Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE

Università degli Studi di Verona
– Corso di Laurea in Matematica Applicata – ***

Prof. Lidia Angeleri

Anno accademico 2011/12

Indice

1	Gru	ppi e sottogruppi
	1.1	Gruppo
	1.2	Sottogruppo
	1.3	Laterale di G modulo H
	1.4	Esempi
	1.5	Teorema di Lagrange
2	Gru	ppi ciclici
	2.1	Il sottogruppo generato da un elemento
	2.2	L'ordine di un elemento
		Gruppo ciclico
		Esempi
	2.5	Omomorfismo, isomorfismo
	2.6	Classificazione dei gruppi ciclici
9	T !o.	nello dei polinomi
3		-
		Il concetto di anello
		Elemento invertibile. Campo
		Ideali
		Esempi
		L'anello quoziente di R modulo I
	3.6	Ideali massimali
	3.7	Esempio: $\mathbb{Z}/n\mathbb{Z}$
	3.8	L'anello dei polinomi
	3.9	Divisione col resto
	3.10	Polinomi irriducibili
	3.11	Fattorizzazione di polinomi
	3.12	Identità di Bézout
	3.13	L'anello quoziente $K[x]/(f)$
	3.14	Esempio
	3.15	Zeri di polinomi
	3.16	Definizione
		Polinomi irriducibili di grado ≤ 3
4	Este	ensioni di campi
	4.1	Sottocampi, estensioni
	4.2	Teorema
		Esempi
	4.4	Teorema di Kronecker
	4.5	Campi di riducibilità completa
۲	Com	: 6;L:
5		npi finiti I a constituzione
	5.1	La caratteristica
	5.2	Cardinalità di un campo finito
	5.3	Teorema di classificazione dei campi finiti
	5.4	Lemma
	5.5	Teorema dell'elemento primitivo
	5.6	Lemma
	5.7	Sottocampi di campi finiti
	5.8	Esempio

INDICE 3

6	Poli	inomi minimi	14
	6.1	Il polinomio minimo	14
	6.2	Corollario	15
	6.3	Campi di riducibilità completa di polinomi irriducibili su campi finiti.	15
	6.4	Fattorizzazione di $x^q - x$	15
	6.5	Corollario	15
	6.6	Laterali s-ciclotomici	15
	6.7	Calcolo del polinomio minimo.	16
	6.8	Esempi	16
7		inomi ciclotomici	17
	7.1	Radici m -esime dell'unità	17
	7.2	Polinomi ciclotomici	17
	7.3	Esempi	17
	7.4	Teorema sulla scomposizione in polinomi ciclotomici	17
	7.5	Corollario: calcolo ricorsivo dei polinomi ciclotomici	
	7.6	Esempio	18

4 INDICE

1 Gruppi e sottogruppi

1.1 Gruppo

Un gruppo (G, +) è costituito da un insieme non vuoto G e un'operazione $+: G \times G \to G$, $(a, b) \mapsto ab$ su G che gode delle seguenti proprietà:

- (G1) associatività: a + (b + c) = (a + b) + c per $a, b, c \in G$;
- (G2) elemento neutro: $a + 0_G = 0_G + a = a$ per ogni $a \in G$;
- (G3) elemento inverso: per ogni $a \in G$ esiste $b \in G$ tale che $a + b = b + a = 0_G$;

Il gruppo (G, +) si dice *abeliano* se vale anche la proprietá:

(G4) commutativa: a + b = b + a per $a, b \in G$.

1.2 Sottogruppo

Sia (G, +) un gruppo. Un sottoinsieme non vuoto $H \subset G$ si dice sottogruppo di G se H è un gruppo rispetto all'operazione + di G. In tal caso si scrive $H \leq G$.

OSSERVAZIONE

Un sottoinsieme $H \subset G$ è un sottogruppo se e solo se $H \neq \emptyset$ e per tutti gli $a, b \in H$ si ha $a - b \in H$.

