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Part I

A manufacturing plant processes workpieces by em-
ploying two machinesM1,M2 and a bufferB between
them as shown in Figure 1. M1 starts working a piece
by taking it from an external infinite source. Once
M1 has started, either it finishes processing the piece
or it breaks down. In the first case, M1 places the
piece into the buffer B, whose capacity is of one piece
only, and returns ready to process other pieces. In
the second case, M1 discards the piece and waits for
repair before starting processing pieces again. M2

starts working a piece by taking it from B (if B con-
tains any). After that, M2 either finishes working
the piece or breaks down by discarding it. In the
first case, the piece is not put back into B as the
process for such a piece is considered complete. In
the second case, exactly as for M1, M2 waits for re-
pair before processing other pieces. The model of
the plant must take into consideration the following
aspects:

1) Each machine has 3 states: Idle (initial and
marked), Active, and Down.

2) Each machine has 4 transitions fired according
to the following events:

start : moving from Idle to Active.

finish : moving from Active to Idle.

break : moving from Active to Down.
∗This document is part of the reference material for Dis-

crete Event and Hybrid Systems and Systems Design Labo-
ratory offered by University of Verona in the Master Degree
Computer Engineering for Robotics and Smart Industry.

†The original example discussed in Part I appears in the
paper P. J. Ramadge and W. M. Wonham. Supervisory Con-
trol of a Class of Discrete Event Processes. SIAM Journal on
Control and Optimization 1987 25:1, 206-230.
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Figure 1: Manufacturing process setting.

repair : moving from Down to Idle.

3) The buffer B is either Empty (initial and
marked) or Full and it is synchronized with some
of the events of M1 and M2. When B is Empty,
M1 can finish processing a piece by placing it in
the buffer. If this happens, then B becomes Full
andM1 cannot finish processing other pieces un-
til B becomes Empty again. Likewise, when B
is Full, M2 can start processing a piece by tak-
ing it from B. If this happens, then B becomes
Empty again. M2 cannot start processing other
pieces until B becomes Full again.

4) The events finish and break of each machine can-
not be prevented.

Question 1. Build the plant automata M1,M2, B.

Answer 1. We introduce here (and use in the rest of
the document) the following conventions to shorten
the names of states and transitions. Let i = 1, 2.
Then, Ii, Ai, and Di shorten Idle, Active, and Down
state names of machine i; si, fi, bi, and ri shorten
start, finish, break, and repair transition names of
machine i, whereas E and F shorten Empty and Full
state names of the buffer B. States are depicted as
circles; the initial one is identified by an incoming
“tail-less” arrow, whereas marked ones are double cir-
cled. Transitions are depicted as directed arrows la-
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Figure 2: Plant automaton modeling M1.
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Figure 3: Plant automaton modeling M2.

beled by the corresponding event. Controllable tran-
sitions are black; uncontrollable ones are red. Fig-
ure 2 and Figure 3 show the plant automata model-
ing the machines M1 and M2, respectively. Figure 4
shows the plant automaton modeling the buffer B.�

Question 2. Build the plant G as the parallel com-
position of M1, M2, and B. Is the result a shuffle?

Answer 2. Figure 5 shows G := M1‖M2‖B. A par-
allel composition is said a shuffle if the composed au-
tomata do not share events with each other. Thus,
the result is not a shuffle since B shares f1 with M1

and s2 with M2. In other words, B is synchronized
with M1 and M2 on those events. An example of a
shuffle composition is M1‖M2 (Figure 13). �

Question 3. Build the requirement automata to
model the following requirements R1, R2, R3, R4.

R1: M1 can start working a piece only if B is empty.

R2: M2 can start working a piece only if B is full.

R3: M1 cannot start working a piece if M2 is down.

E F
f1
s2

Figure 4: Plant automaton modeling B.

R4: If M1 and M2 are down, then M2 is repaired
before M1.

Answer 3. The general idea of modeling a require-
ment is to define an automaton R encoding it. Such
an automaton will be taken as input along with the
plant G by a synthesis algorithm to build a supervi-
sor (if any) that restricts G according to R. When
defining such an automaton we want to use as fewer
states and events as possible. That is, we just want
to encode no more than what we need (the synthesis
operations coming next will do the rest of the job).

