IEEE TRANSACTIONS ON COMPUTERS, VOL.67, NO.9, SEPTEMBER 2018

1315

Network Synthesis for
Distributed Embedded Systems

Enrico Fraccaroli
Davide Quaglia

, Student Member, IEEE, Francesco Stefanni
, Member, IEEE, and Franco Fummi

, Romeo Rizzi",
, Member, IEEE

Abstract—The amazing proliferation of communication technologies for embedded systems opens the way for completely new
applications but forces designers to adopt new methodologies to meet time-to-market constraints. Computer-Aided Design (CAD)

has been traditionally applied to computers and embedded systems in isolation without considering them as a global inter-connected
system. The paper contributes to fill this gap by proposing 7) a communication-aware design flow for network-interconnected
embedded systems and 2) a formal framework to efficiently synthesize their network aspects by formulating and solving an
optimization problem. Presented case studies show the potentiality of the proposed approach to address heterogeneous scenarios,
e.g., related to smart spaces up to the ever-more-mentioned Internet-of-Things.

Index Terms—Networked embedded systems, network topology, network protocols, design-space exploration, design tools and techniques,
optimization, mixed-integer linear programming, MILF, model-driven design

4

INTRODUCTION

1
THE recent advances in communications for embedded
systems open to completely new distributed applica-
tions in which hundreds or thousands of smart devices
interact together through different types of channels and
protocols [1], [2], [3]. We can define them as Distributed
Embedded Systems (DESs) since these applications present
three important features that distinguish them from tradi-
tional network-connected applications, i.e., 1) the communi-
cation aspects affect the design flow of the embedded
systems, 2) system-of-systems nature, and 3) strict relation
with the surrounding physical environment.

To clarify the discussion, we introduce a common exam-
ple related to the temperature control of a building as
depicted in Fig. 1. Several sensors (in figure denoted by S)
detect local temperature. Collected data are sent to control-
lers (denoted by C), which send commands to actuators
(denoted by A), e.g. , coolers. Controllers decide the activa-
tion of actuators according to various policies both central-
ized and distributed; for example, a controller may be
present in each room to adjust the local temperature but a
centralized controller is also present to ensure that room
settings comply with the total energy budget. A controller
application can also be executed by personal mobile devices

e E. Fraccaroli, R. Rizzi, D. Quaglia and F. Fummi are with the Department
of Computer Science, University of Verona, Verona 37129, Italy.

E-mail: {e.fraccaroli, r.rizzi, d.quaglia, f. fummij@uniovr.it.

F. Stefanni is with EDALab s.r.1., Verona 37134, Italy.

E-mail: francesco.stefanni@edalab.it.

Manuscript received 12 July 2017; revised 8 Jan. 2018; accepted 27 Feb. 2018.
Date of publication 5 Mar. 2018; date of current version 15 Aug. 2018.
(Corresponding author: Enrico Fraccaroli.)

Recommended for acceptance by N. Bagherzadeh.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2018.2812797

so that each user can control the temperature of the cur-
rently occupied space according to a personal profile.

In DESs, the communication aspects affect the design flow.
Considering the example, physical channels among nodes
can be either wireless or wired according to deployment
constraints (e.g., cabling costs and feasibility in historical
buildings) and mobility requirements. Communication pro-
tocols depend on the type of these physical channels, on
required reliability and quality of service (e.g., maximum
latency). Assuming that highly optimized nodes are desir-
able, the choice of physical channels affects the definition of
hardware network interfaces while the choice of communi-
cation protocols affects the memory and computational
requirements of the hardware platform.

Up to now, the embedded systems design flow has jointly
addressed hardware and software aspects, while communi-
cation aspects have been faced separately by a different
research community. This lack of coordination may lead to
non-optimal solutions in the system design; in fact, past
work demonstrated that HW/SW design and network
design are correlated [4]. To further push performance,
energy saving and reliability, the network among nodes
should be jointly designed with hardware and software com-
ponents [5]. In particular, CAD should be fruitfully applied
not only to each node, as currently done in the context of elec-
tronic systems design, but also to the network among them.
For this reason, a communication-aware design flow is required.

A DES can be seen as a System-of-Systems since even if the
various nodes can independently operate, they interact
together to achieve the good behavior of the global applica-
tion [6]. In the mentioned example, the final objective is to
achieve a good control of the temperature and it does not
matter the set of nodes that provides such functionality, as
long as the global application behavior satisfies design
objectives. Thus, DESs pose new questions to designers,

0018-9340 © 2018 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9739-6501
https://orcid.org/0000-0002-9739-6501
https://orcid.org/0000-0002-9739-6501
https://orcid.org/0000-0002-9739-6501
https://orcid.org/0000-0002-9739-6501
https://orcid.org/0000-0002-5706-4799
https://orcid.org/0000-0002-5706-4799
https://orcid.org/0000-0002-5706-4799
https://orcid.org/0000-0002-5706-4799
https://orcid.org/0000-0002-5706-4799
https://orcid.org/0000-0002-2387-0952
https://orcid.org/0000-0002-2387-0952
https://orcid.org/0000-0002-2387-0952
https://orcid.org/0000-0002-2387-0952
https://orcid.org/0000-0002-2387-0952
https://orcid.org/0000-0002-0775-939X
https://orcid.org/0000-0002-0775-939X
https://orcid.org/0000-0002-0775-939X
https://orcid.org/0000-0002-0775-939X
https://orcid.org/0000-0002-0775-939X
https://orcid.org/0000-0002-4404-5791
https://orcid.org/0000-0002-4404-5791
https://orcid.org/0000-0002-4404-5791
https://orcid.org/0000-0002-4404-5791
https://orcid.org/0000-0002-4404-5791
mailto:
mailto:

1316

Fig. 1. Example of distributed embedded system for building automation.

traditionally mainly interested in the specification of each
single network node as done for Internet servers and clients.
Most relevant issues are:

e finding the optimal number of nodes to achieve the
common mission;

e finding the best assignment (according to given met-
rics) between software tasks and hosting nodes by
taking into account tasks’ requirements and nodes’
capabilities;

e finding the best set (according to given metrics) of
network protocols by taking into account communi-
cation requirements and the presence of a legacy net-
work infrastructure.

The last distinguishing feature is the strict relationship
with the environment. In fact, networked sensors and actua-
tors should be placed where is required by the application.
Furthermore, environment affects communications in such
systems; for instance, walls and distance may affect wireless
communications whereas area size affects the deployment
cost of wired infrastructure. Finally, the number and posi-
tion of nodes affect the communications among them and
application performance.

Solving these issues leads to the so-called Network Synthe-
sis, i.e., the allocation of functionality onto nodes and the
complete definition of the communication infrastructure
among them. In this context the contributions of the paper are:

e a communication-aware design flow centered on Net-
work Synthesis for DESs;

e a communication-aware formal specification of the whole
distributed system to formulate Network Synthesis as
an optimization problem;

e the formulation of Network Synthesis as a Mixed
Integer Linear Programming (MILP) problem.

The paper can be considered as part of the research road-
map started by [7] and continued by [8]. In [7] a preliminary
version of the flow and the formal specification was
described but many issues were present and the optimiza-
tion strategy was missing. In [8] the focus was on model-
driven design and simulation by means of a UML-based
representation. However, such representation does not
allow, per se, the formulation of an optimization problem
which was left in background.

The paper is organized as follows. Related work is pre-
sented in Section 2. The building blocks of a formal repre-
sentation for distributed embedded applications and the
corresponding design flow are described in Section 3. The
formulation of network synthesis as a MILP problem is pro-
vided in Section 4. The analysis of its complexity and scal-
ability is reported in Section 5. Experimental results are

IEEE TRANSACTIONS ON COMPUTERS, VOL.67, NO.9, SEPTEMBER 2018

provided in Section 6. Finally, conclusions and future work
are reported in Section 7.

2 RELATED WORK

The design of distributed systems relies on methodologies
for their functional specification and techniques for network
design.

2.1 System Functional Specification

The information driving network synthesis can be extracted
from a platform-independent description of an application
created using well-known languages as those reported in
this section.

MARTE [9] is an UML [10] profile designed to allow an
easy specification of real-time and embedded systems. It
provides some sub-profiles, like Non-Functional-Properties
(NFPs), which allow to describe the “fitness” of the system
behavior (e.g., performance, memory usage, energy con-
sumption, etc.). The Software Resource Modeling (SRM)
and the Hardware Resource Modeling (HRM) profiles are
derived from NFP, and they address the modeling of
resources. The System Modeling Language (SysML) [11] is
an UML extension which provides a general-purpose
modeling language for systems engineering applications.

Mathworks has developed Simulink [12] and State-
flow [13] to model and simulate dynamic and embedded
systems. The former allows to represent an application as
the inter-connection of analog or digital blocks while the lat-
ter allows to describe applications as finite-state machines.
They can also be combined to represent hybrid automata.

The Ptolemy Project [14] was born to model concurrent
real-time and embedded systems. One of its main advan-
tages is the support for heterogeneous mixtures of computa-
tion models. Ptolemy supports simulation by using the
actor-oriented design; actors are software components exe-
cuted concurrently and able to communicate by sending
messages through interconnected ports. Ptolemy also sup-
ports communication modeling through Khan Process Net-
works (KPN), i.e., groups of deterministic sequential
processes which are communicating through unbounded
FIFO channels [15].

They are distributed Models of Computation (MoCs)
based on tokens which focus on the flow of computation,
thus it seems well suited to check properties on the commu-
nication schema.

