Chapter 1

Conditioning, Stability and Finite
Arithmetic

A problem relates solutions to data. Conditioning is related to the perturbation behaviour
of the problem (that is, how small changes in the inputs affects the results). Stability is
related to the perturbation behavior of an algorithm used to solve the problem. This chapter
is entirely devoted to these three issues.

1.1 Conditioning of a problem

A problem P has inputs € X and outputs y € Y where X and Y are some, normed, spaces
for data x and solutions y, respectively. In an abstract manner, the problem P may be seen
as a function f: X — Y.

Example 1.1 In the simplest, yet useful, model for the radioactive decay of a radioactive
material, the number N (t) of radioactive atoms inside a sample of this material is a function

of time t as
N(t)=Noe /7 t>0

In this equation, No = N(0) is the initial (that is, when the sample was created) number of
radioactive atoms. The time constant T > 0 is a given parameter and it is characteristic of
each material. The time needed to halve the initial amount of radioactive atoms is called the
half-time t,,5 and can be evaluated from the previous equation. Requiring that N(t15) =
No/2, we get

Ny 4 Ny —t1/2

-7 12/T —

N(ty/2) 5 < Npe == & = In(1/2)
which gives ty /5 = 7In(2). The following table shows half-times for some materials.

Materia1| Uranium-238 Carbon-14 Phosphorus-32  Technetium-99m

t1/2 4.51 x 10° years 5.73 x 102 years 14.3 days 6 hours

Let X and Y be some normed spaces. Consider a problem P with input data g € X. The

corresponding output is yo = f(zo) € Y. Now, consider, instead of z(, a small, allowable,
perturbation of the data x, say x¢ + dz. The output changes to yo + dy = f(zo + dx), see
Figure 1.1.
We say that the problem P with input xg is well-conditioned if all small, allowable, per-
turbations dz lead to small perturbations dy. Otherwise, if there is at least one small
perturbation dz which leads to a large perturbation dy we say that the problem P with
input xg is #ll-conditioned.
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Figure 1.1: A problem P may be seen as a black box where output y is related to input x throughout
a function f. On the right, the problem P with perturbed input x 4+ dz and the corresponding
perturbed output y + dy.

One of the most useful, thought not the unique, measure for the conditioning of a problem

P at x¢ is the relative condition number K. Denoting by || - || a norm, it is defined as
-
K = sup —2
P T 5a]]

where the supremum is taken over all the allowable, small (infinitesimal from a mathematical
point of view), perturbations dx. We say that the problem is well-conditioned if K is small,
for example less than, about, 102; the problem is ill-conditioned if K is large, for example
greater than 106.

Remark 1.1 The interesting for the conditioning of a problem is strictly based on the possi-
bility to find a stable algorithm to solve the problem on a computer. Generally, if the problem
is well-conditioned, it is possible to find, among all the possible algorithms that can be used
to solve the problem, a stable one. If the problem is ill-conditioned, it is better to rewrite the
problem in a well-defined manner before attempt to solve it on a computer.

Let us give some examples.

Example 1.2 (Evaluation of a function) Consider the computation of yo = f(xo) where
f is a differentiable given function. Using Taylor expansion, we have

f(xo +0z) = f(zo) + f'(z0) -0z +o(dx) =  dy= f(zo+dz)— f(z0) = f'(x0) - 0
and so, recalling that yo = f(xo), we find

dy _ zo- fl(wo) Oz

_ To - J'{%o) o - ['(%0)
Yo f(xo) 7o

f(x0)

As an example, consider f(x) = x +1—+/x, x > 0. Since the first derivative of f may be
rewritten as

= K =

/ _ 7f(x)
N ey
we obtain
= £
2+/x0 - (xo + 1)

and so the problem is well-conditioned for all xg > 0 since K < 1/2 with K ~ 1/2 for
ro — +00.

Example 1.3 (Root finding: multiple roots) Consider the computation of the roots of
the polynomial
p(z) =2° — 4z +a

as a function of the data o.. Since we can rewrite p(z) = (x — 2)2 + o — 4, its roots are
1 =2+ V4 —q, To =2 —+v4— .
Consider x1 and x2 as functions of a. The condition numbers at oy are

| ao |

T2 Vi-a|2—vVi-ap |

| ao |

K:
Yo VI—a (24Vi—a )]

Ky
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So, the computation of both roots is an ill-conditioned problem for agy = 4, that is near the
double root 1 = x9 = 2. For oy < 4 both x1 and xo are well-conditioned. Note also that

lim Ks(ap) =1

Cm—*O

and so also the computation of xo for ag = 0 is a well-conditioned problem.

Example 1.4 (Root finding: Wilkinson polynomial) The computation of the roots of
a polynomial is often an ill-conditioned problem even in the case where there isn’t multiple
roots. Consider the polynomial of degree n = 4 with roots x; =i, i =1,2,3,4 defined as

4
plx) = a*+as2’® + a2’ + aw+ao = [J(x - k)
k=1
= 2% - 102 + 3522 — 502 + 24

1t is possible to shown that the condition number K;; of the i-th root with respect to an
infinitesimal perturbation on the single coefficient a; is

a;-al
K, . =| 2>
" p'(xi)
Values of K; j are shown on the oncoming table

perturbation on | az3=—10 a3 =35 a1 =-50 ap=24
K, j (root x4 =1) 1.7 5.8 8.3 4.0
Ky j (root zo =2) 20.0 35.0 25.0 6.0
K3 j (root z3 =3) 45.0 52.5 25.0 4.0
Ky (root x4 =4) 26.7 23.83 8.3 1.0

So, root x3 = 3 is the most sensitive root when we perturb coefficient as = 35. Furthermore,
note that the computation of xr1 = 1 is a well-conditioned problem against the variation of
each one of the coefficients of the polynomial.

It is also possible to investigate the conditioning of a problem directly, without using the
relative condition number, as shown in the following examples.

Example 1.5 (Solution of a linear system) Consider the computation of the solution
x = [z1 w2]T of the family of linear systems Acx = b depending on the parameter € # 0

given by
1 1—e¢ 1
A6{1+e 1 } b[1]

The solution may be written as

wato=g | U ][]

Setting € = 0.01, we obtain x = [100 100]T. Now, consider a small perturbation on b, for
example let b= [0.99 1)7. The corresponding solution of the perturbed system A.x = b is
x = [0 1)T which is completely different from the previous one. Thus, in front of a small
relative change (we have | 6by |/|b1| = 0.01 = 1%) we have a great variation of both x1 and
2. For example, we have for x

|l‘17i’1|7|100*0‘7
x1 100

1=100%.
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Thus, for this value of € the linear system is ill conditioned.
On the other hand, setting e = 1, we obtain x = [1 1]T and, for the same perturbation of b
as before, we get X = [0.99 0.98]7 with a relative error on 1 equal to 1%. So, for this value
of €, the system is well conditioned.
For a linear system of order two, it is also possible to see if it is well or ill conditioned
using a picture. Let
{ a1r +apy = b
a1 +axpy = b

be the linear system. The corresponding solution is the intersection point of the two lines
a11® + a12y = by and ag1x + azy = by in the (O, x,y) plane (see figure 1.2). As we can see

a,x+a,y=b; an"*“vzk b\
ayx Jr‘any:b2 azx“*“zzy b,
\
\\‘
\
\\ The solution changes
\ just a bit
\
\ /

Perturbed
second equation

We have a great variation
of the solution

Figure 1.2: A well conditioned linear system (left) and an ill-conditioned linear system (right).

on the left, if the two lines are near orthogonal a small change in the coefficients of one line
(or on both lines) does not change the intersection point (and thus the solution of the linear
system). So, in this case, the linear system is well conditioned. On the other hand, if the
two lines are near to be parallel, even a small changes in the coefficients of one line gives a
large variation on the intersection point. Thus, the linear system is ill conditioned. O

Example 1.6 (Computation of the eigenvalues) The computation of the eigenvalues
of a non symmetric matriz is often an ill-conditioned problem. To see this, consider the
matrices A and its perturbed version A defined as

101 110 . [ 100 110
A‘[go 98} A‘[go 98]

Note that the only difference among A and A is that ay1 = 101 and a1 = 100. That is, a
small change, of the order of 1%. However, the eigenvalues of the two matrices are

=1 Ay =2 for matriz A

A~ 14107 Ao~ 1—10i for matriz A
So, we have a large change in the eigenvalues a front of a small change in the matriz. Thus,
according to our definition, the problem is ill-conditioned.

As a note, which we do not prove, the computation of the eigenvalues of a symmetric
matriz is a well-conditioned problem. O

1.2 Floating point system

The floating point system is the set containing real numbers defined as

F(ﬁ,t,L,U):{O}—I—{xeR|x:(—1)s-ﬁp Zakﬁ_k} (1.1)
k=1

where
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e (3, the base, is an integer with 8 > 2. Common used bases are § = 10 (this is the base
we use to count), =2 and 3 = 16.

e [ and U are two integer numbers. Typically we have L < 0 < U. The scaling factor
p is an integer satisfying L < p < U.

e tis a positive integer representing the number of figures ax, k =1,...,t of each float-
ing point number. The unique representation of each floating point number requires
a1 > 0. Let us show what happens if this is not the case. Consider, as an exam-
ple, the number = 1 and F(10,5,—6,6). Then, the number x = 1 has different
representations: 0.1 x 10', 0.01 x 102, 0.001 x 10% and many others.

e s = 0 for positive numbers and s = —1 for negative numbers.
Each element of F is said a floating point number (or a machine number).
Theorem 1.1 The set of floating point system F((,t, L,U) has the following properties.
(a) F CR.
(b) if x € F then also —x € F.
(¢c) Fhas1+2-(U—-L+1)-(8—1)-8"" numbers.

(d) The lower and the larger positive floating point numbers are, respectively, Tpin and
Tmae defined as

xmin:ﬂLila xmaxZBU'(lfﬂit)

Proof. The first three and z,,;, are trivial. Consider z,,,,. We have

t t
Tmas = BU-S(B-1pF=p"-(3-1)-5(87)"
k=1 k=1
1 (5-1)tH!
= ﬁU'(ﬁ—l)'l#_ll
1_ﬁ—t—1_1+ﬁ—1
1— —1
1 g
-1

where in (1) we have multiplied numerator and denominator by 8. O

AR CENE

—
—

= 67-(8-1)

Example 1.7 Let us explicitly write F(10,1,—-1,2). Itis 3 =10,t =1, L = -1, U = 2.
Thus, for the positive floating point numbers, we have the 36 numbers shown in Table 1.1.

p=-—1 p=0 p=1 p=2
0.1-107' =0.01 0.1-10°=0.1 0.1-10f =1 0.1-10°=10
0.2-107' =0.02 0.2-10°=0.2 0.2-10' =2 0.2-102 =20
0.3-1071 =0.03 0.3-10°=0.3 0.3-10' =3 0.3-10% =30
0.4-10"' =0.04 04-109=0.4 04-10t =4 0.4-10% =40
0.5-1071 =0.05 0.5-10°=0.5 0.5-10' =5 0.5-10% = 50
0.6-10"1 =0.06 0.6-10°=0.6 0.6-10' =6 0.6 - 102 = 60
0.7-1071 =0.07 0.7-10°=0.7 07-10t=7 0.7-10% =170
0.8-1071 =0.08 0.8-10°=0.8 0.8-10' =8 0.8-10% = 80
0.9-10~! =0.09 0.9-10°=0.9 0.9-10'=9 0.9-10%2 =90

Table 1.1: The numbers in F(10,1, —1,2).
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Considering also the negative ones and the zero we have

142 (U-L+1)-(B-1)-p7t=14+2-[2—(-1)+1]-(10-1)-10"' =73
floating point numbers. Also, we have

Toin = 1071 =107 =001, Zpee =10V - (1 =107 =10%- (1 —107) = 90

It is interesting to note that the difference between two consecutive numbers is not a constant.
It is if they have the same value of p. O

1.2.1 Representation of real numbers in F

Let us consider, for semplicity, only positive numers. The positive real number x may be
written, using the base 3, as

—+oo
=0 a7
k=1

for some integer p.When this number has to be represented using a floating point number
in the set F(3,t, L,U), one of the following cases may occur.

e If p < L the number is less then the smallest representable floating point number. An
underflow occurs. In this case, the real number x is usually represented by the floating
point number 0. Moreover, since in this way we completely loose the numebr z, some
message is also given to us but the computation proceeds.

e If L < p < U the number z can be represented in F. There are, however, two cases

— agx =0 for k > t. In this case, x € F and so it can be exactly represented in F.

— ag # 0 for at least one k > t. The number x ¢ F. In this case, the better we can
do is to represent the number x with the floating point number fl(x) (read: “the
float of 2”) defined as

B Sy a5 i oae{0,....0—1)
fi(z) =

Bt aBE Bt i ae{l,... 31}

The representation of fl(z) instead of x leads to an error called rounding error.
We will see more on this in a moment.

e p > U. The real number z is beyond the upper limit of the floating point system F.
An overflow occurs and, usually, the computation stops with an error message.

Taking into account also negative numbers, the floating point numbers F are inside the blue
intervals of the following figure.

underflow

) X X

min max

overflow ,/ .\ _ _ overflow
-X'min O X

Remark 1.2 (denormalized numbers) Consider F(5,t,L,U). We have said that the
first figure a1 of each floating point number has to fulfill the condition ay > 0 in order to
avoid multiple representations.

Howewver if, and only if, p = L it is usual to remove this condition allowing ai to
be equal to zero. The real numbers obtained for p = L, a1 = 0 and ar, # 0 for at
least one k = 2,...,t, are considered as new floating point numbers of F. We call them

denormalized floating point numbers. The other numbers of F for which a1 > 0 (regardless
of L) are called normalized floating point numbers.
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Let’s turn back on the error that we have when rounding the real number z into the
floating point number fi(z). The following theorem holds.

Theorem 1.2 Let N
=By a7t

k=1
be a positive, real number with a1 # 0. Then, assuming that there is non overflow, using the
floating point system F(8,t, L,U), the following inequality holds

ﬂ(x) — < Bl—t
- >

. (1.2)

Proof. Clearly, if x € F, we have fl(x) = = and thus | fi(z) — 2 | = 0. So, the inequality
is trivially fulfilled. Otherwise, the number x lies between two consecutive floating point
numbers (blue circles in the next figure). The representative of z in F is the nearest to x of
this two floating point numbers. Noting that two consecutive floating point numbers with
the same p differ one from the other by 87 - 37t = BP~¢, we have | fi(z) — 2z | < 3P~1/2.

| fl(x)-x |

X

Bp o B-f

fl(x)

Thus, recalling that > 0 and so |z| = =, we have

_ @) -2 | O (@) —a| 58767 B
A e A

where inequality (1) holds since (recall that ax € {0,1,---,5 — 1} and a1 > 0)

‘ﬂ(x)—x

+oo
e=p" ) arft = (e B tar F e B0+
k=1
> 517(1.5*1+0./3*2+0./3*3+...)
g gt
This ends the proof. O

Definition 1.1 (machine precision) Let F(3,¢,L,U) be a floating point system. The

number eps defined as

ﬂlft
2

is called the machine precision of the floating point system F.

eps = (1.3)

Note that the number 1 belongs to any floating point system since
¢
L=p"p =6 ap”
k=1
with a1 =1 and ax =0, k = 2,...,t. The next floating point number is

x+:ﬁ1-(1-ﬁ_1+0-ﬁ_2+--'+0~ﬁ_t+1+1-ﬁ_t)Zﬁl'(l'ﬁ_l-f-l'ﬁ_t)

which differs from 1 by z, — 1 = 3'~% = 2eps. So, the real number 2 = 1 + eps lies exactly
in the middle between 1 and x4 ; thus, it is rounded to fli(1 4+ eps) = . Note also that each
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real number x satisfying 1 < x < 1 + eps is rounded to the floating number 1. So, eps is
the smallest number that we have to add to the floating point number 1 in order to have a
floating point number greater than 1.

From equation (1.2), for some € with 0 < & < eps, we can write
fi(z) — =

=t & ——— =4 & fllx)=xtex==x(ltF

‘ @) — =

X

Taking into account the sign, i.e. assuming e € [—eps,eps|, |¢| = €, we have the following
equation
fi(z) =2 (1+¢€), €€ [—eps,eps] (1.4)

This equation says that fl(z) can be seen as a small perturbation of z.

1.2.2 Floating point arithmetic

The main aim of this section is to show some of the problems which arises when working
with floating point numbers F(3,t, L,U). We define the four arithmetic operations between
z,y €F as

(a) zoy=_f(z+y)
(b) zoy=_f(r—y)
() zoy="fl(zxy)
(d) zoy=1f(zr—y)

So, each floating point operation require two steps: (i) execute the operation in R; (ii)
represent the obtained result in F. As an example, consider = & y.

(i) We first compute x + y as an operation between the real numbers = and y.

(ii) We represent the result « + y in F (considering, if the case, over and under flow).

Example 1.8 Consider F(10,1,—1,2) and the three floating point numbers x = 0.1, y =
0.2, z=0.7. Then, we have

r®y=fllr+y)=£(01+0.2)=£(0.3)=0.3
since 0.3 € F. Also, we have
x @z = filz/y) = fi(0.1/0.7) = fi( 0.14285714285714---) = 0.1
Finally, 1 © (x ® x) gives an overflow; first, we compute
@z = filz x z) = f(0.1 x 0.1) = fi(0.01) = 0.01

next, we compute 1 @ 0.01 = fi(1/0.01) = fi(100); since 100 is greater then the mazimum
representable floating point number in F, an overflow is produced. O

It is interesting to point out that most of the common properties of the operations with real
numbers are not still valid in F. For example, given positive floating point numbers x and
Y, we may have

rdby=x

if y is less then half of the distance between z and the next floating point number z.
Indeed, let

t
v=pY Bt
k=1

Then, we have

t
zy =B (Zw—uﬁ‘t) =+
k=1
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and so we get 2, —x = 3P~ =2 3P~ ! . eps. Then, we have

x if y<pPTl.eps
r Dy =
xy if BPoeps <y < BP1-eps

Also, associative and distributive laws may, even not necessarily, fail. Consider the following
examples.

Example 1.9 Consider again F(10,1,—1,2) and the three floating point numbers © = 0.1,
y = 2, z = 80. Using exact arithmetic, it is known that (x X y) x z =z x (y x z) = 16.
Using floating point arithmetic, we have

x®y = filx xy)=f0.1x2)=£(0.2)=0.2

and
(x®y)®z = f(0.2 x 80) = fi(16) = 20

This is the best result we can have with our floating point system since fi(x xyx z) = fi(16) =
20. On the other hand, r ® (y ® z) returns an overflow since y X z = 160 which is greater
then the mazximum representable number in F. So, the executing order of the operations may
be important.

Example 1.10 (Smearing effect) Consider the floating point system F(10,3,—2,2) and
the three floating point numbers x = 0.123, y = 45.6, z = —45.5. The computation of
x+y+ 2z =0.223 may be done in two ways.

(i) We compute w =z @y and then w ® 2. We have
w=z®y = f0.123+45.6) = fi(45.723) = 45.7
and

wedy = f45.7— 45.5) = 0.200

(1) We compute u =1y ® z and then © ® u. We have
w=y® 2= fi45.6 — 45.5) = 0.100

and
x®u = fl(0.123 4+ 0.100) = 0.223

So, in the first case the absolute value of the error is 0.10 = 10% whereas in the second case
we have no error. Looking closely to the example, we may see that in the first case we add
x and y first. These two numbers are quite different in size and so we loose some of the
digits of x when performing the sum. The next sum w @ z is done correctly but using the
data w which has already a great error. So, the two ending zeros of the final result 0.200 are
not correct. This is not the case when we rearrange the computation as shown in the second
case (ii). Here, when we compute u = 0.100 the two ending zeros are correct and so u is
correct to three decimal places. As a consequence, no error appears when we compute T @ u
and the final result is correct.

Example 1.11 Let f(z) = v/1+x — /x. Consider the computation of f(49). In ezact
arithmetic, we have f(49) = /50 — /49 = 0.07106781186548.... Using F(10,1,—1,2) and
assuming that \/€ is computed in a floating point system as fi(\/€), we obtain

A(WB0) = fi(7.07106781186548) =7 and  fi(\/49) = fi(7) = 7.

and so f(49) =7 — 7 = 0 with an absolute value of the relative error

A (49)) — f(49)
|£(49)]

| [0.07106781186548... — 0]/0.07106781186548... = 1 = 100%
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A different way to evaluate f(49) leads to a better result. Noting that

(Vitz— Vo) - (VIitatya) 1

J@)=Vite—vo= N T R

we obtain in F(10,1,—1,2)

1

f(49)

ﬂ(ﬂ(ﬂ(@) +A(V19)) ) ﬂ@ﬁ > ﬂ(ﬂ(114) >

f (1_10 ) — A(0.1) = 0.1

with an absolute value of the error |0.07106781186548... —0.1]/0.07106781186548... ~ 0.41 =
41%. A bit of comment. The result is clearly better in the second way even if it is still
unsatisfactory due to the high error. However, this simple example shows that sometimes
the result of the evaluation of a function can be improved simply revritting the function in a
different way. Things become even more interesting if we consider that arithmetic operations
are usually done using one more figure (that is, t + 1 figures); in this way, the result of the
previous evaluation becomes

1 1
)

which is the best possible result using F(10,1, —1,2).

f(49) = ﬂ( ) = fl(0.07142857142857...) = 0.07

As we can see from the previous examples, operations on floating point numbers is not an
easy task. Things become more and more complicated when we have massive algorithms
where thousand to millions or more of floating point operations are done. In such cases, it
is useful the following (informal)

Definition 1.2 (Stability of an algorithm) An algorithm is stable if and only if small
errors in the data and in the floating point operations does not grow up too much. Otherwise,
the algorithm is instable.

Let’s turn back on the computation, in some floating point system, of f(z) = vz +1— /z.
We may see the formula as a simple algorithm where some operations are done in the input
x in order to obtain the result f(x). Since, as we have seen, the result is greatly affected
by the rounding errors, we say that this formula is unstable. Otherwise, the other formula
f(z) = 1/(vx + 1++/z) is a stable since rounding errors that occur during the algorithm do
not grow too much. So, for the same (well-conditioned) problem we may have both stable
and unstable algorithms. Recall that, for a given problem, it is not always simple to find a
stable one. This is the case of the next example.

Example 1.12 Consider the computation of the positive integrals

1 1
In = _/ xnexd]h nEN: {07172’}
€ Jo

It is easy to see that Iy = 1 — e~ ! = 0.6321205588285577.... Moreover, integrating by parts,
we get the recursive relation

1 1
I, = - { [wnez ]é _/ nxnilez } =1-nl,_;.
e 0

Finally, it is easy to check that lim,_ . I, = 0 since we have (recall that 1 < e* < e,

x €100,1]) ) )
1 1 1
0< —/ z"evdx < —-e/ zdx =
e Jo e 0 n+1
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Now, consider the computation of I, for some given n > 1 with the following two algorithms:

ALGORITHM 1 ALGORITHM 2

set Iy = 0.6321205588285577 choose some N with N > n

- set Iy =0

FORI k:11.n_ . FOR k=N:-1:n

ENDk = k-1 Iy =(1—-1I)/k
END

The first algorithm is unstable whereas the second one is stable. This can be easily seen in
the following figure

—o— UNSTABLE
10°| STABLE b

0 10 20 30

Figure 1.3: Computation of I, = fol x"e”dx for different values of n using a stable and an unstable
algorithm. For the stable algorithm we have used N = 2n.

We can explain the different behaviour of the two algorithms. Consider the first one. Due
to the rounding process, the starting integral Iy that is actually stored inside the computer
is not Iy but, instead, Iy := fi(ly). We know that fi(ly) = Io(1 + €) with € € (—eps, eps).
Assume, for simplicity, that all the other operations are exact. So, we have,

Il 2:].7.[0(1+6):(17]0)76101117610

ILi=1-2-11=1-2-(I1 —ely) =(1—20)+2-1-ely = I, + 2! - €]y

Is:=1-3-I,=1-3-(Iy+2"-€ely) = (1 —3I) —3-2!-ely = I3 — 3! - el

Proceeding in this way, we find

I, =1,4+ (-1)"n! - el

and so the error is | I,—1, | = n!- ely which we may expect to grow as a function of n.
Consider now algorithm 2. Suppose that the only error is inside In and that all operations
are done ezxactly. Thus, we have Iy = In(1+ €) for some € € (—eps, eps). We get

~ 17]N(1+€) ].7[]\] IN~€ IN~€

In-1 = N =~ "~ =In_1— N
~ ]_*(INflfl%{) 1—[]\[_1 IN-G IN-G
In_2 = = - =Iny_o—

N-1 N-1 N-(N—1) N-(N-1)
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In this way we find
~ N IN~€
Ly =In_(n—pn)=1In —
N-(N-n) N-(N—=1)---(n+1)

So, the initial error eIy is shut down by the product of the demominator provided that
N-(N —=1)---n is large.

1.2.3 The floating point system on a computer: IEEE 754 standard

The storing of informations on a computers is based on electronic devices which have only
two stable states.

Thus, it is quite natural to use the base § = 2 for the floating point system. We show
the main idea of the currently adopted floating point system, called IEEE 754 (Institute of
Electrical and Electronics Engineers). Typically, there are two different values for ¢:

e { = 24 for the single precision;
e t = 53 for the double precision.

The next figure shows a single precision pattern. As we can see, there are 4 Bytes (one
Byte is a set of 8 consecutive bit) for storing floating point numbers using single precision.
The red one is used for the sign, the green ones for the exponent end the blue ones for the
mantissa.