1.3 Laterale di G modulo H.

Ogni sottogruppo H di gruppo (G, +) definisce una relazione di equivalenza su G

$$a \sim b$$
 se $a - b \in H$

La classe di equivalenza di un elemento a rispetto a \sim è

$$[a] = \{x \in G \mid x \sim a\} = \{h + a \mid h \in H\} = H + a$$

[a] si chiama laterale destro di G modulo H con rappresentante a.

1.4 Esempi.

 $(\mathbb{Z},+)$ è un gruppo abeliano. I suoi sottogruppi sono i sottoinsiemi di forma $n\mathbb{Z} = \{nq \mid q \in \mathbb{Z}\}$ con $n \in \mathbb{N}_0$. I laterali (destri e sinistri) di \mathbb{Z} modulo $n\mathbb{Z}$ sono esattamente le classi di resto [0], [1], [2], ..., [n-1] di \mathbb{Z} modulo n e formano il gruppo $(\mathbb{Z}/n\mathbb{Z},+)$ rispetto all'addizione

$$[a] + [b] = [a + b]$$

1.5 Teorema di Lagrange

Sia (G,+) un gruppo finito e sia $H \leq G$. Allora l'ordine $\mid H \mid$ divide l'ordine $\mid G \mid$. Più precisamente si ha

$$\mid G \mid = \mid H \mid \cdot [G:H]$$

dove [G:H] è *l'indice* di H in G, ovvero il numero dei laterali destri di G modulo H.

6 2 GRUPPI CICLICI

2 Gruppi ciclici

2.1 Il sottogruppo generato da un elemento

Sia (G, \cdot) un gruppo con elemento neutro e.

Per $a \in G$ e un intero $n \in \mathbb{Z}$ si pone

$$a^{n} = \begin{cases} \underbrace{a \cdot a \cdot \dots \cdot a}_{n} & \text{se } n > 0 \\ \underbrace{e}_{n} & \text{se } n = 0 \\ \underbrace{a^{-1} \cdot a^{-1} \cdot \dots \cdot a^{-1}}_{n} & \text{se } n < 0 \end{cases}$$

Definiamo $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. L'insieme $\langle a \rangle$ è un sottogruppo di G. Il suo ordine si indica con $ord(a) = |\langle a \rangle|$ e si chiama ordine dell'elemento a.

2.2 L'ordine di un elemento

Sia (G, \cdot) un gruppo e sia $a \in G$.

- (1) Se $a^l \neq a^k$ per $l \neq k$ allora $ord(a) = \infty$.
- (2) Se esistono $l \neq k$ tali che $a^l = a^k$ allora $ord(a) = m < \infty$, dove m è il minimo intero positivo tale che $a^m = e$.

COROLLARIO

Se |G| = n, allora ord(a) divide n e quindi $a^n = e$.

Esempio. L'ordine di un elemento $[a] \in (\mathbb{Z}/n\mathbb{Z}, +)$ si calcola come $\frac{n}{\text{MCD}(a,n)}$. Dunque se [a] é un elemento con MCD(a,n) = 1, si ha $< [a] >= \mathbb{Z}/n\mathbb{Z}$.

Se φ denota la funzione di Eulero, ovvero $\varphi: m \mapsto |\{a \in \mathbb{Z} \mid 1 \leq a < m, MCD(a, m) = 1\}|$, allora il gruppo $(\mathbb{Z}/n\mathbb{Z}, +)$ ha esattamente $\varphi(n)$ elementi generatori.

2.3 Gruppo ciclico

Un gruppo (G,\cdot) è detto *ciclico* se esiste un elemento $a \in G$ tale che $G = \langle a \rangle$.

2.4 Esempi

Ogni gruppo di ordine primo è ciclico. Ogni gruppo ciclico è abeliano. Il gruppo delle permutazioni S_3 non è abeliano. Il gruppo di Klein $\mathcal{V} = \{ \mathrm{id}, (12)(34), (13)(24), (14)(23) \} \leq S_4$ è abeliano ma non ciclico.

