Data-intensive

computing systems

Basic Algorithm Design Patterns

Universtity of Verona
Computer Science Department

Damiano Carra

Acknowledgements

Q Credits

- Part of the course material is based on slides provided by the following
authors

» Pietro Michiardi, Jimmy Lin

Algorithm Design

O Developing algorithms involve:
- Preparing the input data
- Implement the mapper and the reducer
- Optionally, design the combiner and the partitioner
O How to recast existing algorithms in MapReduce?
- It is not always obvious how to express algorithms
- Data structures play an important role
- Optimization is hard
- The designer needs to “bend” the framework
O Learn by examples
“Design patterns”

- Synchronization is perhaps the most tricky aspect

Algorithm Design (cont’d)

O Aspects that are not under the control of the designer
- Where a mapper or reducer will run
- When a mapper or reducer begins or finishes
- Which input key-value pairs are processed by a specific mapper
- Which intermediate key-value pairs are processed by a specific reducer
O Aspects that can be controlled
- Construct data structures as keys and values
- Execute user-specified initialization and termination code for mappers and reducers
- Preserve state across multiple input and intermediate keys in mappers and reducers

- Control the sort order of intermediate keys, and therefore the order in which a reducer
will encounter particular keys

- Control the partitioning of the key space, and therefore the set of keys that will be
encountered by a particular reducer

Algorithm Design (cont’d)

O MapReduce jobs can be complex
- Many algorithms cannot be easily expressed as a single MapReduce job

- Decompose complex algorithms into a sequence of jobs

» Requires orchestrating data so that the output of one job becomes the input to the
next

- lterative algorithms require an external driver to check for convergence

O Basic design patterns
- Local Aggregation
- Pairs and Stripes
- Relative frequencies

- Inverted indexing

Local aggregation

O s W -

=1

Local aggregation

U Between the Map and the Reduce phase, there is the Shuffle phase

- Transfer over the network the intermediate results from the processes that
produced them to those that consume them

- Network and disk latencies are expensive

» Reducing the amount of intermediate data translates into algorithmic efficiency

O We have already talked about
- Combiners
- In-Mapper Combiners

- In-Memory Combiners

In-Mapper Combiners: example

class MAPPER
method Mapr(docid a,doc d)
H «— new ASSOCIATIVEARRAY
for all term ¢ € doc d do
H{t} — H{t} +1 > Tally counts for entire document
for all term £ € H do
EmiT(term ¢, count H{t})

In-Memory Combiners: example

class MAPPER
method INITIALIZE
H — new ASSOCIATIVEARRAY
method Mapr(docid a,doc d)
for all term ¢t € doc d do
H{t} — H{t} +1 > Tally counts across documents

method CLOSE
for all term ¢t € H do
EmiT(term ¢, count H{t})

Algorithmic correctness with local aggregation

O Example

- We have a large dataset where input keys are strings and input values are
integers

- We wish to compute the mean of all integers associated with the same key

« In practice: the dataset can be a log from a website, where the keys are user IDs and
values are some measure of activity

O Next, a baseline approach

- We use an identity mapper, which groups and sorts appropriately input key-
value paris

- Reducers keep track of running sum and the number of integers encountered

- The mean is emitted as the output of the reducer, with the input string as the
key

Example: basic MapReduce to compute the mean of values

1: class MAPPER

2: method MAP(string ¢, integer r)

3: EMIT(string ¢, integer r)

1: class REDUCER

2: method REDUCE(string ¢, integers [rq, 72, .. .])
3: sum «— 0

4: cnt «— 0

5: for all integer r € integers [ry,7,,...] do
6: sum «— sum —+r

7: cnt — ent + 1

8: Favg < sum/ent

9: EMIT(string ¢, integer r4,,)

Using the combiners

O Note: operations are not distributive
— Mean(1,2,3,4,5) # Mean(Mean(1,2), Mean(3,4,5))

- Hence: a combiner cannot output partial means and hope that the reducer will
compute the correct final mean

O Next, a failed attempt at solving the problem

- The combiner partially aggregates results by separating the components to
arrive at the mean

- The sum and the count of elements are packaged into a pair

- Using the same input string, the combiner emits the pair

Example: Wrong use of combiners

1: class MAPPER
2: method Map(string ¢, integer r)
3 EMmIT(string ¢, integer r)

1: class COMBINER

2: method COMBINE(string ¢, integers [ri,7s,...])

3 sum «— 0

1 cnt — 0

5 for all integer r € integers [ry,7,,...] do

6: sum < sum +r

7: cnt «—cent + 1

8: EMIT(string ¢, pair (sum, cnt)) > Separate sum and count
1: class REDUCER

2 method REDUCE(string ¢, pairs [(s1,¢1), (S2,¢2)...])
3: sum «— ()

1 cnt — 0

5: for all pair (s,c) € pairs [(s1,¢;), (s9,¢2)...] do
6: sum < sum + s

T cnt — ent + ¢

8: Taug < sumjcnt

9: EMIT(string ¢, integer 74,4)

Wrong use of combiners

O What’s wrong with the previous approach?
- Trivially, the input/output keys are not correct

- Remember that combiners are optimizations, the algorithm should work even
when “removing” them

O Executing the code omitting the combiner phase
- The output value type of the mapper is integer
- The reducer expects to receive a list of integers
- Instead, we make it expect a list of pairs

O Next, a correct implementation of the combiner
- Note: the reducer is similar to the combiner!