32

12 910
W TT]

exponent | mantissa
>

\ 4

Figure 1.4: A single precision pattern for the representation of the floating point numbers inside a
computer. Note that the number of bits for the mantissa is 23 since the first bit is always equal to
1 and thus does not need to be stored (hidden bit).

In real floating point systems, as one can image, thing are more complex that this since
some sequence of bits are used to represent other things rather than numbers. Just to give
an idea, the result of a division 0/0 return a NaN (NotaNumber) in Matlab. A NaN has
its own representation !.

Still, the main ideas are the one presented here.

1.3 Exercises

A difficult exercise has a star near its number. Some other exercises can be found in the
simulations.

1. A problem has input = = 1. The corresponding output is y = 10. When 2z = 1+ 1073
the corresponding output becomes y = 100. Is the problem well or ill conditioned?
Give an estimation of the condition number K. [Answer: ill-conditioned with K ~
9000.]

2. Let F(10,3,—2,3). Considering only positive normalized numbers, compute z,in,
Tmaz and the machine precision eps.

3. Let F(8,t,L,U). Is it true that the product of x € F and y € F is always an element
of F? Does the answer change if we avoid under and over flow? [Hint: maybe it is
useful to consider F(10,1,—1,2).]

LIf one is interested in, just open Octave (not Matlab), type "format bit" in the command Window,
return, 0/0 and return; the following representation of the 0/0 operations appears on the screen and looks
as eleven 1 followed by a long number of 0.
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. Prove that F(8,t,L,U) has 2 3'~! — 1 denormalized numbers. The smallest positive

one is gL gt = pL—t.

. Consider F(10,1,—1,2). Is it possible to compute z X (y + z) without overflow if we

have = 0.1, y = z = 807 If yes, how can the operation be done and what result does
it produce? [Answer: z ® (y @ z) gives an overflow. Write z X (y+z2) =z xy+ 2z X 2
and compute z ® y, * ® z and then (2 ®y ) & (2 ® z ). We obtain 20.]

. We have to evaluate the function f(z) =1 — cos(z) for x ~ 0. Rewrite the function in

order to obtain a good evaluation in F(10,1, —1,2). [Hint: it is f(x) = 2sin®(x/2).]

. (x) We have to evaluate the function

1
sin(x)

fla)= 1 -

for x ~ 0. Rewrite the function in order to obtain a good evaluation in F(10, 1, —1, 2).
[Hint: common denominator and then Mac-Laurin expansion for sin(z) — x.]

. (%) Consider the computation of e* both for positive and negative x using Taylor

expansion as
k

g
ex%E —
k!

k=0

Using Matlab or Octave, write a program to evaluate the previous sum for some given
values of n and z (both positive and negative near zero and far away in both directions).
Give a possible explanation of the results.
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Chapter 2

Roots of Equations

This chapter is devoted to the determination of roots of equations. So we begin with the
following definition.

Definition 2.1 Let f be a function of the (real or complex) variable x. The roots of the
equation

f(x) =0

are the numbers & for which f(§) = 0. Each root of the equation f(x) = 0 is said to be a
zero of the function f.

The roots of the equation f(x) = 0 are the intersections of the graph y = f(z) with the real
axis, i.e., the line y = 0. In the same manner, the roots of the equation f(xz) = g(x) are the
abscissas of the intersection points of the two graphs y = f(z) and y = g(x).

Figure 2.1: Left: The equation e=® — 0.25 - = = 0 has only one root £ € (1, 1.5) since the
corresponding graph y = e¢~% — 0.25 - x intersect the z axis only in one point P = (¢,0).
Right: the equation sin(z) — 22 = 0 has two roots: £&; = 0 and & € (0.5, 1) since the graphs
y = sin(z) and y = 2% have two intersection points O = (0,0) and P = (&2, f(&2)).

The computation of real roots of the equation f(z) = 0 follows two main steps

(a) roots separation : for each root &, we find an interval [ax, bg] such that & € [ak, b]
and no one of the other roots belongs to [ak, b].

(b) roots approximation : we approximate some, or even all, of the roots.

The first step may be done sketching the graph of the function f. It is also useful the
following theorem.

Theorem 2.1 (zeros of a continuous function) Let f be a continuous function (at least)
in the interval [a, b] with f(a)- f(b) < 0. Then, f has almost one zero in the interval [a, b].
Furthermore, if the function f is strictly monotone in [a, b], then the zero is unique.

15
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Example 2.1 Consider the equation
xlog(z) —1=0

The function f(x) = x log(x) — 1 is continuous and defined for x > 0. Its graph is shown in
Figure 2.2.

0 X
-1 -05 |0 05 1 1 2 25 3 35

Figure 2.2: The graph of the function f(z) = x log(xz) — 1 shows a zero £ € [1, 2].

We have
FA) = 1-log(1)—1=1-0-1=-1<0
fle) = e-logle)—1=e-1-1>0

Thus, f(1)- f(e) < 0 and theorem 2.1 guarantees that there is almost one root in the interval
[1, e]. This root is the only one in [1, €] because f is strictly increasing in this interval since

f(x)=log(z)+1>0 Vzel[l, e
Indeed, this equation has no roots other than . To prove this, note that

lim f(z) = -1, lim f(z) =+

20t a—-+oo

and the sign of the first derivative f' is

0 1/e x

decreasing increasing
So, starting from —1, f decreases in (0, 1/e], reaches a minimum at x,, = 1/e where
f(l/e) = —=1/e =1 < 0 and then increases going to +o0o as x — +oo. Thus, there is

only one root & > x,, = 1/e. O

2.1 Convergent sequences
A sequence zy, is a convergent sequence if exists £ € R such that

lim zp =¢&.
k—-+oo

Definition 2.2 Let x; be a sequence that converges to &. The error ey at step k is

ey =& — k.
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Definition 2.3 Let xi be a sequence that converges to . If there are two positive constants
p and ¢ such that

lex+1| _

k—+o0 |€k|p B

(2.1)

we say that the sequence has order of convergence p with asymptotic error constant c. More-
over, we say that the convergence is

o linear if p = 1. In this case, in order to have convergence, we must have ¢ < 1.

o superlinear if p > 1. More specifically, if p = 2, we say that the convergence is
quadratic.

It is usual to plot log;, (|ex|) as a function of k. The behaviour of this semilogarithmic plot
is, at least for large values of the iteration indexes k, linear if p = 1 and parabolic if p > 1.

A A

p=1
log,(le,]) 6,<c <1 log.q(le,) P>
C1
CZ
0 k- o k-

Figure 2.3: Different behaviour of log,,(|ex|) versus the iteration number k for linear convergent
sequences (left) and more than linear (right).

Let’s prove it just for p = 1 since for p > 1 it is more difficult. We have
lex| = c-ler_1| = c(c-|ex_a]) = |ex_a| = -~ " - e
and taking logarithm of both sides
logyo(lex|) ~ klogyg(c) +logyo(leol)

This is the equation of a line with negative slope since log;(c) < 0 due to 0 < ¢ < 1.

It is also very interesting to see, using numbers, the different behaviour of the errors for
two convergent sequences of order p = 1 and p = 2. We assume, for simplicity, for both
sequences, ¢ = 0.5 and |eg] = 1. Roughly, using |ex+1| = ¢ - |ex| for the linear case and
lext1| = ¢ - |ex|? for the quadratic case, we have

k 0 1 2 3 4 5
p=1 1 05 025 0125 0.0625 0.0313
p=2 1 05 0125 78-1072 3.1-107° 4.7-10710

Table 2.1: Behaviour of |e| for different values of k for linear and more than linear convergent
sequences.

Thus, the error in the quadratic case drops very quickly; moreover, looking only to the
exponents, assuming |ex| ~ 10™" than |eyy1| ~ 1072, That is, we double the number of
correct digits per step. Completely different is the behaviour of the error in the linear case
where the error drops slowly (in this case, since ¢ = 0.5, it halves at each step).

Remark 2.1 For a linear convergent sequence it is possible to find an approximation of the
index k for which it is |ey| < e-|eo| for some given € > 0. Indeed, recalling that |ex| =~ c*-|eq|,
we have

. logy(€)

lex| <€e-lea] o Foleglme-le] & ~
log(c)
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2.2 Bisection method

Let & be the unique zero in the interval [a, b] of the function f which we assume continuous
at least in [a,b]. Assume £ # a and £ # b.
Starting from Iy := [ag, bo] = [a, b], the bisection method constructs a sequence of nested

intervals Ij, = [ag, b] containing the root:

10:)11DIQDI3D"'DIkDIk+1~~~ with £ €Iy VEk

The k-th step, K = 0,1,..., of the bisection method is

1. compute x = (ax + br)/2. Note that xy, € Ij.
2. compute f(xy)
3. choose one of the following cases

3.1. f(xg) =0, i.e., xy is a root of f. Since xy, € [a,b] by construction and £ is the unique
root inside [a, b], then it must be & = ;. We have find the root and the iterative
process stops.

3.2. f(ar)- f(zx) <0, ie. f(ar) and f(zy) have opposite signs. Thus £ € [ag, x]. So, we
set Ip11 = [ak41, brt+1] = [ak, zk]. That is, ax41 = ar and bxr1 = xy, (see Figure 2.4
on the left).

3.3. f(ak) - f(zg) >0, ie. f(ar) and f(zx) have the same signs. Thus & € [z, bx]. So, we
set Iy = [ak+1, bk+1] = [a?k, bk]. That is, ag+1 = x and bgy1 = by (see Figure 2.4
on the right).

Let us denote by |Ix| = by — ax the length of the interval I. Then, in cases 3.2 and 3.3 we
have
x| @ Lol

o ok+1

—

[Txt1| =

where (1) follows from mathematical induction. So, after k-th step is complete, the error
er = xx — & satisfies the inequality

1o
Ok +1

lek| < [Ik+1| =

as it is clear from Figure 2.5

Figure 2.4: The single step of the bisection method. On the left: Iy = [ar, xj] since
f(ak) . f(xk) < 0. Right: Iy = [a?k, bk] since f(xk) . f(bk) < 0.
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Figure 2.5: The error in the k-th step of the bisection method satisfies the inequality | e | < | Ix |/2
(we have assumed that the root & belongs to the first half of the interval [ax, bk]).

From the latter equation it is simple to compute the number of iterations of the bisection
method that have to be performed in order to obtain | e, | < € for some given € > 0. Indeed,
we have

b—a 2k+1>b—a

lew|<e & ohFT <€ &

and finally, taking the logarithm in the latter inequality, we get

_ 1 b—a
10g(2k+1)>log<b€a> & k>%(§))l

So, to obtain | ej, | < € it is necessary to perform at least kpj;, iterations with

kpin = {M - 1} : (2.2)

log(2)
where [a] is the smallest integer greater or equal to a.

Example 2.2 The computation of the first positive zero of the equation

mftan(g):()

within the tolerance ¢ = 1.E —5 = 105 and with starting interval [a, b] = [2.0, 2.5] requires,
at least,

log ( 2:5=2.0 . .
Epmin = {1((%71(02)) — 1| = [14.61] = 15 iterations

which is exactly what it is shown in Figure 2.6 on the right. It is interesting to note, from the
same figure, that the error does not decrease monotonically i.e., we can have | ex1 | > | ex |
for some indexes k.

35]Y

=
o
©

25

=
1S)
o

1.5

=
o
S

0.5

i
&

=
o

Absolute value of the Error

X
2 -15 1 05710 05 1 156 2 25 3 35 4

&

=
°,
o

5 10 15
Iteration Number

Figure 2.6: Approximation of the first positive zero of the equation z — tan(z/2) = 0.



20 CHAPTER 2. ROOTS OF EQUATIONS

Exercise 2.1 (V) Compute the number of iterations needed to compute the zero £ € [0, 1]
within the tolerance tol = 1E — 9 for each of the following equations

(a) 2° +2—-1=0 (b) sin(z) —x+01=0

Does the number of iterations changes for (a) and (b)? Why? (Answer: 29 iterations. No,
the number of iterations is the same because it is related only to the amplitude of the initial
interval [a, b] containing the zero and to the required tolerance tol.)

Exercise 2.2 (©) Using the bisection method, compute the number of iterations needed to
compute the zero £ € [0, 1] within the tolerance tol = 1E — 3 for the equation 1000z = 999.
Does the absolute value of the error |ex| monotonically decrease in this case or does it not?
Ezxplain.

Exercise 2.3 (V) Consider the approzimation, using the bisection method, of the positive
zero & = 1 of the equation f(x) = 0 where f(z) = x? — 1. Assume the starting interval
Iy = [ao, bo] = [0, 1.5].

(a) Compute xo, x1 and the absolute value of the corresponding errors eq and e;. Which
one is larger? Sketch a graph of f near & and use it to explain the behavior or the two
errors.

(b) Can we apply the bisection method to compute the positive root of the equation f*(x) =
0 using the same starting interval as before? Ezplain.

Exercise 2.4 (©) How many iterations does the bisection method need to find the root & = 0
of ® = 0 within the tolerance tol = 1079 starting from the interval [ag, bo] = [—1,3]?

Solution. The bisection method works as follows.

1. First step (k = 0). We have [ag, bo] = [—1, 3] and thus z¢ = (ag +bo)/2 = 1. Since the
root & € [ag, o] we set a1 = ap = —1 and by = z¢ = 1.
2. Second step (k=1). We have [a1,b1] = [-1,1] and thus z; = (a1 + b1)/2 = 0. Thus,

we have find the root and the algorithm halts.

Exercise 2.5 (x) Compute the number of iterations k needed to reduce the absolute value
of the initial error eq to |e,| = 10™F|eo| where k is some given positive integer. How many
iterations are needed to gain an extra decimal digit, i.e. to reduce the error to |ex| =
107%=Yeq| ?

2.3 Fixed point iterations

Let us start with some theoretical background.
Definition 2.4 The function ¢(z), x € [a,b] has the fized point o € [a,b] if o = ¢(av).

So, fixed points of the function ¢ are, if any, the roots of the equation = ¢(x). Graphically,
they are abscissas of the intersection points of the graphs y = z and y = ¢(x).

Example 2.3 The function ¢(z) = x? + 1 does not have any fized point since the equation
x = 22 + 1 has no real roots.

The function ¢(x) = x? has two fized points since the equation x = x> has roots a; = —1
and ag = 0.

Existence and uniqueness of the fixed point are stated by the oncoming theorem.

Theorem 2.2 (Existence and uniqueness of fixed points) Let ¢ be a continuous func-
tion on the interval [a, b] with ¢([a, b]) C [a, b]. Then ¢ has at least one fized point in [a, b].
Moreover, the fized point is unique if ¢ is differentiable on (a, b) and fulfills

|¢'(x) | <k<1 Vz€ (ab).
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Proof. Let us prove the existence of at least one fixed point in [a, b]. First note that, since
o(la, b)) C [a, b], we have ¢(a) > a and ¢(b) < b. Accordingly to this, we split the proof in
two cases.

(a) If a = ¢(a) or b = ¢(b) then « = a or a = b is a fixed point for ¢.

(b) If, otherwise, ¢(a) > a and ¢(b) < b, let introduce the function g(x) := ¢(x) —x. This
function is continuous since it is the difference of two continuous functions and satisfies

gla) =¢a) —a>0  g(b) =¢(b) —b<0

The theorem of the zeros of a continuous function assures that there exists almost an
a € [a, b] such that

g@=0 & da)-a=0 & a=¢a)
and so « is a fixed point for ¢.

Now, assuming also that |¢'(x)] < k < 1 in [a, b], we prove the uniqueness of the fixed
point. The proof is by contradiction. Suppose that there are two fixed points o1 € [a, b] and
asg € [a,b]. Thus, we have

—
—

lar—az | € [ d(ar) — d(a2) | 2167 (a1 — ) =] 6"(€) || 1 — a2 |
% k|a17042|(2)|a17a2|

—
=

where (1) is due to the fact that a1 = ¢(a1) and as = ¢(2) since they are fixed points; (2)
follows from the the mean value theorem, with & € [a, b]; (3) comes from the boundedness
of | ¢'(x) | < k < 1. The previous inequality is a contradiction. Thus, there is only one
fixed point in the interval [a, b] and the proof is complete. O

Exercise 2.6 Give an example of a function f which has the three fized points oy = —1,
as =0 and az = 1.

[Hint: consider, for example, the function f(z) = x3 + asz? + a1x + ag. Then, to find
coefficients ay, k = 1,2, 3, we impose the three equations f(ay) = ax, k=1,2,3.]

Exercise 2.7 (©) Is it possible to find a differentiable function f which has a unique fized
point « with | f'(a) | > 22 If possible, write down the function f; if not possible, prove it.

2.3.1 Fixed point iterations

To introduce the fixed point method, the first step is to rewrite the equation f(x) = 0 in
the form x = ¢(x) for some function ¢. The function ¢ is not unique. For example, consider
the equation 2 — 1 = 0. We can rewrite it as

—2?2 4+ 4r+1 _

@o=sttr-1=0(), Gr=-=06F), (©Qr=—"0"

L p(x)
and in many other manners.

Next, let o € [a, b] be the unique fixed point in the interval [a, b] of = ¢(z). Given an
initial estimate zy € [a, b] of the fixed point a, we consider the following iterative scheme
for the computation of a:

Zo given initial estimate of «
Tr+1 = ¢(‘Tk)a k:071327"'

The following theorem provides whether the previous iterations x; converges to the fixed
point « of x = ¢(x).

Theorem 2.3 (Convergence of the iterations) Let ¢ be a continuous function on [a, b],
differentiable in (a, b) with
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(i) ¢(la, b]) C [a, b];
(ii) | ¢'(x) | <K <1 Vaze (a,b)

Then, the sequence

Tpp1 =o(xzr), k=0,1,2,...

converges to the unique fized point « € [a, b] for any choice of xg € [a, b].
Proof. We divide the proof in three steps.

(a) All the values zx, k = 0,1,2,... belongs to the interval [a, b]. This is clearly true for
xo by assumption. Now, assumed that xy € [a, b] we have, using (i), that x11 =
¢(xk) € [a, b]. Thus, by mathematical induction, xj, € [a, b] for all k.

(b) Let e = x — « be the error of the k-th iterate. The following inequality holds for
each k=1,2,3,...

ek |

ok —al L | p@r 1) — o) | D 16(&) - (@r1—a)]

(3)
o' (&k) |- |21 —a] < kl|ep_1]

where (1) follows from the definition of fixed point iterations using also the fact that
a is a fixed point for ¢; (2) comes from the mean value theorem where £ is a point
between zx_1 and « (and so, & € [a, b]); (3) follows immediately from (ii).

(c) Using the previous equation |eg| < k|ex—1| we can relate |ex| to |eg| since

klex—1| <k(klex-2|)=klera]
K (klek—s|) =k |er—s]|
...SKk|€0|

lek |

IN AN IA

Recalling that 0 < K < 1, we have

0< lim |ex|< lim K*|eg|=|eo|- lim K*¥=|ep|-0=0
k—4o00 k—4o00 k—4o00

and so the iterates xj converge to a.

This ends the proof. O
It is also interesting the following result, which we do not prove.

Theorem 2.4 (Ostrowski) Let ¢ be a differentiable function in [a, b] with fizved point o €
[a, b]. If |9’ ()| < 1, then ezists § > O such that the fized point iterations xp11 = ¢(Tk)
converge to « for each xo with |xo — af < 4.

The fixed point iterations has the remarkable geometric interpretation shown in Figures 2.7
and 2.8. This geometric interpretation is an extremely valuable tool to study the behavior
of fixed point iterations. For example, once we have sketched the graph of ¢ near the fixed
point «, we can see if the iterations approximate monotonically « from below (as in Figure
2.7 (a)) or, alternatively, from below and from above (as in the case shown in Figure 2.7
(b)) or in some other manner. Furthermore, we can see if the fixed point iterations are
convergent or divergent without the needed to compute ¢'(«).
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Figure 2.7: The fixed point iterations converge to the fixed point « if |¢’(a)| < 1. On the
left, 0 < ¢'(a) < 1: the iterations converge to « in a monotone fashion (increasing or decreasing
accordingly to the position of zo with respect to ). On the right, —1 < ¢’(a) < 0: the iterations
converge to o with values alternately above and below a.

O [ & XX Xy x

Figure 2.8: The fixed point iterations diverge from the fixed point « if |¢’(a)| > 1 (in this case
we have ¢'(a) > 0).

Example 2.4 If |¢'(«)| = 1 the fized point iteration xry1 = ¢(xr) may, or may not,
converge to the fized point. The functions
(a) p(x) = 2® — 32% + 4o — 1 () p(z) = —a® +32% — 2z + 1
have both the fized point « =1 with |¢'(a)| = 1. For example for case (a) we have,
pla)=¢(1)=1>-3-124+4-1-1=1=qa
and, since ¢'(xr) = 3z — 62 + 4,
p'(@)=¢'(1)=3-12-6-1+4=1.

Nevertheless, the behavior of the fized point iterations are quite different. Indeed, the geo-
metrically interpretation suggests that we have divergence for case (a) and convergence for
case (b) as shown in Fig. 2.9.

Now, we state a result about the order of convergence of a fixed point iterations.

Theorem 2.5 Let ¢ € CP( (o — 0, + 9) ) for suitable 6 > 0 and integer p > 1 of the fized
point o of ¢. If

da)=¢"(a)==¢"V@)=0 and ¢ (a)£0
then the fized point iterations xr11 = ¢(xx) has order of convergence p and
o el [99@ |

k—+o00 | €L |p p'
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y y
y=x y=X

2 2
1 P 1 P
0 X 0 X

0 1 2 3 0 1 2 3

3 2 3 2

4/ y=x 3% +ax-1 1 y=-X +3X -2x+1

Figure 2.9: Two different behavior of the fixed point iterations when |¢'(a)| = 1. On the left,
iterations x diverge from « for each zg # a chosen near .. On the right, iterations x; converge to
«a for each z¢ chosen near a.

Proof. Using Taylor expansion, recalling that, by definition, ¢(9) (a), we get

Cky1 = Thpr — o= O(1g) —
_ Z OV(@) (ex —aY | 4P (&) (mr )
= 7! P!

— O+ z_: ¢V (a) 'j(!mk —a) n ¢(») (Ekz))!' (ex)?
W P (&) (ex)?
2 B

where ¢, is a suitable point between a and zj and (1) follows from ¢U)(a) = 0, j =
1,...,p—1 and ¢(a) = « since « is a fixed point. Providing that z; converges to the fixed
point «, we also have that &, — o which completes the proof due to the continuity of ¢®).
O

2.3.2 Termination of the fixed point iterations
It is common to terminate the convergent fixed point iterations

xo given initial estimate of the fixed point «
Tp+1 = (b(xk‘)a k:O71727"'

when | 211 — 2 | < e for some given tolerance € > 0.
Let us see how good is this stopping criteria. We have

Thy1 — o = ¢(zx) — dla) = ¢' (&) (zk — @)
for some & in the interval of endpoints « and . Since it is
g —a= (Tpy1 — @) — (Thy1 — Tk) =  Thy1 — Q@ =T — @+ Ty1 — Tk
and denoting the error at the k-ih iteration by ex = xx — a we obtain
zp —at i — k=0 (&) (er —a) = ep+appr —ak = ¢ (&) er
and finally, assuming that ¢’(z) # 0 near « and taking the absolute values,

1

|€k|=m'|$k+l—$k| (2.3)

So, if ¢'(a) =~ 0 (and, thus, ¢'(x) &~ 0 near a by continuity) the difference between two
consecutive iterates is a reliable estimator of the error. Note that this is the case if ¢/ (a) = 0.
If, otherwise, ¢'(«) = 1, eq. (2.3) is not useful to estimate the error.
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Remark 2.2 FEquation (2.3) may be used to estimate the asymptotic error constant without
computing errors. This is interesting since in real cases we do not know o (indeed, we are
searching a). Let p be the order of the fized point method. Then, we get roughly

1
o Jeenl _ ey I e m e |y — g |
lex P | Tpp1 — [P

T | T — ﬂ

if we assume ¢’ (Ep1) = ¢' (&) at least for large k. This is not a strong assumption when
we are near the fived point o in this case, xx+1 ~ xx and so, due to the continuity of ¢,

¢ (Tht1) = ¢ (k).

2.4 The Newton and the secant method

Let us derive the method of Newton from geometric considerations. Consider the graph of
the function f near the root £ shown in the following figure.

Let xx be an estimation of £. Consider the tangent to
f at xx

Sl ) 3 t(x) = f'(zx) - (x — 1) + f(2k)

The next estimation of £ is computed as the point zj41
where t(z) = 0; we get

y=t(x) @)
‘ TR P ()

o £ Xepr X X

This equation is the single step of the Newton method.
So, starting from a given initial guess zy of the root &£, the Newton method repeats the
previous step until x; becomes near enough to the root &

X
Tht1 = Tk — }f’((x];))’ k=0,1,2,...

Theorem 2.6 (Local convergence of the Newton method) Let 7T = (a,b) be an open
interval containing the only root & of f € C™(Z) with m > 2. Then, there is § > 0 such that
the Newton iterations

f(zk)
Tht1 = Tp — , k=0,1,2,...
o f(a)
converges to & for each o € (£ — 6,4+ 0)NZ.
Moreover, setting
lenti ] _

k—+o00 | ek |p

we have two different cases for the behaviour of the error:

o if f/(&) # 0 we have

) ‘
> 9, c—
= ‘2f@)
More precisely, the order is p =2 if also f"(£) # 0, otherwise it is p > 3.
o if f/(&) == f"D(E) =0 and f™)(€) # 0 we have
p=1, Cc=1-2
m

In this case, we can resume p = 2 considering the modified Newton method

. L (@)
f(xw)’

Tkl = T — k=0,1,2,...
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for which it is also

 m-(m+1)

1 ‘ Fr () ‘
Fem(8)

Proof. Let us prove only the first part of the Theorem. We can see the Newton method as
a fixed point iteration with iteration function

and

(@) - f"(@) + (@) - f" (@) |- [ (=) 2 = fl) - () -2 f(2) - f"()
[f'(=) ]!

