
Differential Geometry and Topology
Exercises by topic

1 Exterior algebra

Exercise 1. Suppose that T ∈ Λp(V ∗) and v1, . . . , vp ∈ V are linearly dependent. Prove that T (v1, . . . , vp) = 0
for all T ∈ Λp(V ∗).
Exercise 2. For a k × k matrix A, let At denote the transpose matrix. Using the fact that detA is multilinear
in both rows and columns of A, prove that det(At) = det(A). [Hint: Use dim Λk(Rk∗) = 1.]

Exercise 3. 1. Let T be a nonzero element of Λk(V ∗), where dimV = k. Prove that two ordered bases
{v1, . . . , vk} and {v′1, . . . , v′k} for V are equivalently oriented if and only if T (v1, . . . , vk) and T (v′1, . . . , v

′
k)

have the same sign.[Hint: determinant theorem.]

2. Suppose that V is oriented. Show that the one-dimensional vector space Λk(V ∗) acquires a natural orien-
tation, by defining the sign of any positively oriented element T ∈ Λk(V ∗) to be the sign of T (v1, . . . , vk)
for any positively oriented ordered basis {v1, . . . , vk} for V .

3. Conversely, show that an orientation of Λk(V ∗) naturally defines an orientation on V by reversing the
above.

2 Differential forms

Exercise 4. Suppose that φ1, . . . , φm are differential forms on Rk, with deg φi = pi, and f(y1, . . . , yk) a 0-form
(i.e. smooth function). Thus fdφ1 ∧ dφ2 ∧ . . . ∧ dφm is a (p1 + . . .+ pm +m)-form. Show that

d (fdφ1 ∧ . . . ∧ dφm) = df ∧ dφ1 ∧ . . . ∧ dφm

Exercise 5. Let f : X → Y be a smooth map of manifolds, and let φ be a smooth function on Y . Then

f∗(dφ) = d(f∗φ).

Exercise 6. Let Z be a finite set of points in X, considered as a 0-manifold. Fix an orientation of Z, an assignment
of orientation numbers σ(z) = ±1 to each z ∈ Z. Let f be any function on X, considered as a 0-form, and check
that ∫

Z

f =
∑
z∈Z

σ(z)f(z).

Exercise 7. Suppose that the 1-form ω on X is the differential of a function, ω = df . Prove that
∮
γ
ω = 0 for all

closed curves γ on X.

Exercise 8. Define a 1-form ω on the punctured plane R2 \ {0} by

ω(x, y) =

(
−y

x2 + y2

)
dx+

(
x

x2 + y2

)
dy.

1. Calculate
∫
C
ω for any circle C of radius r around the origin.

2. Prove that in the half-plane {x > 0}, ω is the differential of a function. [Hint: try arctan(y/x) as a random
possibility.]

3. Why isn’t ω the differential of a function globally on R2 \ 0?

Exercise 9. Suppose that ω is a 1-form on the connected manifold X, with the property that
∮
γ
ω = 0 for all

closed curves γ. Then if p, q ∈ X, define
∫ q
p
ω to be

∫ 1

0
c∗ω for a curve c : [0, 1] → X with c(0) = p, c(1) = q.

Show that this is well-defined (i.e. independent of the choice of c.)



3 Stokes’ theorem

Exercise 10. The Divergence theorem in electrostatics. Let D be a compact region in R3 with a smooth boundary
S. Assume 0 ∈ Int(D). If an electric charge of magnitude q is placed at 0, the resulting force field is qr/r3,
where r(x) is the vector to a point x from 0 and r(x) is its magnitude. Show that the amount of charge q can
be determined from the force on the boundary by proving Gauss’s law:∫

S

F · ndA = 4πq.

[Hint: apply the Div. Thm. to a region consisting of D minus a small ball around the origin.]

Exercise 11. Suppose that X = ∂W , W is compact, and f : X → Y is a smooth map. Let ω be a closed k-form
on Y , where k = dimX. Prove that if f extends to all of W , then

∫
X
f∗ω = 0.

Exercise 12. Suppose that f0, f1 : X → Y are homotopic maps and that the compact, boundaryless manifold X
has dimension k. Prove that for all closed k-forms ω on Y ,∫

X

f∗0ω =

∫
X

f∗1ω.

Exercise 13. Show that if X is a simply connected manifold, then
∮
γ
ω = 0 for all closed 1-forms ω on X and all

closed curves γ in X.