2.5 Omomorfismo, isomorfismo

Siano (G, \cdot) e (G', *) due gruppi. Un'applicazione $f: G \to G'$ si dice:

- omomorfismo se $f(a \cdot b) = f(a) * f(b)$ per $a, b \in G$;
- isomorfismo se f è un omomorfismo biiettivo.

Se esiste un isomorfismo $f: G \to G'$ si dice che G e G' sono isomorfi e si scrive $G \cong G'$.

2.6 Classificazione dei gruppi ciclici

Sia (G, \cdot) un gruppo ciclico.

- (1) Se $|G| = \infty$, allora $(G, \cdot) \cong (\mathbb{Z}, +)$.
- (2) Se |G| = m allora $(G, \cdot) \cong (\mathbb{Z}/m\mathbb{Z}, +)$.

3 L'anello dei polinomi

3.1 Il concetto di anello

Un anello $(R, +, \cdot)$ è costituito da un insieme non vuoto R e due operazioni $+, \cdot : R \times R \to R$ su R che godono delle proprietà:

- (R1) (R, +) è un gruppo abeliano con elemento neutro 0_R ;
- (**R2**) (R, \cdot) gode della proprietà associativa e possiede un elemento neutro 1_R ;
- (R3) Leggi distributive:

$$a(b+c) = ab + ac,$$

$$(a+b)c = ac + bc.$$

Un anello si dice *commutativo* se (R,\cdot) gode della proprietà commutativa.

Assumeremo sempre $R \neq \{0\}$, quindi $0_R \neq 1_R$.

3.2 Elemento invertibile. Campo

Sia $(R, +, \cdot)$ un anello.

- (1) Un elemento $a \in R$ è invertibile se esiste un elemento $b \in R$ tale che $ab = ba = 1_R$ In tal caso b è univocamente determinato e si indica con a^{-1} .
- (2) $(R, +, \cdot)$ si dice *campo* se R è commutativo e ogni elemento $0 \neq a \in R$ è invertibile, in altre parole, se $(R \setminus \{0\}, \cdot)$ è un gruppo abeliano.

3.3 Ideali.

Sia $(R, +, \cdot)$ un anello. Un sottoinsieme non vuoto $I \subset R$ è detto *ideale* (bilatero) se per tutti gli elementi $a, b \in I, r \in R$ si ha $a + b \in I, ra \in I$ e $ar \in I$. Se $I \neq R$ si dice che I è un *ideale proprio*.

OSSERVAZIONI:

- (1) Ogni anello possiede gli ideali banali $R \in 0 = \{0_R\}.$
- (2) Se un ideale I di un anello R contiene un elemento invertibile $a \in R^*$, allora I = R.
- (3) Ogni ideale I di R è un sottogruppo del gruppo abeliano (R, +).
- (4) Ogni elemento $a \in R$ di un anello commutativo definisce un ideale

$$(a) = \{ ra \mid r \in R \}$$

detto $ideale\ principale\ generato\ da\ a.$

3.4 Esempi.

Ogni campo possiede soltanto gli ideali banali 0 e K. Gli ideali di Z sono tutti principali.

3.5 L'anello quoziente di R modulo I

Sia $(R, +, \cdot)$ un anello e sia $I \subset R$ un ideale. Poichè $I \leq (R, +)$ possiamo considerare i laterali (destri o sinistri) di (R, +) modulo I. Per $a \in R$ si pone

$$\overline{a} = \{x \in R \mid x - a \in I\} = \{a + y \mid y \in I\} = a + I$$

Si ha che $\overline{a} = \overline{a'}$ se e solo se $a - a' \in I$.