Since f(£) =0 and f'(§) # 0, we obtain ¢'(£) =0, ¢"(&§) = f"(£)/f'(£). Thus, the method
has a local convergence due to Theorem of Ostrowski. Also, the order of convergence is at
least p = 2 and, providing f”(&) # 0, is exactly p = 2 with an asympotic error constant

given by
‘q@(e) H 1) ‘
2! 2 1(€)

¢ () =

Thus the proof is complete. O

Remark 2.3 (Stopping criteria for Newton) The Newton method is a fized point iter-
ation x = ¢(x) =z — f(x)/f'(x). If f'(§) # 0 we have ¢'(§) = 0 and the iterative process
can be stopped when |zr11 — x| < & for some given ¢ > 0. Indeed, this is an excellent
estimation of the error (see subsection 2.3.2). On the other hand the previous criteria may
be inaccurate if the root & has multiplicity greater then 1. Indeed, in this case f'(§) =0 and
it can be shown that ¢'(§) =1 —1/m.

Example 2.5 Consider the function f(r) = 0.2502 — 1. Let us apply the Newton method
starting from xo = 3 with a stopping criteria | x4 — x | < € = 107%. From the graph
of f we can see that iterates are monotonically decreasing and converge to the root o = 2.
This is a single root since, again, we see from the graph that f'(2) > 0; alternatively, we can
prove this using the first derivative of f:

fl()=025-2-2 =052 = f(2)=05-2=1%#0.

Moreover, since f"(a) = 0.5 # 0, we expect that the Newton method has order p = 2 with
error constant

() 0.5
o=| 37| = |71 |0
The iterates are on the following table
25y
2 k Tk
15 0 | 3.000000000000000e+000
1 1| 2.166666666666667e+000
0.5 2 | 2.006410256410256e+000
0 X 3 | 2.000010240026215e+000
B 7 1 o5/0 1 2 3 4 | 2.000000000026214e+000
5 | 2.000000000000000e+000
-1.5
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Example 2.6 Consider the function f(x) = (z — 1)?log(z). This equation has only one
root, & = 1 with multiplicity m = 3. Its graph is shown in the following figure among with
the iterates starting from xo = 1.5. The stopping criteria is |xp11 — 2x| < € with e = 1073,

1.5 k Tk k Tk
1 0| 1.5000 9 | 1.0118
05 1| 1.8228 10 | 1.0078
2| 1.2104 11| 1.0052
0 x 3| 1.1381 12| 1.0035
1 -05 3 4| 1.0911 18| 1.0023
0.5 5| 1.0603 14 | 1.0015
y 6| 1.0400
7| 1.0266
8| 1.0177

We make some comments. The iterates are monotonically decreasing as one expects due to
the geometrical interpretation of the Newton method on the graph of y = f(x) given. Note,
also, that we have

5/(1) ~ lews | |1.000 - 1.0023 |

~ = = 0.66635
le1s| | 1.000 — 1.0015 |

a value that is quite close to the theoretical one 1 —1/m =1—1/3 =2/3. Finally, we have
| 214 — 213 | =8x 1074 < €

but lers] = 1.5 x 1072 > € due to the fact that ¢'(1) = 2/3 ~ 1 (and so the used stopping
criteria is not so satisfactory).

It is also interesting to plot the absolute value of the error e, = o —xp, k=0,1,--- and the
absolute value of sy, == xp41 — K, k=10,1,---.

Figure 2.10: The Convergence process for the Newton method applied to approximate the root
a = 1 of the equation (z — 1)®log(x) = 0. In dashed lines we have the behaviour of he modified
Newton method.
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2.4.1 The secant method
The secant method follows from Newton approximating f’(x) as

f(on) = flep-1)

Tk — Tk—1

f(@e) =

Thus, given two (possibly suitable) starting points x¢ and x1, we have the iterations

flaw) - (or —2p-1)
flar) = f(@r-1)

Each step of this method has a simple geometrical interpretation: zj,1 is the intersection
point with the z axis of the line for the two points ( xx—1, f(zrx-1) ) and ( zk, f(zk) ).

Tkl = T — , k=0,1,2,...

/‘.-5//"“ X, Xp X

Figure 2.11: The single step of the secant method.

For the convergence of the secant method we have the following theorem.

Theorem 2.7 Let a be a simple root of the equation f(x) = 0 with f € C*(ZT) in some open
interval I containing the root.

Then ezists a ball B(xg,d) such that the secant method converges to « for each couple
xo, 1 € B(x0,08). Moreover, the order of convergence is p = (14 /5)/2 ~ 1.618.

Example 2.7 The secant method for the computation of the root o = 1 of the equation
f(x) = 2% — 1 gives the following results

10°

T
0.50000000000000
1.50000000000000
0.87500000000000
0.97368421052632
1.00177935943061
0.99997629657723
0.9999999789300
1.00000000000025
1.00000000000000

—a—|cx—xk|

=1 % 7% |

10

10—10 L

107 : ‘ :
0 2 ﬁ 6 8
Note that both error and difference between two consecutive iterates have the following be-
haviour. So, as for Newton method with a single root, it is a good choice to stop the iterations
of the secant method when |xi11 — x| < e. This is not surprising: looking back to the geo-

metrical derivation of the secant method, we can see that it resembles the Newton method.

P YD A W~ |

Example 2.8 We compute xo of the secant method starting from xo = 3, xr1 = 2 for
f(x) = 22 — 1. Instead of remember the formula, recall the derivation. The line through
pOints ($0, f($0)) = (378) and (th(xl)) = (273) is

:M.(x,xo)Jrf(xo):;72(x73)+8:5$*7
1 — X9 -
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and thus xo is the solution of 5290 —7 =0 or 2o =7/5=1.4.

2.5 Exercises

Exercise 2.8 Find how many roots have the following equations. Give also an interval that
contains the small positive root of each equation.

(a) x = cos(x), (b) xtan(x) =1, (¢c) |In(z) |—e™*=0
(Hint for (b): rewrite the equation as tan(x) = 1/x).

Exercise 2.9 Consider the function

—|x—1 , <1
f(:c){ (L_1)2|

, v>1
(a) Sketch the graph of y = f(x), find and separate the roots.

(b) For which values of the starting point xo we may expect that the Newton method con-

verges to the greater root? Can we find an xo for which the Newton method converges
in less than 2 iterations? Explain your answer.

(¢) Setting xo = 2, find the first five iterates of the Newton method. Estimates the order
of convergence from |es|/|es|. Is this correct with our theory? Why? How, if possible,
can we improve the rate of convergence?

(d) Set now xo = —10,000. Find the fourth iterate of the Newton method.
Exercise 2.10 Consider the function f(z) = 2> — .
(a) Sketch a graph of f and separate the roots.

(b) Study the behaviour of Newton method for different starting points. Can we find a
point xo such that xo = xo? What happens if we choose xg such that T; = 71/\/5?

(c) Does the following fized point iterations x41 = x; converges to any of the root of the
function f?

Is it possible to find \ such that
Th+1 = )\LL‘% — (/\ — l)xk
has an order three of convergence?

Exercise 2.11 Consider the function f(z) = (z — )™ where m in an integer greater then
1 and o € R. Prove or disprove with a counterezample that the modified Newton method
converges to the (unique) root o of the function f in only one iteration.

Exercise 2.12 (O) Consider the fized point iterations

xk+3
T =—+ =
k+1 4 4

(a) Prove that there is the unique fized point o = 1.

(b) Starting from xo = 2, compute the first two iterations of the method and the corre-
sponding absolute value of the errors ey, = |a — xy|.

(¢) Compute the order of the method and the asymptotic error constant.

(d) Using Matlab, plot the behavior of the logy, (lex|) as a function of k. Does the behavior
of the plot agree with the theory?
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Answer. (a) We have ¢(x) = /4 + 3/4. Fixed points are solutions of x = ¢(x). So, we get

_ac+3 o 39:_3 N _q
TTYTy L1 e
So, there is only the fixed point o = 1.
(b) We have
_ w0, 3_2 .3 3 | IR
T Ty Ty Ty Ty atlerniE g T T o
R S T2 T SO R B
e L 278 )

(c) Since ¢'(x) = 1/4 we have ¢'(a) = 1/4; thus, it is |¢'(a)] < 1 and the fixed point
iterations are convergent to c. Moreover, since ¢'(a) # 0, the method has order p = 1 and

an asymptotic error constant C' = |¢'(«)|/1! = 1/4.
(d) Since the fixed point method has order p = 1, we expect a linear graph for log;,(|ex]|)
(at least for large k). Figure 2.12 on the right for the plot shows an excellent agreement

with the theory.

25 T T : 10
9(x)
—X
2r ,6 10-5
=
|
2
>15 =10
o
o
>
1r S 107"
05 i i i 10720 i i i i i
0.5 1 15 2 25 0 5 10 15 20 25 30
X Iteration Number n

Figure 2.12: Left: plots of ¢(z) = /4 4+ 3/4 and y = x; there is only one intersection point and,
thus, only one fixed point.

Exercise 2.13 (V) Consider the function f(z) = (x — 1)* which has the only root £ = 1
with multiplicity m = 4.

(a) Write the Newton iteration explicitly for this function.

(b) Using point (a), find the ratio lex+1|/|ex|, k = 0,1,.... From this ratio, find the asymp-
totic error constant and the order of convergence p. Finally, sketch the logy,(|ex|)
graph.

(¢) Starting from xo = 2, find iterations x1 and xo. Is the sequence xy of the Newton
method monotone? If yes, is an increasing or a decreasing one? Explain.

(d) Give a method of order p =2 to find the root & of the equation f(x) = (v —1)%.
Answer. (a, b, ¢) Since f'(z) = 4(xz — 1)3, we have

f(zx) (v — 1% 3z +1

EE N e R rre A

and so the error egy is

3z, +1 3 3
ek+1—€7(£k+1—17 1 —Z~(17(£k)—16k, k—o,l,...
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and thus the required ratio is
lext1] 3

lex] 4

From this last equation it follows that the Newton method has order of convergence p = 1
(as already known, since the root has multiplicity greater then 1) and asymptotic error
constant C' = 3/4. We expect C < 1 since we know drawing the graph of f(z) = 22 — 1 that
Newton method is convergent to the root £ (and, moreover, that the sequence xj converges
to £ from above in a monotone fashion). This, accordingly to the theory, imply that C' < 1.
Finally, the log;(|ex|) plot gives a line since the order of the method is p = 1. In this case
it is also easy to write the equation of the line. We have

|ek| 73 73 B B 3 k
|€k—1|71 = |€k|*1'|€k71|—...7 1 - Jeo]

and taking logarithm

logyo(lex|) = k -1ogy(3/4) + logyo([eol)

The required iterations are

1’0:2

3zo+1 3-2+41 7

T T T T 1
L Bm4l_3.(7/4)+1_ 2
SR 4 T 16
(d) A possible method of order p = 2 is the modified Newton method
f(xx)
=z — = k=0,1,...
T @) T T

and so we have convergence in just one iteration.
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Chapter 3

Direct methods for linear systems

The present chapter is devoted to the solution of a linear system Ax = b where A is an
m X n real matrix, b is a column vector of length m of real numbers and x is an n dimension
column vector of unknowns. Writing explicitly, we have

a11 a2 te Q1n b1 x1
a21 @22 co A2n bo x2
A= , b= , X =
Am-11 Gm-12 ' Gm_1n bm—1 Tp—1
am1 am,2 e Amn bm Tn

We show some direct methods, that is methods which, in exact arithmetic, give the correct
answer in a finite number of operations.

3.1 Linear Algebra

In this section we recall some useful issues of linear algebra.

3.1.1 Vectors and vector norms

Consider the (column or row) vector space R™ where n is an integer greater or equal to 1.
The weight of a vector x € R™ is measured by its norm ||x||.

Definition 3.1 A norm is a function from R™ to Ry := {x € R | x > 0} which satisfies the
conditions

1. |x]| > 0 for all x € R™ with ||x|| = 0 if and only if x = 0.
2. ||la-x|| = || - ||x]| for each a € R, for each x € R".
3. |x+yll < lxll + llyll for each x,y € R™.
Let x3 be the k-th component of the vector x so that we can write for the row case
x = [z1,22, ", 2], zx ERk=1,...,n

Same notations hold for a column vector. We use only the following vector norms:

" n 1/2
Ixlly = > |ox| ( 1-norm) Ixlly = < > el ) ( 2-norm )
k=1 k=1

1] oo = 121]?%(” |zk| ( oo-norm )

The 2-norm is also known as Euclidean norm; the oo-norm as the maximum or uniform
norm.

33
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Example 3.1 Let x =[1, —2, 2]|. Then, we have
1/2
Ixlly =11+ =2l +12 =5, [xl,= (1P +]-27+2P*) " =3,

%[l oo = max{ [1], | = 2[, [2] } = 2

We obtain the same results if x is a column vector.

3.1.2 Eigenvectors and eigenvalues

Let’s now consider the vector space R™*"™ of square matrices of order n.

Definition 3.2 The number X € C is an eigenvalue for A € R™™™ if there is a column
vector (called an eigenvector) x # 0 such that Ax = Ax.

All the eigenvalues of A are solutions of the algebraic equation
P(A) =0 where P(\)=|A—-A,|

where I, is the identity matrix of order n (i.e., the matrix with all zeros but ones in the main
diagonal).The algebraic multiplicity u(X) of an eigenvalue X is the multiplicity of this root
in the equation P(A) = 0. The spectrum of A is the set o(A) containing all the eigenvalues.

Definition 3.3 Let A € R" ™. The mazimum modulus of the eigenvalues is the spectral
radius p(A) of the matriz A
A) = .
p(A) = max [y
Example 3.2 The eigenvalues of the upper triangular matriz

1 o p
U= 0 1 vy where a, 3,7 € R
0 0 -3

are elements of the main diagonal and so \y = 1 with (A1) = 2 and A2 = —3 with p(A2) = 1.
Thus, o(A) = {1, -3} and p(A) = max{|1|,|1|,| — 3|} = 3. We remark that eigenvalues of
a diagonal matriz as well as upper or lower triangular matrices are elements of the main
diagonal.

Eigenvalues of the matrix A € R™"*" satisfy the

Theorem 3.1 (Gershgorin) Let A € R"*"™. Let D;, i = 1,---,n be the disks in the
complez plane defined as

n

D, =X 2€C:|z—ay| <r; where r; = Z |aik|
k=1
ki

Then, all the eigenvalues of A are inside D defined as

D= |J D

1<i<n
i.e., the union of disks D;, i=1,...,n.

Example 3.3 The eigenvalues of the matriz
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are M1 = 4, o3 = (-3 % Z\/E)/Q ~ 1.5 £+ 13.4278 and can be obtained as the roots of
P(\) = (A —4)(\%2 — 3\ + 14). The three Gershgorin disks are shown in the next Figure.

3.1.3 Matrix norms

We consider on this space only norms which fulfill the following properties 1 to 5
1. ||A|| > 0 for all A € R™*™ with ||A|| =0 if and only if A =0 € R™*"™.
2. |la- Al = |af - ||A]| for each o € R, for each A € R™*".
3. |A+ BJ|| < ||A|| + || B]| for each A, B € R"*".
4. |A-B||<||A| | B | for each A, B € R"*"
We also require the compatibility condition with a vector norm, that is

5. ||Ax|| < ||A]| - || x || for each A € R™*™ and for each x € R™.

Definition 3.4 The norm of the matriz A € R"*" induced by the vector norm ||x|| is
defined by

Al

max ||A - x||
lIx][=1

Theorem 3.2 Let A € R" ™. The matriz norms induced by the 1, 2 and oo vector norms
are

n

lAll, = 121%)(”]; lax;| ( mezimum column sum )
[ All p(AT - A)
Al

max Z laik| ( mazimum row sum )
1<i<n £~

Another quite important norm, since it is simple to compute, is the Frobenius norm. It is

defined as
2

Al = { D> lay P

i=1 j=1

This norm is not induced by any vector norm.
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Example 3.4 Consider the matriz, taken from G. Zilli, “Calcolo Numerico”

4 -1 1
A=11 3 -1
0o 1 1
We have
[All; = max{[4[+[1|+[0, | =1+ B[+ [1], [1[+[-1[+[1|} =5
Al = max{|—4[+[—=1[+ 1], [L[+[3[+][-1] [O[+[1[+[1[} =6
[Al, = [492412402+ (=12 432+ 124124+ (-1)2+12]"? = V31
~ 5.5678
Moreover, since
4 10 4 -1 1 17 -1 3
Al A= -1 3 1 1 3 -1 |=| -1 11 -3
1 -1 1 0o 1 1 3 -3 3

Using Matlab, the eigenvalues of AT - A are \y = 18, Ay = 11.4244, A3 = 1.5756. Thus, it
is p(AT - A) = 18 and so finally we have

[All, = \/p(AT - A) = V18 = 4.2426

Norms of matrices can help us to delimit the complex plane where the eigenvalues of a
matrix belong to. Indeed, the following theorem holds.

Theorem 3.3 For any induced matriz norm, we have
p(A) < [|A]

Proof. Let y be an eigenvector associated to the eigenvalue A. Assume also that ||y|| = 1.
We have
A=l l= 12yl = 1A -yl < max A-x] = [|A]

Thus, all eigenvalues are, in modulus, less than ||Al|. So, also the greatest in modulus
eigenvalue, that is p(A), fulfill this inequality. O

Example 3.5 Consider again the matriz of Example 3.4. We may write
p(A) <min{|| Afl;, [ Ally, [ All} =11 Ally <4.3.

So, all the eigenvalues of the matriz A have modulus less than 4.3. Say in another way, they
lie in the disk of the complex plane of radius r = 4.3 and center 0 = 0 + 0.

Remark 3.1 In Matlab or Octave environment, a matriz norm can be computed using the
function norm: norm(A, 1), norm(A, 2), norm(A,’ inf’), norm(A,’ fro’) returns, respectively, 1,
2, 0o and Frobenius norms of the matriz A. See the help command for more details.

Remark 3.2 In Matlab or Octave environment, the (real and complex) eigenvalues of the
matriz A € R™*™ can be obtained using the function eig(A). For each matriz A, eig selects
the most suitable algorithm to compute the eigenvalues of A.

Remark 3.3 (Solution of an algebraic equation) Consider the polynomial
p(x) =a" + an_12" Y+ ...+ a1z + ao

where ap, k =0,...,n—1 are real numbers. It is known that there are no close formulas for
n > 5 to compute its roots. Moreover, even for n = 2 the formulas are numerically not stable.
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That said, it is interesting to find alternative ways to compute the roots of a polynomial.
There are many such ways. We give just one. It can be proved that the companion matriz

—0p-1 —Ap-2 —0np-3 —ai —ap
1 0 0 .0 0
0 1 0 .0 0
A= 0 0 1 0 0
0 0 0 o1 0

has as its eigenvalues the roots of p. So, the function eig() can be used to find the roots of
p. As an example, consider p(x) = x + 2% — 2 whose roots are 1 and —1 £ i. Polynomial p
has as =1, ay =0, ap = —2 and so the companion matriz is

-1 0 2
A= 1 00
010
The function eig(A) under Matlab or Octave, gives the roots of p with 16 correct figures.

3.1.4 Positive definite matrices

A very special set of matrices is the set of symmetric positive definite matrices.

Definition 3.5 A symmetric matriz A € R"*" is said to be positive definite if x” Ax > 0
for every non zero x € R™.

If A is positive definite we write A > 0. It can be proved the following theorem.

Theorem 3.4 A symmetric matriz A € R™*" is positive definite if and only if has all the
eigenvalues positive (i.e, A\, >0, k=1,...,n).

Example 3.6 Consider the symmetric matriz A of order n = 100 with all zeros elements
butay; =3,i=1,...,n, ;-1 =1,1=2,...,n, ;-1 =1,i=1,...,n— 1. This matriz is
positive definite since, by Gershgoring theorem, all eigenvalues are inside the disk of center
(3,0) and radius r = 2 (more precisely, since A is symmetric, the eigenvalues are real and
so the rely on the real line inside the disk). This disk does not contain the point (0,0) and
so it is completely on the right hand side of the imaginary axis. Thus, all the eigenvalues
are positive and, due to theorem 3.4, A is positive definite.

Now we present some algorithms for the solution of square, non singular, linear systems
Ax = b where A € R"*", b € R"*!. There are many algorithm to compute x. Among them,
we show a very interesting one known as the Gauss algorithm (or Gaussian elimination)
which is both fast and, for all practical cases, accurate. Let’s start with two easy cases, the
upper and lower triangular linear systems.

3.2 Solution of triangular systems

We recall that a matrix A is said

e LOWER TRIANGULAR: all the elements above the main diagonal are zeros, i.e. a;; =0,
j > i. For example, these matrices are all lower triangular regardless the values of [;;:

li17 O 0 0
i O 511 ZO 8 logr Iz 0 0
lor I )7 2 e ’ I31 lsz lsz 0O

l31 3o 33 log lao lys lag
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e UPPER TRIANGULAR: all the elements below the main diagonal are zeros, i.e. a;; =0,
j < i. For example, these matrices are all upper triangular regardless the values of

uij
L Uly  Uls Uil U2 U113 Ui4
Ul U2 0 0  uzp u23 U
0 U922 ’ w22 w23 ’ 0 0 uss u34
0 0 us 0 0 0 uw

Usually, we denote with L and U the lower triangular matrices and the upper triangular
matrices, respectively.

It is easy to solve a triangular linear system. Let’s see the lower triangular ones. For these
systems, we first solve the first equation l1121 = by which gives 21 = by /l1;. Then we solve
the second equation lo1x1 + 12229 = by with respect to x5 since we know x1 from the previous
step: we get 22 = (bg — llel)/lgg. From the third equation l3121 + l32x9 + I3323 = b3, since
we have already computed x1 and zo, we find x3 as x3 = (b — 3121 — l3222)/l33. Proceeding
in this way, it is easy to write the following FORWARD SUBSTITUTION ALGORITHM

b1
I = —
l11
1 i—1
€Ty, = E bi—zglijxj 5 i:2,...,n
J_
It needs n? arithmetic operations (+, —, -, /). Indeed, to find z;, i > 1, we need 2i — 1
operations

¢ i — 1 multiplications to compute all terms /;; - z; of the sum;

e i — 2 addition to add together terms /;;x; (and so compute Z;;ll Lijaj);

e 1 subtraction to compute b; — Z;;ll lijxy;
e 1 division of the previous result by [;;.

Adding we get for i-th step (i —1)+ (i —2) +1+1 = 2i— 1. Note that this formula works also
for i = 1, where we need only one operation (a /). So, the number of operations required by

the algorithm is the sum of the number of operations required to find each z;, i =1,...,n:
n n n
] . n(n+1) 9
Nop(n):2(2@—1):222—;1:27—71:71 .
1= 1= =

Exactly in the same manner, we can solve an upper triangular linear system. However,
in this case, we start from the last equation and we go back until we reach the first one.
The BACKWARD SUBSTITUTION ALGORITHM is

bn
Tn = T
lnn
1 n

j=i+1

and requires the same amount of arithmetic operations as the forward substitution method.

It can be proved that both algorithms are stable (that is, they do not amplify too much
rounding errors). However, if the condition number of the system is high, the obtained
solution may be not accurate (see section 3.6). In the following figure 3.1, we show the
absolute value of the error, component by component, of the solution of an upper triangular
linear system Ux = b of dimension n = 20. The linear system has random elements with
uniform distribution; b is choose in order to have the all 1’s solution. As we can see, the
solution of the linear system with high condition number has a larger error.
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Figure 3.1: Error behaviour for the solution of an upper triangular linear system. On the left,
we have a low condition number (K(U) = 400); on the right we have a high condition number
(K(U) =3 x 10%).

3.3 Gaussian elimination and LU factorization

Consider the linear system Ax = b where A is a square matrix of order n. Recall that if L
is a non singular matrix then Ax = b has the same solutions of LAx = Lb. We say that
the two linear systems are equivalent.

Setting A(Y) = A and b(") = b, the Gaussian Elimination (GE in the forward) reduces the
given linear system A x = b1 to another upper triangular equivalent one Ax = b(™)
using n — 1 steps

Step 1: AVx =pbV & L, AVx=LbW
N—— N——

=A2) :=b(2)

Step 2: A@x =b? & [,A®x=L,b?
N—— N——

=A®) :=b(3)

Step k AW x =b®) o [ AW x = [, "
~—— S~——
i=A(k+1) :=b(k+1)

Step n-1: A" Dx =pb-D & Ly 1A Yx=1r, b
——— N——

= A(n) .=p(n)

Let’s see with some details the k-th step, k = 1,...,n — 1. At the beginning of this step the
matrix A®) looks like
k k
AD A
AR —
k
0 A

where AY;) is an upper triangular square matrix of order k£ — 1 (assuming Agll), Ag?

empty
and Aélz) = A). The aim of the k-th step is to zero the elements below the main diagonal in

the k-th column of A% Assuming agz) # 0, this is done by the following elementary row
operations

i, = a/af})
r§k+1) _ I,Z(_k) _ likr](ck) , i=k+1,---.n (31)

= oM — b
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where rz(-k) and r,(gk) are the i-th and the k-th rows of Agz), respectively. See figure 3.2 for a
picture of what’s going on on matrix A% and on vector b(*),

R
5=
S
~=

(n—k)rows

[l (el e I )

(n—k) columns

Figure 3.2: At the k-th step of Gaussian elimination, all (n — k)? elements inside the red area
of matrix A® and all n — k elements inside the red area of b®) have to be updated using the
corresponding elements inside blue areas. Note that elements inside the green area of AP are set
to zero by construction.