SystemC [16], initially born as an hardware description
language, has been extended with the Transaction-Level
Modeling (TLM) [17], to describe HW /SW systems. SystemC
and TLM allow to describe tasks as nested components with
event-driven or clock-driven processes. Communications
between tasks can be described by using standard protocols
and payloads which simplify the specification of their behav-
ior. TLM was born to represent local communications, such
as bus interconnections or accesses to devices.

SpecC [18] is an extension of the C language to be used as
system-level design language, like SystemC/TLM. The
SpecC methodology is a top-down design flow, with four
well-defined levels of abstraction. It allows different ways
to describe the target control (sequential, FSM, parallel
and behavioral). One key concept of SpecC is the clear

FRACCAROLI ET AL.: NETWORK SYNTHESIS FOR DISTRIBUTED EMBEDDED SYSTEMS

separation of the communication and computation model
which can be useful to specify computation and communi-
cation aspects of tasks.

Metropolis [19] is a framework based on the idea of meta-
model to support various communication and computation
semantics in a uniform way. This approach implements the
abstract semantics of process networks and uses the con-
cepts advocated by the Platform-Based Design (PBD) meth-
odology, i.e., functionality and architecture across models
of computation and abstraction levels, and the mapping
relationships between them.

2.2 Network Design

Network design has been addressed by many research works,
in different fields, such as Wireless Sensor Networks (WSN).
In [20] a virtual architecture has been proposed in order to
simplify the synthesis of WSN algorithms. Network topology
and high-level functionality are used to configure the virtual
architecture. This work is mainly focused on the application
part of the system rather than on communication aspects.

In [21], PBD has been adopted to design WSN for indus-
trial control. In PBD, the application is usually designed at a
high level and then mapped onto a set of possible actual
candidates for the nodes. However, no guideline is pro-
vided for selecting an appropriate network architecture and
communication protocol. Scope-based techniques have
been proposed in macro-programming to specify complex
interactions between heterogeneous nodes of a WSN [22].
However, the nodes number and network topology are an
input required by the technique and not a result, as in the
proposed approach.

A tool for the optimal design of WSN for building auto-
mation has been proposed in [23]. It suggests to integrate
the network design flow with the knowledge about the rout-
ing algorithm used after the deployment of the network.
Since the routing algorithm is known a priori, it further pro-
poses to systematically introduce redundancy in order to
maximize the performance of the chosen algorithm. Then, it
proposes a sub-optimal polynomial-time heuristic for the
synthesis problem and compares it with a custom formal-
ization of the MILP proposed in [24].

A communication synthesis methodology and HW/SW
integration for embedded system design has been
addressed in [25]. The method is based on task graphs and
used after HW/SW partitioning and task scheduling. On
one hand, this inversion has the advantage that the schedul-
ing problem is simplified, since communication compo-
nents will be designed later. On the other hand, it does not
consider that scheduling could be optimized if communica-
tion aspects were considered earlier.

The design of Network on Chip (NoC) offers an example
of computation-communication integrated approach which
is close to the purpose of this paper. NoC are embedded sys-
tems which are designed with the traditional specification-
refinement-synthesis flow; nevertheless, they have also a
communication infrastructure which is a simplified version
of a packet-switched network [26]. The design of the internal
NoC communication infrastructure presents problems simi-
lar to the one of traditional packet-based networks [27]. For
example, the design of NoC to meet hard latency constraints
is addressed in [28]. The problem of the optimal mapping of

1317

tasks onto NoC’s cores is known to be NP-hard. In some
works, heuristics based on graph-decomposition techniques
have been used [29], [30]. A MILP formulation of the prob-
lem has been proposed [31]. It assumes a regular 2D mesh
topology and shortest-path static routing. This methodology
allows two different optimization criteria, i.e., minimization
of the average hop distance (which is proportional to energy
consumption and communication delay), as well as minimi-
zation of the bandwidth (which consists in minimizing the
most-congested link-queuing time and maximizing the
throughput). Network synthesis in NoC is based on strong
assumptions on network’s features (e.g., the topology); thus,
such approaches are not general enough to be applied also to
normal networks as proposed in this work.

The efficient routing of communication paths gives another
opportunity of optimization, also at different levels of the pro-
tocol stack. At the lowest level, a synthesis process for routing
of physical wires inside an automotive system is proposed
in [32]. It aims at meeting requirements about delay, quality of
signal, power and temperature. First, a Steiner tree is gener-
ated using a customized Kou-Markowsky-Berman (KMB)
algorithm minimizing connections length. Then, a Linear Pro-
gramming (LP) problem is formulated and its solution is used
to modify the Steiner tree such that the overall delay is mini-
mized and signal quality maximized. At a higher level Xu
etal. [33] propose a MILP formulation applied to ZigBee wire-
less networks. It comprises four specific groups of constraints:
devices placement, link activation for routing, connections
scheduling and communication quality of service. Their for-
mulation is limited to ZigBee architectures.

Synthesis of communication protocols is another
research topic related to this work. Automatic tools have
been adopted to derive the actual implementation of proto-
cols specified through finite state machines [34], [35], Petri
Nets [36], trace models [37], and languages like LOTOS [38].
All these approaches focus on the behavioral aspect of com-
munication without taking into account the design of the
nodes. A general modeling framework for a global design
flow could be useful to allow the joint exploration of HW,
SW and Network design space dimensions as addressed in
the proposed approach.

3 COMMUNICATION-AWARE DESIGN FLOW

The creation of a specific design flow for distributed embed-
ded systems requires the definition of new entities to formu-
late a design problem that accounts for communications;
then, the traditional flow for embedded systems can be
extended to solve the problem. Both aspects are described
in the following text.

3.1 Network Specification

This section introduces the entities and relationships repre-
senting the communication aspects to be designed in dis-
tributed embedded systems. The proposed formal model is
network-centric, i.e. it describes the characteristics which
are related to communications while all the other details are
omitted or highly abstracted. In fact, the objective is the
description of communication requirements as an optimiza-
tion problem whose solution leads to the network synthesis.
Therefore, this formalization is neither a distributed model

1318
Zone Zone
¢ Contiguity 5
Node Node
Data Flows
Tasks ‘j > Tasks
Level N Protocol
N ‘ ‘ N
£ N;'-l ;3- d i h
L Abstract Channel 1

Fig. 2. Entities for the communication-aware specification.

of computation, as Kahn Process Networks, nor a language
for executable specification as SystemC.

Fig. 2 shows a general picture of such entities and
their relationships. It consists of tasks (Section 3.1.1),
implementing the behavior of the distributed system,
which are hosted inside network nodes (Section 3.1.3).
The stream of data between tasks is represented by data-
flows (Section 3.1.2). Tasks and corresponding nodes are
deployed inside specific partitions of the environment
named zones (Section 3.1.5). Zones are related together
by contiguity which models the influence of the environ-
ment on communications, i.e., obstacles, walls, distances
(Section 3.1.6).

An abstract channel (Section 3.1.4) is established between
nodes to convey the data-flows of the hosted tasks. The
intention is to generalize the concept of physical channel
with an abstraction which takes into account also the pres-
ence of higher protocol layers (we refer to the ISO/OSI
representation). The highest layer encompassed in the
abstract channel depends on the type of protocols imple-
mented in the conveyed data-flows. To understand the
underlying idea of this generalization, let us consider two
examples. In the first example, tasks implement a datalink
protocol, e.g., IEEE 802.11ac, and therefore the abstract
channel just represents the physical channel. In the second
example, tasks implement a temperature control application
through messages exchanged over a channel which is
assumed to be reliable and byte-oriented. In this case, the
abstract channel encompasses all the layers from physical
channel up to TCP/IP.

In the following text, the network entities will be
described in detail together with the relationships between
them. Regarding notation, R is used to denote the non-neg-
ative real numbers, Rizy identifies the real numbers between
x and y, and B := {true, false} for boolean values. Further-
more, the term Time Unit (TU) refers to a timing value of one
second and Space Unit (SU) to a distance of one meter.

3.1.1 Tasks

A task represents a basic functionality of the whole applica-
tion; it takes some data as input and provides some output.
From the point of view of network synthesis the focus is not
on the description of the functionality itself and its HW/SW
implementation but rather on its computational and mobil-
ity requirements to decide its assignment to a given network
node. A task ¢ = [s,m, z] € 7T is a triple defined as follows

IEEE TRANSACTIONS ON COMPUTERS, VOL.67, NO.9, SEPTEMBER 2018

s € R> represents the task size, i.e., the computational
resources required to perform its activity;

m € B specifies whether the task should be placed on a
mobile node;

z € Z specifies to which zone the task belongs.

Defining the appropriate task size is a designer’s responsi-

bility. It would be easy to generalize the description to the

case where t.s € R’;', allowing to consider an array of k dif-

ferent types of resources.

3.1.2 Data-Flows

A data-flow (DF) represents the flow of messages between
two tasks; output from the source task is delivered as input
to the destination task. A data-flow d = [st,dt, s,d,e] € D is
characterized by the attributes

st,dt € T are the source and destination tasks;

s € R represents the data-flow size, i.e., bit-rate;
d € R> indicates the maximum acceptable delay;
e € R> specifies the maximum acceptable error rate.

Network synthesis is mainly driven by the communication
requirements of the data-flows which affect the choice of
channels and protocols between the nodes hosting the
involved tasks.