L'insieme di tutti i laterali di R modulo I si indica con R/I. Definiamo le operazioni seguenti su R/I:

$$\overline{a} + \overline{b} = \overline{a+b}$$
$$\overline{a} \cdot \overline{b} = \overline{ab}$$

Con queste operazioni R/I diventa un anello, detto l'anello quoziente di R modulo I, con

$$0_{R/I} = \overline{0} = 0 + I = I$$

$$1_{R/I} = \overline{1} = 1 + I$$

3.6 Ideali massimali.

Dato un anello R, gli ideali propri di R formano un insieme ordinato rispetto all'inclusione \subset . Gli elementi massimali sono detti *ideali massimali* di R. Quindi un ideale proprio $I \subset R$ è massimale se e solo se per ogni ideale A con $I \subset A \subset R$ si ha I = A oppure A = R.

Osservazione. Sia R un anello commutativo. Un ideale I di R è massimale se e solo se R/I è un campo.

3.7 Esempio: $\mathbb{Z}/n\mathbb{Z}$.

Sia $n \in \mathbb{N}$. Come sopra, denotiamo con

$$n\mathbb{Z} = \{nq \mid q \in \mathbb{Z}\}$$

l'ideale di \mathbb{Z} generato da n. Consideriamo la relazione di equivalenza

$$a \sim b$$
 se $a - b \in n\mathbb{Z}$

Le classi di resto modulo n, ovvero le classi di equivalenza rispetto a \sim ,

$$[a] = \{ x \in \mathbb{Z} \mid x \equiv a \bmod n \} = \{ x \in \mathbb{Z} \mid x - a \in n \mathbb{Z} \}$$

con l'addizione

$$[a] + [b] = [a+b]$$

e la moltiplicazione

$$[a] \cdot [b] = [ab]$$

formano l'anello commutativo $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$.

Una classe di resto [a] è un elemento invertibile di $\mathbb{Z}/n\mathbb{Z}$ se e solo se $1 \le a \le n$ e $\mathrm{MCD}(a,n) = 1$. Quindi $\mathbb{Z}/n\mathbb{Z}$ è un campo se e solo se n è un numero primo.

3.8 L'anello dei polinomi.

Dato un campo K, l'insieme K[x] di tutti i polinomi nell'indeterminata x con coefficienti in K forma un anello rispetto alla somma e moltiplicazione di polinomi, detto anello dei polinomi. Dato un polinomio

$$f = \sum_{i=0}^{n} a_i x^i$$

con $n \in \mathbb{N}_0$ e coefficienti $a_0, a_1, \dots a_n \in K$, $a_n \neq 0$, diremo che a_n è il coefficiente direttivo e $n = \deg f$ il grado di f. Il polinomio 0 per convenzione ha grado -1.

OSSERVAZIONI

- 1. $\deg(fg) = \deg f + \deg g \text{ per } f, g \in K[x] \setminus \{0\}.$
- 2. $f \in K[x]$ è invertibile se e solo se deg f = 0.

3.9 Divisione col resto

Proposizione Sia K un campo e siano $f,g\in K[x]$ due polinomi non nulli. Allora esistono $q,r\in K[x]$ tali che

$$f = qg + r$$
 e $\deg(r) < \deg(g)$

Diremo che il polinomio g divide il polinomio f se r=0, ovvero se f=gq per un $q\in K[x]$. Denotiamo con

$$(g) = \{gq \mid q \in K[x]\}$$

l'ideale di K[x] generato da g.

 $\underline{COROLLARIO}$. Gli ideali di K[x] sono tutti principali.

3.10 Polinomi irriducibili.

Lemma e Definizione: Sia K un campo e sia $f \in K[x]$ un polinomio. Sono equivalenti i seguenti enunciati:

- 1. f non è invertibile e possiede soltanto divisori banali (ovvero: se $g, h \in K[x]$ sono polinomi tali che gh = f, allora g oppure h è invertibile).
- 2. deg f = n > 0 e f non può essere scritto come prodotto di due polinomi di grado < n.
- 3. (f) è un ideale massimale.

In tal caso diremo che f è un polinomio *irriducibile* di K[x].