It is not difficult to prove that A+ = L, . A®) where L, € R"*™ has always zero
elements regardless in the main diagonal where there are all ones and in the elements below
the diagonal in the k-th column which are Ly (i, k) = —l;x. Since Ly is non singular (indeed,
|Li| = 1), the linear system A*+Dx = b+ .= L, . b*) is equivalent to A®)x = bk,

At the end of the n — 1 step the matrix A(™ is upper triangular and the final linear
system A™x = b(™ can be solved using backward substitution. Furthermore, writing
down explicitly all steps, we have

Ly 1-Lpg-Lo-Ly-Ax=Lp_q1-Ly_9-Lo-Lib

An) b(n)
and so, defining U := A™ we get

Ly1-Lypo-Lo-Li-A=U or A=L7"-Ly' LY, L', U=LU

=L

It can be shown with some matrix algebra that L is the lower triangular matrix with all
ones in the main diagonal and, for ¥k = 1,...,n — 1, has L(i,k) = ljx, i = 2,...,n. The
previous factorization A = LU is known as the LU factorization of A.

Gaussian elimination and LU factorization of A require a,(;;) #0fork=1,....n—1. It
is not clear whether this is the case just looking at A. The following theorem help us.

Theorem 3.5 Let A € R" ™. Denote by Ay, kK = 1,...,n — 1, the square matrices of
order k built taking the first k upper left rows and columns. Then, there exists a unique
LU factorization of A and Gaussian Elimination completes the final steps if and only all
matrices A, k = 1,...,n — 1 are nonsingular. Moreover, if some Ay is singular, the LU
factorization may exist but, if so, it is not unique.

The theorem is interesting but, mostly for large n, hypotheses are too expensive to check.
So, from a computational point of view, when solving Ax = b using Gaussian elimination,
we simply apply the algorithm and looks whether it works or not.

Example 3.7 Let’s solve and compute the LU factorization of A for the linear system
Ax = b where

31 -1 2
A= 40 =2 |, b=| -2
21 5 15
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For this very small linear system it is easy to check hypothesis of theorem 3.5. We have

Al = [(@)]=1
31
= ()]
3 1
45| = 40
-2 1

5

and, since all three determinant are different from zero, the Gaussian eliminations works

until the end and the LU factorization exists and it is unique.

n —1 =2 steps of the Gaussian algorithm.

e STEP 1. Itisk =1, a

1 _
1 =

rows with indexes i =2 e i =3).

Since n = 3, there are

3. Let’s update rows from (k+1) =2 to n = 3 (that is,

— Leti=2. We have
b = af/af) = 4/3
4 4 2
vy = ) iV =4 0 ~2) -5 (1 1)<0 -3 §>
4 14
b = bg%zglbgw;zfg 2=+
— Leti=3. We have
g = af)/af) = —2/3
2 5 13
i = xf) gV = (-2 1 5) - (__).(3 bob= (0 3 3)
2 4
b = b — gV =15 - <§> -2—39
So, matriz Ly is
1 00 1 00
Ly = —loy 1 0 |=|( —4/3 1 0
Iy 0 1 2/3 0 1
As a check, we can obtain A?) and b3, already computed, as
1 0 0 3 1 -1 3 1 —1
A® = L AD = —4/3 1 0 4 0 -2 |=0 —4/3 —2/3
2/3 0 1 2 1 5 0 5/3 13/3
1 00 2 2
b? = bW = —4/3 1 0 -2 | = -14/3
2/3 0 1 15 49/3

and so the two linear systems AVx = b and AP x = b® have the same solutions.

e STEP 2. Itisk =2, a

()
22

(that is row with index i = 3).

— Let i=38.

l32
)

byY

We have

2 2
a:(s2)/a§2) =—5/4

r{? — 15r(? = (0 5/3 13/3) — (=5/4) - (0

—4/3. Let’s update rows of A?) from k+1=3ton =3

—4/3 —2/3)=(0 0 7/2)

b — 15,08 = 49/3 — (—5/4) - (—14/3) = 21/2
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So, matriz Lo is

1 0 0 1 0 O
Ly = 0 1 O]=10 1 0
0 —l3p 1 0 5/4 1
and A®) and b® are
3 1 -1 2
A® = 0 —4/3 —2/3 |, bO®=| —14/3
0 0 7/2 21/2

Again, we may check that AB) =T, A® gnd b® =L, b,

The linear system A®)x = b®) produced by the Gaussian algorithm has thus

301 -1 2
A® = 0 —4/3 —2/3 |, &= —14/3
0 0 7/2 21/2

which can be easily solved using backward substitution method giving

7 21

§I3:? = .173:3
4 9 4 )
—-Xg — S T3 = —— Ty =
372 378 3 2

3t1+ax2—23=2 = x1=1

The LU factorization is easy to write now:

1 0 0 301 ~1
L=| 43 1 o, v=|o0 -4/3 —2/3
—2/3 —5/4 1 0 0 7/2

The product L - U gives A as we can check taking the product.

Remark 3.4 The Gauss Algorithm can be used to compute directly the solution of the linear
system Ax = b without computing the LU factorization. For example, consider

1 10 1
A= 2 1 0 |, b=| 2
3 2 1 3
As usual, we have
1 1 0f1 1 1 01 1 1 01
Ap)y=( 2 1 0|2 |=|0 -1 0/0 | =0 -1 0f0
3 2 1|3 0 -1 1(0 0O 0 1|0

The first three columns of the last 3 x 4 matriz is U. Moreover, since we have done the same
operations on A and b, the linear system

1 1 0 1 1
0 -1 0 )| 22 |=120
0 0 1 T3 0

18 equivalent to the original one. Thus, we can solve it using the back substitution algorithm;
we find xt3 =0, o =0, z1 = 1.
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3.3.1 Computational cost

Gaussian elimination uses n — 1 steps to produce the final upper triangular linear system.
So, it’s cost is the sum of the costs of each one of these steps. Let’s find the cost of the k-th
step, k = 1,...,n — 1. Looking at equation (3.1), since the index i goes from k + 1 to n,
there are n — k equally costing steps to do. So, let’s see the cost of the i-th step.

e First, we have to compute one division in order to find l;; = ay,:)/ag;).

e Second, we update all n — k elements of the i-th row of matrix A*) accordingly to the
equation al(-fﬂ) = gc) —likag;), j=k+1,...,n. Each one of these updates require two
operations, a multiplication and a subtraction. Note that no operations are needed for

k+1) . . .
a§k+ ) since it is set to zero by construction.

e Third, we compute b§k+1) = bgk) - likbff) which needs again two operations.

Thus, the i-th step requires 1+ 2(n — k) + 2 = 2(n — k) + 3 operations to complete. Finally,
the total amount of operations for the k-th step to be completed is (n — k)[2(n — k) + 3].
Now, the cost of Gaussian elimination can be obtained summing the costs of each step:

n—1 1 , .
MWWJZ;{Wkﬂﬂnm+a}“ﬂ“mggmwlnnEEZJ§__D

For large values of n, Nop(n) ~ 2n3 /3. This is the work required to obtain the upper trian-
gular linear system Ax = b(™ . To solve this linear system we need n? more operations,
which is, for large n, a small amount compared to the previous ones.

3.3.2 Applications of the LU factorization
Using the LU factorization we are able to solve some interesting, and not so easy, problems.

e The computation of the determinant of the matrix A is a difficult task. However, if
we know the LU factorization of A, due to Binet, we have

Al = LUl = |L|-|U| = U] = ] ] ws
i=1

since |L| = 1. Then, it is also easy to get, for example, |A%| = |A|? and, assuming A
non singular, [A7Y = 1/|A], |[A73| = 1/|A]3.

e Sometimes we have to solve a large number of linear systems each one with the same,
non singular, matrix A and different right hand sides: Ax = b;, ¢ = 1,...,p with
p > 1. To solve one of these linear systems we need about 2n3/3 operations. So,
to solve all we need about 2pn®/3 operations. It is possible to reduce this number
of operations just taking into account that all linear system have the same matrix A.
The idea is the following. First, we find the LU factorization of the matrix A with a
cost of 2n?/3 operations. Second, we solve, one at a time, all the p linear systems as

1. solve for y; Ly;=Db;

Ax; = b; = LUx; = b; < 2. solve for x; Ux; =y;

where x;, i = 1,...,p is the solution of the i-th linear system. To solve Ax; = b;, we
need only 2n? operations: n? for Ly; = b; plus n? for Uy; = b;. To solve all p linear
systems we need 2pn? operations. Taking into account the number of operations for
the LU factorization, the overall amount of operations is 2n3/3 + 2pn2. The ratio

2n3/3 +p2n? 1 3
/3 4p2mt 1,3
2pn3/3 p n
says that using the LU factorization there is a great saving of the number of operations
(and thus of the computational time).
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e Consider a non singular matrix A € R™”*". From the equation A-A~! = I,,, the inverse
A~! = (¢1]...|en), where c; is the j-th column of A~!, can be computed solving n
linear systems Ac; =e;, j =1...,n where e; is a column vector with all zeros but a
one in the j-th position. This work can be done as stated in the previous point.

Example 3.8 The LU factorization of the matriz A gives [U| = —3. Then, we have

Al = LU =L U] =1-(=3) = -3
A = JAP = (-3 =9
AT = /A =1/(-3) =181

Example 3.9 Using the LU factorization of the matriz A, compute the inverse of the matriz
1 2 1
A= 2 5 4
-3 -2 0

We first compute the LU factorization of A. Since the matrix has order n = 3, we have
n—1=2 steps. Let AV = A.

o First step: we zero the elements below aﬁ) = 1. We get easily lo; = aéll)/agll) =2/1=2
and l3; = agll)/a(lll) =-3/1=-3 and so

1 21 1 21 100
A = 2 5 4 - 01 2 |:=A®, with L= -2 1 0
-3 -2 0 0 4 3 301

o Second step: we zero the elements below aéé) =1. We have l3; = ag)/ag) =4/1=4

and so
1 2 1 1 2 1 1 0 0
A =0 1 2 - 01 2 |:=A® with L= 0 1 0
0 4 3 0 0 -5 0 —4 1
Thus, the matrices L and U are
1 00 1 2 1
L= 21 0|, U=4A®=[01 2
-3 4 1 0 0 =5
Since |A| = |U| = =5 # 0, matriz A is non singular and thus it has A~'. Let’s denote the

inverse of A as
Ci1 | C12 | C13
A7V = co1 |2 |cos | =(c1]ca|cs)
€31 | €32 | €33
where cj, j = 1,2,3 is the j-th column of A='. From A- A~' = I3, the identity matriz of
order 3, we have

A-A ' =A-(ci|ca]es) = (A-ci|A-co|A-c3)
= (e | e |e )=1I
where e;, j =1,2,3 is the vector with all 0 but 1 in the j-th position (starting from above).
Thus, we must have A-c; = e, j = 1,2,3. These are three linear system with the same

matriz A but different right hand sides. So, we can use the LU factorization to solve them
efficiently.
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o Solve A-cy =e;. We have

1 2 1 C11 1
2 5 4 C21 =10
-3 -2 0 C31 0

which, recalling that A =L - U, is solved in two steps.

1. Setting y1 = (y1 , y2 , y3)T, we solve the lower triangular linear system Ly, =
e’
1 0 0 Y1 1 Y1 =1
2 1 0 ) = 0 & 2y1 + Y2 = 0
-3 41 Y3 0 —3Byr+4y2+ys = 0
SO; we get Y1 = 1, Y2 = =2, Ys = 11.
2. We solve the upper triangular linear system Uci = y;:
12 1 c11 1 ci1+2e1 ez = 1
01 2 |=|rc1 |=[ -2 & Co1+2c31 = =2
0 0 -5 C31 11 —5031 = 11

and thus we get cs1 = —11/5, co1 = 12/5, ¢c11 = —8/5. That is, the first column
of AV iscy = (—11/5, 12/5, —8/5)T

e Solve A-co = ey. We have

1 2 1 C12 0
2 5 4 . C22 = 1
-3 -2 0 C32 0

Proceeding in the same way as in the previous step, we find c3 = (2/5, —3/5, 4/5)T.

e Solve A-c3 =e3. We have

1 2 1 C13 0
2 5 4 C23 = 0
-3 -2 0 C33 1

Proceeding in the same way as in the first step, we find co = (—3/5, 2/5, —1/5)T.

So, the inverse of A is
-8/5 2/5 =3/5
Al = 12/5 —-3/5 2/5
-11/5 4/5 -1/5

3.3.3 Drawbacks and pivoting strategy

There are some problems with Gaussian Elimination. The first one: Gaussian Elimination
is not able to reach the end if, for some k, we have a,(glz) = 0. The second one: Gaussian
Elimination is not stable.

Let’s see how to solve the first one. Since the order of the equations is not important, if
agz) =0 for some k =1,...,n— 1, then we can exchange k-th row with one of the following

rows (with index ¢ > k). If A is a non singular matrix, then such i-th row exists for sure.

Indeed, writing A®) as
k k
AR — ( Ag1) Aé}g; )
0 A
with Aﬁ) upper triangular, we have |A] = |[A®)| = |A§§)| : |Ag§)| Now, it is |A§§)| #0
because all the previous pivotal elements are different from zero; thus, it must be |A(2];)| #0

which cannot be the case if all elements below agz) are zeros.
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Example 3.10 The Gauss Algorithm does not work on the matrix

0 1
(1)
since ay; = 0. We have to exchange row 1 with row 2. This can be done by left multiply A
(and the right hand side b of the linear system Ax =b) by a permutation matriz P:

0 1 0 1 11
P'A<1 0)'(1 1>(0 1>
It is easy to see that PA admits an LU factorization with L = Is and U = PA.

The second problem has no solution. It is possible, however, to modify Gaussian elimination
in order to avoid a large grow of the rounding errors for almost all practical linear systems.
There are to ways.

e PARTIAL PIVOTING: at k-th step of the Gaussian elimination, we search for the element
of maximum modulus among az(kk), i = k,...,n. Let al(,f) be this one. Then, we
exchange the k-th row wit i-th row. Doing so, at each step the element of maximum

modulus is the pivotal element. We need n — k comparisons.

e TOTAL PIVOTING: we search in the matrix Aé’;) for the element with the largest absolute
value. Then, exchanging rows and columns, we make it as the pivotal element. We
need about (n — k)? comparisons.

Total pivoting, usually, gives better results; however, it is more computationally expensive.
Moreover, partial pivoting gives, for all kind of linear systems, good results (i.e., does not
propagate too much rounding errors). Just to have an idea, consider the linear system
Ax = b. Matrix A € R™*"™ n = 100 has uniform random entries; b is chosen to have
the all ones solution. That stated, we solve the system with and without partial pivoting.
Figure 3.3 shows the results. On the left, for a linear system with K(A) = 700, we plot
the absolute value of the error, component by component. We can see that partial pivoting
gives a better solution. On the right of the same figure, we plot the norm of the errors,
versus the condition number K(A), for a large number of simulations of the same kind of
linear systems. Again, partial pivoting gives better result regardless the value of K(A).

-8

107" - - : - 10 .
—&— without pivoting i i q

% 3 o i 5 T 7 c = partial pivoting
< S 1410
£ g1}
S 5
[} =
= [}
g "? -12
Q c£10 ¢
2 =
2 £
o
(%]
Q
< -14

107 ; ; ; i 103 " 6

0 N 40 60 B 100 10 10 10
Solution’s components index condition number K(A)

Figure 3.3: Behaviour of the absolute value of the error (left) and of the norm of the error (right)
for a large number of simulations.

Finally, it is possible to see the better behaviour of partial pivoting with a numerical example.

Example 3.11 (from the book of Comincioli) Consider the linear system Ax = b with

0.005 1 0.5
=) ()
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Setting x = (x1 x2 )T, we find in exact arithmetic

100 99
= — = 0.50251256281407... = — =0.4974874371
1 199 0.50251256281407 T2 199 0.49748743718593

Let’s see what happens if we work using F(10,2,,—4,4). We have

0.005 1]0.5 0.005 1 |05
(A|b)_< 1 1‘1)_’( 0 200‘99)

since, using the floating point arithmetic we have,
[1®(—200)]®1=-200s1=fi(-199) = —200
because we only have two decimal places; furthermore, we get
[0.5® (—200)] &1 =—-10001=—99
Proceeding with the back substitution algorithm, we find
22 = =99 @ (—199) = f1(99/199) = £1(0.4975...) = 0.50
and thus
1 =[0.56 (1®x2)] ©0.005 =[0.5S 0.5] @ 0.005 = 0 0.005 = 0

So, we have completely miss x1.
Let’s do the same by a first exchange of the rows. Thus, we solve the linear system
PAx = Pb instead of the original one where P is the permutation matriz used to exchange

the rows.
1 1 1 . 1 1 1
0.005 11]0.5 0 1]05

Proceeding as before, we find xo = 0.5 and xo = 0.5 which is the best possible answer using
the floating point arithmetic we have. Note that exchanging the rows have made the pivotal
element of the first column as greater as possible.

3.3.4 The PA = LU factorization

The solution of Ax = b with partial pivoting may require, at the k-th step, to exchange the
row r,gk) with the row rgk), i > k. Now, let P by the (non singular) matrix obtained from
the identity matrix where only rows k and ¢ are exchanged (i.e., the k-th row of P is the
i-th row of I, and the i—th row of P is the k-th of I,). Then, the matrix P - A has only

rows k and i exchanged. For example, to exchange rows 2 and 4 of some matrix A we write

1.0 00 a11 a2 @13 a4 a1l 612 Q13 Q4
0 0 01 a21 Q22 Q23 a2q4 | | a41 G4z (43 G4
0 010 as1 asy azz as | | as azx asz am
0100 (41 Q42 Q43 Q44 a1 G2z (23 0G24

That said, the k-th step of the Gaussian elimination is change as follows:

e find the element agj) of greatest absolute value below agz) in the k-th column of A%,

e exchange rows k and i of matrix A®) (and, of course, of right hand side b(*)) using a
permutation matrix Pg:

AP x =p*) o pAFx = pH"

e zero the elements in the k-th column below the element in the main diagonal using
the matrix L.
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Thus, the k-th step is now
Ly P, -A®x =L, . P, - bk
and the overall Gaussian elimination looks like
Ly 1Py—1-Ly 9P, o-LoPy - L1Py-Ax=Ly 1P,_1 Ly_2oP,_9-LoPy-L1P;-b

U

where U is an upper triangular linear system. Thus, we have
U=L, 1Py 1 Ly oPyo-LoPo-L1P-A

With some amount of linear algebra, this equation can be rewritten as PA = LU where P =
P,_1P,_o... PP, and L and U are the usual matrices obtained from Gaussian elimination
applied to the matrix PA instead of A.

3.4 Cholesky factorization

The Cholesky factorization is based on the following theorem.

Theorem 3.6 (Cholesky factorization) Let A be a symmetric, positive definite matriz
of order n. Then, there is a unique lower triangular matriz L with positive entries on the
main diagonal such that A=1L -LT.

We skip the proof of the theorem which can be done, for example, by mathematical induction
on n. Instead, we give one possible algorithm to compute L column by column. Just writing
down the product A =L - L7, we get

for j=1:n
lij = Jaj; — Sio1
fori=j5+1:n
lij = (aij — 317 ik ljk) /i
end
end

where the result of a sum is zero if the ending value of its index is smaller then the corre-
sponding starting value. This algorithm needs about n3/3 arithmetic operations (+, X
/) plus n square roots.

It can be proved that Cholesky factorization is a stable algorithm, that is it does not
propagate much rounding errors. Recall that this may not be the case for LU factorization,
even if we use pivoting strategy.

Finally, it is interesting to note that if the factorization algorithm fails because some I;;
cannot be computed, then the matrix A is not positive define. Say in a different way, the
previous algorithm may be used to check whether a matrix is positive define.

Let’s see an example which is also useful to understand in which way equations of the
algorithm come from.

] )

Example 3.12 Consider the symmetric matrix

31 00
1 3 10
A= 01 3 1
001 3

Note that A is positive define since, using the Gershgoring theorem, it has all the eigenvalues
positive. Thus, the Cholesky factorization exists. Now, since A has order n = 4, the matriz
L is
lhi 0 0 O
I lor lo2 0 O
ls1 I3z sz O
lan laz lag laa
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where l11, la2, 133 and lys are positive numbers. Let’s compute l;;.

o Compute the first column of L (j =1). Writing L - LT = A we get

111 0 0 0 lll 121
lo1 las O 0 0 oo
I31 I32 I33 O 0 0
lar lao lag laa 0 0

I31 In
32 a2
I3z a3

49
3100
1310

=lo1 31 (3.2)
001 3

from which, equating column j =1 of L - LT and A, it follows

li1-ln = an = In= \/E = \/§
oyl +12-0 = an =l =axn/lii=1/V3
ls1-li1+132-0+133-0 = az1 = s =as/li=0/V3=0
Lyl +l2 0+ l3- 0410 = an =  lg=an/lii=0/V3=0

So, at the end of this step we have computed the first column of L which now looks as

V3 0 0 0
1/V3 las 0 0
0 s I33 0

0 lag laz laa

L=

e Compute the second column of L (j=2). Consider again equation (3.2). FEquating
column j = 2 of the matrices L - LT and A, considering that A is symmetric (and
so we can equate only elements with row index greater or equal to the column index

j=2), we get
lor - loyr +laa-log = ax = oo =+/a —la1 -1l
I31-lo1 + 132 - log + 1330 asy = 3z = (asz —ls1-1l21) /l22
lag - lor+1lao - loo+ a3 04+14a-0 = a2 = lgo = (aa2 — la1 - l21) /122

Recalling that, o7 = 1/\/5, ls1 =0 and ly1 = 0, we easily find from the three previous
equations los = /8/3, lsa = \/3/8 and lyo = 0. So, at the end of this step we have
computed the first and the second columns of L which now looks as

V3 0 0 0
a1 /s
|5 NER
0 3 Iy 0
0 0 luz lu

o Compute the third column of L (j=3). Consider once more equation (3.2). Equating
column j = 3 of matrices L - LT and A, considering that A is symmetric (and so we
can equate only elements with row index greater or equal to the column index j = 3),

we get
ass = Iz =\[ass — 13, — 13,

= 43 = (@43 — laa - l31 — lag - I33) /l33

I31 - 131 + 132 - 32 + 133 - I33
lar - ls1 +lag - lzo + lag - lzz +laa - O

Q43

Recalling the already computed values of L, we find from the two previous equations
ls3 = /21/8, lys = +/8/21. So, at the end of this step we have computed the first
second and third columns of L which now looks as

V3 0 0 0
1 8
N 50 0
L: 0 3 21 O
8 3
0 0 /& lu
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o Compute the fourth column of L (j = 4). From equation (3.2) again, equating columns
j =4 of matrices L - LT and A we get

lag o +lao lao+las las+lag - lu=a = luu= \/a44 — 121 — 13, - 123

which gives lyg = 1/55/21. So, finally, we have

V3 0 0 0

1 8

NE 8 0 0
L= 3 21

0 3 20

0 0 /= 55

3.5 Conditioning of a linear system
We start with a useful definition.

Definition 3.6 For any induced matriz norm, the condition number of the square, non
singular, matriz A is

K(A) = 1Al - [A7Y]

If A is singular, we set K(A) = 4o0.
The condition number fulfills some useful properties.
Theorem 3.7 Let A be a non singular matriz of order n. Then, we have

(a) K(A) > 1 for all matrices A.

(b)) K(A™Y) = K(A) and K(a A) = K(A) for each o # 0.
Proof. Let prove only (a). We have

L= L)l = A A7Y] < JA] - A7 = K(A).

where [, is the identity matrix of order n. O

Theorem 3.8 Let A be an orthogonal matriz of order n. Then Ko(A) = 1.

Proof. We have

JAl, = \/p(A- AT ) = \/o(A- A7) = \/p( T, ) = 1

because AT = A~! since A is orthogonal. Also, it is

47l = 1471, = Vo AT - (AT)T) = ol AT ) =1
So, we have Ky(A) = ||Al|, - [[A7!||, =11 =1 and the proof is complete. O

Theorem 3.9 Let A be a symmetric, positive define matriz of order n. Then
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Example 3.13 (Hilbert matrices) A Hilbert matric H of order n is define as
1 o
hij = P ih,i=1,...,n
This matrices are symmetric since hj; = hy;. It can also be proved that they are positive
definite. Their condition number is high even for small n:

n 5 10 15

K(H) 5-10° 2-10% 8-10Y7

Now consider the linear system Ax = b. A small change ¢b in the right hand side produces
a small change 0x in the solution: A (x4 6x) = b+ db. That is, Adx = éb. Let’s find a
relation between éb and dx. We have, with respect to some compatibility vector norm,

lox|| _ [A~"-db|| & [JATY] - ||db]| _ 14]| - IIA‘lll-H(Sb”
x| Ix[ = Abl/AAl [Pl
K(A)

where K(A) = ||A|| - ||A~1| is, by definition, the condition number of the matrix A. For the
denominator of inequality (1), note that ||b|| = ||A- x| < ||4| - ||x|| and so ||x|| > || A]|/]|b]|-
If K(A) is large we say that the linear system (and the matrix A) is ill-conditioned. In this
case, small b may, even if not necessarily, produce large éx. That is, small perturbation
may completely change the solution. If K(A) is small, the linear system (and the matrix A)
is well-conditioned; small perturbations on b does not change too much x.

As a final result, that we give without proof, we have the following theorem.

