl[u,v] EN | complete period
. : - | DFT periods
flk,l]e < Flu-u,,v-v,] | L |
M N |
Uy =——,Vy = 7 ) i MxN values
2 2 N/2
| M N
(D" fIk] = Flu=""v="
2 2
(0,0)
4 inverted
periods meet
here

...............................................................................................
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Angle and phase spectra

Flu,v]=|F|u,v] e/t

1/2

= [Re {F [u , V]}2 +Im {F [u, V]}2 ] modulus (amplitude spectrum)

Im {F [u, V]}] hase
Re {F [u, v]}

2 power spectrum

Fluv]

CID[u,v] = arctan

Plu,v]= ‘F[u,v]

For a real function

Fl-u,-v]=F ’ [u,v] conjugate symmetric with respect to the origin
‘F[—T/l, _V]‘ = ‘F[U,V]
(I)[—M, _V] = —(I)[M,V]
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Translation and rotation

jzn(’"kﬂz

flk,lle M N)eF[u—m,v—l]

flk-mi-n]< F[u,v]_jm(f\n;h;l)

k =rcosi} U = (WCOSQE
[ =rsind} [ = wsing

flro+8] < Flo.p+ 4]

Rotations 1n spatial domain correspond equal rotations
in Fourier domain
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DFT Properties: (5) Rotation

Rotating f(x,y) by 0 rotates F(u,v) by 0

’

| i
-
"




mean value

f [n,m] DC coefficient




Separability

The discrete two-dimensional Fourier transform of an image array is defined
in series form as

| M<IN-l _jz,,(im%n)
Flk,1]= VN ,,2) EO fm,nle
Inverse transform
~IN- (%m%)

flm,n] ZZFkZ

» Because the transform kernels are separable and symmetric, the two dimensional
transforms can be computed as sequential row and column one-dimensional
transforms.

» The basis functions of the transform are complex exponentials that may be
decomposed into sine and cosine components.
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2D DFT: summary

TABLE 4.1 E
T Property Expression(s
Summary of some perty p ©)
important _ , Ml e (el Aol
) . . nY — e 2 m(ux/M-+vy/N)
properties of the Fourier transform  F(u, v) ;‘6 ‘Z)f x,y)e
2-D Fourier
transform. [nverse Fourier flx.y) = le ~21 F (1. v)e/2mx/M+vy/N)
transform J(xy) = 0=0 -0 (1, v)e
Polar F(u,v) = |F(u, v)|e )
representation
1/2
Spectrum |F(u.v)| = [R¥(u.v) + IP(u.v)]”. R = Real(F)and
I = Imag(F)
[ 1 (. v)
Phase angle d(u, v) = tan
R(u.v)

Power spectrum  P(u, v) = |F(u, v)[

M-1N-1

Average value fx.y) = F(0,0) 2 S f(x.y)
x=0 y=0
Translation f(x. y)e2 s/ MvyIND o By — g v — 1)

flx = xo.y — yo) & F(u.v)e 2/ s/ N)
When xy = uy = M/2and y, = vy = N/2.then
flae.n(=1)"Y < Fu—- M/2.v — N/2)

flx = M/2,y = N/2) & F(u.v)(—1)"""




2D DFT: summary

Conjugate
svmmetry

Differentiation

Laplacian

Distributivity

Scaling

Rotation

Periodicity

Separability

I"f(x.y)

F(u,v) = F*(—u.—v)
|F(u.v)| = |F(—u.—v)|
< (ju)"F(u,v)
"F(u, v)

au"
Vif(x.y) = —(u® + v?)F(u, v)

J[filx. y) + L(x. )] = S[filx. )] + 3[falx.y)]
J[fi(x.y) - Hlxy)] = S[fix )] - S[falx, ﬂ

n

ax

(—jx)'f(x.y) =

af(x.y) < aF(u.v). f(ax,by) < — F(u/a, v/b)

1
|ab]
X = rcos# y = rsin# U= wcose V= wSsing
fr.6 + 6)) & Flo.o + 6,)

Flu,v) = Flu + M.v) = F(u,v + N) = F(u + M.v + N)
flx.y) = f(x + M.y) = f(x,y + N) =f(x + M,y + N)

See Egs. (4.6-14) and (4.6-15). Separability implies that we can
compute the 2-D transform of an image by first computing 1-D
transforms along each row of the image, and then computing a
1-D transform along each column of this intermediate result.
The reverse, columns and then rows, yields the same result.
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2D DFT: summary

Property Expression(s)
Computation 1 M LN .
% \ i+ N
of the inverse 7T (x.y) = 2} EOF , v)e 2rs/M v /N)
. " v
Fourier

transform using
a forward
transform
algorithm

Convolution’

Correlation’
Convolution
theorem’

Correlation
theorem’

This equation inchcatcs that inputting the function F*(u, v)
into an algorithm designed to compute the forward transform
(right side of the preceding equation) vields f*(x, y)/MN.
Taking the complex conjugate and multiplying this result by
MN gives the desired inverse.

M-1N

X, X. - m,n)h(x —m.y — n
Fxy) (e y) =~ 2 "Eof( Jh(x — m.y — n)
M-1N
f(x.y)eh(x.y) = Z Ef (m.n)h(x + m,y + n)
m=0 n=0

(x,y)*h(x.y) = F(u,v)H(u,v):
(x, y)h(x,y) < F(u,v)* H(u,v)
(

x.y)eh(x.y) & F*(u,v)H(u,v):

f
f
f
fA(x.y)h(x.y) < F(u,v)° H(u,v)
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2D DFT: summary

Some useful FT pairs:

2

Impulse o(x,y) & 1
Gaussian AV 2moe T Y) o poWiv)2s

sin(7ua) sin(mwvb)
Rectangle rect|a.b] <= ab fm(uatvb)

(rua)  (7vbh)
Cosine cos(2mupx + 2mvy) =
1
7[5(:: + U + V) + (U — upv —

Sine Sin(Z?T“OX + 277'1)0}') —

]l[ﬁ(u + U + V) — U — up.v —

V)]

‘Uo)]

' Assumes that functions have been extended by zero padding.
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Magnitude and Phase of DF T

* What 1s more important?

magnitude . hase

Hint: use inverse DFT to reconstruct the image using
magnitude or phase only information




Magnitude and Phase of DFT (cont’ d)

v

Reconstructed image using
magnitude only

(1.e., magnitude determines the

contribution of each component!)