Since requirements are constraints that restrict the
behavior of the plant G, the controllability of the
events in R must always be consistent. That is, if an
event is controllable (resp., uncontrollable in G), it
is controllable (resp., uncontrollable) in R too. Such
a restriction does not apply to states. Indeed, the
states of R need not be related to the states of G and
they generally have a specific interpretation that de-
pends on the requirement itself. Moreover, we mark
all states of R since in this example marking is prop-
erty of the system and not of the requirements, and
eventually we want to avoid undesired restrictions of
G because of wrong marking in R.

To model R1 we first need to track the state of the
buffer B. This is easy if we start from a copy of the
automaton B. To avoid confusion with the actual B,
let us use in R1 the state names BE and BF to track
when the buffer is empty or full, respectively. To
enforce that s1 can be executed only if B is empty,
we add a self loop transition labeled by s1 on BE .
Figure 6 shows the resulting automaton R1.

The requirement R2 is already satisfied by G. In-
deed, the automaton R2 comes for free. Once again
we need to track the state of B and thus we start
with a copy of B (with the states renamed as be-
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Figure 5: Whole plant automaton of the system G := M1‖M2‖B.
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Figure 6: Requirement automaton modeling R1.

fore). However, this time we do not need to add
any transition since s2 can only be executed from
BF . Therefore R2 is basically identical to B with all
states marked (Figure 7).

To model R3 we first need to track the status of
M2. However, despite it would not be wrong, we do
not need to start from a copy of M2. We just need
two states U2 and D2 to model “M2 up” and “M2

down”, respectively. What about the events? Before
thinking aboutM2 we need to connect U2 andD2 in a
way that this automaton correctly tracks when M2 is

BE BF
f1
s2

Figure 7: Requirement automaton modeling R2.

up or down. Having a look at Figure 3, we know that
there is only an event that takes M2 down: the break
event b2. Therefore, we add a transition from U2 to
D2 labeled by b2. Likewise, there is a single event to
take M2 back up: the repair event r2. Therefore, we
add a transition from D2 to U2 labeled by r2. Now
that we have a tracking of M2, we can enforce the
requirement by adding a self loop transition on U2

labeled by the event s1. This way, if M2 is down,
M1 cannot start. Figure 8 shows the requirement
automaton R3. To sum up, U2 represent both I2
and A2 of automaton M2. This is possible because
all other events of M2 are not relevant to build R3.
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Figure 8: Requirement automaton modeling R3.

To model R4 we first need to track when both ma-
chines are down. However, instead of tracking all
possible combinations of ups and downs of M1 and
M2 (4 states), we start again from an automaton that
only tracks the ups and downs of M2 as we did for
R3 (2 states). Now, if we add a self loop labeled by
r1 on U2 we have modeled the requirement. Figure 9
shows R4. Note that M1 can break down in both
U2 and D2 since b1 is not part of R4. Therefore the
possible 4 cases are the following:

1) If M1 and M2 are both up, then R4 does not
block them in any way.

2) If M1 is down and M2 is up, then R4 is in U2

and M1 can be repaired because of the self loop
r1 on U2.

3) If M1 is up and M2 is down, then R4 is in D2

andM2 can be repaired because of the transition
from D2 to U2 labeled by r2.

4) If M1 and M2 are down, then R4 is in D2 and
M1 cannot be repaired until M2 is not repaired.
This is because r1 can only be executed from U2

and to get to U2 we need to execute r2 from D2

which is equivalent to saying that when both are
down M2 is repaired first.

As a final note, considering the requirement R4

in isolation, we point out that when both ma-
chines are down and M2 is repaired, there is no
obligation of repairing M1 after that. Indeed, M2

might break another time gaining repair priority
again. The following sequence of events proves that:
i1, f1, i2, i1, f1, i1, b1, b2, r2, i2, b2 , r2.

U2

r1

D2
b2
r2

Figure 9: Requirement automaton modeling R4.
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Figure 10: Requirement automaton R1,2 := R1‖R2.

To conclude this answer we want to draw your at-
tention to another important aspect. We built 4 au-
tomata: R1, R2, R3, and R4. However, all we did up
to here can be further simplified in just 2 automata:

• R1,2 merging R1 and R2 (Figure 10)

• R3,4 merging R3 and R4 (Figure 11)

Therefore, using (R1, R2, R3, R4) or (R1,2, R3,4)
is the same. But also taking (R1‖R2‖R3, R4) or
(R1, R2‖R3‖R4) . . . is the same. because when syn-
thesizing a supervisor we will consider the parallel
of all specifications. The reason why we do not pro-
vide a single requirement automaton R1‖R2‖R3‖R4

is because it is an operation that we prefer to leave
to the control synthesis algorithm. Our job is to
construct a set of specifications which are “human-
readable”. Sometimes – as in this case – it might be
convenient to merge some specifications (e.g., R1,2

and R3,4). We do this if it makes sense. It is up to
us to choose the form and the number of the require-
ment automata. �

Question 4. Build a non-blocking supervisor S that
restricts the plant G according to the requirements
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Figure 11: Requirement automaton R3,4 := R3‖R4.