Theorem 3.10 Let A be a non singular matriz of order n. Let x + 6x be the solution
(A4 6A)(x+ d6x) =b+ b
Assuming also that b # 0 and that, for some compatible matriz norm, ||[0A] < 1/ HA’lﬂ,

we have 5 A 5 A
[9x]| _ K(A) (||b||+|| II)

el = T Ky LA\ el A

3.5.1 Error bound in the Gaussian Algorithm

Consider the solution of the linear system Ax = b with the Gaussian Algorithm. Denote by
x the exact solution and by X the actually computed solution by the algorithm.

Typically, the Gaussian Algorithm gives a small norm for the residual vector # = b — A%.
Recall that for the exact solution x it is r = b — Ax = 0. So, it seems a good idea to take
|| £ || as a measure of the goodness of the solution X. Let’s see if this is indeed the case.

Writing AXx = b —  we can say that X is the solution of our linear system where the
right hand side is just a little perturbation of b by the term db = —#. Using the previous

analysis, the error norm ||e|| = ||x — X|| satisfies
el 2]
< K(A)-
x| bl

So, if K(A) is large (that is, the linear system is ill-conditioned) we may have a large error
even if the relative residual || £ || /|| b || is small. On the other hand, if the linear system is
well-conditioned the test on the residual works pretty well.

Example 3.14 Consider the linear system Hx = b where H is the Hilbert matriz of order
n = 10. Let choose b in order to have the exact solution x of all ones. Using Matlab, we
find || £]/]|b|| =107 and | e || /| x| ~ 10~* which is much greater then the residual.
This is due to the high K(A) ~ 1013.
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In this appendix we can see a complete Gaussian elimination working on a system Ax = b

of order n = 4. We have n — 1 =4 — 1 = 3 steps.

e Step 1: AVx =bW & L[, - AW(x) = Ly - b)) where L; zeros all elements below

a§11> by elementary rows operations using

Let’s compute A = L, - AD:

Ly - AW

where a

2 _ (1)

a

Ly = "Lj»

1
=l
—l31
—la1

_121 .
_131 .
fl41 .

1
a(u)

0
0
0

2
agl)

0
0
0

j:

1 1
ag1)/ag1) 1 00 0
-1 1 0 O
1 1 21
sy /ar) = b=l 010
—ly 0 0 1
1 1
%(11)/@51)
1 1 1 1
00 0 (@ gz gy ag
o O I - S
00 1) | % oo
Qg1 Qqo  Qu3 Qg
1 1 1 1
“ 511) 1 “ 512) 1 “ (113) 1 “ (114) 1
agl) + aél) —la1 - agQ) + agQ) —la1 - a§3) + agg) —la1 - a§4) + ag4)
ol +al)  —li-al) +aly)  —la-al) ey s -al) +aly
afY +afy  —l-al) +aly) —laly el —la el +aly
1 1 1
R, - S G
—lo-afy +afy)  —lo-afy faly  —lor-afy) +afy)
gy -aly) +aly  —lan-aly +aly)  —ls-all) +af)
“lay-aly +aly  —la-aly val) el +af)
2 2 2
Gy
BBy | =a®
"2 Y% Y
Qgo Qg3 Qyy
1,...,4 and az(.?j) = az(.;) — Ul -a%), 1,7 =2,...,4,

o Step 2: A®x =b® & L, - A®(x) = Ly - b® where Ly zeros all elements below

ag? by elementary rows operations using

l32

Z42

1 2
aga) / agQ)

2 2
%(12) / agQ)

Let’s compute A®) = Ly - A?):

Ly-A®

1 0 0
0 1 0
0 —l3p 1
0 —lgp O
afy

0

0 —l3-

O _l42 .

=
0
0
0
1
2
o3
B2 o
BT
Qg + Qg9

a

—l32 - a

—l42 - a

o o o

§§)+a
(2)

3
23 T a

0 0 0

1 0 0
I3 1 0
—lyps 0 1

&

i)

A3y

asy

&

(2) a(324) (2)
O
13 —laz-ayy +agy
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K o)
0 ey ayy agy

0 0 —lg-asy) +a) —ls-al) +af)

0 0 —lg-ag) +aff) —liz-ag) +aff

3 3 3 3
agl) agQ) agg) ag4)

3 3
_ 0 agQ) agg) ag4 —A®
0 0 aff aff
0 0 aff aff

e Step 3: A®x =bl®) & Lz-AB)(x) = Ly -b®) where L3 zeros all elements below
ag‘? by elementary rows operations using

iy = afy/afy = Ls=

o O O
o o = O
= O O O

Let’s compute A®) = L. A®):

3 B 3 3

10 0 O 1 Q13 Qi3 Qg
LyoA® — |01 0 0 0 a%) agzg ag?
0 0 1 0 0 0 a§3) ag 4)
0 0 —ly 1 0 0 ag) aﬁ)
aff  aff af?) afy
e d D o
0 0 ay) ajy
0 0 —lug-afy +afy —lug-afy +afy
aff afy afy aiy
I VR ajy
0 0 af ajy
0 0 0 —lyg-af)+a?
4D o o
I I T
0 0 ag;) agi)

0o 0 o0

At the end of the three step, we have an upper triangular linear system A®¥)x = b(*
equivalent to the first one. Moreover, looking at the LU factorization, defining U = A®,
we have

L3-L2-L1-AX:L3-L2-L1-b

—_—

U
and thus
Ly Ly L1-A=U <& A=L7'-Ly' L;'U
N—————
L
It is easy to check that
1 00 0 1 0 00 1 0 0 0
4 4,0 | a1 00 01 00 01 0 0
L=Ly Ly Ly = Is; 0 1 0 0 I3 1 0 00 1 0
Iy 0 0 1 0 Iyo 0 1 0 0 Iy 1
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1 0 0 0

ol 10 0
B I31 I3z 1 0
lan lao luz 1

3.7 Exercises
A star near the number of an exercise denote a difficult one.

1. Find the spectrum o(A), the spectral radius p(A), the ||A]|; and ||Al|c of the matrix
2
0

1 3
A=10 2
0 -2 0

2. Find, under the condition ||x||2 = 1, the maximum value of the function f(x) = || Ax]|2
where A is
1 2
=02 7)

[Answer: the maximum is just | A5 and so it is |A[|y = ( p(AT - A))"/? =3

3. Prove that all eigenvalues of the matrix

1/3 1/4 1/5
A= 1/4 1/5 1/6
1/5 1/6 1/7

have modulus less then 5/6. [Answer: for each eigenvalues A of the matrix A we have
Al < p(A) < ||Alloo = max ({47/60, 37/60, 107/210}) = 47/60 < 5/6.]

4. Prove that if A is symmetric and positive definite then all his eigenvalues are positive.
[Hint: take x as an eigenvector of A, i.e., Ax = Ax. So xT Ax = xT (Ax) = \||x||? and
o on.]

5. Find the number of operations required to compute ZZ=1 Ui - ri. [Hint: note that
lk-Ti Zlk-Tk-’I“k.]

6. It is known that the LU factorization (L has all ones in the main diagonal) of the
matrix A has |U| = —2. Find, if possible, |A72|.

7. Compute the LU factorization (without pivoting) for the matrix

A:

N — DN

11
3 1
1 2

Using the LU factorization, compute |A| and |A7!|. [Answer:

1 0 0 2 1 1
L=|12 10|, U=[|o0 52 1/2
1 01 0 0 1

as we can check doing the product. Then, we get |A| = |LU| = |L|-|U| =2-(5/2)-1=5
since |L| = 1. Then, we have |[A7!| = 1/|A| = 1/5]

8. A large linear system Ax = b with n = 10® equations and K (A) = 10° is solved using
Gaussian elimination. Knowing that the true solution x has ||x||ec = 100 and the final
relative residual is ||r||o0/||b||cc & 10712, is it true that each component of the actually
computed solution has at least three decimal places corrects after the decimal point?
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10.

11.

12.

13.

14.

15.

16.
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. Compute the condition number K5(A) of the matrix

1 0 0
A= 0 108 0
0 0 10

[Answer: A is symmetric and positive definite with eigenvalues \; = 1074, \y = 1,
Az = 10%; thus, the minimum eigenvalue is A\,.i, = 10~% and the maximum eigenvalue
is Amaz = 10%. Using theorem 3.9 we have K2(A4) = A\nax/Amin = 10%/107% = 108]

A matrix A € R™*" is strictly diagonally dominant by rows if

n

|aii|>2|aik| i=1,...,n
k=1
ki

In the same manner, A is strictly diagonally dominant by columns if

n
|aii|>Z|aki| i=1,...,n

k=1
k#i

Prove that a symmetric and strictly diagonally dominant by row (or by column) matrix
is positive definite.

Give some examples of well conditioned matrices and some other examples of ill con-
ditioned matrices.

Give an exam ple of a square matrix of order n = 3 where it is possible to do the first
step of the Gaussian elimination but it is not possible to do the second step.

The square matrix A has dimension n = 1000 with all zeros but a; =4,i=1,...,n,
Qi1 =—2,1=2,...,m,a,i+1 = —1,7=1,...,n — 1. Prove that this matrix is non
singular. Then, using Matlab or Octave, plot the eigenvalues in the complex plane.
[Hint: a matrix is singular if and only if it has the eigenvalue 0. What can we say
about the region of the complex plane where eigenvalues of A are?]

The real, symmetric and positive definite matrix A has spectral radius p(A4) = 1/3.
Which of the following are true?

(a) A has a negative eigenvalue.
(b

)
) A may be singular.
(¢) A may have the eigenvalue 1/10 + /10.
)
)

(d) A has all the eigenvalues in the (0,1/3] interval of the real axis.
(e) A has a Cholesky factorization.

(x) Write a Matlab or Octave function for the Gaussian elimination able to solve the
linear system Ax = b with and without partial pivoting. Then, use this function inside
a script to find figures like figure (3.3).

Use Cholesky factorization to find if the following matrix is or is not positive definite
1 1 1
1 2 1
1 1 3

Check your answer using the function eig() of Matlab or Octave.
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Chapter 4

Classical iterative methods

Nowadays large linear systems where most of the coefficients are zero are frequently encoun-
tered in practice. The corresponding matrices, where about 1% to 10% of the elements are
non zero, are called sparse matrices. For these large linear systems the Gaussian algorithm
(or, that is the same, the LU factorization) suffers of a technical problem. To understand
what’s going on, first, we have to say that the elements of the linear system are stored in a
memory inside the computer. There are, basically, three levels of memory: the hard disk,
the RAM memory and the CACHE memory. The fasted one is the CACHE, at lest 10 times
faster then the RAM which is at least 10000 times faster then the hard disk. Thus, for a
fast solution we need to store all the linear system inside the CACHE memory. However,
the CACHE memory is very expensive and so we just have a very small amount of it, say
about 2 MB to 8 MB.

So, if the linear system is large but has very little elements different from zero there are
techniques to store all these non zero elements inside the CACHE. What may happens using
Gaussian elimination or LU factorization, see the figure below, is the creation of a lot of new
non-zero elements (we say that that we have the fill-in phenomena and the matrix A at the
end of the Gaussian algorithm is no more sparse).

=3

10 .
15 .
20 .
25 .
30 o

35 N

40 o

45 .

50 o]
0 10 20 30 40 50
nz =148 nz =1274

Figure 4.1: The non zero elements of A (left) and of L (right).

If the number of these new non-zero elements is large, they cannot be stored inside the
CACHE memory and the overall algorithm slows down of almost one order of magnitude
(this means that the amount of time needed to solve the linear system increases to about
10 times).

The aim of iterative methods is to preserve the original sparsity of the matrix and to get
fast solution of the linear system.

57
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4.1 Tterative methods

The basic idea of an iterative method is the following. First rearrange the linear system
Ax = b as a fixed point equation x = Ex + q for some matrix F and vector q. Second, find
the fixed point x of this latter equation as the limit for ¥ — +oo of the sequence x*) given
by x*+1) = Ex(®) 4 q, k = 0,1,... where x(9 is some starting point. First of all, let’s see
the conditions for which the sequence converge to the fixed point. Denoting the error of the
k-th iteration x(*) by

e =x—x® k=o01,...

we have
e = xfx(k):(Eerq)f(Ex(k71)+q):E<xfx(k*1))
= FEel—1

and so, using mathematical induction, e*) = E¥e(®). For the behaviour of the sequence
e we need the following lemma for which we skip the proof.

Lemma 4.1 Let F be a square matriz of order n. We have

lim E*=0, < p(E)<Ll.
k—4o00

where O,, is the all zeros matriz of order n.
Now, we can state the main result for the convergence of the sequence x(*),

Theorem 4.1 The sequence xX*t1) = Ex®) 4 q, k=0,1,... converges to the fized point x
of the equation x = Ex + q for each x©) if and only if p(E) < 1.

Proof.— We note that x(*) converges to x if and only if e*) converges to 0. Then, assuming
E* — 0, using the lemma, we have
lim e® = lim Efe® =0, -e® =0
k—-+o00 k——+o0

On the other hand, if e®) — 0 for each x(9), then it must be E¥ — 0,. Indeed, if this is
not the case, then there is at least one element of the limit of E®*) different from 0. Let
EZ.(;.“) — 1;; # 0. Then, choosing x(¥) in order to have an error e(?) with all zeros but a 1 in the
position j, the limit of the error has at least e; different from zero. This is a contradiction.
So, the limit of E®*) is the O,, matrix and the theorem is proved. O

In most cases it is not easy to compute p(F) in order to apply the previous theorem. Thus,
it is interesting to note that if we find ||E|| < 1 for some induced norm, then it is also
p(E) < 1. Note, however, that this is only a sufficient condition.

Now consider a convergent sequence. We can gain a deeper understanding of the conver-
gence behaviour if E is a diagonalizable matrix with all real eigenvalues and with one,
say A1, greater, in absolute value, of the absolute value of all other eigenvalues. Let
B ={uy,...,u,} be the base of eigenvectors with u; associated to A;. Thus, writing

n
e(O): E a;u;
i=1

and recalling that u; is also an eigenvector for E* associated to A\, we get, assuming oy # 0,

e = EFe®) = Z o Efu; = Zai)\fui
i=1 i=1

I
>
=
| — |
Q
=
c
£
+
|'M:
S
7 N
yﬁ
N————
-
£
| I
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since, at least for large k, we have (|A\;]/|A\1])¥ < 1. From the latter equation, we have

le™]] o Ay |
— T - = M| = p(E)
[et+=D| ||061)\]f 1111||

since A has, among all eigenvalues, the larger absolute value. So, the order of convergence
is 1 with asymptotic error constant equal to p(E). This also means that we expect a linear
plot for logy, (||e*)[|) as a function of k.

4.2 C(Classical methods

Let’s see some simple, classical, ways to construct a fixed point iteration for a given linear
system Ax = b. Consider the splitting of the matrix A given by

A=L+D+U

where D is the diagonal of A, L is the strictly lower triangular part of A (i.e, the elements
below the main diagonal) and U is the strictly upper triangular part of A (i.e, the elements
above the main diagonal). That given, we have the following methods.

4.2.1 Jacobi method
If all elements on the main diagonal of A are different from 0, we can write
Ax=b & (L+D+U)x=b & Dx=—-(L+U)x+b
& x=-D'L+U)x+D'b

Setting E; = —D~Y(L + U) and q; = D~ 'b, the fixed point equation x = E;x + q gives
the fixed point iteration

wx(k+1) EJX(k) +qs, k=0,1,...

known as the Jacobi method. The matrix E; is the Jacobi iteration matrix.

4.2.2 Gauss-Seidel method
If all elements on the main diagonal of A are different from 0, we can write
Ax=b & (D+L+U)x=b & D+Lx=-Ux+b
& x=-(D+L)'Ux+(D+L)"'b

Setting Es = —(D + L)~'U and qs = (D + L)~ !'b, the fixed point equation x = Esx + qs
gives the fixed point iteration

X(k+1) = ESX(k) —+ qs, k - 0; 17 e

known as the Gauss-Seidel method. The matrix Eg is the Gauss-Seidel iteration matrix.
For hand writing exercises or for not Matlab-like programming, it is useful to write
explicitly all equations of the previous methods. Let’s see how to do with an example.

Example 4.1 Consider the linear system Ax = b with

a1 ai2  a13 b1 1
A= axn ax a3 |, b= b |, x=| 2
asy Gz 433 b3 x3

The Jacobi method may be written as Dx*+1) = —(L + U)x®) + b or, explicitly,

k+1
w{" Y 0  —az2 —ai3 zy b1
0 az 0 |-| ™ | = —azx 0 —ass |-| 2 [+ b2
0 0 ass .ﬁngrl) —a31 —as3s 0 xgk) b3
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Solving this diagonal linear system with respect to x**1)  we get

(k+1)  _ _ (k) _ (k)
anxgkﬂ) — b — aumé’@) _ algng) Ty = [bl a12T9 a13T3 } /a1
a22ﬂfék+1) = by— a21$§k) - a23$;(;k) A zékH) = [b2 - a2193§k) - a2393ék)} /a2

k+1 k k
azzzy by — azay” — azal” 2 = [b3 —agal? — aszxék)} /ass

For the Gauss-Seidel method we have (L + D)x(k“) = —Ux® + q or, explicitly,

a1 O 0 wﬁk“) 0 —ai2 —ai3 fcgk) b1
a1 azx 0 : xé’”l) = 0 0 —a93 . xék) + | be
asy a2 ass 2 0 0 0 =) bs

Solving this lower triangular linear system with respect to x*t1) | we get

xgkﬂ) = {bl - a12$(2k) - a13$§k)} /a1
l‘ék-i_l) = {bg — aglm(lk+1) — aggl'ék)} /a22
.ﬁngrl) = {b3 — a31x§k+1) — a32Iék+1):| /a33

+1)

So, for the Jacobi method we compute each xEk just using x\¥) whereas for Gauss-Seidel

we use, if available, components :L'§»k+1) for 1 < j < i and components xEk) fori<j<n.

Obviously, the order of the equations does not change the solution of a linear system.
However, this order may affect the convergence of Jacobi and Gauss-Seidel methods. Let’s
see an example.

Remark 4.1 The order of the equation in the linear system is important. Consider, for
example, the Jacobi method for the following linear system of matriz A. We have

0o -&
_(a 5 _ “ _ 8l
a=(50) = me( N B

«

and thus the Jacobi method converges if |3| < |a|. That stated, let’s exchange the two rows.
For the new matriz A, we have

0 —

i_ (B« 5o _ lal
A—(a 5) = By= - = P(BJ)—W

e
?

and so, since now p(By) > 1, Jacobi iterations do not converge.

Remark 4.2 The two linear systems Ax = b and PAx = Pb have the same solution for
each non singular matriz P (preconditioning matriz). However, when applying an iterative
method, the iteration matrices may have different spectral radii and, as a consequence, a
different rate of convergence. As an example, useful also to see the behaviour of the Gauss-
Seidel method to a real problem, consider the matriz "shermanl.mtz" of the Matriz Market
collection (free from the Web). As we can see on the left of figure 4.2, it is a very sparse
matriz: it has dimension n = 1000 but only 3750 non zero elements.
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0 10°
\\ —Ax=b
200 NN\ o —PAX=Pb|
\ \ = -2
400 \ »\'\ f 10
NONN 2
600 S 10
SONOL
NN N -4
800 RN 10
NN\
-5
10 : ; : :
10000 500 1000 0 200 400 600 800 1000
nz = 3750 Iteration index k

Figure 4.2: Convergence behaviour for the linear system with matriz given by shermanl.mtz. The
right hand side is build in order to have the all 1 solution.

The matriz P is chosen as a diagonal matriz where entry p; = 1/ ;_, |ax|. As figure
4.2 shows, there is some advantage in solving PAx = Pb instead of Ax = b. The problem
of how to choose the best matrix P (i.e., the matriz for which the corresponding iteration
matriz has the smallest spectral radius) is a challenging problem.

4.2.3 Conditions for the convergence of Jacobi and Gauss-Seidel

Given the linear system Ax = b it is not always easy to find the iteration matrix F; or
FEs and to compute the corresponding spectral radius. Thus, it is interesting to give some
sufficient conditions for the convergence of the Jacobi and Gauss-Seidel methods just looking
on the matrix A. There are such many of these conditions. We just give some.

Theorem 4.2 If the matriz A of the linear system Ax = b is strictly diagonally dominant
by rows or by column both Jacobi and Gauss-Seidel methods are convergent.

Theorem 4.3 If the matriz A of the linear system Ax = b is symmetric and positive
definite then the Gauss-Seidel method is convergent.

Theorem 4.4 If the matriz A of the linear system Ax = b is a tridiagonal matriz, then
Jacobi and the Gauss-Seidel methods are both divergent or both convergent. Moreover, if
they are convergent, then p(Es) = p*(Ey).

For a general linear system Ax = b, there is no relationship between the convergence
behaviour of Jacobi and Gauss-Seidel methods. That is, both may not converge, or one may
but not the other, or both can converge with different rates. Let’s see some examples.

Example 4.2 Let a > 0; the linear system with matriz A given by

(1)
has
(0 o) mmmwrno= (A1) (0 6)= (5 %)

and so p(E;) = a and p(Es) = a®. Thus, both methods are convergent if a < 1 with

Gauss-Seidel faster since p(Es) = a%> < a = p(Ey), both are divergent if a > 1.
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10° 10%
—=—Jacobi —=—Jacobi
10721 —8— Gauss—-Seidel —=— Gauss-Seidel
D
= -4 fm) lom
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Iteration index k Iteration index k

Figure 4.3: Convergence behaviour for the linear system with a = 0.5 (left) and a = 2 (right).

Example 4.3 Using a Matlab program, we have find the following matrices with the corre-
sponding spectral radii of the Jacobi and Gauss-Seidel methods.

34 20 11
A = 17 -5 —16 |, p(E;) =053, p(Es)=0.87
-8 —13 —20
—22 -6 —10
A = 2 —14 3 |, p(E;)=055 p(Es)=0.15
2 -2 -5
~11 -6 -11
A = 4 —10 —11 |, p(E;) =121, p(Es)=0.82
-9 0 -8
3 -8 14
A = | =13 -16 —11 |, p(E,) =057, p(Es)=1.42
—18 —10 40
3 -2 18
A = 9 15 10 |, p(Es) =260, p(Eg)=4.84
-6 -3 6

As we can see, for a general matriz there is non relationship between the convergence of the
Jacobi and Gauss-Seidel methods.

4.3 How to stop the iterations

There are two main stopping criteria for the iterative method x;41 = Exip +q, k=0,1,...

(a) Let rx = b — Axy be the residual vector at the k-th iteration. Given some small
positive e, the iterative method stops when |rg|| < €||b|| for some given norm. That
is, the iterations stop when the residual is low enough with respect to b. To see the
goodness of this stopping criteria, note than if we write Ax; = b — ry then x; can
be seen as the correct solution to the perturbed linear system Ax; = b + db where

6b = —ri. So, we can relate the error e = x — X, to the residual as
Il ex || (RS
< K(A)-
|| bl

When the stopping criteria is fulfilled, we have |eg]|/||x]| < K(A)e. So, if K(A) is
small, then the stopping criteria guarantees also a small relative error. However, if
K (A) is large, then the product K(A)e is large and, as a consequence, the stopping
criteria is not able to guarantee a small relative error.
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(b) Given some small positive €, the iterative method stops when ||xx4+1 — x| < €|b].

4.4

Taking into account that ||e*+V)|| ~ p(E)|le®||, we can write

o™ = Ix = xell = 16c = xir) = (o = xes0)]
< = pll 4 ek — X
= [|le® 0 + i =l
~ p(B)|[e®]| + xks1 = x|
and thus )
(k)H < — (| _
e < Xp+1 — Xk | )
H 1—p(E)

When the stopping criteria is fulfilled, we have ||e®)||/||b|| < ¢/[1 — p(E)]. As a conse-
quence, if p(E) < 1 the stopping criteria guarantees a small relative error; otherwise,
if p(F) = 1 the stopping criteria is not able to guarantee a small relative error.

exercises

A star (x) near the number of an exercise denote a difficult one.

1.

Is it true that if the fixed point iterations x*) = Fx(®) 4 q, k =0, 1,... converges for
all x(©) then also x*) = E?x(®) 4 q, k= 0,1,... does it? Explain.

E= ( 1/120 —10/10 >

estimate the number of iterations needed to have |e®| < ¢|lel®|| for ¢ = 1077,
[Answer: 9]

. Given the iteration matrix

Starting from x(%) = (0,0)7, find the behaviour of the error for Jacobi and Gauss-Seidel
for the linear system Ax = b with

=) e ()

. Find the best stopping criteria for x(**1) = Fx(*) 4 q if the iteration matrix E is

0.999 0
E< 1 0.998)

. Consider the linear system Ax = b given by

3 -1 0 2
A= -1 3 -1 ], b=|1
0 -1 3 2

(a) Just looking to the matrix A, find if the Jacobi and the Gauss-Seidel methods
are convergent.

(b) Write explicitly the three iteration equations for both Jacobi and Gauss-Seidel.

(c) Find the eigenvalues of the iteration matrix of Jacobi and the corresponding
spectral radius.

(d) Repeat point (c) for Gauss-Seidel. Check your answer using Matlab or Octave.
Which method converges faster?

(e) Give an estimation of the number of iterations needed to have |[e®)| < ¢||e(®||
for e = 1075.
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10.

11.

CHAPTER 4. CLASSICAL ITERATIVE METHODS

(f) Check answers of points (c), (d), (e) using Matlab or Octave.

The linear system Ax = b has the matrix A symmetric and positive definite. What
can we say for the spectral radius of the Gauss-Seidel iteration matrix? [Answer: the
Gaussian method is convergent and so p(Eg) < 1.]

Given the linear system Ax = b with

1 «
=(1 %)
find o € R such that the iteration matrix of the Gauss-Seidel method has spectral

radius equal to 1/2.