3.11 Fattorizzazione di polinomi.

Teorema: Sia K un campo. Ogni polinomio $f \in K[x]$ di grado n > 0 può essere scritto come prodotto di polinomi irriducibili e questa scomposizione è unica a meno dell'ordine e di associazione. Più precisamente:

- (i) Esistono polinomi irriducibili $p_1, \ldots, p_n \in R$ tali che $f = p_1 \cdot \ldots \cdot p_n$.
- (ii) Se anche $q_1, \ldots, q_m \in R$ sono polinomi irriducibili tali che $f = q_1 \cdot \ldots \cdot q_m$, allora m = n ed esistono una permutazione $\sigma \in S_n$ e polinomi invertibili c_1, \ldots, c_n tali che $p_i = c_i \, q_{\sigma(i)}$ per ogni $1 \leq i \leq n$.

3.12 Identità di Bézout.

Sia K un campo e siano $f_1, \ldots, f_r \in K[x]$. Un elemento $d \in R$ è detto massimo comun divisore di f_1, \ldots, f_r se soddisfa

- 1. $d \mid f_i$ per ogni $1 \leq i \leq r$,
- 2. se $t \mid f_i$ per ogni $1 \leq i \leq r$, allora $t \mid d$;

Scriveremo $d = MCD(f_1, \dots, f_r)$. Se d è un polinomio invertibile, diremo che f_1, \dots, f_r sono *coprimi*.

OSSERVAZIONI:

1. L'Algoritmo Euclideo. Possiamo calcolare il massimo comun divisore di $f, g \in K[x] \setminus \{0\}$ tramite divisioni successive come segue:

Se $g \mid f$, allora g = MCD(f,g). Altrimenti poniamo $r_0 = g$ e eseguiamo divisioni col resto:

$$\begin{array}{llll} f = q_1 \, r_0 + r_1 & & \text{con} & q_1, r_1 \in R & & \text{e} & \deg(r_1) < \deg(r_0) \\ r_0 = q_2 \, r_1 + r_2 & & \text{con} & q_2, r_2 \in R & & \text{e} & \deg(r_2) < \deg(r_1) \\ \vdots & & & \vdots & & \vdots \\ r_{n-1} = q_{n+1} \, r_n + r_{n+1} & \text{con} & q_{n+1}, r_{n+1} \in R & \text{e} & r_{n+1} = 0. \end{array}$$

Allora

$$r_n = MCD(f, g).$$

2. Identità di Bézout: $f,g \in K[x] \setminus \{0\}$ sono coprimi se e solo se esistono polinomi $r,s \in K[x]$ tali che

$$1 = rg + sf$$

3.13 L'anello quoziente K[x]/(f).

Sia K un campo, e sia $f \in K[x]$ un polinomio. Nell'anello quoziente K[x]/(f) si ha $\overline{g} = \overline{h}$ se e solo se $g - h \in (f)$, dunque $\overline{g} = \overline{0}$ se e solo se f divide g. Inoltre \overline{g} è un elemento invertibile se e solo se f e g sono coprimi.

3.14 Esempio

I polinomi $f=x^4+x^2+2\,x+1$ e $g=x^3+1$ in $\mathbb{R}[x]$ sono coprimi, e $\frac{1}{2}(x^2-x+1)=\overline{g}^{-1}$ in $\mathbb{R}[x]/(f)$.

3.15 Zeri di polinomi

Sia K un campo, e sia $f \in K[x], f = \sum_{i=0}^{n} a_i x^i$. Per $\alpha \in K$ poniamo

$$f(\alpha) = \sum_{i=0}^{n} a_i \alpha^i.$$

L'elemento $\alpha \in K$ è detto zero (oppure radice) di f se $f(\alpha) = 0$.

Teorema di Ruffini. Sia K un campo. Un elemento $\alpha \in K$ è uno zero di un polinomio $f \in K[x]$ se e solo se il polinomio $x - \alpha$ divide f.

Corollario. Un polinomio $f \in K[x]$ di grado $n \ge 0$ su un campo K possiede al più n zeri distinti.