- Exercise: verify the correctness

Example: Correct use of combiners

1: class MAPPER

2: method MAP(string ¢, integer r)

3: EmiT(string ¢, pair (r, 1))

1: class COMBINER

2 method COMBINE(string ¢, pairs [(s1,¢1), (52, ¢2)...])
3: sum «— ()

1 ent «— 0

5 for all pair (s,c) € pairs [(s1,¢,), (s9,¢,)...] do
6: sum <— sum + S

7: cnt «— cent + ¢

8: EMIT(string ¢, pair (sum,cnt))

1: class REDUCER

2 method REDUCE(string ¢, pairs [(s1,¢1), (82, ¢2)...])
3: sum «— ()

1 cnt «— 0

5 for all pair (s,c) € pairs [(s1,¢;), (s9,¢2)...] do
6: Sum <— sum + s

7: ent «— ent + ¢

8: Tavg < Sumjent

9: EMIT(string ¢, integer r4,,)

Using in-memory combining

Q Inside the mapper, the partial sums and counts are held in memory (across
inputs)

O Intermediate values are emitted only after the entire input split is
processed

Q Similarly to before, the output value is a pair

1: class MAPPER

2: method INITIALIZE

3 S «— new ASSOCIATIVEARRAY
4 C' «— new ASSOCIATIVEARRAY

5: method MAP(string ¢, integer r)

6: S{t} — S{t} +r

T: C{t} — C{t} +1

8: method CLOSE

9: for all term £ € S do

10: EMmiT(term ¢, pair (S{t}, C{t}))

Pairs and stripes

Pairs and stripes

O A common approach in MapReduce: build complex keys

- Data necessary for a computation are naturally brought together by the
framework

O Two basic techniques:
- Pairs: similar to the example on the average

- Stripes: uses in-mapper memory data structures

O Next, we focus on a particular problem that benefits from these two
methods

Problem statement

O Building word co-occurrence matrices for large corpora

The co-occurrence matrix of a corpus is a square n x n matrix
n is the number of unique words (i.e., the vocabulary size)

A cell m;; contains the number of times the word w; co-occurs with word w;
within a specific context

Context: a sentence, a paragraph a document or a window of m words

NOTE: the matrix may be symmetric in some cases

U Motivation

This problem is a basic building block for more complex operations

Estimating the distribution of discrete joint events from a large number of
observations

Similar problem in other domains:

» Customers who buy this tend to also buy that

Observations

O Space requirements

Clearly, the space requirement is O(n?), where n is the size of the vocabulary

For real-world (English) corpora n can be hundreds of thousands of words, or
even billion of worlds

O So what’s the problem?

20

If the matrix can fit in the memory of a single machine, then just use whatever
naive implementation

Instead, if the matrix is bigger than the available memory, then paging would
kick in, and any naive implementation would break

Word co-occurrence: the Pairs approach

Input to the problem: Key-value pairs in the form of a docid and a doc

U The mapper: O The reducer:

- Processes each input document - Receives pairs relative to co-

- Emits key-value pairs with: occurring words

Computes an absolute count of the

» Each co-occurring word pair as the key -
joint event

» The integer one (the count) as the value

.) - Emits the pair and the count as the
- This is done with two nested loops: final key-value output

« The outer loop iterates over all words . Basically reducers emit the cells of

» The inner loop iterates over all the matrix
neighbors

21

Word co-occurrence: the Pairs approach

1: class MAPPER

2 method Map(docid a,doc d)

3: for all term w € doc d do

| for all term v € NEIGHBORS(w) do

5 EMIT(pair (w, u),count 1) > Emit count for each co-occurrence
1: class REDUCER

2: method REDUCE(pair p, counts [¢;, ¢y, .. .])

3: s« 0

4: for all count ¢ € counts [¢;,¢,,...| do

5: S—Ss+c > Sum co-occurrence counts

EMIT(pair p, count s)

~
o

22

Word co-occurrence: the Stripes approach

Input to the problem: Key-value pairs in the form of a docid and a doc

U The mapper: O The reducer:
- Same two nested loops structure as - Receives all associative arrays related
before to the same word
- Co-occurrence information is first - Performs an element-wise sum of all
stored in an associative array associative arrays with the same key

- Emit key-value pairs with words as keys Emits key-value output in the form of
and the corresponding arrays as values word, associative array

 Basically, reducers emit rows of the
co-occurrence matrix

23

Word co-occurrence: the Stripes approach

1: class MAPPER

2 method Map(docid a,doc d)

3: for all term w € doc d do

1 H «— new ASSOCIATIVEARRAY

5 for all term v € NEIGHBORS(w) do

6: H{u} «— H{u} +1 > Tally words co-occurring with w
7: EmiT(Term w, Stripe H)

1: class REDUCER

2 method REDUCE(term w, stripes [H,, Hy, H3, .. .])