3.1.3 Nodes

A node can be seen as a container of tasks. At the end of the
whole design flow, nodes will be instances of HW platforms
with CPUs and network interfaces and tasks will be imple-
mented as either custom HW components or SW processes.
From the point of view of network synthesis, the focus is on
the resources made available by the node to host a number
of tasks. A node n = [s, k, ¢, te,ek,m| € N is a tuple whose
attributes are as follows

s € R> represents the node size, i.e., the available compu-
tational resources;

k € R> denotes the node economic cost;

e € R» is the intrinsic energy consumption of the node
without considering the executed tasks;

te € R» determines the energy consumption of the tasks

assigned to the node over a TU (each task ¢
mapped into the node n consumes an amount of
energy equal to ¢.s times n.te);

ek € R relates the consumed energy with a specific cost
based on the energy source (e.g., batteries, solar
panels, energy service company etc.);

m € B identifies if the node is mobile or static.

The network synthesis process assigns tasks to nodes. Tasks

with the mobile attribute set to true must be placed on

mobile nodes.

Regarding energy consumption, there are two contribu-
tions. The first one, denoted by e, is constant and independent
of task operations while the second, denoted by te, accounts
for the energy consumed to execute each task operation.
Regarding economic cost, there is a constant contribution,
denoted by £, to acquire the use of the node (e.g., because of
purchase or rent) and a variable contribution due to energy
consumption. To compute this contribution, we introduced
ek which describes the cost of each energy unit. This cost
depends on energy source, e.g., cost of batteries and their

FRACCAROLI ET AL.: NETWORK SYNTHESIS FOR DISTRIBUTED EMBEDDED SYSTEMS

replacement or energy service company bill. This unit cost can
be zero in case of energy harvesting (e.g., solar panels).

3.1.4 Abstract Channels

An Abstract Channel (AC) can be seen as a container of data-
flows. It is an ideal medium connecting two or more nodes.
Referring to the ISO/OSI model, it is defined as follows

Definition. Assuming that there is a data-flow implementing a
level-N protocol, it is hosted by an AC which represents the
physical channel and all the protocol entities up to level N — 1.

An abstract channel ac = [e, de, k, ek, w, pp, s, dl, er] € Ais
a tuple characterized as follows

e € R» is the intrinsic energy consumption of the channel
without considering hosted data-flows;

de € R> is the energy required to send a bit through the
channel over a TU (each data-flow d deployed
inside the channel ¢ consumes an amount of
energy equal to d.s times c.de);

k€ R> specifies the economic cost of this communication
architecture;

ek € R> relates the consumed energy with a specific cost
based on the energy source;

w€EB specifies if the channel is wireless or wired;

pp € B specifies if the channel is point-to-point;

s € Rs specifies the channel size, i.e., its capacity;

dl € R> specifies the maximum transmission delay of the
channel;

er € R> specifies the maximum error rate of the channel.

Data-flows between mobile tasks (hosted by mobile nodes)
can be assigned only to wireless abstract channels. The last
three attributes of the AC represent the Quality of Service
(QoS) resulting from the presence of a given physical chan-
nel and all encompassed protocols. Similar attributes are
present in the data-flow description; they represent the QoS
required by the data-flow which should be provided by the
hosting abstract channel. This is one of the driving rules of
the network synthesis. Attribute ac.pp distinguishes
between point-to-point and multi-point channels. It is worth
noting that this information is orthogonal to wireless/wired
attribute. In fact there are multi-point wired channels (e.g.,
CAN bus) and point-to-point wireless channels (e.g., Blue-
tooth connections and wireless bridges).

For economic cost and energy consumption, similar rea-
soning as for nodes applies since the proposed definition of
Abstract Channel accounts for both the physical channel
and possible intermediate systems (e.g., switches and
routers). Regarding energy consumption, there are two con-
tributions. The first one, denoted by e, is constant and inde-
pendent of communications while the second, denoted by
de, accounts for the energy consumed to transmit data-flow
bits. Regarding economic cost, there is a constant contribu-
tion, denoted by £, to acquire the use of the channel (e.g.,
because of purchase or rent of the line and intermediate sys-
tems) and a variable contribution due to energy consump-
tion. To compute this contribution, we introduced ek which
describes the cost of each energy unit. This cost depends on
energy source, e.g., cost of batteries and their replacement
or energy service company bill. This unit cost can be zero in
case of energy harvesting (e.g., solar panels).

1319

3.1.5 Zones

In distributed embedded applications tasks should be active
in specific positions of the 3D space. In the mentioned exam-
ple, temperature sensors and actuators are distributed in the
various rooms of the building. Position of tasks is important
for their assignment to nodes. Then nodes position is also
important to determine the effect of obstacles and distance
on communications between them. In general, we want to
address properties like “between nodes n; and n; there is an
obstacle”. Information about precise 3D positioning may be
not available and even not useful for a given application
(for instance, a temperature sensor is required in each room
but its position may be not so relevant). Therefore we pro-
pose to describe the position of tasks and nodes in the
3D space by partitioning it according to application needs
(e.g., rooms) and the presence of communication-relevant
properties such as obstacles and distances. We denote by Z
the set of Zones generated by this partition.

3.1.6 Contiguity Relationship

Contiguity relationship describes the relationship between
zones from the communication perspective. We assume
that nodes placed in the same zone are always able to com-
municate with the default quality of service of the involved
abstract channel (see Section 3.1.4). If nodes are deployed
into different zones, the quality of service might drop
because of distance or obstacles. The level of degradation
also depends on the type of abstract channel. Furthermore,
in case of wired channels, the relationship between zones
can be also used to capture the wiring cost. A contiguity ele-
ment cnt = [z, 22, ac,¢,dc] € C is a tuple whose attributes
are characterized as follows

21,29 € Z are the involved zones;

ac e A is the abstract channel to which the contiguity
applies;

is the attenuation coefficient to compute the
remaining level of QoS of the given abstract
channel ac after crossing the border between the
given zones;

represents the wiring cost to deploy the given
channel between the given pair of zones; this
attribute is relevant only for wired channels and
takes into account both medium type and
length.

cc R[O,l]

dCGRE

3.2 Design Flow
White boxes in the right part of Fig. 3 represent the tradi-
tional design flow of embedded systems. The starting point
is the set of Application Requirements both functional and
non-functional. A platform-independent Functional Specifi-
cation is created starting from application requirements.
Interacting components are expressed through languages
like UML and C/C++ or through the use of tools like Mat-
lab/Simulink/Stateflow (see Section 2.1). With reference to
the entities defined in Section 3.1, a functional specification
can be given as a set of Tasks exchanging information
through Data-Flows.

This specification, together with a description of the tar-
get platform, is the subject of a Design Space Exploration

1320

Description of the environment (Zones and Contiguity relationships)
Definition of the application (Tasks and Data-Flows, Task-Zone assignments)

IEEE TRANSACTIONS ON COMPUTERS, VOL.67, NO.9, SEPTEMBER 2018

Application
Requirements

£ Otbjective function (e.g., cost minimization)

Communication-Aware |_

Tasks and Data-Flows
Attributes

—71 -

Functional

Problem Formulation

Allocation of Tasks onto Nodes,
Data-Flows onto Abstract Channels
and Nodes onto Zones

Specification

Nodes
HW Refinement &
SW Implementation

Catalog of
HW Platforms

Y M
i 5 8
1% bl

B
Fog
aturl)

I e

Catalog of etw
Abstract Channels N orl_(
NS
y
Network
Specification
.._____________’—"'_._-_""‘«

—

[Actual distributed embedded system]

Fig. 3. Proposed design flow for distributed embedded systems: the new steps for network design (in light green on the left) are added symmetrically

to the state-of-art design flow (in white on the right).

(DSE) which maps Tasks onto HW and SW components of
the target platform. The result is a platform-dependent
description of the system, in which the HW blocks corre-
spond to actual devices while the software is implemented
and compiled for the target processors. Such flow is well
suited for isolated embedded systems. However, in case of
distributed applications made of many embedded systems
it lacks a specific path devoted to the design of the commu-
nication infrastructure among them.

For this reason, this work proposes to extend the flow
with new steps shown in light green on the left side. The
new design path is quite symmetric w.r.t. the traditional
one since it applies the same concepts to the communication
aspects of the whole system. A Communication-aware Problem
Formulation for the whole application is created by using
information taken from the Application Requirements and the
Functional Specification. Such information can be described
with reference to the entities defined in Section 3.1.

The Application Requirements block provides:

e a description of the environment as a set of Zones
and Contiguity relationships among them;

a definition of the application as a set of Tasks and
Data-Flows with Task-Zone assignments;

an optimization objective function (e.g., energy
minimization).

The Functional Specification allows to obtain the attributes
of Tasks and Data-Flows. Data-Flow attributes represent
communication constraints of the various data-flows of the
distributed application, e.g. , their bit-rate as well as maxi-
mum acceptable delay and error rate.

The Communication-aware Problem Formulation
describes a constrained optimization problem which links
metrics to be optimized with constraints to be satisfied. This
problem description, together with a description of available
abstract channels and nodes (defined in Section 3.1), is the
subject of DSE aiming at searching the optimal solutions.
Similarly to how components are defined in electronic sys-
tem design, this process is named Network Synthesis.

Definition. Network synthesis is a design process which starts
from an optimization problem and finds a feasible solution
which defines its communication infrastructure in terms of
mapping of application Tasks onto network Nodes, their spatial
displacement onto Zones, the type of channels and protocols
among them, and the network topology.

The final result is the Network Specification which con-
tains important information for the design of each node of
the network, i.e., the list of functions assigned to it and the
presence of new computation tasks to handle network pro-
tocols. For this reason, this description is used as input in
the traditional DSE of each node as reported in the right
part of Fig. 3. The proposed flow has the following advan-
tages which match with the properties of distributed
embedded systems:

e Network features are decided before the design of
HW and SW components; in this way the impact of
communications can be taken into account in the
early phase of the design process.