R1, R2, R3, R4. If S exists, then explain how S is de-
ployed to restrict G and describe its control strategy.

Answer 4. In order to build a non-blocking super-
visor S we proceed according to the following steps.

1) We set S := G‖R1‖R2‖R3‖R4 = G‖R1,2‖R2,3.
This is the initial, tentative, supervisor.

2) While there exists a state in S which is (or has
become) uncontrollable or non-co-accessible, we
remove that state from S. Note that a state can
satisfy all these two properties simultaneously.
Thus, there is no mutual-exclusiveness between
these properties.

3) If (2) removed the initial state of (the current)
S, then we are done: no supervisor exists. Oth-
erwise, we set S := trim(S) and we get the su-
pervisor we are looking for1.

Let us start with step (1). Figure 12 shows the
parallel composition S := G‖R1,2‖R3,4, which is not
a shuffle since we saw before that G was not a shuffle
(and any composition with something not a shuffle
remains not a shuffle).

We now move to step (2). A state of
S has the form (m1,m2, b, r1,2, r3,4) thus be-
longs to the cross-product of the states of
M1,M2, B,R1,2, R3,4. That is, States(S) ⊆
States(M1)×States(M2)×States(B)×States(R1,2)×
States(R3,4) (in general, this subset relation is

1We recall that, given an automaton A, trim(A) is A with-
out the states that are non-accessible or non-co-accessible (and
the corresponding transitions involving them).

strict). Let (m1,m2, b, r1,2, r3,4) be any state of S.
Then, we say that such a state is:

• uncontrollable if there exists an uncontrol-
lable event e which is not executable in
(m1,m2, b, r1,2, r3,4) but it is executable in the
corresponding state (m1,m2, b) of G. In such a
case, S would be trying to disable an uncontrol-
lable event (a forbidden operation).

• non-co-accessible if there is no path from
(m1,m2, b, r1,2, r3,4) to a marked state in S.

Also, we recall that any marked state is co-
accessible since there exists a zero-length path to it-
self.

In the first iteration of the while loop, we discover
that there are no uncontrollable states in the current
S. Therefore, we proceed to look for the non-co-
accessible states. It is clear that each state of S is co-
accessible since the graph in Figure 12 is a strongly
connected component (SCC)2. Therefore, since we
do not remove any state of S we can exit (2).

Now we move to step (3) and take S := trim(S)
which again does not modify the current S, so S
is the supervisor that we are looking for. Therefore,
there exists a non-blocking supervisor S that restricts
G according to the requirements R1, R2, R3, R4.
S is deployed in the system by means of a parallel

composition with G. Since S was built from the par-
allel composition of G and the requirements, then S
can track the events that G executes, and for each
new event executed by G, can restrict the next set of
controllable events that G is allowed to execute. As
a result, S can prevent G from reaching some states
that could be reachable without control. To sum up,
the expected controlled behavior of G under the su-
pervision of S (in symbols, S/G) is S/G := S‖G.

We are left to describe the strategy of S. First
of all notice that the states that G reaches un-
der the control of S are the states {(m1,m2, b) |

2In a directed graph a strongly connected component
(SCC) is a set of nodes such that for every two nodes in the
set there exists a path from the first to the second (and of
course there always exists a zero-length path from each node
to itself).

5



I1, I2, E, BE, U2

A1, I2, E, BE, U2

s1

D1, I2, E, BE, U2

b1

I1, I2, F, BF, U2

f1

r1

I1, A2, E, BE, U2

s2

f2

I1, D2, E, BE, D2

b2

A1, A2, E, BE, U2

s1

D1, D2, E, BE, D2

r2

I1, D2, F, BF, D2

r2

r2

f2

D1, A2, E, BE, U2

b1

A1, D2, E, BE, D2

b2

I1, A2, F, BF, U2

f1

f2

r1

b2

r2

b1

f1

f2

b2

Figure 12: The initial, tentative, supervisor automaton S := G‖R1,2‖R3,4 = M1‖M2‖B‖R1‖R2‖R3‖R4.