Prove that A = 0 is always an eigenvalue of the Gauss-Seidel iteration matrix. [Hint:
since U has the first column of all zeros, then also Es = —(D + L)™'U does.]

Compute how many iterations does the Jacobi method need in order to have a norm
of the error |le®|| < 107 for the linear system Ax = b given by

1/10 0 0 1
A= 0 1/20 0 . b= 2
0 0 —1/10 1

starting from x(®) = (0, 0, 0)”. [Answer: just one iteration.]

Prove that is X is an eigenvalue of the matrix £ then A\* is an eigenvalue for E*.
[Answer: let v be an eigenvector associated to A\. Then, we have E¥v = EF~1(Ev) =
EF1(A\v) = AE*~'v = AEF72(Ev) = --- = \*v and thus \* is an eigenvalue of E¥ .|

(%) Given the linear system Ax = b of order n = 2, find, if possible, a matrix A for
which the Gauss-Seidel method converges but Jacobi does not converge.



Chapter 5

Interpolation and Approximation

5.1 Introduction

The interpolation problem is the following.

Problem 5.1 Let F be a family of functions depending on n+ 1 parameters. We search for
a function f € F such that

flzi)=vyi;, ©i=0,...,n (interpolation conditions)
where (z;,v;), 1 =0,...,n are n+ 1 given points. We call z; nodes.

Interpolation conditions give a system, maybe non linear, of n+1 equations in n+1 unknowns
parameters. The solution of this system gives the parameters and thus the function f. Some
families F are the following.

e Polynomial functions of degree (at most) n (polynomial interpolation)

f(x) = pn(x) =ag+a1x+...+a,z"
We have n + 1 parameters ai, k =0,...,n.

e Trigonometric functions

3
3
S

3 Co

flz) = 5 + [ ek cos(kx) + by sin(kz) |
k=1
We have n = 2m + 1 parameters ¢, k=0,...,mand by, k=1,...,m.
e Rational functions
f(a:) _agt a1z + ...+ apx?

© obot+ bz ..+ byt
We have n = p + ¢ + 1 parameters ag, k =0,...,pand by, k=0,...,q.

¢ Exponential functions

f(z) = ape™® + ...+ apem®

We have n = 2m + 2 parameters ag, k =0,...,m and g, k=0,...,m.

5.2 Polynomial interpolation

The following theorem holds.

65
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Theorem 5.1 Let (x;,y:), i =0,...,n be a set of n+ 1 points with different nodes z; (i.e.,
x; # xj for i # j). Then, there is one and only one polynomial p,(x) of degree n such that

p(z;)) =y, i=0,...,n.
Proof. Let p,(x) = ap + a1z + ...+ apz™. The n+ 1 interpolation conditions p(x;) = y;,

1=0,...,n gives the linear system of n + 1 equations in n 4+ 1 unknowns a;, i =0,...,n
p(xo) = o ag + a1xo + agxg +...taxf = Yo
p(z1) = wun ap + a1y + ar? + ...+ a,zt = oy
— - - i = ..
p(z:)) = ap + a1z + agxi +...+apxl =y
p(Tn) = Yn ap + a1y + agx? + ...+ anx) = yn

or using matrices, V,a =y where

1 zo 3 ... ay ag Yo
1 oz 22 ... ay a Y1
1 oz a2 x? a; v
1 @, 22 ... an an Yn

The matrix of the linear system is a Vandermonde matrix. For this kind of matrices, it can
be proved that the determinant is given by

n—1 n
Val =TT | 1] (&5 — =)
=0 \j=i+1

Due to the assumption of distinct nodes, the determinant in different form zero and so the
linear system has only one solution. This means that there is only one polynomial that
fulfills the interpolation conditions. O

From a numerical point of view, we have to take in mind that the Vandermonde matrix
V,, is ill-conditioned (and so is the corresponding linear system) as we can see from the tables

n |1 3 7 15 m [-2 -1 0 1 2

K(V,) |6 10% 10° 10% K(Vs) | 106 2-10% 10®° 10° 10%

On the left, the condition number K3(V,,) is taken for different values of n choosing as
nodes x; =i+ 1,4 =0,...,n. On the right, the condition number of K»(V3) is computed
for the same number of nodes but with different spaces between two consecutive nodes:
x;=(+1)-10™, i=0,....,ned m = —-2,-1,0,1,2. As we can see, again the condition
number may be very high. Thus we have to take care when the interpolation polynomial
is computed in this way. Moreover, luckily, there are other more stable ways to find the
interpolating polynomial.

5.2.1 Lagrangian interpolation
We begin with the definition of Lagrangian polynomials.

Definition 5.1 Given the set of n + 1 distinct nodes x;, i = 0,...,n, the k-th Lagrangian
polynomial 1y, is defined as
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As we can see, Lagrangian polynomials depend only on nodes and have the property that

o= {0 1

)

For example, Lagrangian polynomials of degree n = 2 associated to nodes xg, x1, z2 are

2
T — T—T1 T — T2
lo(m):H:mi:C]': .
i J

To—T1 To— T2

j=0
J#0
2 T x x T T T
— 4y — 40 — 42
o r1 — Ty X1 —Tog I1 — T2
7#1
2 T x x T T x
_ by _ LT 40 el
(o) = [[ 222 - 220
o T2 — Ty To —Top T2 — 1
i#2
3 1
1,09
2
0.5
> >

-0.5!
1 15 2 1 15 2

X X

Table 5.1: Lagrangian polynomials of degree n = 2 associated to the nodes zo = 0.9, z1 = 1.0,
Xro = 2.0.

Lagrange polynomials lead to a simple expression for the interpolation polynomial. Let
(i,vi), 1 =0,...,n be aset of n+ 1 points with different nodes z;. Then, the interpolation
polynomial p,, can be write as

pa(@) = yili(x)
k=0

which is known as the Lagrange expression for the interpolation polynomials. Indeed, p,,
fulfills the interpolation conditions p,,(z;) = z;, ¢ =0, ..., n since

po(@s) = Y yrli(es) = yili(ws) + > yili(@:)
k=0

k=0
k#i

n
yi- 1+ Y y-0=y;, i=0,...,n

k=0

ki
Now, since the polynomial that fulfills interpolation conditions is unique, p,, is exactly the
interpolation polynomial.

Using the Lagrange expression for the interpolation polynomial, it is easy to prove the
following theorem.

Theorem 5.2 The Lagrangian polynomials associated to the distinct nodes x;, i =10,...,n

satisfy .
> lk(z) =1.
k=0

Proof. Consider the n + 1 points (z;,1), ¢ = 0,...,n. Of course, the polynomial through
these points is p,(z) = Land so 1 = >} _,1-lp(z) = >}y le(z). D
Thus, the sum of all the Lagrange polynomial is 1 for all x € R.
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5.2.2 Interpolation error

Sometimes, it is useful to have, at least in a given interval [a,b], a polynomial alias p,, for
a given function f. One possible choice for this polynomial is the interpolation polynomial
through the points (z;,y; = f(x;)), ¢ = 0,...,n where x; are chosen in [a, b]. The reason to
operate in in this way is simple: instead of do operations using f, we do the same operations
using p,. For example, for Z € [a,b], instead of computing f(Z) we compute p,(Z) and we
assume this last value as an approximation for f(Z): f(Z) = p,(Z). We do the same for
more complicated operations such as derivatives and integrals:

1'(#) ~ Py (@), / ' fleyde ~ / (@) da

Doing so we have a clear advantage since operations with polynomials are very simple to
work out. On the other hand, we have to take under control the error E, (x) = f(z) — pn(2),
x € [a,b)].

Theorem 5.3 Let f € C" 1 ([a,b]). If 2; € [a,b], i =0,...,n are distinct nodes, then

(T o)
- (g“‘”)) R

for a suitable point & dependent on x, £ € (a,b).

We skip the proof of the theorem. Since we do not know &, it is useful to give an upper
bound for |E,(z)|, x € [a,b]. We have obviously

n
JCESIE

This upper bound may be very large compared to the actually error and so less useful as
the following example shows.

Mn+1

<
- (n+1)!

where M, 11 = max,c[qy ‘f(”“) )’

Example 5.1 Consider f(x) = /x, x € [1,9]. Let’s choose the interpolating polynomial p,
of degree n = 2 with nodes xo =1, 1 =4, x5 = 9 given by

p2(z) = Zyklk(x)=yo-lo($)+y1-l1(x)+y2-lz(x)
e @9 . @-1-@-9) . @-D-@-4
Sl Ty a9ttt ey a9 ey o9
1, 5 3
= 7@.33 +E.m+g

since yo = f(zo) =V1=1,51 = f(z1) = V4 =2, yo = f(x3) = V9 = 3. The comparison
between f and py with the error Fy is shown in figure 5.1. As we can see, the error is small:
|Es(z)| < 0.05 for x € [1,9]. For example, for T = 4.1 we get f(Z) = 2.02 and p2(Z) = 2.03
with an error of 0.01. However, the upper bound is very poor. Since f®) () = 336_5/2/8 and
so Mz = f®)(1) = 3/8, we get

3/8
3
which is about two order of magnitude greater than the actually error. The bound performs

better if both the interval [a,b] and the n+ 1 derivative of f are small. Taking, for example,
xg = 3.61, xr1 =4 and x5 = 4.41, we get the new upper bound

|E2(Z)] < |(4.1 — 3.61)(4.1 — 4)(4.41 — 4.1)] - ?

|By(7)] < |(4.1 - 1)(4.1 — 4)(4.1 - 9)] - 2L ~ 2

~ 1073

The corresponding interpolating polynomial is able to guarantee at least three correct digits
after the decimal point.
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3.5 0.06
— 1)
3r p,(x) 0.04
2.51 0.02
> 2 =3 0
w
1.5r -0.02
1t -0.04
0.5 -0.06
0 1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10
X X

Figure 5.1: Left: the function f(z) = v/z and the interpolation polynomial p2(z) of degree two
associated to the nodes zo = 1, 1 = 4 and z2 = 9 we get p2(z) =. Right: the error Es(z) =

f(@) = p2().

Chebyshev nodes

A proper choice of the nodes x;, i = 0,...,n inside [a, ] can lead to a better approximation
property of the interpolation polynomial. Looking back to the expression of the upper bound
for |E, ()|, the idea is to choose the nodes in order to minimize the maximum of the absolute

value of
n

w(a) = [[(e =2

i=0
for z € [a,b]. The searching for these nodes is not an easy task. A near optimal set of nodes
are the Chebyshev nodes given by

: 2i+1 w b+a+b—a ; 0
i = COS =1, x; = — - 1y, 1=0,---,n
n+1 2 2 2

where ¢;,7 = 0, ...,n are the Chebyshev nodes of the interval [—1, 1]. The following theorem
holds for Chebyshev nodes.

Theorem 5.4 (Bernstein) Let z;, ¢ = 0,...,n be the Chebyshev nodes of the interval
[a,b]. Then, for each function f € C*([a,b]) we have

lim max | E,(z) | =0.
n—+00 r€a,b]
That is, as one may hope, when the number of nodes increases the corresponding error
decreases. This is a feature of the Chebyshev nodes. For example, for equally spaced nodes
the error may not decrease when the number of nodes increases as the following example
shows.

Example 5.2 (Runge) Consider, in the interval [—5, 5], the Runge function

1

T =1

This is the function used by Runge to show that the error may not decrease if the number of
equally spaced nodes increases. See figures 5.2 and 5.3 on the left. The nodes z;,i=0,...,n
start with xo = —5 and are equally spaced in [—5,5]. We can see, in both figures, two peaks
at the endpoints of the interval. Moreover, the amplitude of these peaks increases with the
number of nodes. So, also the error increases with the number of points. It can be proved
that max,c|_s 5 |En(x)| goes toward +o00 as n goes to oo (this is a difficull result coming
from complex analysis). Consider now the same figures on the right where Chebyshev nodes
are taken into account. We can see that there are no more peaks and when the number of
points increases the interpolation polynomial behaves better. Finally, in figure 5.2 we can see
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the behaviour of the error as a function of the number of nodes. Clearly, for equally spaced
nodes the error increases whereas it decreases for Chebyshev nodes.

2 15
—1(x) —f(x)
15 ——P(x) equally spaced —— P(x) Chebyshev
) o points © points
1
1
> >
0.5
0.5
of
05— e e
-5 -4 -3-2-1 0 1 2 3 4 5 5 -4 -3 -2-1 0 1 2 3 4 5
X X
Figure 5.2: Interpolation polynomial using 15 nodes both equally spaced and Chebyshev.
8 15
—f(x) —f(x)
6 ——P(x) equally spaced — P(x) Chebyshev
o points © points
1
4
> >
2
0.5
09
S B, SSeee
-5 -4 -3 -2-1 0 1 2 3 4 5 5 -4 -3 -2-1 0 1 2 3 4 5
X X

Figure 5.3: Interpolation polynomial using 15 nodes both equally spaced and Chebyshev.
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Figure 5.4: The interpolation error increases with n for equally spaced nodes and decreases for
Chebyshev nodes.

5.3 Newton expression of the interpolating polynomial

We first give the definition of divided differences.
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Definition 5.2 Let x;, i = 0,...,n be n+1 distinct nodes and [ a function known (at lest)
in this nodes. We define

fx1) = f(@o)

flzo, 1] pra— (order 1)
flzo,z1,22] = flar 2] = floo, 1] (order 2)
T2 — X0
flro,x1, 22, 23] = flar, @2 2s] = flao, 21, 2] (order 3)
r3 — X0
flro, 1,22, ..., Bp_1, 0] = f[xl’@"'"x”:g_f:[cxo’xl""’xn_l] (order n)
n — 40

Trivially, we have f[zg,21] = f[z1, zo]; that is, the order of the points does not change the
divided difference of order 1. This is a general rule.

Theorem 5.5 Divided differences do not depend on the order on which the points are taken.

Proof. — Omitted. O
Thus, if we consider three points, we have
f[ﬂfo,l’l,IL'Q] = f[anZQaml] = f[xlaanZQ] = f[iﬂl,l‘g,l’o] = f[iﬂg,l‘o,l‘l] = f[CEQ,SL'l,ﬂ'Jo]

as we can work out explicitly. It is usual to present divided differences in a table. Let’s see
how tables with two, three and four points look. From these, its clear how they behave for
a different number of points.

wo | f(zo)
z1 | f(x1)  flzo, 7]
xo | f(wo)

z1 | f(z1)  flwo, 1]

xo | f(x2) fley,x2]  flwo, x1, 2]

zo | f(wo)

z1 | f(z1)  flwo, 1]

xo | f(z2) flar, 2]  flwo, x1, 2]

w3 | f(zz) flrva, 23] floi,ve, 23] flwo, z1, 72, 23]

Remark 5.1 Looking at previous tables, it is clear that the second table is the first one plus
the last row. The same is true for the third one: it is the second plus the last row. So, if we
already have a given table, it is easy to add a point and construct the new table. Just append
the point at the end, regardless its value with respect to other nodes, and construct the last
line of the new table.

Example 5.3 The divided differences table of points (—1,0), (0,1) and (1,3) is

-1/0
01 1
13 2 1/2

since we have (look at the previous table in the middle)

fa) = fl@o)  1-0

f[x()axl] == €1 — Zo = 0— (_1) =1
_ flw2) = fa) 3-1
f[xlaxQ] == Ty — 1 71_0—2
f[iCo,lL'l,l’Q] _ f[:cla:L'Q] - f[xo,l'l] _ 2-1 _ l

T2 — X0 1-— (—1) 2
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Divided differences allow a different expression to the interpolating polynomial.

Theorem 5.6 (Newton expression) The interpolating polynomial p throughout points

(xi, f(x:)), 1=0,...,n, with distinct nodes, may be written as
p(x) = flzo)+
+  fleo, m1](z — 20) +
+  flzo, z1, z2)(x — xo)(x — 1) +
+
+ flxo,x1, 22, o] —x0) (@ — 1) - (B — Tp_1)

Proof. — Omitted. O

Example 5.4 Let’s find the interpolating polynomial p throughout points (y; = f(x;))

(xoayo) - (713 1)7 (xlayl) - (072)v (x27y2) - (130)7 (mdayd) - (23 1)

The divided differences table is

~1]1
0ol2 1

10 —2 —3/2
2011 1 3/2 1

Reading the numbers in bold, we get the interpolating polynomial

T4 (2= (-1) = 52— (-1)@—0) + 1+ (# — (~1) )&~ 0)(z ~ 1)

- 1+(m+1)—gx(x—i—l)—i-x(x—&-l)(x—l)

p(x)

It is easy to see that interpolation conditions p(x;) =y, 1 =0,...,3 are fulfilled.

Consider the polynomial p interpolating a function f at distinct nodes z;, i =0 ...,n. We
may take p as an alias of f doing operations with p instead of f. For example, we write

b b
fO~pE)  FO~p©) / f() da ~ / p(z) dx

where &, a, b are points within the minimum nodes and the maximum nodes. Previous
relations are not exact in general but, the right hand side, may give a reasonable estimate
of the exact value in the left hand side.

Example 5.5 Consider the polynomial interpolating f(x) = €® at nodes xo = 0, x1 = 0.5,
xo = 1. We have the table

0 1
05|ve 2(ve—-1)
1 e 2(e—ve) 2(e+1-2/e)

and so the interpolating polynomial is
ple)=1+2(Ve-1)z+2(e+1-2e)ax(x—0.5)

Taking, for example, £ = 0.75 we have f(§) = f/(§) = 2.12 and p(§) = 2.13, p'(§) = 2.14;
thus, there is a good agreement.
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5.4 Least square approximation

Given the set of m + 1 points (x;,¥;), ¢ = 0,...,m in the plane, we search for a polynomial
p(x) = ap + a1z + ... + apx™ of degree n < m (indeed, in real problems we have n < m)
such that is minimum .
2
d=>"[px:) —yi]
i=0
So, we minimize the sum of squares of vertical displacements between p(z;) and y;. From

this, we call p the approzimating polynomial in the least square sense. Its coefficients are
solution of the linear system AT Aa = ATy (called normal equations) where

1 T Yo
1T m zf Y1
A= 1 T2 :L'g ) Yy = Y2
1z ... z}, Ym
and a = (ag, ai,...,a, )T. Note that A has m + 1 rows and n + 1 columns. The matrix

AT A is, obviously, symmetric and, it can be proved, positive define. Thus, we can use
Cholesky to solve the system of the normal equations. However, it may happen that A7 A is
very ill conditioned; in such cases, it is better to use other methods to find the polynomial
coefficients such as the QR factorization or the SVD (Singular Value Decomposition).

5.4.1 Regression line

We call regression line the approximating polynomial of degree n = 1. Setting p(z) =
a1z + ag, we get easily

m
L 2o m+1 > a
11 1 1 Lo i=0
ATA — te . 1 T9 =
o X1 T2 ... Im m m )
1 oy i;) ' i;) ‘
m
Z(l) _Z%yi
11 1 ... 1 =
Aly = . -
Y <$0 xr1 T2 ... Im) Y2 m
Ym z;() e
Stating the linear system in the usual way, we have
m m
(m+1) a + Yo a = Yy
i=0 i=0
m m m
Yo a0 + Y w oa = Y wiy
i=0 i=0 i=0

The first equation of the system states that barycenter G = (z¢, yg) of the set of given
points defined as

m m
DT > v
1=0 =0

re = m+1 ve = m—+1

lies on the regression line. To prove, just divide it by m + 1.
Remark 5.2 (Non linear models) Given m+1 points (x;,y;), i =0,...,m, a regression

line may also be seen as a first order model to describe the relationship between abscissas
and ordinate of points. The regression line works well if data are “somehow” around a
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line. Sometimes, however, this linear relationship is obviously wrong as we may check again
plotting the points or by some other, maybe theoretical, aspects.

6 35
-]
30
5 -]
o o 25
% a -]
4 . 20
> 9o > o
3 o ° 15 o
-]
. " 10 o
2f m 5 . . g ®
@ et
1 0
0 2 4 6 8 0 2 4 6 8
X X

Figure 5.5: For data on the left a linear model y = a1x + ao seems good but for data on the right
it seems better to search for another type of model.

We consider just two types of model depending on parameters K and \:
(i) y=Ke ®, (i) y= K z*
To see how to find parameters, consider case (i). Taking logarithms of both sides we get
In(y) = Az + In(K)

which is a linear relation between the new variables Y = In(y) and X = x. In the same way,
for case (ii) we have
In(y) = An(x) + In(K)

which is a linear relation between the new variables Y = In(y) and X = In(z). As an
example, consider a model of type (i) for the points given in the table

x; 1 2 3 4 5 6 7 8 9 10
yi 779 6.07 4.72 3.68 2.87 223 173 135 1.05 0.82

First, we compute the new table

X, = 1 2 3 4 i} 6 7 8 9 10
Y;=In(y;) 2.05 180 1.55 1.30 1.05 0.80 0.55 0.30 0.05 -0.20

Second, using Matlab, we get the regression line Y = —0.25X+2.30. So, it is A = a3 = —0.25
and In(K) = ag = 2.30 or K = €230 = 9.97 ~ 10. The model is y = 10 - ¢~ 9257,

5.5 Exercises

1. Write the Lagrangian polynomials [y and [; associated to the distinct nodes xy and
x1. Plot, in the same window, the graphs of the two polynomial.

2. Compute the three Lagrange polynomial associated to the nodes o = 0, 1 = 1,
9 = 2 and prove that their sum gives 1. Then, give the Lagrange expression for the
interpolation polynomial through the points (zo, 1), (z1,—1), (z2,2).

3. Compute the Newton expression for the interpolation polynomial associated to the
points (0,2), (1,3), (2,1). Then add the point (3, —1) and find the new interpolation
polynomial without recomputing all the difference table. Check that the given answers
are correct!
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. Let f(x) = 2 — /7. Given the set of nodes z; = %, i = 0, 1,2, 3, compute, if possible,

the number d defined as

d=|flro,x1, 22, 3] — flwo, x3] — flrs, 22,21, 70] |

. Find the regression line for the four points of Exercise 3. Show that the barycenter of

these points is on the regression line.
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Chapter 6

Numerical Integration

Numerical integration is also known as numerical quadrature. The problem is to compute,
with a prescribed degree of accuracy, the definite integral

I= /abf(:c)dx

where f is a continuous function, at lest in the interval [a, b], with ¢ < b. The main idea,
is to replace, in the interval [a, b], the function f with an interpolation polynomial p, (z) of
degree n and to compute the integral of p,(x) as an approximation of I:

I= /abf(:c)dx ~ /abpn(:v)dx =1,

Consider a set of n+1 distinct points in [a, b], called nodes. Using the Lagrange expression
for the interpolation polynomial, we find a first example of quadrature formula

b n n b n
I, = / ( > f@li(x) ) dv = Zf(xi)/ Li(z)de =y AP f(w)
a \ i=0 i=0 a i=0
where we have defined .
Ag") = / li(z)dz, i=0,...,n
More generally, we give the definition

Definition 6.1 Consider the computation of the integral

j /abw(x)f(a:)dx

where w(x), x € [a,b] is a given positive function. Consider a set of distinct nodes x;,
i=0,...,n1n [a,b]. A quadrature formula is any sum of the kind

I, = Zaif(fﬂz‘) (6.1)
i=0
using to approximate the integral I. Numbers «; are called weights and x; nodes of the

quadrature formula.

Note that in the quadrature formula does not appear the function w(zx). Clearly, the purpose
of any quadrature formula is to give good (possible exact) approximations of I. A way to
quantify the goodness of a quadrature formula is throughout the following definition.

Definition 6.2 (Degree of precision) A quadrature formula has degree of precision s €

N if

77
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e is correct for each polynomial of degree n < s;

o there is at least one polynomial of degree n = s+ 1 for which the formula is not correct
(that is, I, # I).

It is possible to prove the following

Theorem 6.1 The quadrature formula (6.1) has at most degree of precision s = 2n + 1
(obtained for the Gaussian quadrature formulas).

Let’s see how a way, not the best one indeed, to compute the coefficients and the nodes in
order to have the maximum degree of precision.

Example 6.1 Consider the quadrature formula

/0 Vaf(z)de ~ Zaif(xi)
i=0

Since n = 1, the mazimum degree of precision is s = 2-14+1= 3. So, we can choose weights
and nodes in order to have a formula which gives the correct result for each polynomial of
degree at most 3. Since a quadrature formula is exact for each polynomial of degree at most
n if and only if it is exact for ¥, i = 0,...,n, we impose the conditions

1
/ﬁ-ldw = apt+o
0
1
/\/§~:cd:c = aoro+ o111
0
1
/\/§~x2da: = aord +aya?
0
1
/\/E-x3dx = i +ayxd
0

The solution of this non linear system gives

_ 5 270 1 /70
To = g 63 Q0 = 3 7 T50
_ 5, 270 _ 1, /70
T =35+ 43 a1 =3+ 950

The quadrature formula is then

! 1 V70 5 270 1 V70 5 2V70
dr~ |- — — - — -+ — -+ —
/0 Vaf(@)de <3 w0 ) \9 e ) T30 ) (9" &
which gives the correct result for each f(x) = pn(z), n < 3.

6.1 Newton Cotes formulas (closed form)

We have these formulas if the n + 1 distinct nodes are equally spaced in [a, b] as

b—a

ri=a+1th, i=0,...,n withh=

We can see an example of 5 nodes (and so n = 4) in the following figure. In this case,
h=(b—a)/4
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a b
———e —— & —— & — ¢ & —————————»
X, X, X, X, X, X

Using the Lagrange expression for the interpolating polynomial, it is possible rewrite the
numbers A} as

o
A? =nhC™  where C™ = / HT 07# )ds

r= 07“7&1

where CZ-(") are called the Cotes numbers. The idea of the proof is just change the integration
variable as = xg + hs in the integral of ;(x).