4 Homotopy invariance of de Rham cohomology

Exercise 14. Let M and N be manifolds and suppose that N ⊂M and the inclusion map i : N →M is smooth.
A deformation retract of M into N is a smooth map r : M → N such that r ◦ i = IdN and i ◦ r is homotopic to
IdM . Prove that M and N have the same de Rham cohomology.

Exercise 15. Show that the de Rham cohomology of the open Möbius strip = the de Rham cohomology of the
punctured plane C \ {0}.

5 Homological algebra and exact sequences

Exercise 16. Show that if 0 → A → B → C → 0 is an exact sequence of finite dimensional vector spaces, then
dimB = dimA+ dimC.

Exercise 17. Prove the Five Lemma: given a commutative diagram of abelian groups and group homomorphisms

A

α

��

f1 // B

β

��

f2 // C

γ

��

f3 // D

δ
��

f4 // E

ε

��
A′

g1 // B′
g2 // C ′

g3 // D′
g4 // E′

in which the rows are exact, if the four outer maps α, β, δ and ε are isomorphisms then so is γ.

Exercise 18. Suppose that 0 → V1 → V2 → . . . → Vn → 0 is an exact sequence of finite dimensional vector

spaces. Show that
n∑
i=1

(−1)i−1 dimVi = 0.

6 Mayer-Vietoris, Poincaré duality, Künneth formula

Exercise 19. Compute the de Rham cohomology of the sphere S2 with n holes (or equivalently the plane R2

with n− 1 holes).

Exercise 20. Compute the de Rham cohomology of a compact oriented surface of genus 2 (also known as the
two-holed donut). E.g. break it up into a sphere with 4 holes with two cylinders attached to close up the holes.

Exercise 21. Let M be a compact, orientable n manifold. Show that n odd =⇒ χ(M) = 0. So, for example,
all odd-dimensional spheres Sk = {x ∈ Rk+1|‖x‖ = 1} have Euler characteristic equal to zero.

Exercise 22. Show that the n-torus Tn = S1 × . . .× S1︸ ︷︷ ︸
n times

has Bk(Tn) =
(
n
k

)
.

Exercise 23. Use the Kunneth formula to calculate H∗dR(S2 × S2).



7 Compactly supported cohomology and Poincaré duality

Exercise 24. Compute the de Rham cohomology of the punctured torus Σ = T 2 \ {x} by the following steps.

1. Find H0
dR(Σ).

2. Find H0
c (Σ).

3. By Poincaré duality this gives H2
dR(Σ).

4. Let D be an open disk containing the point x, so T 2 = Σ ∪ D. Given that H0
dR(T 2) ∼= R ∼= H2

dR(T 2),
H1
dR(T 2) ∼= R2, use the Mayer-Vietoris sequence to compute H1

dR(Σ).

8 Hodge theory

Exercise 25. Let H be the hyperbolic plane, i.e. the upper half plane {(x, y) ∈ R2|y > 0}, equipped with the
hyperbolic metric g(x, y) = (dx ⊗ dx + dy ⊗ dy)/y2. Let Ω(x, y) = dx ∧ dy be the standard volume form. Find
explicit expressions for

1. the Hodge star operators ∗,

2. the codifferential operators δ, and

3. the Laplace-Beltrami operators 4

with respect to g and Ω.

9 Poincarè duals, Intersection numbers, Euler characteristic

Exercise 26. Let T 2 be the torus, and M1 and M2 its two meridians. Compute I(M1,M1) and I(M1,M2).
Conclude that M1 and M2 are not isotopic to each other.

Exercise 27. Let S be the curve in T 2 depicted in red below. Choose an orientation for S and compute I(S, S).
Let M1 and M2 be the two meridians of T 2. Compute I(S,M1) and I(S,M2) with respect to any orientation of
M1 and M2. Conclude that S is not isotopic to either M1 or M2.

Exercise 28. Let S1 and S2 be two compact oriented submanifolds of Rn of complementary dimension, with
Poincaré duals ηS1

and ηS2
. Show that

∫
M
ηS1
∧ ηS2

= 0.

Exercise 29. Prove that the Euler characteristic of the product of two compact, oriented manifolds is the product
of their Euler characteristics.

Exercise 30. Let 4 ⊂ S2 × S2 be the diagonal, which itself is isomorphic to a sphere. Show that there is no
isotopy Φ : S2 × S2 → S2 × S2 such that Φ(4) ∩4 = ∅.
Exercise 31. More generally, for k > 0 even, let Sk be the k-dimensional sphere. Show that there is no isotopy
Φ : Sk × Sk such that Φ(4) ∩4 = ∅.