The environment is taken into account during net-
work design and therefore its impact is considered
in the following design of HW and SW components.
The proposed top-down approach for the design of
the distributed embedded system matches with its
nature of system-of-systems. In the context of net-
work deployment, the traditional approach is bot-
tom-up by making some implementation-specific
assumptions based on designer’s experience. For
instance, the designer starts assuming to build an
Ethernet network and then connects Ethernet nodes
and switches without considering if other technolo-
gies may be more suitable. To the best of our knowl-
edge, this is the first proposal that considers all
available network architectures at the beginning of
the flow.

The decomposition of the application functionality
into tasks and their allocation to nodes allows to dis-
tribute a single heavy function over multiple nodes

FRACCAROLI ET AL.: NETWORK SYNTHESIS FOR DISTRIBUTED EMBEDDED SYSTEMS

and the process is driven by the optimization objec-
tive, i.e., cost, reliability, and so on.

4 NETWORK SYNTHESIS

The network synthesis problem is the core of the previous
design flow. It can be formulated as an optimization prob-
lem by using the entities defined in Section 3.1. Among sev-
eral optimization techniques that can be used to solve this
problem, a mixed-integer linear problem (MILP) is pre-
sented and solved.

4.1 Problem Formulation
Referring to Fig. 3 and using the entities defined in Section 3.1
itis now possible to formulate the network synthesis problem.

The Application Requirements allow to obtain the set of
tasks (denoted by 7), data-flows (D), zones (Z) and contigu-
ity elements (C). The Functional Specification allows to
obtain the attributes of tasks and data-flows. All these infor-
mation elements allow to build the Communication-aware
Problem Formulation.

Network synthesis process is also fed by the set of nodes
(denoted by N) and abstract channels (A) which represent
the technological libraries for this design space exploration.
For each type of node and abstract channel its name and
attributes are specified.

Network synthesis can be formulated as an optimization
problem in which the allocation of tasks onto nodes and
data-flows onto abstract channels is driven by a set of con-
straints and metrics to be optimized. A possible way to for-
mulate and solve such problem consists in describing it as a
MILP problem. Independently of the formulation technique,
there are some strong constraints that should be always
considered:

a non-mobile node cannot host a mobile task;

a task with a given computational requirement can-
not be hosted by a node which does not provide at
least such resources;

e a data-flow with a given QoS requirement cannot be
hosted by an abstract channel which does not pro-
vide at least such QoS;

e abstract channel types cannot be used between zone
pairs whose contiguity brings to zero their QoS.

To model these general constraints, the following func-

tions are defined and populated during a preprocessing
phase:

o ,(t), t €T returns the set of allowed nodes to which
the task t can be mapped;

e a;(n), n € N returns the set of allowed tasks which can
be mapped into a node of type n;

e «.(d), de D returns the set of allowed channels in
which the data-flow d can be mapped. It can be fur-
ther subdivided into o,,.(d) and «..(d) that only con-
siders respectively the allowed wireless and wired
channels;

o a.(z1,2), 21,22 € Z, 21 # 2 returns the set of allowed
channels which can be used to connect two nodes
deployed respectively in z; and z,. Two sub-sets
due(21, 22) and a.(z1,22) are defined, respectively
identifying the allowed wireless and wired channels;

1321

o «y(c), c € Areturns the set of allowed data-flows which
can be mapped into a channel of type ¢;

o cont(z,29,ac), 21,22 € Z, ac € A, is a hash function
that allows to efficiently retrieve the contiguity rela-
tionship and thus the corresponding conductivity ¢
and the wiring cost dc.

The tasks connected to a data-flow and the zones in
which they are placed is well-known from Application
Requirements. Therefore, given an abstract channel ¢, the
set «4(c) does not contain data-flows whose tasks are placed
in zones across which ¢ has zero conductivity.

4.2 MILP Variables

In the following, all the variables used during the MILP for-
malization are presented and explained in detail. The first
two sets of variables play a distinguished structural role, in
that they imply the space of all the other variables.

e N,. neN, z€ Z for each node-type n € N' and
zone z € Z, N, . denotes how many nodes of node-
type n are deployed in zone z.

e (., ce Afor each channel type c € A, C. states how
many channels of type c are activated by the
solution.

Since we can not write MILPs with an infinite number of
variables, we need to rely on the following two parameters
which can be conveniently computed in a preprocessing
phase.

e N,. neN, ze Z for each node-type n € N and
zone z € Z, parameter N, . provides an upper bound
on the value of N, .. Before running our model we
need to fix parameter N, . to a natural value. We
want this value to be as small as possible, since the
number of variables allocated by our MILP grows
polynomially in N, .. However, we should make
sure that there exist optimal solutions in which
N,.<N,_, ie., N, should be a valid upper bound.

e (., ce A for each channel type ¢ € A, parameter C.
provides an upper bound on the value of C.. This
means that, as above, we should make sure that there
exist optimal solutions in which C, < C., or that we
are ready to anyhow limit our search for good solu-
tions below this parameter. Again, we want C. to be
as small as possible since the number of variables
allocated by our MILP grows polynomially in this
parameter.

This work proposes to consider

N,.:=|{t € as(n)|t.z = z}| 1

C. = |{d € ag(0)}]. @)

Bound 1 indeed provides an upper bound to the number of
type-node n in zone z based on the number of allowed tasks
for node n in zone z. Bound 2 is also a valid upper bound
since the upper-bound of a given channel c is equal to the
number of allowed data-flow inside that channel.

The purpose of our first set of boolean variable x is to
activate, in a well structured way, single instances of nodes
of any given type. For eachnoden € N, z € Zandp < N, ,
their intended value is as follows

1322

if there are at least p nodes of type

T zp = n allocated in zone z,

(3)

0 otherwise
Vn € N, Vz € Z, Vp < Nn‘,z

Analogously, the second set of variables y determines the
number of allocated channels of any given type

if at least p channels of type ¢ are

Yep = allocated,

4)

0 otherwise.
Yee A, Vp<C,

Another issue is represented by the presence of point-to-
point channels, which can only be deployed between two
nodes. Such aspect has been formalized with the support of
two variables. First, the tasks of a data-flow and a third task
are related by a variable y, whose formalization follows

if tasks d.st, d.dt, and t are mapped

Yir = into 3 different nodes, ®)
0 otherwise.
YdeD, VteT,
Variable p instead, is formalized as
if tasks t; and ¢y are mapped into
Pty ity = different nodes, ©
0 otherwise.
Vi, ta €T, t1#t

The key aspects of the proposed formulation are the assign-
ment of tasks to nodes and the deployment of data-flows
into channels. Concerning the positioning of tasks inside
nodes, a new boolean variable w; ,, , defined as

if task t is associated with the p-th

Winyp = node of type n in zone t.z,

(7)

0 otherwise.
VteT, Vne€ay(t), Vp<N,.

Deployment of data-flows inside channels is identified by a
variable %, ., defined as

if the data-flow d is placed in the

haep = p-th channel of type c,

)

0 otherwise.

VdeD, Vee€al(d), Vp<C.
Variable ¢ ., ., is statically solved before executing the opti-
mization. It is initialized by checking if the conductance of
the channel between the two zones is greater than zero. It is
defined as follows

if a channel of type ¢ can connect

ez, = nodes inside z; and 2o,

9)

0 otherwise.
VZl,ZQ € Z,VC cA

IEEE TRANSACTIONS ON COMPUTERS, VOL.67, NO.9, SEPTEMBER 2018

Finally, variable j., is introduced in order to keep track of
the deployment cost for each instance of deployed channel.
It is defined as

ey €R
Jep > B (10)
Vee A, Vp < C..

4.3 MILP Objectives

Four metrics were considered to be of major importance
within a distributed embedded system, and then subject to
optimization. These metrics are: Economic cost, Energy con-
sumption, Transmission delay, and Error rate. For all the met-
rics described above the optimization can be determined by
a minimization function.

4.3.1 Economic Cost Minimization

Its objective is to minimize the total economic cost of the dis-
tributed embedded system, and it is defined as follows

Zn ¥Z Z;an (@p,zp * (n.k 4+ n.e* n.ek))

+ ZC Zp:pl
on Nn,, .z

+ th Zn <t) Zp lf

C. hy.cprcdexc.ekxd.s
+ Ed Z Zp 1 cont(d.st.z,d.dt.z,c).c

(ep + Yep * (c.k+ c.e * c.ek))

min (11)

(W pp * ntext.s* n.ek)

The first two sums of the metric considers the base cost of
deployed nodes and channels plus their energetic cost.
Then, the third sum considers the supplementary cost for
wired channels whenever they are placed between different
zones. The last two sums concerns the economic cost deriv-
ing from the consumed energy. For tasks, this is done by
multiplying the total energy consumed by a task deployed
inside a node for the specific energy cost for that node. Simi-
larly, the last sum considers the energetic cost of data-flows
by multiplying the total amount of energy consumed by a
deployed channel for the price of the energy for that partic-
ular channel.

4.3.2 Energy Consumption Minimization

The second optimization objective is to minimize the total
energy consumption of the distributed embedded system,
and is defined as follows

S 2SN (2)
+ 23 Z ‘i (l/c.p * C~€)
o> zz"“ zf

The first two sums of the metric consider the energy con-
sumed by deployed nodes and channels. The third sum
takes into account the task’s resource requirements and
multiplies it for the coefficient used to calculate contribution
of each task to the node energy consumption (i.e. , attribute
n.te). The last sum multiplies the size of dataflows for the
contribution to the energy consumption of channels where
they are deployed (i.e. , attribute n.de).

min (12)

(wt np * n.text.s)

FRACCAROLI ET AL.: NETWORK SYNTHESIS FOR DISTRIBUTED EMBEDDED SYSTEMS

4.3.3 Transmission Delay Minimization

Its purpose is to minimize the total transmission delay of the
distributed embedded system. Follows its definition

min| 537 S0 S0 it e 13)
The above metric sums the transmission delay of chan-
nels where dataflows are deployed, enhanced by the
effects of the border between the involved zones on the
communication quality. This metric considers the delay
for each dataflow and not only once for each deployed
channel.