(m1,m2, b, r1,2, r3,4) ∈ States(S)}. After that, con-
sidering the events enabled byG in the various states,
S restricts G by disabling the following events ac-
cording to the state in which G is in.

• Whenever M1 is in the initial state and the
buffer is full, then S disables s1 (Requirement
R1).

• Whenever M2 is in the initial state and the
buffer is empty, S does nothing (Requirement
R2 is already satisfied by G).

• Whenever M1 is in the initial state and M2 is
broken, S disables s1 (Requirement R3).

• Whenever M1 and M2 are broken, S disables r1
(Requirement R4).

We also give a tabular view of this control strategy
in Table 1 (to ease reading we focus on the state of
the plant).

Part II

Consider M1, M2, and B of Part I.

Table 1: Tabular description of the strategy of S.
We only show the events actually disabled by S with
respect to the events that would be enabled by G.

State of G Events disabled by S

(I1, I2, E) ∅
(A1, I2, E) ∅
(I1, I2, F ) {s1}
(I1, A2, E) ∅
(I1, D2, E) {s1}
(A1, A2, E) ∅
(I1, A2, F ) {s1}
(I1, D2, F ) {s1}
(A1, D2, E) ∅
(D1, D2, E) {r1}
(D1, I2, E) ∅
(D1, A2, E) ∅

Question 5. Build the plant G1 as the parallel com-
position of M1 and M2 only. Is the result a shuffle?

Answer 5. Figure 13 shows G1 := M1‖M2. The
result is a shuffle since M1 and M2 do not share any
events. �

Let K1 ⊆ Lm(G1) be the language marked by G1
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restricted by the following requirement:

The buffer contains at most one piece.

Question 6. Build the automaton marking K1.

Answer 6. We need to build an automaton H1 such
that Lm(H1) = K1. We achieve this purpose by
means of a parallel composition between G1 (since
K1 ⊆ Lm(G1)) and another automaton that we do
not have yet. We are looking for an automaton en-
forcing alternation between the events f1 (of M1)
and s2 (of M2). In other words, such an automaton
tracks the first occurrence of f1, then disables f1 up
to the first occurrence of s2, then disables s2 up to
the next occurrence of f1, and repeats. But this is
exactly the synchronization enforced by the buffer B
in Part I. In this part, since B in is no longer part
of the plant G1, then such a synchronization is not
guaranteed anymore by G1 (which is not by chance
a shuffle). Hence, such an automaton coincides with
R2 shown in Figure 7 (i.e., B with all states marked).
Thus,

H1 := G1‖R2

Figure 14 shows the automaton H1 marking K1.
Note that K1 corresponds to the language marked
by the plant G of Part I restricted to R1,2, with a
small difference: R2 misses the self-loop labeled by
s1 at BE . �

Question 7. Is K1 prefix-closed?

Answer 7. A language L is prefix-closed (in symbols
L = L) if all prefixes of every string in L belong to L
as well. A language L(A) generated by an automa-
ton A is clearly prefix-closed since to generate any
string in it, we need to generate all of its prefixes,
incrementally. This is not guaranteed for marked
languages. Indeed, for any automaton A, it holds
that Lm(A) ⊆ Lm(A) ⊆ L(A) = L(A), where all
subset relations might, of course, be strict. There-
fore, since K1 = Lm(H1), we need to check whether
Lm(H1) ⊆ Lm(H1) is strict or not. Consider the au-
tomaton representation of H1 in Figure 14. Starting
from its initial state (I1, I2, BE), it is easy to see that
the string s1f1 ∈ K1 because by executing that se-
quence of events we end up in the state (I1, I2, BF )

which is marked. However, the prefix s1 6∈ K1 be-
cause the state (A1, I2, BE) is not marked. This is
sufficient to conclude that K1 is not prefix-closed
since K1 = Lm(H1) ⊂ Lm(H1) = K1. �

Question 8. Is K1 controllable? If so, describe the
control strategy. Otherwise, compute K↑C

1 .

