

Università degli Studi di Verona

Dipartimento di Informatica

Edificio Ca' Vignal 2 Strada Le Grazie, 15 37134 Verona - Italia Tel. +39 045 802 7069 Fax. +39 045 802 7068

MASTER'S DEGREE IN MATHEMATICS COURSE OF OPTIMIZATION

Antonio Marigonda

Team exercises

Exercise 1. Let $f_1, f_2 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex. Define

 $(f_1 \oplus f_2)(x) := \inf\{f_1(x_1) + f_2(x_2) : x_1 + x_2 = x\},\$

and suppose that $(f_1 \oplus f_2)(x) > -\infty$ for all $x \in \mathbb{R}^n$. Prove that $f_1 \oplus f_2$ is convex. Calculate $\partial(f_1 \oplus f_2)(x)$ for all $x \in \text{dom}(f_1 \oplus f_2)$, and compute $(f_1 \oplus f_2)^*$.

Exercise 2. Let
$$f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$$
 and assume that

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\},\$$

for all $x, y \in \mathbb{R}^n$, $\lambda \in]0, 1[$. Prove that for every $\alpha \in \mathbb{R}$ the set $\{x : f(x) \leq \alpha\}$ is either empty or convex. Can we conclude that f is convex? Give a proof or a counterexample.

Exercise 3. Let Ω_1, Ω_2 be convex, closed, and nonempty subsets of a Banach space X. Suppose that $\operatorname{int} \Omega_1 \neq \emptyset$ and $(\operatorname{int} \Omega_1) \cap \Omega_2 = \emptyset$. Then prove that there exist $v_1, v_2 \in X'$ such that at least one between v_1 and v_2 is nonzero, and $\alpha_1, \alpha_2 \in \mathbb{R}$ such that

- (1) $\langle v_i, x \rangle \leq \alpha_i$ for all $x \in \Omega_i$, i = 1, 2,
- (2) $v_1 + v_2 = 0, \ \alpha_1 + \alpha_2 = 0.$

Exercise 4. Show that C is convex if and only if for $\alpha, \beta \ge 0$ we have $(\alpha + \beta)C = \alpha C + \beta C$, where the sum of sets is Minkowski sum: $A + B = \{a + b : a \in A, b \in B\}$.

Exercise 5. Let $h: [0,1] \to [0,+\infty[$ be a concave function. Define a map $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ by setting

$$f(\rho, v) = \begin{cases} \frac{|v|^2}{h(\rho)}, & \text{if } \rho \in [0, 1] \text{ and } h(\rho) \neq 0, \\ +\infty, & \text{otherwise.} \end{cases}$$

Compute f^* , f^{**} , ∂f^{**} , ∂f^* , precising their domain.

Exercise 6. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ be a symmetric, positive definite $n \times n$ matrix with real entries, $a, b \in \mathbb{R}^n \setminus \{0\}, a \neq b, \alpha, \beta \in \mathbb{R}$. We consider the problem of minimizing the map $f(x) := \langle x, Ax \rangle$ on $C_1 \cap C_2$ where $C_1 := \{x \in \mathbb{R}^n : \langle a, x \rangle = \alpha\}$ and $C_2 := \{x \in \mathbb{R}^n : \langle b, x \rangle = \beta\}$. Prove that the problem admits a unique solution \bar{x} and that there exists $\bar{\delta} \in \mathbb{R}$ such that \bar{x} minimizes $f(x) + \bar{\delta}\langle a, x \rangle$ on C_2 .

Teams

Team 1: VR394480, VR389636, VR386856 Team 2: VR388559, VR388232, VR388607, VR388555 Team 3: VR388560, VR391980, VR390313, VR393747, F.V.* Team 4: VR388432, VR394076, VR394042 Team 5: VR387938, VR393491, VR387762 Team 6: VR389710, VR392130, VR390987 *missing ID number, please communicate it as soon as possible.

Remarks

Each group must work strictly independently on the others.

Correctness, quality, rigor, and cleariness of the answers are **more important** than quantity.

Please return neatly written solutions before 20th November 2015.