Reconstructed image using
phase only

(1.e., phase determines

which components are present!)




Magnitude and Phase of DFT (cont’ d)

abc
de f

FIGURE 4.27 (a) Woman. (b) Phase angle. (¢c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.




Ex. 1
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Ex. 2
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=

Magnitudes
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Margherita Hack

log amplitude of the spectrum
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Einsteln

log amplitude of the spectrum
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Examples
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other formulations




2D Discrete Fourier Transform

2D Discrete Fourier Transform (DFT)

PSS e
: » m,nle

where [=0,1,....N-1
k=0,1,...M-1

Inverse DFT

flm,n] = F[k,l]e.
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2D Discrete Fourier Transform

It is also possible to define DFT as follows
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2D Discrete Fourier Transform

Or, as follows

M-1IN —j2fr(—m+—n)
Flk,l]= flm,nle
m=0 n=0
where k=0,1,....M -1 and [=0,1,....N-1
Inverse DFT

N j2ﬂ(£m+in)
flm,n] Flk,lle ™ *
=0 =

36




2D DFT

The discrete two-dimensional Fourier transform of an image array is defined
in series form as

N-1 N-1
: =2, .
. ¥ F ,k r—— + vk
i, v) e E E (j }txp][ 7 (uj + }}

i=0 k=0
inverse transform

N-1 N-1
. Wi, .
F .k ¢ LV 2) ———— + ,k
(J, k) z 2 J’(u\)u{p{ > (uj +1 )}
(!

=0 v=10
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2D DCT

Discrete Cosine Transform




2D DCT

« based on most common form for 1D DCT

N- 7
. T(2x+1
Clu)=alu)y flx)eoy 2D Ux=0,1,..., N-1
x=0 ; -

S 2x+ D |
flx)= Za(_u )C(_u)cos[”("' +) ,

u=0 2N

alu) =
JE* for u=0
A
e
Clu=0)= =) flx). “mean” value
1" N =0




Figure 1

1D basis functions
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2D DCT

« Corresponding 2D formulation

N-1N-1
’ AN T(2x+1Du
direct C{H..‘I.-‘):{I(H)Q’{-i.-J f(t 1){205[ ( u |
' 2N '
x=0 y=0 |
u,v=0,1,...., N-1
1
- for u=20
\ N
alu) =
L\/? for u=0.
N—-1N-
o T(2x+Du
inverse f > o 1 Zzallb’ II 1)Cos
2N
u=0 v=0

M

] [31'(2}-' + 1)1-}
cos i
2N '

T2y +1v

2N

I
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2D basis functions

The 2-D basis functions can be generated by multiplying the horizontally
oriented 1-D basis functions (shown in Figure 1) with vertically oriented set
of the same functions.

The basis functions for N = 8 are shown in Figure 2.

— The basis functions exhibit a progressive increase in frequency both in the
vertical and horizontal direction.

— The top left basis function assumes a constant value and is referred to as the DC
coefficient.
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Figure 2

2D DCT basis functions
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Separability

fix, ) Row transform C(x, v) Column transform Clu, v)

The inverse of a multi-dimensional DCT is just a separable product of the inverse(s) of the
corresponding one-dimensional DCT , e.g. the one-dimensional inverses applied along one
dimension at a time
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Separability

Symmetry

— Another look at the row and column operations reveals that these operations are
functionally identical. Such a transformation is called a symmetric transformation.

— A separable and symmetric transform can be expressed in the form
T = AfA

— where A is a NxN symmetric transformation matrix which entries a(i,j) are given
by

« This is an extremely useful property since it implies that the transformation matrix can
be pre computed offline and then applied to the image thereby providing orders of
magnitude improvement in computation efficiency.
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Computational efficiency

Computational efficiency

Inverse transform

f=4ar4a?t.

— DCT basis functions are orthogonal. Thus, the inverse transformation matrix of A

is equal to its transpose i.e. A-”7= AT.
« This property renders some reduction in the pre-computation complexity.
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Block-based implementation

Basis function

o R | TR
Block size

N=M=8 e AL RIERIIRLIRRIANNE

M N IEE IR IRN A

n

The source data (8x8) is transformed to a — " B B R ™ EEE R BE BRIEER
linear combination of these 64 frequency i " i i 0B i N i N ! i i i
squares. = - EN iL AN ERCH Hul

Il R E BE BBn HE N

am Ll iNl i1l
u RANER

H B B § B D s AN

L
|| N

o
H N N

N
A EN

0
il
0
H BN BN B Nm
H EN N E B n
N
N N .
__H B N

i
||
|
m

H B E N

| ]
]

1 _u
II.I N _l_




Energy compaction

(@)

(b)
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Energy compaction

P

(d)
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Appendix

Eulero’ s formula

Ak iu,v) = cxp{_i]ni(uj + vk)} = cos{%(uj + vk)}— isin{%(uj+ vk)}

B(j,kiu,v) = CXP{%”(U] + \’k)} = COS{%(U] + \’/\’)}+ isin{%(l!j + vk)}
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