Theorem 6.2 The Cotes numbers fulfill the relation

n
YoM =1
=0

Proof. Just take f(z) =1, « € [a,b]. In this case, we have

n

ba/bldx/bzn: dx—Z/ dx—ZnhCW (b—a)d c
a @ i=0

1=0 1=0

since nh = b — a. The proof is complete. O

Note that the Cotes numbers do not depend on the function nor on the integration interval.
So, they may be computed just once.

Example 6.2 (Trapezoidal rule) Consider the case n =1 and so xg = a, xt1 = b, h =

b—a. We have
g1 52 1
o _ /5 ds — | — 2= _ -
0 o 017 3 77,732

1 271
— 1
c® = /S Ods{s_} _ -
0 1-0 2 |, 2

and so the corresponding quadrature formula is

1

h= 3 AL @) = 0= )| 5 flan) + 5 o) |

=0

So I is the area of the trapezoid in the next figure.

f(b)

- il

0 b X
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Example 6.3 (Cavallieri-Simpson rule) Consider the case n = 2 and so xg = a, 1 =
(a+0)/2, xo=>band h = (b—a)/2. We have

@ 1 2 (S— 1)(8—2) _ 1
o 2 /0 (0—-1)(0—2) ds 6
2) 1 (2 (s=0)(s—2) _ 4
G o 5/0 (1—0)(1—2)d$76
(2) 1 (2 (S—O)(s— 1) _ 1
G2 2 /0 2-0)(2-1) ds 6

and so we have the Cavalieri-Simpson quadrature formula

2

b— 1 4 1
12:;A§2)f(:ci): 2a [gf(:co)+§f(:c1)+§f($2)

The previous formulas, as any quadrature formula, are not correct in the general case, i.e.
we have I = I,, + F, where E,, is the error. Just as an example, we have

! 1,1 (1-0)[0%+17%
I = Sdr=-4£-=3_"" - 1_7
/Og”laj 173 2 !

where we have used the trapezoidal formula. We have the following theorems.
Theorem 6.3 Let f € C?( [a,b] ). The error of the Trapezoidal formula is

(b= a)*

By = —
! 12

f(©)
where £ is a suitable point in [a,b].

Theorem 6.4 Let f € C*( [a,b] ). The error of the Cavalieri-Simpson formula is

(b—a)
2830

Ey = — FO©

where £ is a suitable point in [a,b].

From these theorems we see that trapezoidal formula has degree of precision s = 1 whereas
Cavalieri-Simpson has s = 3 (with just one more node).

6.2 Composite Newton-Cotes formulas

It is not a good idea to have an interpolation polynomial of high degree due to its oscillatory
behaviour at the endpoints. It is better to divide the integration interval [a,b] into m
intervals and to apply a Newton-Cotes formula (with a low degree interpolation polynomial)
to each of these intervals. Proceeding in this way we obtain the composite Newton-Cotes
formulas.

6.2.1 Composite trapezoidal formula

The idea is shown in the following figure where m = 4 since [a, b] is divided into 4 intervals.
At each interval we apply the trapezoidal rule.
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\J

Q
(on

In the general case, each interval has length h = (b—a)/m and so we get, using the additivity
of the integral,

b m—1 gy, - -
/f(fv)dx = Z/ fz)dz ~ hl f(zk) + f(@k41) |

since each internal point, i.e, for k =1 to kK = m — 1, is counted twice. The global error is
the sum of the errors we have in each interval; denoting as £y k= 0,...,m — 1 the error
in the interval Ty, = [k, Tr11] , we get

m—1 m-1 m—1 ¢y
Ba = Y Bu=Y b= U M &),
k=0

12 12ms3 m
k=0

(%) (b_ a)sf//(g)

- 12m?2

where ¢ is some suitable point inside [a,b]. To state equality (*) we need the continuity of
f"(x) inside [a, b]; then, we apply the all values theorem since we have

m—1 1
. " < k=0 f (gk) < "
erIl[}lr,lb] f (x) o m o ;gﬁﬁ] f (Z)

Remark 6.1 Assuming that f”(x) does not change to much in [a,b], we have the following
behaviour of the error.

(b-a)®

Eam _ _12@mp® " (&2m) — f"(€om) ~ l
B GG fr(Gn) A TEm) 4

Thus, doubling the number of points, the error Ea,, reduces to about E,,/4.

6.2.2 Composite Cavalieri-Simpson formula

Proceeding in the same way, we find the composite Cavalieri-Simpson formula. In this case,
however, each interval has also a point in the middle. The comparison between the two rules
is given in the figure (in both cases we have m = 4).
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- & & & e e —— » Trapezoidal

— e 9 e 9o o o o 9o o » Cavalieri-Simpson
X0 X1 X2 X3 X4 X5 X6 X7 X8 X

Thus, the intervals are now I, = [zag, Tok12], K = 0,1...,m —1. So, recalling the Cavalieri-
Simpson rule, we obtain

/bf(:v)dwN L e b e Y )ty Y f@n) + 5 flaa)
. “om |37V T3 O k)T g JAam
171.et5gzﬁal 7,7Ltoe1"n.al
In the same way the error is
(b—a)® .
E,=—
" 2880m* 7

since each one of the m intervals has length (b — a)/m; again, £ is a suitable point in [a, b].
As in the previous remark, if f(* (x) does not change much in [a, b], we have

B 1

En 16
6.3 Richardson extrapolation

Consider the composite trapezoidal rule. Assuming that the second derivative does not
change much in the integration interval, we know that Es,,/E,, ~ 1/4. Defining Q,, and
@2, approximations with m and 2m intervals, we can write

Qm = I + 4E2m
QQm = I + E2m

Solving for I we get the Richardson extrapolation formula (for the trapezoidal)

— 4Q2m - Qm
3

1

In the same way but using composite Cavalieri-Simpson formula, for which it is Es,,/E,, ~
1/16, we find the Richardson extrapolation formula (for Cavalieri-Simpson)

_ 16Qam — Qm
15

I

6.3.1 Romberg method

Setting m = 2P, p = 0,1,2,... it is possible to obtain a table (a subinterval is of the kind
[Tk, Tht1])
p number of subintervals 0 1 2 3 4

0 1 Ao
1 2 A B

2 4 As By (s

3 8 As Bs (O3 Dy

4 16 A4 By Cy D, E4
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where A, are obtained using the composite trapezoidal formula and

1A, — A,
By = —pjg—7 - pr21
16B, — B,_

G = —p—7 P22
64C, — C,_

DP = 4p3_1p 17 ng

and so on. It is possible to prove that the best approximation of the integral is on the right
lower side of the table.

Exercise 6.1 Consider the definite integral

2
I:/ z In(z) dz.
1

1. Compute by hands the exact value of the integral I.

2. Using Cavalieri-Simpson formula, compute the approzimation I, of the integral; give
the mazimum possible error of the approzimation and the real error E1 = |I — I4|.

3. Using the composite Cavalieri-Simpson with m = 2, compute the approximation Iy of
the integral; give the maximum possible error of the approximation and the real error
Ey=|I—I.

4. Using the Richardson extrapolation formula, find the best possible approzimation of the
integral and the corresponding error Er = |I — IRg]|.

5. Find and justify the ratios
Emaz By

P} pp———
Emaz,2 Es

6. Find the best possible approximation of the integral using Romberg and m = 4 subdivi-
sion of the interval.

7. Find an estimation of the number m of intervals needed to have for sure an absolute
value of the error less then 1076,

Answer. Using the integration by parts, we find

2 2 2 2 2 2 2 212
1 2 1 1
/ zIn(z)de = [I— ~1n(:v)] - L Cde=2 ‘In(2) — — -In(1) — = [I—]
) 2 L2 2 2 22,
1 o[22 12 3
since In(1) = 0. The Cavalieri-Simpson gives
h b—a 2-1 1
L= [flwo) +4f (@) + fe2)], h=——=——=3

with nodes x, = o+ kh and fi, = f(xx) = x - In(xg), k=0,1,2 given by

k0 1 2
xp 1 3 2
f 0 3-In(3) 2-In(2)
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since g = a, x2 =b e x1 = (a+b)/2. Thus, we obtain

1/2 3 3
I = % : [o +4-3-In <§) +2. 111(2)] ~ 0.6365141683.

The mazimum (absolute value of the) error is

hd (1/2)5 2
E = —. @) = = ~69-107*
maz,1 = gg - max [FEO] = =55 33

since fW(x) = 2/23 is a decreasing function in [1,2] and so has its mazimum for & = 1.
The real error is

By = |I — 1| ~ |0.6362943611 — 0.6365141683| ~ 2.2 - 10~

Now, take into account the composite Cavalieri-Simpson formula with m = 2. The
distance between consecutive nodes is

p_Llb-a_2-1 1
2 m 2.2 4
Setting xg = a, nodes x, = xo + k - h and values f(xy), k=0,---,2m are
k0 1 2 3 4
vl 5 %5 3 %3 7 £7 2
fo 0 3-m(3) 5:m(3) I-W(3) 2-In@2)

The following figure give also a picture of the nodes.

Q
| -
x
x
x
x
(o
-+
x

Thus, we get

Bo= gUo+d(i+f)+ 2+ fi

- oo fon(3)Fu) v ()

0.6363098298.

Q

The maximum error we can have s

(b—a)® (4) 2-1)° 2 -5
B . Lo 2 4310
maz2 = geen it M FUOl = o551

whereas the real error we have is
Ey = |I — 15| = |0.6362943611 — 0.6363098298| ~ 1.5 - 1075,

Since Iy and Iy are computed using the composite Cavalieri-Simpson formula with m = 1
and m = 2 we can find a better approximation using Richardson extrapolation:

16-Ih —1 16 - 0. 298 — 0. 141
_ 61 1 6 - 0.6363098298 — 0.6365 683%0.6362962072

I
R 15 15

with an error

Eg = |I — Ig| = |0.6362943611 — 0.6362962072| ~ 1.8 - 10,
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The ratios between maximum errors and real errors are

Emaz1 _ 6.9-107* By  22-107*

= ~ 16. —-— =—
6.9, E, 15-10-5

= ~ 14.7
EmaI,Q 43 ° 10_5

as expected, since the ratio between mazimum error is exactly 16 whereas the other ratio
depends also on the ratio of the derivative in two distinct points. Finally, Romberg method
gives

m
1 Ao
2 A1 Bl

4 Ay By (9

where By = I} = 0.6365141683 and By = I, = 0.6363098298. So the best approximation for

the integral is
16By — B
Irc =C2 = % =Ir

For the last question, the mazimum absolute value of the error using m intervals is

(b—a)® (4)
Ema:v m = Soon 4

So, requiring that E,,qqe.m < € with € = 10=% we find

So—a)yp W J 215 2
Gl
m= \/ ass0¢ e MY OI= 1\ g5 1075 " 13

Thus, we need m = 6.



86

CHAPTER 6. NUMERICAL INTEGRATION



Chapter 7

Simulations

The present chapter present some exercises which may be useful for the preparation of the
exam.

7.1 Simulation 1

Multiple choice questions
Read carefully the text of each question and mark the box with the best answer.

1. How many floating point numbers has F(2,3, —1,1)?

021 024 0O2 0O27

2. The machine precision for F(10,2, —3,4) is

g o001 0Oo001 0OO005 0OO1

3. The maximum number in F(10,2,—3,4) is

go99 099 0990 0O 9900

4. Let z = 0.5, y = 1 and z = 10 be floating point numbers of F(10, 1, —1,2). Which is
the result of (z P y) ® 27

O 10 O 15 O 20 O overflow

5. The problem of finding the solution of a non singular linear system Ax = b is always
a well conditioned problem.

O True O False

6. The absolute value of the error in the bisection method is always non increasing, i.e.,
lex+1] < |ex| for each k& >0

O True O False

7. How many fixed points has the function f(z) = 23?

oo 0Oo1 0O2 O3

8. The fixed point iterations zy41 = 2% with 2o = 0.5 goes toward the fixed point «
equals to
0o 0 0.5 01 0 400

87
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9.

10.

11.

12.

13.

14.

15.

16.
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Consider the method zp11 = ¢(xy) with fixed point « = 1. Assume that z; goes
toward a and ¢'(a) = 0. Then, the plot of log;y(|ex|), choosing from the figure below,
may be

O O 0O O-a)or(c)

The Newton method has the absolute value of the error |e5| = 107 for the computation
of the root of e + x = 0. Assuming a unitary asymptotic error constant, we expect
les| equals to about

010°°% 010® 01w g

The Newton method for the solution ¢ of equation f(x) = 0 gives |zg — 25| = 1073
and |z7 — 76| = 2- 1075, The estimation of the absolute value of the error |e7| is

01072 O4-1072 O g8-10712

The number of iterations required to the Newton method to compute the root of
3z — 2 = 0 with an error not greater then 107% and starting at zo = 2.0 are

o1 014 03 0Oe68

The equation f(x) = 0 has a unique root & in (0,1). Assume that f’(z) > 0 and
f"(z) < 0in [0,1]. Starting from zy = 0, the sequence z produced by the Newton
method fulfills

O T < T4l O Tp > Thi1 O xp > ¢

The spectral radius of the matrix

2 2 0
0 -3 1
0 0 —4

is
O -4 O2 0O4 0O 24

The number of arithmetic operations required to the backward substitution algorithm
to solve an upper triangular linear system is about

On On? On® O =—
The matrix U of the LU factorization of the matrix A
2 1
= (1)

is
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17.

18.

19.

20.

21.

22.

23.
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Each square matrix A may be written as A = L - U where L is lower triangular with
unitary elements on the main diagonal and U is upper triangular

O True O False

The matrix A has an LU factorization with the determinant of U equal to |U| = —2.
The determinant of A3 is

o -8 O —-1/8 O3
[0 we cannot compute since we not have A

Consider the linear system Ax = b where

2 1 3
=(12) »=(5)
O ||Allp =10 O GS converges
O Aissingular O p(4) <1
The condition number K5(A) of the matrix A of the previous item is
O1 O 2 O3 O 4

The following Matlab code

1. v
A

2:3:10;
[v; v+1];

O iswronginline2 O A= (

2 5 8
sa-(22%) oa-(

Consider the following Matlab code

NN w N
Ut Ot (=233

O oo © o
N——

1. v = linspace(2,10,5);
w = length( size( v’ * v ) );

The variable w is
O2 O3 O[22 D[ﬂ

Consider the following Matlab code

O W N -
197]
I

At the end of the loop, the variable S is equal to

oo 0O6 0O26 0O 52
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24. Which is B at the end of the Matlab code

1. A
B

1]

[123; 45 6];
AC 1, 1:2).72;

> (
5 (2

) o (=)
) o (s)

NG
SN

ot W

25. Which is the value of n at the end of the Matlab code

n = 0;
while( n<=3 )
n=n+ 2;
if n >= 4
n = n-1;
end
end

~NOoO O W

Open questions
Write clearly all the answers in the exam’s booklet.

. (10 points) Describe the bisection method. Then, apply it to the function f(x) = 2—1
with starting interval [ag, bo] = [0, 1.9]. Compute zo, 1 and the corresponding errors
and justify the obtained result.

. (10 points) Consider the Newton method for the approximation of the root £ =1 of
the function f(z) = 22 — 1. Assume the starting point to be zo = 2.

(a) Compute the first two iterations of the Newton method and the corresponding
absolute value of the errors.

(b) Sketch a qualitative graph of log;, (| ex| ) as a function of the iteration number
k. Justify your answer.

(¢) What happens if we choose as new starting point o = 07 Justify your answer.
(d) Write a fixed point method of order p = 2 for the computation of the root &.
Justify your answer.

. (20 points) Consider the upper triangular linear system Ux = b.

(a) Show, with all the mathematical details, the backward substitution method.
(b) Show, with all details, the computational cost of the method.

(c) Write the Matlab code to solve such a linear system using the for loop.

. (20 points) Consider the linear system Ax = b where

3 1 1 5
A= 1 3 1 b= 5
1 1 3 5
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(a) (10 points) Prove that the matrix A is positive definite, compute the Cholesky
factorization and solve the linear system. Check out that the obtained solution
is correct.

(b) (2 points) Prove that the Jacobi method converges to the solution starting from
xo=[0 0 0]T.

(¢) (8 points) Compute the first two iterations of the Gauss-Seidel method starting
from xo = [0 0 0]T.

7.2 Simulation 2

Multiple choice questions
Read carefully the text of each question and mark the box with the best answer.

1. The maximum floating point number x,,,, and the machine precision eps of the float-
ing point system F(10,2,—1,1) are

Tmaz = 9.9 eps = 0.05
Tomazr = 9.0 eps = 0.10
Tmaz = 9.9 eps = 0.05
Tmaz = 9.0 eps = 0.10

OxXOOo

Answer. The floating point system has § = 10, t = 2, L = —1, U = 1. Thus, the
maximum number and the machine precision are

Tmaw = BY - (1-p7")=10"(1-1072) =99
B ﬂl_t B 101—2 B
eps = 5 =5 = 0.05

2. Consider the fixed point iterations given by zx4+1 = zx/2 + 1. Let a be the unique
fixed point. Starting at xo = 1, the absolute value of the error e = o — x5 of the
second iteration xy is

X 025 0050 010 0O1b

Answer. The iteration function is ¢(z) = § + 1; its fixed points are solutions of
x = ¢(x). We get © = 2 and so ¢ has the unique fixed point @ = 2. Starting from
ro = 1, the first two iterations are

X0 1 3
= =—+4+1l==+1=-.
T B(z0) 5 T 5+ 5
3/2 7
T2 = ¢(x1):—1+1:%+1:1
So, we have
7
2l =la—m|=]2-7]=1

3. The order of convergence of the fixed point method xp1 = 2—2xy +:c% when g = 0.5
is
01 X2 O3 0O¢4

Answer. The iteration function is ¢(z) = 2 — 22 + 2%. The corresponding fixed points
are solutions of z = ¢(x). We have

r=¢(r) & x=2-22+2>° & 22-3x+2=0

which has two solutions z; = 1 and zo = 2. Thus, the function ¢ has two fixed points:
a1 = 1 and ay = 2. So, first of all, we have to find toward which one of the two go the
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fixed point iterations when we start at o = 0.5. To this aim, it is useful the geometric
interpretation.

0.5

-05 70 05 1 15 2 25 3

From the figure, since zyp = 0.5. we see that the iterations go toward a = 1. So, to
find the order we have to look derivatives of ¢ in a3 = 1. We have

dx)=2c-2 = ¢'(1)=0
¢ (x) =2 = ¢"(1)#0
Thus, the order of the method is p = 2 since the first non zero derivative (evaluated
in a; = 1) of ¢ has order p = 2.
4. The order of convergence of the Newton method for the solution of the non linear
equation e* =2 — x is

O 0.5 01 X 2 O more then 2

Answer. The equation has only one root since graphs y = ¢* and y = 2 — z intersects
just once. Moreover, the root is positive.

Setting f(x) = € +x — 2, we have f'(z) = e + 1 and f”(x) = e®. Thus, we have

o f'(€) =ef+1>0. So, we have f/(£) # 0: this means that the root is simple (or,

it has multiplicity 1) and so the order p of the method satisfies p > 2;

o (&) > 0. So, we have f”(€) # 0: as a consequence, the order ix exactly p = 2.

So, the Newton method for approximating the root &
T 1

_f(xk):xk_e + :xk_l_e—xk

f/(xk:) eTk
has order of convergence p = 2 providing the starting point z( is sufficiently near the

root £&. We can see this behavior taking x¢ = 1.0; we have, for the errors

k| 0 1 2 3 4

Tk+1 = Tk

lex| | 5.5-1071 9.5-1072 28-1073 2.3-107¢ 1.6-10"!2
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5. The order of convergence of the Newton method is always less or equal to 2
O True X False

Answer. It’s false. For example, if f(x) = 0 has the root £ with f'(£) # 0 (and so
p >2) and f”(¢) = 0 the order is p > 3. Consider f(z) = x® + 2 which has the unique
root £ = 0. Starting from xy = 1, the behavior of the errors are

ko 1 2 3 4 5

le,] | 1.0 0.5 0.14 5.5-107% 3.3-107 7.7-107%°

6. The Hilbert matrices are an example of well conditioned matrices
O True X False

Answer. It’s false. The Hilbert matrices, as well as the Vandermonde matrices, are
examples of ill conditioned matrices. For example, the Hilbert matrix Hs of order n = 5
has a condition number K5(Hs) ~ 5 - 10°. An example of well conditioned matrix is
the identity matrix which has a condition number equal to 1, the less possible value.

10 0
A‘( 0 0.01)

The condition number K5(A) of the matrix A is

7. Let

o001 0O 10 0O 100 X 1000

Answer. The matrix A is a diagonal matrix with positive entries in the main diagonal.
So, is a positive definite matrix, since all the eigenvalues are positive. For a positive
definite matrix, we know that Ks(A) = Apaz/Amin. In our case, we have A\p,q, = 10
and Ap,in = 0.01. So, K2(A) = 10/0.01 = 1000.

8. The LU factorization of the matrix A gives |U| = 4. The determinant of A= is

1

0 16 X —
16

g 04

1
4

Answer. We have, using the Binet formula and the relation | A= | =1/| A |,

2
|AHHAMH|A1F< 1) Lo 1 1.1

[AT) “TAP T JUR~ £ 16
since, from the LU factorization of A = LU, we have

e [ isalower triangular matrix with ones on the main diagonal. So, its determinant,
which is the product of all the elements in the main diagonal, is | L | = 1.

e U is an upper triangular matrix. The determinant of U is again the product of
the elements in the main diagonal but now this values are not known a priori
(they depends on the matrix A)

So, again, from Binet, we have

|A[=|LU[=|L]-|U|=1-]U|=]|U]|

9. The L matrix of the LU-factorization of the matrix A given by

A=

W DN =
o = O

1
0
4
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10.

11.
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is

1 00 1 0 0

X 2 10 O -2 1 0

3 2 1 -3 -2 1

1 0 0 1 00

(I -2 1 0 (I 2 10

3 -2 1 -3 2 1

Answer. Using the Gauss algorithm we find
(=2)

1 0 1 (—3) 1 0 1 (—2) 1 0 1
A=12 1 0 — 0 1 -2 — 0 1 -2
3 2 4 0 2 1 00 5

So, recalling that L is a lower triangular matrix and has as entries the multiplicators
(the elements above the arrows) changed in sign, and ones in the main diagonal, we
get

1 00
L= 2 1 0
3 2 1
Given the splitting A = D — E — F where F is strictly lower triangular, F is strictly
upper triangular and D is diagonal, the iteration matrix for the Jacobi method is
X DYE+F) O DE+F)

O -DYE+F) O —DE+F)

Answer. From the theory, providing that the entries of the diagonal of D are all non
singular, we know that the iteration matrix of the Jacobi method is By = D~ (E+F).
Indeed, just write

Ax=b & D-E-F)x=b & Dx=(E+F)x+b <
Providing that D is invertible, we get
x=DYE+F)x+D 'b andsoweget xp1=D'(E+F)x;+D'b

where B; = D~Y(E + F) is the iteration matrix. Exactly in the same way we can find
the iteration matrix of the Gauss-Seidel method: just start from (D — E)x = Fx +b.

Starting from xg = (0, 0)7, the norm of the residual r; = b — Ax; after the first
Gauss-Seidel iteration for the linear system Ax = b given by

() ()

T
1
o Y30 w1 [—g,o}

is

6 6
Answer. Setting x = [z1 72T, the linear system is
3712
221 + 20 =3 1=
—x1 + 313 = 2 = 2+
_ T
To = Tl

Denoting with a superscript the index of the iteration, the Gauss-Seidel iterations are

(k+1) _ 3= z”
Ty = —F
2
k1) 24 x(1k+1)
Ty = —F—

3
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12.

13.

14.

15.

So, starting from xo = [0 0]7 (that is, 2\”) = 0 and z{* = 0) we get for x; = [z!" 2{")T
Lo 3-w) 303
! 2 2 2

Lo _ 2+a) 2432 7
2 3 3 6

The corresponding residual vector ry is

e NONERICONBECORRD

Finally, the infinity norm of the residual r; is (we obtain the same result using other

norms)
7 7
Ior oo =max{| =3 |, 101} =7,

The Lagrange polynomials depends only on the nodes of the points (z;,v;), i =0,...,n

X True O False

Answer. It is true: if x;, i = 0,...,n are the nodes, then the Lagrange polynomials
are
n
[ (z—ak)
R TP S
[T (i —ax)
k=0,k+#i
The sum of all the Lagrange polynomials depends on the values of the function f in
the interpolating points
O True X False

Answer. It is false: from the theory, it is known that the sum of all the Lagrange
polynomials is (the constant function) 1. To prove, just take f(x) = 1, a polynomial
of degree zero. Thus,

n

flo)=1=>" fle)li(x) =

=0 =0 =0

(7=
—_
5
S—
Il
:—\
)
N~—

If we want to approximate a function in an interval [a, b] using equally spaced nodes,
a higher degree interpolating polynomial always works better then a lower degree one

O True X False

Answer. Tt is false: just remember the Runge example where the error (at the endpoints
of the interval) increases with the degree of the interpolating polynomial.