4.3.4 Error Rate Minimization

The optimization objective is to minimize the total error rate
of the distributed embedded system. The function has the
same structure as for the transmission delay minimization
but, instead of summing the channel delay, its error rate
value is used. Follows its definition

e d) C(

min ZZZ

haep * cer

cont(d.st.z,d.dt.z, c).c ()

4.4 MILP Constraints

Constraints on the Number of Instantiated Components. The first
group of constraints activates in accordance to the number
of nodes and channels as well as defining the values of the
upper-bounds of such components. More in details con-
straints (C.1) and (C.2) concerns the nodes. For all n € N/
and z € Z

Nn,z
Nmz = Tn,zp

p; (C.1)
VYneN,Vze Z
Nn,z > px Tn,zp (C 2)

VneN, Vze Z, Vp< N,..

Moreover, the second set of constraints (C.3) and (C.4), con-
cerns the channels.

(C.3)

Ce
C(: = Z Yep
p=1
Vee A

Ce>p*Yeyp

_ (C4)
Vee A, Vp < C..

Constraints on the Existence of Used Components.
Constraints (C.5) and (C.6) ensure that nodes and channels
are instantiated whenever tasks and data-flows use them.

wt,n,p S mn,t.z,p

o (C.5)
Ve T, Vn€a,(t), Vp < Ny,

hd,c,p S Yep

_ (C.6)
Vd € D, Ve € a.(d), Vp < C..

1323

Constraints (C.7) and (C.8) instead ensure that only the
nodes and channels which are necessary are activated.

(g (n)At.z=2)
xn,z,p S § U]t,n,p

t (C.7)
VneN,Vze Z Vp<N,.
Otd((
c,p < h C
Yer Z e (C.8)

Yee A, Yp < C..

Constraints on Components Capacity. The assignment of tasks
to nodes has to be compliant with the size (i.e. , resources) of
each involved node. Constraint (C.9), ensures that the total
amount of resources required by tasks inside a given node is
at most the size of the node.

(e (n)At.z=2)

1.5 % Wipp < NS
zt: o (C.9)

VneN,Vze Z, Vp < N,..

Constraint (C.10), ensures that the total amount of bit-rate

used by data-flows mapped into a given channel is at most

the size (i.e. , capacity) of the channel. Furthermore, the

effect of the environment has to be taken into consideration.
w9 d.s % haep

— cont(d.st.z,d.dt.z, c).c

Yee A, Yp < C..

(C.10)

Constraints on Tasks and Data-Flows Assignment. Tasks and data-
flows are unique entities, specific of the application functional-
ity, thus they must be assigned only once to nodes and chan-
nels, respectively. For what concerns tasks, Constraint (C.11),
ensures that they are assigned to a node only once.

Dln(t) nt.z

Z ZU)fnp_l

VteT.

(C.11)

However, for what concerns data-flows, their placement
depends on whether the tasks which they connect reside in
the same node or not. In the former case, formalized in
Constraint (C.12), the data-flow is not necessarily assigned
to a channel and in fact its placement depends on variable
p. For data-flows which instead have tasks which reside in
different zones their placement inside a channel is necessary
and ensured by Constraint (C.13).

ac(d) C,
Zzhdw Pd.st.d.dt (C.12)
Vd e ’D, d.st.z =d.dt.z
ac(d) C,
hd,(; =1
Z ; ’ (C.13)

Vd € D, d.st.z # d.dt.z.

1324

Constraints on Point-to-Point Channels. The next sets of con-
straints concern point-to-point channels, which have to
abide a more tightening rule. Each of them can connect no
more than a pair of nodes. Constraint (C.14) ensures that
variable p is correctly set whenever two tasks are mapped
into different nodes. Constraint (C.15) instead, sets p to con-
stant 1 when the pair of tasks resides in different zones.

Pty > (wtmﬁp + Wy !y — 1)

Vit eT, tz=1tz t#t,
Vi € au(t), Vp € Ny, (C.14)
Vn' € O[”(t/), Vpl S Nn’,t’m
(n#n)V(p#p)
r=1
Prt (C.15)

Vit €T, tz#t ot #1t.

Constraint (C.16) has to keep track of all the data-flows
which have a node in common. This is necessary since
whenever a data-flow mapped into a point-to-point channel
share a node with another data-flow, the source and desti-
nation task of the latter have to be mapped into the same
node w.r.t. the tasks of the former.

Vad.st < 2= hacp+hacp

with (d.st # d'.st) A (d.dt # d'.st)
Yad .dt <2- hd.,c.p =+ hd’,cp

with (d.st # d'.dt) A (d.dt # d'.dt)

Vee A, Vp < C., Vd,d € ay(c),
c.pp = true,d # d'.

(C.16)

Constraint (C.17) ensures that, if the tasks of a data-flow
d and a third task ¢ are placed all in different nodes
((C.14), (C.15) and C.17), then data-flow d and the one
connected to task ¢ must be mapped into different chan-
nels (C.16).

Y =0
with (d.st =t) V (d.dt =t)
Yar =1

with (d.st.z # t.2) A (d.dt.z # t.2) A (d.st.z # d.st.z)

Yar 2 Prdst + Prddt T Pa.stdd — 2

with (d.st.z =1t.2) V (d.dt.z =t.z) V (d.st.z = d.st.z)
VdeD, VteT. (C.17)
Constraints on Wireless Channels. Constraint (C.18) ensures
that whenever two data-flows are placed inside the same
wireless channel, all tasks of the data-flows are able to com-
municate with each other. Thus, the conductivity with the
given channel between the four combinations of the zones in

which the tasks reside is greater than zero.

hd,c,p + hd’,(:,p < 1+(q(:‘d..st.z.,d’.st.z*
Ged.st.zd dt.z*
qed.dt.zd st.z* (018)
qc,d.dt.z,d’.dt.z)

Ve € A, cw = true, ¥p < C., ¥d,d € ay(c), d#d.

IEEE TRANSACTIONS ON COMPUTERS, VOL.67, NO.9, SEPTEMBER 2018

Constraints on Deployment Cost of Wired Channels. Finally,
Constraint (C.19) poses an lower-bound on variable j € R..
Such lower-bound is equal to the highest deployment cost
for those channels which are placed between two zones. It
can be appreciated that such constraint is defined only for
those pairs of zone interested by data-flows. The upper-
bound on variable j is intrinsically ensured by the objective
function, which aims at minimizing the variables.

Jep = haep * cont(d.st.z,d.dt.z, c).de
Ve e A, cw = false, ¥p < C,,
Vd € ay(c), d.st.z # d.dt.z.

(C.19)

5 COMPLEXITY AND SCALABILITY

One should be aware that the network synthesis model pro-
posed and solved in this paper is strongly NP-hard even in
the following two very extreme special cases:

e |N|=1,|Z|=|A=|D|=0,|T| € N. Without loss of
generality, both size and cost of each node instance
are 1. Every node instance can be regarded as a bin
that we can open or not in order to accommodate a
set of tasks, each one representing an item of the
same size.

o |Al=|N|=1,|T|=2,|Z|=1,]|D| € N. Without loss
of generality, both size and cost of each channel
instance are 1. Every channel instance can be
regarded as a bin that we can open or not in order to
accommodate a set of data-flows, each one represent-
ing an item of the same size.

As a consequence, unless P = NP, every general algorithm
solving our model will exhibit a running time which is
exponential both in |T| and in |D|. Nonetheless, the MILP
solution here offered works remarkably well in practice. In
our tests, we never gave up the ambition of obtaining a
proof of optimality. By necessity, there are surely limits to
the scalability of this approach, but these should be
regarded more as limits to the ambition of solving the gen-
eral network design model to optimality rather than limits
in the tested solution. The model and solution we have
designed has successfully modeled and solved to optimality
the situations form the applications we had in mind. In fact,
its efficiency allows to solve instances whose share size was
beyond our original commitment.

To get a rough idea on the size of the instances that can
be addressed, consider first the asymptotic growth of the
number of variables that get allocated by our MILP formula-
tion. Table 1 reports on the growth for each category of vari-
ables introduced.

Those reported in the table are only worst case upper
bounds as quite fewer variables get actually allocated in
many instances; it is however easy to propose natural
instance families meeting these bounds. Since allocating a
variable takes O(1) time and space, then the phase where
the variables get introduced in the model one by one,
through calls to the competent functions of the Gurobi
dynamic library interface, takes

O(max{|\N|T||Z], DT, NIITI%, |AIIDI, |4 2[7})

FRACCAROLI ET AL.: NETWORK SYNTHESIS FOR DISTRIBUTED EMBEDDED SYSTEMS

TABLE 1
Number of Allocated Variables

)

(
O(
(]
o(r
O(INITP)
O
O(
O(

time and space. Since inserting a constraint takes O(1) time
and memory for each one of its non-zero coefficients, the
upper bound on the constraints specification phase can be
similarly drawn from Table 2.