Answer 8. To prove whether K1 is controllable or
not, we compute K↑C

1 and check if K↑C
1 ⊆ K1 is

strict or not. In the former case K1 is uncontrol-
lable, whereas in the latter K1 is controllable. To
compute K↑C

1 , we try to build a supervisor S1 for
G1 with respect to the requirement H1. If S1 exists,
then Lm(S1) = K↑C

1 . After that, if the procedure
discussed in Part I removes any state from S1, then
K↑C

1 ⊂ K1 and thus K1 is not controllable. Other-
wise, K↑C

1 = K1 and thus K1 is controllable.
K1 is not controllable. Initially, S1 := G1‖H1

(Figure 15a). Consider the state (A1, I2, h6) of Fig-
ure 15a, where h6 shortens the state (A1, I2, BF ) of
H1 (Figure 14). The event f1 cannot be executed
there. However, f1 can be executed in the (corre-
sponding) state (A1, I2) of G1 in Figure 13. There-
fore, (A1, I2, h6) = (A1, I2, A1, I2, BF ) is an uncon-
trollable state that we need to remove since the re-
quirement automaton H1 enforces the disabling of an
uncontrollable event. Figure 15b shows the final S1.
Note that Lm(S1) = K↑C

1 6= ∅.
The control strategy of S1 disables s1 wheneverM1

is in its initial state. Indeed, the sequence of events
s1, f1 (simulating the filling of the buffer) can be ex-
tended with, again, s1, f1 (simulating the overflow of
the buffer). In other words, after any (sub)sequence
s1, f1, s1 we need to disable f1. But this is a forbid-
den control action since f1 is uncontrollable. There-
fore, we need to prevent the second occurrence of s1
whenever we observe a sequence s1, f1 until we see
an occurrence of s2. �

Let K2 be the marked language of G1 restricted to
the requirement R4 of Part I.

Question 9. Build an automaton marking K2.

Answer 9. We need to build

H2 := G1‖R4
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Figure 13: Plant automaton G1 := M1‖M2 (shuffle).

so that K2 = Lm(H2). Figure 16b shows H2.

Question 10. Is K2 prefix-closed?

Answer 10. Once again no. Consider the automa-
ton representation of H2 in Figure 16a. Starting
from its initial state (I1, I2, U2), it is easy to see that
the string s2f2 ∈ K2 because by executing that se-
quence of events we get back to the initial state which
is marked. However, the prefix s2 6∈ K2 because
the state (I1, A2, U2) is not marked. This is suffi-
cient to conclude that K2 is not prefix-closed since
K2 = Lm(H2) ⊂ Lm(H2) = K2. �

Question 11. Is K2 controllable? If so, describe the
control strategy. Otherwise, compute K↑C

2 .

Answer 11. As we did for K1, to prove whether or
not K2 is controllable, we try to build a supervisor
S2 for G1 with respect to the requirement H2 and
see if we remove states in the process. We start by
setting S2 := G1‖H2 which we show in Figure 16b.
Since the algorithm does not remove any state, then
S2 = G1‖H2 and K2 is controllable. The control

strategy is the following. If both M1 and M2 are
down, r1 is disabled. As soon as M2 goes up again,
r1 becomes executable again. �

Question 12. Compare the languages Ki
↑C and

K↑C
i for each i = 1, 2.

Answer 12. We give the proof parametrized on i
since its structure is the same. For each i = 1, 2, it
holds that Ki

↑C ⊇ K↑C
i . It remains to show if the

inclusion is strict or not. To answer this question,
we need to build two automata SA and SB such that
Lm(SA) = Ki

↑C and Lm(SB) = K↑C
i and test if they

are equivalent. Let G′
1 be G1 with all states marked.

To build SA we start from an automaton RA such
that RA := Hi but with all states marked. This way,
Lm(RA) = Ki. Then, we try to build a supervisor SA

forG′
1 with respect to the requirement RA as usual so

that Lm(SA) = Ki
↑C . Initially, we set SA := G′

1‖RA.
To build SB we set SB := Si and mark all states

so that Lm(SB) = K↑C
i . By bisimulation...

We conclude with some variations of the questions
we asked in this part. Let M3 and M4 be the same as
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Figure 14: Automaton H1 := G1‖R2 marking K1. We also shorten the label of each state as hi for
i = 1 . . . 18.

M1 and M2, respectively, with the difference that the
only marked states are those in which the machines
are down.

Question 13. Build the automata M3, M4, and
G2 := M3‖M4. Is G2 a shuffle?

Answer 13. Figures 17a-17c show M3, M4, and
G2 := M3‖M4. Once again, G2 is not a shuffle since,
as for M1 and M2 defined in Part I, M3 and M4 do
not share any events. �

Let K3 ⊆ Lm(G2) be the marked language of G1

restricted by the same requirement used to defineK1.