The regression line for the set of points

Ii|—1
yi| O

01 2

2 3 3

is
Xy=xz+15 Oy=15z+1
Oy=x+1 y=15x+1.5

Answer. Coefficients ag and a; of the regression line y = ag + a1x are solution of the
linear system

m+1 YTk < a0 > Do Yk

" _
ZZL:O Lk ZZL:O x% '

ZZ;O TrYk
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where m + 1 is the number of points. In this case m + 1 = 4 and so, using the data in
the table, we have

4 2

ag . 8 4ag + 2a1 = 8
a B < 2a09 +6a; =9
2 6 ! 9 0

We find ap = 3/2 and a; = 1. We can see the regression line in the next figure.

o data
——regression line

-2 -1 0 1 2 3

16. The quadrature formula

/ Vot Zazfxz

has the maximum degree of precision. Then the number

d|/ (Vz+zyr) d:cfZaixz

is equal to
oo 0O1/3 X 2/3 0O1

Answer. The maximum degree of precisionof the quadrature formulais s = 2-3+1 = 7.
Since the integral in the quadrature formula is of the type

/ (o) o)

with w(z) = /x, the fist step to do is to rewrite the integral inside the expression of
d in this way. We may note that

Vrtayr=vr(l+z) = fl@)=1+z

So, f is a polynomial of degree n = 1 < 7 = s. Thus, the quadrature formula gives
the exact result for this function f, i.e.,

1 3
/0 (\/5+x\/§)d:c:2ai(1+ x;)
i=0

Looking again to d, we have

‘/ VI +z/x) dx—Zaxl
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17.

18.

19.

1 3
= ‘/O(\/EJr:c\/E)da:Zai(leril)
i=0

‘{/()1(\/5+x\/5)dx—z3: (142;) } Zal

=0

Let’s compute the sum of the weights. Taking in the quadrature formula f(z) =1 (a
polynomial of degree n = 0 < s and so the formula is correct) we have

2 z3/? ! ! 3
3 [ 3/2 L /O Ve de ;O‘
So, we have d = 2/3.

Given a positive n, the sum of all Cotes numbers Ci(”), 1=0,...,nis

X1 On O+vn O

|3

Answer. From the theory, we know that the sum of all the Cotes numbers is 1. Recall
that we have given the following definition of Cotes numbers

(n) /Hr Or;éz )dS i—=0 n
) ) PRI

’l“ Or#z -r

The error for the computation of

100 )
/ (2* 4132542 ) dz
0

using the Cavalieri-Simpson formula is
010?® 010° 010" Ko

Answer. The error F in the Cavalieri-Simpson is related to f®*)(x) throughout the

equation
(b—a)®

- @
=50 ©

where, in our case, a = 0, b = 100, £ € [0, 100] and f(z) = 3 + 13254x. Since
fW(z) =0 for all z, it is £ (£) = 0 and so the error is zero.

The second derivative of f does not change much in the integration interval. Then,
using the composite trapezoidal rule we expect that the ratio of the errors Ea,,/FEy, is

04 0O1/4 X nearl/4

Answer. From the theory, we know that

_ (b—a)® f”( ) 7
Eym 7 12@m)? Eom _ fEem) 1

Epn Oy 4 fr(En) 4

12m3

since, if f”(x) does not change much in the integration interval, it is f”(&m) = f”(E2m)-

20. The Cavalieri-Simpson approximation of the integral

/Olﬂda?
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21.

22.

23.
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is

g V2L 52 o1 gy
6 3 6
Answer. We have
a+b 1

ro=a=0, x = 5 =5 ro=b=1
and so the Cavalieri-Simpson rule gives for the integral I

b—a |1

Ies = —; {Sf(xo)ﬁL f(ﬂ?1+ flz2)
1-0 1|1 4 2 1 2v2+1
__\/6+\/7+\/_£ 1_2v2+1
2 3 3 3 6 6

So, we have Icg = 0.638 which may be compared with the correct value I = 2/3 =
0.667.

The divided difference f|xo, 21, 23] of the following table

1’0—71 2
x1:O 3
xg_l 6

is
X 1 03 O -1 O 36

Answer. Completing the table, we find

o = —1|2 g = —1|2
x1=0|3 flzxo,x1] or ;=03 1
Tro = 1|16 f[.’l?l,IQ] f[ato,xl,m] Tro = 1({6 3 1

since we have

e R ) Rl
flzi, 2] = f(xiziifxl):?:gzg
 flevao] = flwo, ] . 3-1
f[x()axlaxQ] = P =1 _(_1) =1

Let p(x) be the Newton expression of the interpolating polynomial for the points
(i, ¥i), 1 = 0,...,n. If we add a new point (,11, Ynt+1) With ¢ < z,41 < 1 We
have to recompute all the divided difference table

O True X False

Answer. Tt is false: the difference divided does not depends on the order of points.
So, we can add the point (2,11, Yn+1) at the previous table (the one we have already
constructed with points (x;, y;), ¢ = 0,...,n) and compute just the last row of the
new table.

The composite trapezoidal formula gives the results of the following table

Ay A A,
1 0.875 0.844

The best approximation for the integral is then

O 0.844 X 0833 0O 0906 0O 0.875
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Answer. We can apply the Romberg method to obtain

m
1 Ao
2 A1 Bl

4 Ay By (5

where
4A; — Ay  4-0.875—1
B, — - = 0.833
! 3 3
4Ay — Ay 4-0.844 — 0.875
By = 2 41 = (0.8340.833
3 3
16By — By 16-0.834 — 0.833
= = = 0.834
s 15 15 0-83

So, the best approximation for the integral is 0.834.

24. Which is the value of n at the end of the Matlab code

toll = 1E2;

n = 5b;

while( 10°n > toll & n >= 2 )
n=n- 2;

end

O W N

oo X 1 0 2 a3

25. Consider the following Matlab code

1. S = b;

2. for k=1:3

3. if k>=3

4. S = Sxk;
5. else

6. S = S-k;
7. end

5. end

At the end of the loop, the variable S is equal to
01 04 X6 09
26. After the execution of the following Matlab code, the variable r is equal to

1. A = diag( diag( [1 2; 3 4] ) );
r = eig( A );

X4 op2gt o4 0O1

27. After the execution of the following Matlab code, the variable v is equal to

99
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28.

29.

30.
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1. v = [ sum( 3:4:14 ) length( 1:4 ) 1;
vV = V."2;

X [44116] O 7056 O 4 O [214]

Given the Matlab code

1. v

1]

[123;456; 67 81;
v(2,[2 3]1);

<
1]

o X [56 DO[456 0OB8E O2s57

To plot a function with the command plot(x,y), the vector x and y must have the

same size
X  True

O False
O It depends on the function

The command clear all makes the command Window clear but does not clear the
variables in the Workspace

O True X False

Open questions
Write clearly all the answers in the exam’s booklet.

. Prove that the condition number K(A) fulfills K(A) > 1 for each matrix A. Give an

example of well conditioned matrix and one of an ill conditioned matrix.

Answer. From the theory, we have
L= L]l = [|A- A7 < JJA]l- A7} = K (A).

where [, is the identity matrix of order n. The Hilbert matrices are ill conditioned
whereas the identity matrix is well conditioned.

. Consider the iterative method xj4+1 = Bxj + f to solve the linear system Ax = b.

Prove the relationship ey, = Bey_1, k = 1,2, ... where e, = x — x;; is the error at the
k-th step. Give necessary and sufficient conditions on the iteration matrix B in order
to have a convergent sequence for each starting point xo. Write the iteration matrix
for the Jacobi method.

Answer. The iterative method has solution x given by x = Bx+f Defining e, = x—x,
k=0,1,..., we get

x—x,=Bx+f—(Bxy+f) < e,=DBeyp
From this relation, iterating we get e, = B¥ey and so

li =0V & lim B"=0 < pB)<l.

W =0V @ T AB) <

Thus, the iteration method converges for all xq if and only if p(B) < 1. For the Jacobi
method we use the splitting of A given by A = D — F — F where —F is the strictly
lower triangular part of A, —F is strictly upper triangular part of A and D is the
diagonal of A. Thus, we have

Ax=b ¢ (D-E-F)x=b & Dx=(E+F)x+b & x=D '(E+F)x+D 'b
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where the latter step requires a non singular D (and so the main diagonal of A has all
elements different from zero). From the latter equation, we build the Jacobi iterative
method setting

x*t) = B;x®) 4 f  where B;=D"YE+F), f=D"'b

3. Given the set of points ( z;, y; ), ¢ =0, ...,3 in the following table

Ii|—
yi | 1

2 0 1 2

1 2 3
write the Newton expression of the interpolation polynomial. Compute the minimum
value of the function S(m, q)

S(m,q) = Z[yi - mT; — Q]2
k=0

and give the values of m and ¢ for which this minimum is reached.

Answer. We need the table of divided differences first.
o = -2 f(iﬂo) =1

r1=0 f(z1))=1 flro,21]=0
T = 1 f(l‘g) =2 f[.’l?l,IQ] =1 f[l‘o,xl,xg] = 1/3
x3=2 f(x3)=3 fleg,x3]=1 flei, 22,23 =0 flzo, x1, x2, 23] = —1/12
So, we have
P(x) = f(xo)+ flzo, z1](x — x0) + flzo, 21, 22](x — 20)(x — 21)

+  flzo, w1, w2, w3](x — w0) (* — 21) (% — 72)

_ 1+%(m+2)x71—12(x+2)x(x71)

The minimum value of the sum S(m,q) is reached for m and ¢ associated to the
regression line. So, we get

q
m

m+1 3o wk <

Z?:o Tk Z?:o x%

We have m 4+ 1 = 4 points; the linear system gives the solution m = 17/35 and
g = 57/35. The minimum value of the sum is thus

> Do Yk

ZZI:() TrYk

S(17/35, 57/35) = > | yi — o=

: [ 17 57
i 357 35

2
] ~ 0.6857

4. Show the composite trapezoidal rule using m intervals . Recalling that the error for

the trapezoidal rule is
h3

B=-2"(¢)

where h is the amplitude of the integration interval and ¢ is a suitable point inside
the integration interval, find the expression for the error in the composite trapezoidal
formula.

Answer. See the theory.
5. Write a Matlab code for the computation of the sum of elements of the vector x using
just a for loop.

Answer. We may write, for example,
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function s = sumvett( x )
%SUMVETT sum of elements of vector
n = length(x);
s = 0;
for k = 1:n
s = s+ x(k);

~N O O WN

end

7.3 Exam of August 2014

SECTION A: Multiple choice questions
Read carefully the text of each question and write in the booklet the letter which
corresponds to the best answer.

1. Consider the floating point system F(2,4, —2,2). The maximum floating point number
Zmaz and the number of elements! N,; of F are

Tmaz =375 Ne =80 Tmaz =375 Ny =81

Tmaz =400 Ny =80 [D] #maw =400 Ny =81

2. Noting that 1 and 2 are two consecutive numbers in F(10,1,—1, 1), the representation
of x = 1.68 in F using rounding is

1.6 . 1.7 2 @ overflow

3. The bisection method is used to approximate the root & of the equation z — 1 = 0
starting from the interval [ ag, bp ] = [ 0.8, 1.6 |. Denoting by zo and x; the first two
iterates, the error e; = & — x1 is

0 0.1 0.2 [D] 0.4

4. How many fixed points has the function f(x) =2 — 22?

[AJo [B]1  [c]2  [D]4

5. Consider the fixed point iterations

To = 1.5
Thy1 = a:% —2x + 2

The order p of convergence of the iterates xy, k =0,1,... s

1 . 2 3 @ does not converge

6. The number of iterations needed by the Newton method to find the approximation xj
of the root & of the equation 2x — 3 = 0 starting from xy = 2 and with an absolute
value of the error € — x| < 1076 is

[A]1 [B]4 [c]9 [D] infinity

7. The Newton method for the approximation of the root & = 1 of the equation (z —
1)?In(z) = 0 has order of convergence p equal to

1 . 2 3 @ more then 3

IThat is, how many elements has the set F. For example, F = {—1,0, 1} has 3 elements.
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10.

11.

12.

13.

14.

15.

The Newton method for the approximation of the root ¢ of the equation ze® = 1 has
order of convergence p equal to

1 . 2 3 @ more then 3

Find the condition number K5(A) of

10
A:(o 0.1)
[AJo1 [B]1 [c]i0 [D]+Vioi/10

Let A = LU the LU-factorization of the non singular matrix A. If L and U are known,
the smallest number of operations needed to solve all linear systems

Ax=by, k=1,...,.M

is about

n? M n? 2M n? @ none of previous answers are correct

Let A be the matrix
2 1 1
A= 1 3 1
1 1 4
Is it possible to find the Cholesky factorization A = H H” of A?

Yes No

The Gauss-Seidel iteration matrix Bgg for the linear system Ax = b with
2 1 3
(o) »=(3)
is

() m (s ) @ (o) m (53

The number of arithmetic operations required for the computation of the sum S given

by
S = Zak . bk
k=1

n .2n71 n2 @kn

The matrix A has the LU-factorization with |U| = —1 (determinant of U) and L a
lower triangular matrix with all ones in the main diagonal. The determinant of the
matrix A%! is

[A] -1 [B] 1 [c] -51 [D] 51

The Jacobi method is used to solve the linear system Ax = b with

() ()

starting from xg = (0 0 )7. The 2-norm of the residual r; = b — Ax; of the first

iterate x; is
1 5/2 +5/2 [D] 2v2

is about
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16.

17.

18.

19.

20.

21.

22.

23.
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The iterative method x;11 = Bx; +f, k=0,1,... with

p=( ) = ()

is convergent for each starting point xq

True . False

The Lagrange polynomials associated to the three nodes g = —1, 1 =0, 2o = 1 are

(@) = 2@ —2) h(z)=1-22 lg(x)zé(xQ—l—a:)

True . False

Let f(z) = 2* — 22 + 5. Consider n = 4 equally spaced nodes z;, i = 0,...,n
in the interval [—1,1]. Let p(z) be the corresponding interpolating polynomial, i.e.
p(z;) = f(z;), ¢ = 0,...,n. Then, the interpolation error in xy = 0.5 defined as

E = f(z0) — p(z0) is

0 0.10 0.12 @ impossible to compute

Consider the points in the following table

N =

1’0—0 1
To = 3
1’3:3 -1

The divided difference f| xg, x1, z2 ] is
4 ~5/3 ~2/3 ] 1

If we want to approximate an arbitrary function in an interval [a,b] using equally
spaced nodes, a higher degree interpolating polynomial always gives a better approxi-
mation then a lower degree one

True . False

The sum of all Lagrange polynomials depends on the values of the function f in the

interpolating points
True . False

The absolute value of the error in the Cavalieri-Simpson formula for the computation

of f;f(:c)dx is
| b—a |3 "
=13 | /(€] where& € a0

True . False

The composite trapezoidal formula with two equally length intervals (i.e., m = 2) is

used to compute
1
/ ( 11—zt ) dx
-1

The approximation given by he trapezoidal rule is

[A] -2 B] -1 [c]1 [D] 2

E
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24. The maximum degree of precision of the quadrature formula
b n
JRECHOIED e
a i=0

where w(z) > 0 in [a,b] is

n n+1 Qn @2n+1

25. The Cavalieri-Simpson approximation of the integral

/Olﬂd:c

is (Cotes numbers are CSQ) =1/6, C§2) =4/6, C§2) =1/6)

2v2+1 2 1
»=2 B @ b

26. To plot a function with the command plot(x,y), the vector x and y must have the
same size

True . False It depends on the function

27. Which of the following MatLab instructions is correct to extract the second row from
the matrix A and store it in the vector v?

v=A(2,:) v=A(:,2) A(:,Q)=v|§|v=A(2;

28. Which is c at the end of the Matlab code

1:3:8; 12 . 14

1. a =
. b = linspace( 0, 2, 3 );
3. c=(a.xb)*[1;1;11; ] 1 D] 18

29. Consider the following Matlab code

1. S = b5;

2. for k=1:4

3. if k>=3

4, S =8 + k;
5. else

6. S =8 - k;
T. end

5. end

At the end of the loop, the variable S is equal to

-5 [B] o 5 [D] 9
30. Which is the value of n at the end of the Matlab code

toll = 1E-6;

n=1;

while( 10°n > toll & n <=1 )
n=n- 2;

end

O W N =



106 CHAPTER 7. SIMULATIONS

[A] -3 [B] —4 [c] -6 (D] -7

SECTION B: Open questions
Justify, in the exam’s booklet, carefully all you answers, which must be short and clear.

1. Consider the Newton method for the approximation of the root £ of the equation

f(z) =0.
(a) Using the geometric interpretation, find the equation for the iterates given by

f(zr)
fa)’

Th+1 = Tk — k=0,1,---

(b) Show a graph of a function f where iterations xj go toward the root £ in a
monotonically fashion with z; < zpy1, K =0,1,.. ..

(c) Consider equations (i) In(z) = 0 and (ii) (z — 1) In(x) = 0. Sketch, for each one,
a qualitative logy((] ex |) plot.

(d) Give an example where the Newton method does not converge.

2. Consider the linear system Ax = b where

(1) ()

(a) Just looking to A, explain why Jacobi and Gauss-Seidel are convergent methods.

(b) Setting x(¥) = [xgk) xgk)]T, write :ngﬂ) and xé’”l) for Jacobi and Gauss-Seidel
methods and find, for both methods, x(!) starting from x(®) = [0 0]7.

(c) Let By be the iteration matrix of the Jacobi method. Using the relation

ek lloo < p(BJ) Il €r—1 llo
estimate the number k of iterations needed to have || ey ||, /|| eo ||, < 1073,

3. Consider the set of points in the following table

z|-10 1 2
yi|—4 0 1 4
(a) Write the Newton expression (assume zg = —1, 21 =0, 22 = 1, 23 = 2)
P(x) = f(xo) + flwo, 21](x — xo) + flwo, w1, w2](x — mo) (2 — 21)

+  flwo, w1, 2, w3)(x — w0) (7 — 21) (7 — 72)

for the interpolating polynomial. Show that P satisfies the interpolation condi-
tions P(x;) = y; for the given set of points.

(b) Find the regression line y = a1x + ap and draw it among with points in the same
plane.

4. Consider the composite trapezoidal formula for the computation of

I/abf(x)dx



7.4. EXAM OF SEPTEMBER 2014 107

(a) Write the formula for m = 1 (trapezoidal formula). Give the geometrical interpre-
tation of the formula. Let Iy be the approximation of I given by the trapezoidal
formula. Sketch three graphs of three different functions where I < I, Iy = I,
Ir > 1.

(b) Starting from the equation of I, find the composite trapezoidal formula when
the interval [a, b] is divided into m > 1 intervals.

(c¢) Given the error in the composite trapezoidal formula using m intervals as

(b—a)?®

(m) _
Eor = - 12m?2

()
where ¢ € [a,b] is a suitable point, show that Eg;”/E(CT;) ~ 1/4 and use this
result to prove the Richardson extrapolation formula.

7.4 Exam of September 2014

SECTION A: Multiple choice questions
Read carefully the text of each question and write in the booklet the letter which
corresponds to the best answer.

1. Consider the floating point system F(10,2, —3,3). The minimum normalized positive
floating point number x,,;, and the machine precision € of F are

Tmin =104 €=10.05 Tmin =107 €=0.5
Tomin = 1075 €=10.05 [D] @min=10" =05

2. Consider the computation of f(z) = va?+ 1 — x for large, positive, values of z €
F(10,2,—4,4). Which of the following expressions are stable?

O J@) = VItar (@) f0)= = (i) f(@) = VT4 Va?

(i) (i) (i)  [D] () and (iid)
3. The bisection method is used to approximate the root £ = 1 of the equation 22 —1 =0

starting from the interval [ ag, bp ] = [ 0.6, 1.6 |. Denoting by xo and z; the first two
iterates, the absolute value of the error e = £ — z7 is

0 [B] 0.10 0.15 [D] 0.20

4. How many fixed points has the function f(x) =1 — 237

[AJo [B]1  [c]2  [D]4

5. Consider the method xp41 = ¢(xy) with fixed point @« = 1. Assume that z; goes
toward a and ¢’ (a) = 0. Then, the plot of log,,(|ex|), choosing from the figure below,
may be

(a) (b) (c)
k k

(a) (b) (a) or (d) [D] (c) or (d)
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10.

11.

12.

13.

CHAPTER 7. SIMULATIONS

The order of convergence of the Newton method for the solution of the non linear
equation e* = 3 — 2z is

1 . 2 3 @ the method does not converge

The Newton method has the absolute value of the error |e5| = 10~ for the computation
of the root of e + x = 0. Assuming a unitary asymptotic error constant, we expect
les| equals to about

10 10 10710 [D] 10712

The equation f(x) = 0 has a unique root & in (0,1). Assume that f’(z) < 0 and
f"(z) < 0in [0,1]. Starting from zy = 1, the sequence z; produced by the Newton
method fulfills

Tk < Th1 T > Thtl <& k=1,2,... @ none of the previous

Find the spectral radius of the matrix

2 0 0
2 -1 0
0 0 —4

[A] -1 B] 2 [c] 4 D] 8

Find the condition number K5(A) of

10 0 0
A= 0 01 O
0 0 0.01

0.01 0.1 10 [D] 1000

Find the lower triangular matrix L of the LU factorization of the following matrix A
(recall: L has the main diagonal of all ones)

(3 4)
(s ) B (o 3) @ (V) © (1)

Starting from xo = [0, 0]7, the norm of the residual r; = b — Ax; after the first
Gauss-Seidel iteration for the linear system Ax = b given by

2 1 3
=(55) »=(3)
V130 7 7 r
A By o B |50
The iterative method x;11 = Bx; +f, k=0,1,... with
(13 1 [ 3)2
B=( e) = ()

is convergent for each starting point x¢ € R?

True . False

is
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14. The Gauss-Seidel method converges if the matrix A is
11 2

B= ; 3 8 True . False

15. The Lagrange polynomials depends only on the nodes of the points (z;,4;), i =0,...,n

True . False

16. The Lagrange polynomials associated to the three nodes g =0, z; = 1, o = 2 are

lo(x) = %(12 —3x+2) lLi(x)=20—2> Iy(2)= %(392 —x)

True . False

17. Chebyshev nodes associated to the interval [—5,5] are nearer in the middle of the
interval then at the endpoints

True . False

18. Find the divided difference f[zo, x1, x2] of the following table
o = 1]2

=213
i;:36 1 .3 _1 @_3

19. Given the set of points 3 = k, k = 0,1, 2,3 and the function f(z) = e”®) where P(z)
is a given polynomial of degree n = 5, the number ¢ defined as

5 = ( f[‘TOa X1, T2, 1'3] - f[xlv Xo, T3, 1'2] -1 )3

is equal to
1 0 ~1 [D] impossible to compute

20. Find the regression line for the set of points
z; | -1
yi | O
[Aly=2+15 [B]ly=152+1 [Cly=2+1 [D]y=152+15

21. The absolute value of the error Ecg = I — Icg for the computation of

2
I= / zt dx
0
using the Cavalieri-Simpson formula (which gives the result I¢g) is
2 3 4
Al = = =
Al B] & = D] o
22. The fourth derivative of f does not change much in the integration interval. Then,

using the composite Cavalieri-Simpson formula, we expect that the ratio Fay,/E,, of
the absolute value of errors using 2m and m intervals is

[A] ; [B] near | [C] near 1 -

0 1 2
2 3 3
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23. The composite trapezoidal formula with m = 2 intervals applied to the computation
of the integral

2
I:/\/de
0

gives
2 1
4] 2 5] 1 1+ D] v3

24. Find the maximum degree of precision of the quadrature formula
1 n
/ e " fz)de ~ Z o f ()
0 i=0

[A] n [B] 2n -1 [C] 2n [D] 2n+1

25. The number of arithmetic operations needed to compute the inner product? between
two vectors of length n is about

n . 2n—1 3n @ none of the previous answers

26. Which is the value of w at the end of the Matlab code

n = 3;
v = 1:n;
w = zeros( n, 1);

for k = n:-1:1
w(k) = v(n-k+1)"2;
end

O W

[A][149]T B][941]” [c] o0 0] [D] [1 23]

27. After the execution of the following Matlab code, the variable r is equal to

1. A = diag( diag( [1 2; 3 4] ) );
r = eig( A );

(AT [1 4" [B] 1 2" [C] 4 [D] 1

28. The command clear all makes the command Window clear but does not clear the
variables in the Workspace

True . False
29. Which is the value of n at the end of the Matlab code

n = 0;
while( n<=3 )
n=mn+ 2;
if n >= 4
n = n-1;
end
end

~N O O WN e

n
2The inner product of vectors x = [21,...,zn] and y = [y1,...,Yn] is X0y = > 2pys
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[A] 3 B] 4 [c]'5 D] 6

30. Consider the following Matlab code

1. v
2. W

linspace(2,10,5);
length( size( v’ * v ) );

1]

The variable w is

Az B [ea B[}

SECTION B: Open questions
Justify, in the exam’s booklet, carefully all you answers, which must be short and clear.

1. The fixed point method is used to approximate the root of the equation f(x) = 0. The
method looks as zx11 = ¢(xk), k =0,1,... where xg is a given starting point.

(a) Show the geometric interpretation of the method; sketch two graphs to show a
convergent and a divergent fixed point iteration.

(b) Consider ¢(z) = —Z + 2. Find the asymptotic error constant; using this value
and starting at o = 2, give an estimation of the number of iterations needed to
have |z — o] <1073 - |29 — a.

(c) Setting now ¢(z) = yx? + dx, find the values of v and § in order to have a fixed
point iterations that converge toward the fixed point « = 1 with an order of
convergence p > 2.

2. Consider the upper triangular linear system Ux = b.
(a) Show, with all the mathematical details, the backward substitution method.
(b) Show, with all details, the computational cost of the method.

3. Give the definition of the condition number K (A) of a matrix A. Prove that the
condition number K(A) fulfills K(A) > 1 for each matrix A. Give an example of a
well conditioned matrix and one of an ill conditioned matrix.

4. The composite trapezoidal formula using m intervals for the approximation of the
integral

b
I= / f(z) dx
a
has an absolute value of the error given by

(b—a)?®

E:
T~ omz2

19 |

where £ is a suitable point in [a, b]. Find the number of intervals m to have an absolute
value of the error less than 1076 for the computation of

/13 In(x) dz