3.16 Definizione.

3.16 Definizione.

Siano $R \in R'$ due anelli. Un'applicazione $\varphi : R \to R'$ si dice:

- omomorfismo se per tutti gli elementi $a, b \in R$ si ha:

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$
$$\varphi(ab) = \varphi(a) \cdot \varphi(b)$$
$$\varphi(1_R) = 1_{R'}$$

- isomorfismo se φ è un omomorfismo biiettivo; in tal caso K e K' sono campi isomorfi e si scrive $K \cong K'$. OSSERVAZIONE: $\text{Ker}\varphi$ è un ideale di R e $\text{Im}\varphi$ è un sottoanello di R''.

Teorema Fondamentale dell'Omomorfismo Siano R, R' anelli e sia $\varphi : R \to R'$ un omomorfismo. Allora $R/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$.

3.17 Polinomi irriducibili di grado ≤ 3 .

Sia K un campo.

- (1) Ogni polinomio $f = a_0 + a_1 x$ di grado 1 è irriducibile e ammette l'unico zero $\alpha = -a_1^{-1}a_0 \in K$.
- (2) Se $f \in K[x]$ è un polinomio irriducibile di grado deg f > 1 allora f non ammette zeri.
- (3) Un polinomio $f \in K[x]$ di grado deg $f \in \{2,3\}$ è irriducibile se e solo se non ammette zeri.

Esempi. (1) $f = x^4 + 1 \in \mathbb{R}[x]$ non ammette zeri, ma è riducibile poiché $f = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$. $f = x^4 + x^2 + 1 \in \mathbb{F}_2[x]$ non ammette zeri, ma è riducibile poiché $f = (x^2 + x + 1)^2$. (1) $x^3 + x^2 + x + 1 = (x - 2)(x^2 + 1) \in \mathbb{Z}/3\mathbb{Z}[x]$ è una scomposizione in fattori irriducibili.

4 Estensioni di campi

4.1 Sottocampi, estensioni.

Sia $(F, +, \cdot)$ un campo. Un sottoinsieme non vuoto $K \subset F$ si dice sottocampo se K è un campo rispetto alle operazioni + e \cdot definite in F. In tal caso si dice anche che F è un'estensione di K.

OSSERVAZIONE: Un sottoinsieme $K \subset F$ è un sottocampo se e solo se:

- (i) (K, +) è un sottogruppo del gruppo abeliano (F, +),
- (ii) $(K \setminus \{0\})$ è un sottogruppo del gruppo abeliano $(F \setminus \{0\}, \cdot)$.

In tal caso F è anche uno spazio vettoriale su K rispetto alla moltiplicazione per scalari

$$k\cdot x=kx,\quad k\in K, x\in F$$

data dalla moltiplicazione in F. La dimensione di F come spazio vettoriale su K è detta grado dell'estensione e si indica con $[F:K] = \dim_K F$. Un'estensione si dice finita se $[F:K] < \infty$.

Esempi: (1) Se $\varphi : K \to F$ è un omomorfismo di campi, allora $\operatorname{Im} \varphi$ è un sottocampo di F (esercizio). (2) $\mathbb{R} \subset \mathbb{C}$ è un'estensione di campi di grado 2.

4.2 Teorema

Sia K un campo, e sia $f \in K[x]$ un polinomio di grado n. L'anello quoziente F = K[x]/(f) è un campo se e solo se il polinomio f è irriducibile.

In tal caso, identificando gli elementi di K con i polinomi costanti, possiamo interpretare $K \subset F$ come un'estensione di campi di grado [F:K] = n. Gli elementi

$$\overline{1}, \overline{x}, \overline{x}^2, \dots, \overline{x}^{n-1}$$

formano una base di F su K. Se K è un campo finito di q elementi, allora F è un campo finito di q^n elementi.