Question 14. Build the automaton for K3.

Answer 14. The construction is identical to that
given for K1 but with respect to G2. That is, we set
H3 := G2‖R2 so that Lm(H3) = K3 (Figure 18). �

Question 15. Is K3 prefix-closed?

Answer 15. Still, no. Consider the automaton rep-
resentation of H3 in Figure 18. Starting from its
initial state (I1, I2, BE), it is easy to see that the

string s1f1s1b1s2b2 ∈ K3 because by executing that
sequence of events ends up in the state (D1, D2, BE)
which is marked. However, any (strict) prefix of such
a string is not in K3 because the states (I1, I2, BE),
(A1, I2, BE), (I1, I2, BF ), (A1, I2, BF ), (D1, I2, BF ),
and (D1, A2, BE) are not marked. This is suffi-
cient to conclude that K3 is not prefix-closed since
K3 = Lm(H3) ⊂ Lm(H3) = K3. �

Question 16. Is K3 controllable? If so, describe the
control strategy. Otherwise, compute K↑C

3 .

Answer 16. K3 is not controllable. Same explana-
tion as for K1. Figure 19b shows the final S3. Note
that Lm(S3) = K↑C

3 6= ∅. The control strategy is the
same as the one given for K1 �

Question 17. Is K3 controllable?

Answer 17. No, a language K is controllable if and
only ifK is controllable. SinceK3 is not controllable,
neither is K3.
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I1, I2, h1 

A1, I2, h2 

s1

I1, I2, h4 
f1

D1, I2, h3

b1

A1, I2, h6 

s1

I1, A2, h5 

s2

r1

D1, I2, h8 

b1

A1, A2, h7

s2

f2
s1

I1, D2, h9

b2

r1

D1, A2, h10

s2

f2

r1

D1, D2, h13
b2

r2

r1

f2
b1

A1, D2, h11

b2

I1, A2, h12

f1

r2

s1

r2

b1
I1, D2, h14

f1

f2

b2

A1, A2, h15
s1

r2

A1, D2, h16
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f2

D1, A2, h17

b1

b2

f2

r1

D1, D2, h18

b2

r2

b1

r2

r1

(a) Tentative (initial) supervisor S1 := G1‖H1.

I1, I2, h1

A1, I2, h2

s1

D1, I2, h3

b1

I1, I2, h4

f1

r1

I1, A2, h5

s2

f2

A1, A2, h7

s1

I1, D2, h9

b2

f2

D1, A2, h10

b1

A1, D2, h11b2

I1, A2, h12

f1

r2

s1 f2r1

D1, D2, h13

b2

r2

b1

I1, D2, h14

f1

f2 b2

r2

r1

r2

(b) Final supervisor S1.

Figure 15: Initial and final status of the building of S1.
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I1, I2, U2

(h1)

I1, A2, U2

(h2)

s2

A1, I2, U2

(h3)

s1

f2

I1, D2, D2

(h6)
b2

A1, A2, U2
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s2 D1, I2, U2

(h5)

b1

r2

A1, D2, D2

(h8)
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f1
f2

b2
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r1

s2

r2

f1

D1, D2, D2

(h9)

b1

r1

f2
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(a) Automaton H2 := G1‖R4 marking K2. Once again, we also shorten the states as hi for i = 1 . . . 9.

I1, I2, h1

I1, A2, h2

s2

A1, I2, h3
s1

f2

I1, D2, h6

b2

A1, A2, h4
s1

f1

s2

D1, I2, h5

b1

r2

A1, D2, h8

s1
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D1, A2, h7

b1

r1

s2

r2
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(b) Supervisor S2.

Figure 16: Automata H2 and S2.
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(a) Automaton M3

I2

A2
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(b) Automaton M4

I1, I2
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f2
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(c) Automaton G2 := M3‖M4

Figure 17: Automata M3, M4, and G2.
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Figure 18: Automaton H3 := G2‖R2 marking K3.

13



I1, I2, h1 

A1, I2, h2 s1

I1, I2, h4 

f1

D1, I2, h3 

b1

I1, A2, h5 

s2

A1, I2, h6 

s1

r1

f2

A1, A2, h7 

s1
I1, D2, h9 
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(a) Initial, tentative, supervisor S3 := G2‖H3.
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(b) Final supervisor S3.

Figure 19: Initial and final status of the building of S3.
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