The max of these bounds works as an upper bound only
for the model set up phase, whereas the true optimization
phase managed by Gurobi requires further memory and
may easily take exponential time. However, based on
experiments and talking with reference to a desktop archi-
tecture, we are confident that these bounds may offer a
rather good prediction on the ultimate performance of our
code when considering to apply our implementation of the
model, as it is, to other settings. More precisely, we are con-
fident that these bounds may offer you a rather good predic-
tion on the ultimate performance of our code over the
limited range where the predicted memory consumption
for the only allocation phase is not prohibitive.

6 EXPERIMENTAL RESULTS

In this section two case studies are presented with the aim of
showing the expressiveness of the proposed design flow and
the computational demand of the optimization process. Net-
work synthesis has been performed by using Gurobi 7.5.1
tool with Python 2.7.12 front-end on a 64-bit machine run-
ning Ubuntu 16.04 LTS; the machine features an Intel(R)
Core(TM) i7-3770 CPU @ 3.40 GHz with 16 GB memory.

TABLE 2
Number of Defined Constraints

(.1 O(IN112))
(C2) O(IN|Z||T)
(C.3) O(JA])

CH O(|A||D])
(€5 O(N|T|*)
(C.6) O(|A|ID)*)
(C.7) O(N|Z||T|)
(C.8) O(|A||D|)
(C9) O(N|Z||T|)
(C.10) O(|A|D|)
(C.11) o(|T))
(C12) O(|A||D*)
(C.13) O(|A|ID)%)
(C14) O(NPITI)
(C.15) o711
(C.16) O(|A||D*)
(C.17) o(|D||T))
(C.18) O(|A||ID]*)
(C.19) O(|A||D[?)

1325

I I

Tie :
(X3

1 e
I'I‘ I,

LY A
oo Router .Sensora’Ac:uatnr —> Data-Flow
("4 N

:REi

' I
|l£J%

gl Tl . g

X

o i
|—,I = ,l

'iCnntmller

Fig. 4. Network topology with various network architectures connected
through routers.

g~

X
® o
_.

.

[o 21 o

eoeoo

@ @

o0
o0

6.1 Case Study 1

The first case study concerns the implementation of a distrib-
uted building automation application spanning over two
adjacent buildings. The scenario is depicted in Fig. 4. It con-
sists of different kinds of tasks (i.e. , controllers, routers, sen-
sors and actuators), deployed inside rooms delimited by
thick walls, and exchanging a series of data-flows shown as
red lines. Each building hosts a total of twenty-four tasks: a
central controller, two routers and twenty-one sensors/
actuators for room monitoring and regulation. Tasks are dis-
tributed over ten zones which comprise a control room, two
technical closets for routers and seven offices. Each office
contains two sensors and one actuator which have access to
the central controller through an adjacent router. For this sce-
nario, the technological libraries of available nodes and chan-
nels are reported in Tables 3 and 4, respectively. The tables
use the attribute symbols defined in Section 3.1.

As explained in Section 3.1.4, an Abstract Channel
encompasses the physical layer and all the required upper
layers according to application scenario: in our case, the
abstract channels in Table 4 include also TCP/IP. The pres-
ence of various network architectures allows to select the
most appropriate one for each interconnection between
nodes. Considering the environment depicted in Fig. 4, the
data-flow between the controllers has to cross a pair of thick
walls which may hinder the use of wireless LAN. Such
effect is represented as a lower value of conductance
between the corresponding zones (i.e. , control rooms) for
the wireless channels as reported in boldface in Table 5.
Therefore, the optimization process will select a wired
architecture even if it leads to higher cost for cabling which
is computed by summing up dc attribute values for the
given zone pairs and the chosen wired channel type
(reported in boldface in Table 5).

In this example, the values in Tables 3, 4, and 5 have been
obtained by performing a relative comparison between dif-
ferent technologies with the unique purpose of testing the
optimization engine. More accurate values can be found in
HW datasheets for nodes and actual benchmarks for

1326 IEEE TRANSACTIONS ON COMPUTERS, VOL.67, NO.9, SEPTEMBER 2018
TABLE 3 TABLE 5

Catalog of Available Nodes for Case Study 1 Example of Contiguity Values for Case Study 1
Label s k e te ek m 21 2 ac c de
Development Board Type1 32 5 5 1 010 false Bluetooth 4.0 0.45 0
Development Board Type2 84 18 7 2 015 false Technical IEEE 802.11ac 0.58 0
Development Board Type3 64 22 8 2 030 true Office 1 closet IEEE 802.11ad 0.97 0
Development Board Type4 128 98 12 5 041 true 1 Ethernet 0.00 0
Development Board Type5 256 128 15 6 033 true Fiber 0.00 0
Development Board Type6 512 512 30 12 1.20 false Bluetooth 4.0 0.12 0

Technical Control IEEE 802.11ac 0.46 0
network architectures [39]. Contiguity relationship should (iloset ;oom gﬁfﬁg%llad 823 2 15
be evaluated by the designer for each specific scenario, e.g. , Fiber 095 1252
by using well-known tools for WiFi deployment [fLO]. . Bluetooth 4.0 0.07 0
Vice versa, for other zones of the same scenario wireless

ol . . Control Control IEEE 802.11ac 0.12 0
communications will be preferred for their lower cost. For . jom room IEEE 802.11ad 0.21 0
instance, with energy minimization, we use 2 Bluetooth 1 2 Ethernet 0.78 824
links, 7 IEEE 802.11ac links, 12 IEEE 802.11ad links, 10 Ether- Fiber 1.00 1,486

net links, and 5 fiber links. To the best of our knowledge,
this is the first network synthesis approach that allows mix-
ing different network architectures.

Table 6 shows the statistics of the synthesized networks
with the four different optimization objectives presented in
Section 4.3. The table reports the CPU time spent to find the
solution; it depends on the optimization target but anyway
it is acceptable.

The composition of the synthesized network depends on
the optimization metric. For instance, for cost minimization,
the optimizer chooses 12 nodes of Type 2, 17 nodes of Type 3,
and 9 nodes of Type 4, whereas for energy minimization, it
chooses 19 nodes of Type 2, 17 nodes of Type 3, and 9 nodes
of Type 4. Furthermore, application tasks can be grouped in
different ways according to task-node assignment which is
determined by the optimization process. For instance, let us
consider three sensor/actuator tasks, denoted as T'1, T2, and
T3, belonging to the same zone (i.e. , room). With economic
cost minimization, all the tasks are placed inside the same
Type 4 node whereas with delay minimization, two of them
are placed inside inside distinct nodes of Type 3 while the
third is placed inside a node of Type 4.

In summary, this Case Study shows that:

e different network architectures can be mixed in the
synthesis process;

e a single heavy application can be distributed over
multiple nodes of a distributed embedded system;

e the optimization process can distribute tasks in dif-
ferent ways over the network according to the opti-
mization objective.

6.2 Case Study 2

The second case study concerns the implementation of a
smart city application. For example, energy efficiency is a

TABLE 4
Catalog of Available Abstract Channels
Label s k e de ek dl er w pp
Bluetooth 4.0 24 9 1 1 016 12 10 true true
IEEE 802.11ac 7000 34 3 2 030 8 7 true false
IEEE 802.11ad 7400 79 7 4 028 3 4 true false
Ethernet 200000 320 18 2 021 3 1 false true
Fiber 273000 367 14 1 012 1 3 false true

well-known design problem in this context [41]. The
description of the environment for the proposed case
study is given by the cartography in Fig. 5. The area is
subdivided into zones delineated by dotted lines. Each
zone contains a task named distributor (represented by a
circle) and a variable number of user tasks, all connected
through data-flows. In such a huge public context, it is
quite common to exploit a pre-existing network and add
new pieces of infrastructure. This fact gives us the
opportunity to show how the proposed synthesis flow is
able to handle this kind of constraint. By referring to
Fig. 5, the tasks and data-flows colored in blue represent
a pre-existing network, i.e. they have already been
placed inside nodes and channels, respectively. Vice
versa, the red tasks and data-flows are assigned to nodes
and channels by the network synthesis process. The cata-
logs of nodes and channels are shown in Tables 7 and 4,
respectively. The contiguity values between zones are
mainly dependent on their distance.

This case study aims at evaluating the scalability of the
approach as a function of scenario size, i.e., number of
zones, tasks, and data-flows. For this purpose, we automati-
cally generated instances with increased size by using two
different approaches.

6.2.1 Scalability Over Zones

The first scalability test regards the creation of large scenar-
ios by increasing the number of zones, while the number of
tasks per zone remains quite small. The generation of
instances is based on the following rules:

TABLE 6
Case Study 1: Performance and Results of the Network
Synthesis as a Function of the Optimization Objective

Minimization CPU Economic Energy Delay Error
Objective Time (s) Cost ($) Consumption (J) (s) Rate (%)

Econ. Cost 11.38 38,903 56,306 543.96 47.0
Energy 507 41,762 48,330 514.00 45.1
Delay 3.89 68,312 86,604 283.35 19.8
Error 397 67,760 93,809 287.84 19.6

FRACCAROLI ET AL.: NETWORK SYNTHESIS FOR DISTRIBUTED EMBEDDED SYSTEMS

Fig. 5. Wide urban area test case: The tasks and data-flows colored in
blue represent a preexisting network while red elements have been
added during network synthesis.

e zones are arranged as a chain and a new instance is
automatically generated by increasing the chain;

e each zone has a set of contiguity values defined only
for the precedent zone and subsequent zone unless it
is the first or the last zone of the chain;

e each zone contains four user tasks and one
distributor;

e in each zone there are four data-flows connecting
each user task with the distributor of the zone;

e the distributor of a zone is connected to the distribu-
tor of the precedent zone and the one of the subse-
quent zone unless it belongs to the first or last zone
of the chain;

e attributes of tasks and data-flows are constant and
their value depends on the role of the task, i.e., distrib-
utor or user, and on the type of connection, i.e.,
between distributors or between user and distributor.