4.3 Esempi

- (1) Costruzione di \mathbb{C} : L'anello quoziente $\mathbb{R}[x]/(x^2+1)$ è isomorfo al campo dei numeri complessi \mathbb{C} . Un isomorfismo è dato dall'applicazione $a \cdot \overline{1} + b \cdot \overline{x} \mapsto a + ib$.
- (2) Il campo \mathbb{F}_4 : Per $K = \mathbb{Z}/2\mathbb{Z}$, $f = x^2 + x + 1$, otteniamo un campo di quattro elementi $F = \{0, 1, \alpha, \alpha^2\}$ dove $\alpha = \overline{x}$. Si osservi: l'elemento $\alpha \in F$ è uno zero del polinomio $f \in F[x]$, e F consiste degli zeri del polinomio $g = x^4 x = x(x-1) \cdot f$.

4.4 Teorema di Kronecker

Sia K un campo e sia $f \in K[x]$ di grado n > 0. Allora esiste un'estensione $K \subset F$ di grado $[F : K] \leq n$ nella quale f possiede uno zero $\alpha \in F$.

4.5 Campi di riducibilità completa.

Sia K un campo e sia $f \in K[x]$ un polinomio di grado n > 0. Allora esiste un'estensione $K \subset F$ di grado $[F:K] \leq n!$ tale che

- 1. $f = a(x \alpha_1)(x \alpha_2)...(x \alpha_n)$ con $a \in K, \alpha_1, \alpha_2, ..., \alpha_n \in F$.
- 2. Se $K \subset F' \subset F$ è un campo intermedio contenente $\alpha_1, \ldots, \alpha_n$, allora F' = F.

F è detto campo di riducibilità completa (o di spezzamento) di f su K ed è unico a meno di isomorfismo.

Esempio. Il campo F in 4.3 è il campo di riducibilità completa del polinomio $f = x^4 - x$ su $K = \mathbb{Z}/2\mathbb{Z}$.

5 Campi finiti

Si veda anche il capitolo 3 nel libro:

W. Cary Huffman, Vera Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press 2003.

5.1 La caratteristica.

(1) Dato un campo finito K, consideriamo l'applicazione

$$\Psi: \mathbb{Z} \to K, n \mapsto n \cdot 1 = \left\{ \begin{array}{ll} \underbrace{1_K + 1_K + \ldots + 1_K}_n & \text{se } n > 1 \\ 0_K & \text{se } n = 0 \\ \underbrace{-1_K - 1_K - \ldots - 1_K}_n & \text{se } n < 0 \end{array} \right.$$

Si ha $\Psi(n+m)=\Psi(n)+\Psi(m)$ e $\Psi(nm)=\Psi(n)\cdot\Psi(m)$ per $n,m\in\mathbb{Z},$ quindi Ψ è un omomorfismo di anelli.

Poiché K è finito, l'applicazione Ψ non è iniettiva, e $\{0\} \neq \text{Ker}\Psi = \{n \in \mathbb{Z} \mid \Psi(n) = 0_K\} \leq (\mathbb{Z}, +)$ è un ideale di forma $\text{Ker}\Psi = p\mathbb{Z}$ per un numero primo p.

Per il Teorema Fondamentale dell'Omomorfismo $\varphi: \mathbb{Z}/p\mathbb{Z} \to \operatorname{Im}\Psi, [n] \mapsto \Psi(n)$ è un isomorfismo di campi, quindi possiamo interpretare K come estensione finita di $\mathbb{Z}/p\mathbb{Z}$. Diremo che p è la caratteristica di K.

OSSERVAZIONE: Su un campo K di caratteristica $p \neq 0$ si ha:

- (1) Se $0 \neq x \in K$ e $m \in \mathbb{Z}$, allora $mx = 0_K$ se e solo se $m \in p\mathbb{Z}$.
- (2) $(x+y)^p = x^p + y^p$ per tutti gli $x, y \in K$.

5.2 Cardinalità di un campo finito.

Sia K è un campo finito.

- (1) Esistono un numero primo p e un numero $n \in \mathbb{N}$ tali che K possiede p^n elementi.
- (2) $x^{p^n} = x$ per ogni $x \in K$.
- (3) Se $K \subset F$ è un'estensione di campi, $f \in K[x]$ e $\alpha \in F$, allora $f(\alpha^{p^n}) = (f(\alpha))^{p^n}$.