3: H; < new ASSOCIATIVEARRAY

1 for all stripe H € stripes [H,, Ho, H3,...] do

5 SuM(H;, H) > Element-wise sum

6: EMIT(term w, stripe Hy)

24

Pairs and Stripes, a comparison

O The pairs approach
- Generates a large number of key-value pairs (also intermediate)

- The benefit from combiners is limited, as it is less likely for a mapper to
process multiple occurrences of a word

- Does not suffer from memory paging problems

O The pairs approach

More compact

Generates fewer and shorted intermediate keys

» The framework has less sorting to do

The values are more complex and have serialization/deserialization overhead
- Greatly benefits from combiners, as the key space is the vocabulary

- Suffers from memory paging problems, if not properly engineered

25

Relative frequencies

26

“Relative” Co-occurrence matrix

Q Problem statement
- Similar problem as before, same matrix

- Instead of absolute counts, we take into consideration the fact that some
words appear more frequently than others

» Word w; may co-occur frequently with word w; simply because one of the two is
very common

- We need to convert absolute counts to relative frequencies f(w; |w;)

+ What proportion of the time does w; appear in the context of w; ?
Q Formally, we compute:
f(wjl Wi) = N(Wi:Wj) / Zw’ N(Wi:wl)
- N(-,) is the number of times a co-occurring word pair is observed

- The denominator is called the marginal

27

Computing relative frequencies

O The stripes approach

- In the reducer, the counts of all words that co-occur with the conditioning
variable (w;) are available in the associative array

- Hence, the sum of all those counts gives the marginal

- Then we divide the the joint counts by the marginal and we’re done

U The pairs approach
- The reducer receives the pair (w; , w;) and the count
- From this information alone it is not possible to compute f(w; |w;)

- Fortunately, as for the mapper, also the reducer can preserve state across
multiple keys

» We can buffer in memory all the words that co-occur with w; and their counts
» This is basically building the associative array in the stripes method

28

Computing relative frequencies: a basic approach

O We must define the sort order of the pair
- In this way, the keys are first sorted by the left word, and then by the right word (in the
pair)
- Hence, we can detect if all pairs associated with the word we are conditioning on (w;)
have been seen

- At this point, we can use the in-memory buffer, compute the relative frequencies and
emit
O We must define an appropriate partitioner

- The default partitioner is based on the hash value of the intermediate key, modulo the
number of reducers

- For a complex key, the raw byte representation is used to compute the hash value

» Hence, there is no guarantee that the pair (dog, aardvark) and (dog,zebra) are sent to the same
reducer

- What we want is that all pairs with the same left word are sent to the same reducer

29

Computing relative frequencies: order inversion

O The key is to properly sequence data presented to reducers

- If it were possible to compute the marginal in the reducer before
processing the join counts, the reducer could simply divide the joint
counts received from mappers by the marginal

- The notion of “before” and “after” can be captured in the ordering of
key-value pairs

- The programmer can define the sort order of keys so that data needed
earlier is presented to the reducer before data that is needed later

30

Computing relative frequencies: order inversion

O Recall that mappers emit pairs of co-occurring words as keys

O The mapper:
- additionally emits a “special” key of the form (w; , *)

- The value associated to the special key is one, that represents the contribution
of the word pair to the marginal

- Using combiners, these partial marginal counts will be aggregated before being
sent to the reducers

O The reducer:

- We must make sure that the special key-value pairs are processed before any
other key-value pairs where the left word is w;

- We also need to modify the partitioner as before, i.e., it would take into
account only the first word

31

Computing relative frequencies: order inversion

QO Memory requirements:
- Minimal, because only the marginal (an integer) needs to be stored
- No buffering of individual co-occurring word

- No scalability bottleneck

O Key ingredients for order inversion
- Emit a special key-value pair to capture the marginal

- Control the sort order of the intermediate key, so that the special key-value
pair is processed first

- Define a custom partitioner for routing intermediate key-value pairs

- Preserve state across multiple keys in the reducer

32

Inverted indexing

33

Inverted indexing

O Quintessential large-data problem: Web search
- A web crawler gathers the Web objects and store them

- Inverted indexing

» Given a term t = Retrieve relevant web objects that contains t

- Document ranking

« Sort the relevant web objects

O Here we focus on the inverted indexing

- For each term t, the output is a list of documents and the number of
occurrences of the term t

34

Inverted indexing: visual solution

doc 1

one fish, two fish red fish, blue fish one red bird

o

Efsh .Izl | blue n ;blrd Hm
o [oi] | [sle] | | o [sl1]
EMEEE’“’??'“HEE

| Shuffle and Sort: aggregate values by keys |

f IIZI | o EE
oo [l || e B[]
two R (o]][]]:

35