Fig. 6 shows the value of the objective function as a function
of the size of the input instance (number of tasks). Even if
values have been normalized to fit in the same plot, each of
them is the minimum when the corresponding objective
function is used to drive the optimization. Therefore, we
can conclude that the behavior of the synthesizer is consis-
tent over a large set of problem instances.

Fig. 7 shows the total optimization time for the synthe-
sizer as a function of the size of the input instance (num-
ber of tasks over all zones) for all optimization targets.
Time values have been computed by using Python
time.clock() function which takes into account the
effort spent by the CPU in each thread of the process'
thus avoiding artifacts due to the current load of the
workstation and hyper-threading techniques. The graph
trend of the objective functions in Fig. 7 can be directly
related to the algorithmic complexity and the number
of involved variables of the objective functions reported
in Section 4.3. Even if the economic cost and energy
consumption minimization functions have the same
number of loops, the former has a greater number of
involved variables. As such, the economic cost minimi-
zation requires more effort than the other functions as
shown in the graph.

1. https:/ /www.pythoncentral.io/ measure-time-in-python-time-
time-vs-time-clock

Normalized objective value

4.00

3.50

3.0

N
o
=]

»
Q

o
5
=]

Iy
=]

0.50

0.00

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

tasks over all zones

1327

—- Cost when Min.
Economic Cost
4 Cost when Min.
Energy
A Cost when Min.
Delay
A Cost when Min.
Error Rate
B Energy when
Min. Economic
Cost
—o— Energy when
Min. Energy
Energy when
Min. Delay
Energy when
Min. Error Rate
Delay when Min.
Economic Cost
Delay when Min.
Energy
—#— Delay when Min.
Delay
Delay when Min.
Error Rate
Error when Min.
Economic Cost
Error when Min.
Energy
Error when Min.
Delay
Error when Min.

¢ H > >

>

Error Rate

Fig. 6. Value of the objective function as a function of number of tasks
over all zones and the optimization objective.

As described in Section 5, the synthesis process consists
of some steps which prepare the proper optimization
phase, i.e., parsing of the instance description file, genera-
tion of variables, and generation of constraints. It is worth
analyzing how CPU time is spent in this optimization
flow. Fig. 8 shows the percentage of the total optimization
time (reported in Fig. 7) devoted to pre-optimization activ-
ities. For economic cost minimization, the real optimiza-
tion phase is mainly predominant over preparation but
for simpler objective functions and small instances prepa-
ration time can be larger than time spent to search the opti-
mal solution. To complete the scalability analysis, Fig. 9
shows the corresponding memory usage.

6.2.2 Scalability Over Tasks

The second scalability test regards the creation of large sce-
narios by increasing the number of tasks in the same zone.
The generation of instances is based on the following rules:

only one large zone is considered;

no contiguity relationships are set;

each zone contains an increasing number user tasks
and one distributor;

e in each zone there are as many data-flows as user
tasks since they connect each user task with the dis-
tributor of the zone;

e attributes of tasks and data-flows are constant and
their value depends on the role of the task, i.e.,
distributor or user, and on the type of connection,
i.e., between distributors or between user and
distributor.

TABLE 7
Catalog of Available Nodes for Case Study 2
Label s ke te ek m
Development Board Type1l 64 10 2 1 0.05 false
Development Board Type2 98 24 4 2 015 true
Development Board Type3 128 64 8 4 040 true
Development Board Type4 256 128 14 7 032 true
Development Board Type5 512 378 20 10 0.60 false

1328
30,000.00
~i- Min. Economic Cost
~o—Min. Energy
25,000.00 Min. Delay.
—A— Min. Error Rate /
20,000.00
=
o
£
S 15,000.00
o
3]
K
€ 10,000.00 //
o //
0% e

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

tasks over all zones

Fig. 7. Total CPU time for Case Study 2 as a function of number of tasks
over all zones.

80,

—- Min. Economic Cost
—o— Min. Energy
""""""""""""""""""""" Miii: Detay

~#— Min. Error Rate

g / N—"

\.—4_,./____________\'_4

125

25 50 75 100 150 175 200 225 250 275 300 325 350 375

tasks over all zones

Fig. 8. Percentage of CPU time devoted to pre-optimization activities for
Case Study 2 as a function of number of tasks over all zones.

N\
7/ N\

12,000.00

- Min. Economic Cost
~4— Min. Energy
Min. Delay

10,000.00!

8,000.00

6,000.00

Memory (MB)

4,000.00

2,000.00

50 75 100 125 150 175 200 225 250 275 300 325 350 375

tasks over all zones

Fig. 9. Memory usage for Case Study 2 as a function of number of tasks
over all zones.

Fig. 10 shows the total optimization time for the synthe-
sizer as a function of the number of tasks per zone. We
only show economic cost minimization since the previ-
ous analysis proved it to be the most computationally
intensive target. Fig. 11 shows the corresponding mem-
ory usage.

7 CONCLUSIONS

This work focused on the peculiarities of distributed embed-
ded systems and proposed an extended design flow to
address them. Assuming that highly optimized nodes are

IEEE TRANSACTIONS ON COMPUTERS, VOL.67, NO.9, SEPTEMBER 2018

1,200.00
~@- Total time
~#- Preparation time

1,000.00

800.00

600.00

CPU time (s)

400.00

200.00

20 30 40 60 70

tasks per zone

Fig. 10. CPU time for Case Study 2 as a function of the number of tasks
per zone.

12,000.00

10,000.00

8,000.00

6,000.00

Memory (MB)

4,000.00

2,000.00

/

20 30

0.00

40 50 60 70

tasks per zone

Fig. 11. Memory usage for Case Study 2 as a function of the number of
tasks per zone.

desirable, the network infrastructure should be decided
before designing HW and implementing SW thus leading to
the concept of network synthesis. A communication-aware
formalization was proposed to specify constraints and opti-
mization metrics. Network synthesis was formalized as an
optimization problem using mixed-integer linear program-
ming. We defined the following formal entities: tasks, data-
flows, nodes, abstract channels, and zones. The last two enti-
ties are particularly innovative. The Abstract Channel gener-
alizes the concept of network architecture (i.e. , physical
channels and protocols) so that the final solution can combine
different types of network architectures. The Zone general-
izes the concept of physical location adapting location accu-
racy to the requirements of the application and focusing on
the impact of node placement on communications and cost.
The framework was applied to real case studies with the aim
to show the advancement with respect to state of the art. The
first case study shows the possibility to create network infra-
structures containing different network architectures accord-
ing to users’ needs and environmental constraints. The
second one highlights the possibility to synthesize a network
by adding components to an existing infrastructure which is
a common problem in real life scenarios. Future work aims at
investigating the scalability issues of the MILP approach and
proposing communication-aware heuristics to address very
large problems.

FRACCAROLI ET AL.: NETWORK SYNTHESIS FOR DISTRIBUTED EMBEDDED SYSTEMS

ACKNOWLEDGMENTS

This work has been partially supported by the project of the
Italian Ministry of Education, Universities and Research
(MIUR) “Dipartimenti di Eccellenza 2018-2022".

REFERENCES

1]

[2]

[3]

[4]

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proc. Workshop Mobile
Cloud Comput., 2012, pp. 13-16.

T. Savolainen, J. Soininen, and B. Silverajan, “IPv6 addressing
strategies for IoT,” IEEE Sensors]., vol. 13, no. 10, pp. 3511-3519,
Oct. 2013.

M. Li, Z. Yang, and Y. Liu, “Sea depth measurement with
restricted floating sensors,” ACM Trans. Embedded Comput. Syst.,
vol. 13, no. 1, pp. 1-21, Aug. 2013.

N. Bombieri, F. Fummi, and D. Quaglia, “System/network
design-space exploration based on TLM for networked embedded
systems,” ACM Trans. Embedded Comput. Syst., vol. 9, no. 4, pp. 1-
32, Mar. 2010.

P. Sayyah, M. T. Lazarescu, S. Bocchio, E. Ebeid, G. Palermo,
D. Quaglia, A. Rosti, and L. Lavagno, “Virtual platform-based
design space exploration of power-efficient distributed embedded
applications,” ACM Trans. Embedded Comput. Syst., vol. 14, no. 3,
pp- 49:1-49:25, Apr. 2015.

K. Tsilipanos, I. Neokosmidis, and D. Varoutas, “A system of sys-
tems framework for the reliability assessment of telecommunica-
tions networks,” IEEE Syst.]., vol. 7, no. 1, pp. 114-124, Mar. 2013.
F. Fummi, G. Lovato, D. Quaglia, and F. Stefanni, “Modeling of
communication infrastructure for design-space exploration,” in
Proc. Forum Specification Des. Lang., Sep. 2010, pp. 1-6.

E. Ebeid, F. Fummi, and D. Quaglia, “Model-driven design of net-
work aspects of distributed embedded systems,” IEEE Trans. Com-
put.-Aided Des. Integr. Circuits Syst., vol. 34, no. 4, pp. 603-614,
Apr. 2015.

Object Management Group, “MARTE.” (2018). [Online]. Avail-
able: http:/ /www.omg.org/omgmarte

Object Management Group, “Unified Modeling Language.”
(2018). [Online]. Available: http://www.uml.org

Object Management Group, “SysML.” (2018). [Online]. Available:
http:/ /www.sysml.org

The MathWorks, Inc., “Simulink.” (2018). [Online]. Available:
http://www.mathworks.com/products/simulink/

The MathWorks, Inc., “Stateflow.” (2018). [Online]. Available:
http://www.mathworks.com/products/stateflow/

Center for Hybrid and Embedded Software System, “Ptolemy.”
(2018). [Online]. Available: http://ptolemy.eecs.berkeley.edu/
index.htm

G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” Proc. Congress, pp. 471-475,1974.

IEEE Standard for Standard SystemC Language Reference Manual,
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), pp. 1-638,
Jan. 2012.

Transaction Level Modeling Working Group, “OSCI TLM 2.0,”
2006. [Online]. Available: http://www.systemc.org

Center for Embedded and Computer Systems, “SpecC.” (2018).
[Online]. Available: http:/ /cecs.uci.edu/~specc/

Center for Electronic Systems Design, “Metropolis.” (2018). [Online].
Available: http://embedded.eecs.berkeley.edu/metropolis/index.
html

A. Bakshi and V. Prasanna, “Algorithm design and synthesis for
wireless sensor networks,” in Proc. Int. Conf. Parallel Process., 2004,
pp- 423-430.

A. Bonivento, L. P. Carloni, and A. Sangiovanni-Vincentelli,
“Platform-based design of wireless sensor networks for industrial
applications,” in Proc. Des. Autom. Test Eur. Conf., 2006, pp. 1103—
1107.

L. Mottola, A. Pathak, A. Bakshi, V. K. Prasanna, and G. P. Picco,
“Enabling scope-based interactions in sensor network macro-
programming,” in Proc. IEEE Int. Conf. Mobile Adhoc Sensor Syst.,
2007, pp. 1-9.

A. Puggelli, M. M. R. Mozumdar, L. Lavagno, and A. L. Sangio-
vanni-Vincentelli, “Routing-aware design of indoor wireless sensor
networks using an interactive tool,” IEEE Syst.]., vol. 9, no. 3,
pp-717-727, Sep. 2015.

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

1329

A. Pinto, M. D’Angelo, C. Fischione, E. Scholte, and A. Sangio-
vanni-Vincentelli, “Synthesis of embedded networks for building
automation and control,” in Proc. Amer. Control Conf., Jun. 2008,
pp- 920-925.

G. Gogniat, M. Auguin, L. Bianco, and A. Pegatoquet,
“Communication synthesis and HW/SW integration for embed-
ded system design,” in Proc. 6th Int. Workshop Hardware/Softw.
Codesign, 1998, pp. 49-53.

L. Benini and G. De Micheli, Networks on Chips: Technology and
Tools. San Mateo, CA, USA: Morgan Kaufmann, 2006.

E. Zahavi, I. Cidon, and A. Kolodny, “Gana: A novel low-cost con-
flict-free NoC architecture,” ACM Trans. Embedded Comput. Syst.,
vol. 12, no. 4, pp. 109:1-109:20, Jun. 2013.

C. Seiculescu, D. Rahmati, S. Murali, H. Sarbazi-Azad, L. Benini,
and G. De Micheli, “Designing best effort networks-on-chip to
meet hard latency constraints,” ACM Trans. Embedded Comput.
Syst., vol. 12, no. 4, Jun. 2013 Art. no. 108.

A. Agarwal, B. Raton, C. Iskander, and R. Shankar, “Survey of net-
work on chip (NoC) architectures & contributions,” Netw., vol. 3,
no. 1, pp. 1-15, 2009.

U.Y. Ogras and R. Marculescu, “Energy- and performance-driven
NoC communication architecture synthesis using a decomposition
approach,” in Proc. Des. Autom. Test Eur. Conf., 2005, pp. 352-357.
C. E. Rhee, H. Y. Jeong, and S. Ha, “Many-to-many core-switch
mapping in 2-D mesh NoC architectures,” in Proc. IEEE Int. Conf.
Comput. Des.: VLSI Comput. Processors, 2004, pp. 438-443.

C. W. Lin, L. Rao, P. Giusto,]J. D’Ambrosio, and A. L. Sangio-
vanni-Vincentelli, “Efficient wire routing and wire sizing for
weight minimization of automotive systems,” IEEE Trans. Com-
put.-Aided Des. Integr. Circuits Syst., vol. 34, no. 11, pp. 1730-1741,
Nov. 2015.

S. Xu, R. Kumar, and A. Pinto, “Correct-by-construction and opti-
mal synthesis of beacon-enabled ZigBee network,” IEEE Trans.
Autom. Sci. Eng., vol. 10, no. 1, pp. 137-144, Jan. 2013.

Y.-X. Zhang, K. Takahashi, N. Shiratori, and S. Noguchi, “An
interactive protocol synthesis algorithm using a global state tran-
sition graph,” IEEE Trans. Softw. Eng., vol. 14, no. 3, pp. 394404,
Mar. 1988.

A. Khoumsi, R. Dssouli, and G. V. Bochmann, “Protocol synthesis
for real-time applications,” in Proc. Joint Int. Conf. Formal Descrip-
tion Techn. Distrib. Syst. Commun. Protocols Protocol Specification
Testing Verification, 1999, pp. 417-433.

H. Yamaguchi, K. Okano, T. Higashino, and K. Taniguchi,
“Protocol synthesis from time Petri net based service specifica-
tions,” in Proc. Int. Conf. Parallel Distrib. Syst., Dec. 1997, pp. 236—
243.

R. L. Probert and K. Saleh, “Synthesis of communication proto-
cols: Survey and assessment,” IEEE Trans. Comput., vol. 40, no. 4,
pp- 468-476, Apr. 1991.

P. V. Eijk and J. Schot, “An exercise in protocol synthesis,” in Proc.
Formal Description Techn. 1V, 1991, pp. 117-131.

T. A. Gonsalves and F. A. Tobagi, “Comparative performance of
voice/data local area networks,” IEEE |. Sel. Areas Commun.,
vol. 7, no. 5, pp. 657-669, Jun. 1989.

A. Luntovskyy and A. Schill, “Functionality of wireless network
design tools,” in Proc. 19th Int. Crimean Conf. Microw. Telecommun.
Technol., Sep. 2009, pp. 343-345.

Z.Kaleem, T. M. Yoon, and C. Lee, “Energy efficient outdoor light
monitoring and control architecture using embedded system,”
IEEE Embedded Syst. Lett., vol. 8, no. 1, pp. 18-21, Mar. 2016.

Enrico Fraccaroli (S'16) received the master’s
degree in computer science and engineering
from the University of Verona, Italy, in 2015. He is
currently working toward the PhD degree in the
Department of Computer Science, University of
Verona, ltaly. His research interests include the
development of new methodologies for the effi-
cient simulation and functional safety evaluation
of embedded platforms composed of analog, digi-
tal and network components. He is a student
member of the IEEE.

http://www.omg.org/omgmarte
http://www.uml.org
http://www.sysml.org
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/stateflow/
http://ptolemy.eecs.berkeley.edu/index.htm
http://ptolemy.eecs.berkeley.edu/index.htm
http://www.systemc.org
http://cecs.uci.edu/∼specc/
http://cecs.uci.edu/∼specc/
http://embedded.eecs.berkeley.edu/metropolis/index.html
http://embedded.eecs.berkeley.edu/metropolis/index.html

1330

Francesco Stefanni received the PhD degree in
computer science from the University of Verona, in
2011. Since January 2014 he is project manager
and SW architect in EDALab srl where he leads
the development of HIFSuite and SCNSL and pro-
vides internal training. His research interests
include encompasses networked embedded sys-
tem modeling and verification, formal modeling,
semantics mapping and efficient simulation. In
2011, he received the best paper award at Forum
on specification and Design Languages (FDL).

Romeo Rizzi received the PhD degree from the
Department of Mathematics of Padova University,
Italy, in 1997. He held researcher positions in
centers like CWI, Amsterdam, Netherlands,
BRICS, Aarhus, Denmark and IRST, Trento, Italy,
University of Trento and University of Udine, Italy.
Since 2011, he has been an associate professor
with the University of Verona, Italy. He has a back-
ground in operations research and his main inter-
ests include Combinatorial Optimization and
Algorithms. He is an area editor of 40R. He pub-

lished a hundred research papers in a broad range of scientific journals
in the areas of Discrete Mathematics, Combinatorics, and Algorithms.
He also authored several papers in conference proceedings, and invited
chapters. Since 2004, he has intensively acted as a trainer of the Italian
team for the International Olympiads in Informatics.

IEEE TRANSACTIONS ON COMPUTERS, VOL.67, NO.9, SEPTEMBER 2018

Davide Quaglia (M’'03) received the PhD degree
in computer engineering from Politecnico di
Torino, Italy, in 2003. Currently he is an assistant
professor in the Computer Science Department,
University of Verona, Italy. He is co-author of
about 70 papers on Networked Embedded Sys-
tems, Networked Control Systems, Cyber-Physi-
cal Systems. He was co-founder of EDALab, a
spin-off of University of Verona. He is member of
the IEEE and DATE Program Committee.

Franco Fummi (M’'92) received the PhD degree
in electronic engineering from Politecnico di
Milano, Italy, in 1995. He is currently the head of
the Department of Computer Science, University
of Verona, ltaly, where he is a full professor since
2000, and where he became an associate profes-
sor in computer architecture in 1998. Since 1995,
he has been with the Department of Electronics
and Information, Politecnico di Milano, as an
assistant professor. He is a co-founder of EDA-
Lab, an EDA company developing tools for the
design of networked embedded systems. His current research interests
include electronic design automation methodologies for modeling, verifi-
cation, testing, and optimization of embedded systems. He is a member
of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