5.3 Teorema di classificazione dei campi finiti

- 1. Per ogni numero primo p e ogni $n \in \mathbb{N}$ esiste un campo F di p^n elementi.
 - $F = \mathbb{F}_{p^n} = GF(p^n)$ è detto campo di Galois di ordine p^n e si ottiene come campo di riducibilità completa del polinomio $g = x^{p^n} x$ su $\mathbb{Z}/p\mathbb{Z}$. Più precisamente, F consiste degli zeri di g.
- 2. Ogni campo finito è isomorfo a un campo di Galois \mathbb{F}_{p^n} .

5.4 Lemma.

Ogni sottogruppo finito del gruppo moltiplicativo $(F \setminus \{0\}, \cdot)$ di un campo F è ciclico. In particolare, se $F = \mathbb{F}_q$, allora $(\mathbb{F}_q \setminus \{0\}, \cdot) \cong (\mathbb{Z}/(q-1)\mathbb{Z}, +)$.

14 6 POLINOMI MINIMI

5.5 Teorema dell'elemento primitivo.

Per ogni campo finito $F = \mathbb{F}_q$ esiste $\alpha \in F$ tale che

$$F = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{q-2}\}.$$

Inoltre $\alpha^i = 1$ se e solo se q - 1 divide i.

OSSERVAZIONE \mathbb{F}_q ha $\varphi(q-1)$ elementi primitivi, dove dove φ denota la funzione di Eulero, ovvero $\varphi: m \mapsto |\{a \in \mathbb{Z} \mid 1 \leq a < m, MCD(a, m) = 1\}|$, si veda 2.2.

5.6 Lemma

Dati un numero primo $p, m, n \in \mathbb{N}$, e $q = p^n$, $s = p^m$, si ha che s - 1 divide q - 1 se e solo se m divide n.

5.7 Sottocampi di campi finiti.

Dati un numero primo p e un numero naturale $n \in \mathbb{N}$, e $q = p^n$, si hanno i seguenti enunciati.

- 1. Se L è sottocampo di \mathbb{F}_q , allora L possiede $s=p^m$ elementi, dove m è un divisore di n.
- 2. Per ogni divisore positivo m di n esiste uno e un solo sottocampo L di \mathbb{F}_q di $s=p^m$ elementi. Si ha

$$L = \{ x \in \mathbb{F}_q \mid x^{p^m} = x \}.$$

5.8 Esempio

I sottocampi propri di $\mathbb{F}_{2^{24}}$ sono $\mathbb{F}_2, \mathbb{F}_{2^2}, \mathbb{F}_{2^4}, \mathbb{F}_{2^8}, \mathbb{F}_{2^3}, \mathbb{F}_{2^6}, \mathbb{F}_{2^{12}}$.

6 Polinomi minimi

Si veda anche il paragrafo 3.7 nel libro:

W. Cary Huffman, Vera Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press 2003.

6.1 Il polinomio minimo

Sia $K \subset F$ un'estensione di campi, e sia $\alpha \in F$. Si dice che α è un elemento algebrico su K se α è uno zero di un polinomio $f \in K[x] \setminus \{0\}$. In tal caso si hanno i seguenti enunciati:

- 1. Esiste uno e un solo polinomio $h \in K[x]$ monico e irriducibile tale che $h(\alpha) = 0$, detto polinomio minimo di α su K.
- 2. Per ogni $g \in K[x]$ si ha $g(\alpha) = 0$ se e solo se h divide g.
- 3. Il campo K[x]/(h) è isomorfo a un sottocampo

$$K(\alpha) = \{ f(\alpha) \mid f \in K[x] \}$$

di F. In particolare, $K \subset K(\alpha)$ è un'estensione di grado $d = \deg h$ con K-base 1, α , α^2 , ..., α^{d-1} .

6.2 Corollario 15

6.2 Corollario

Su un campo finito K esiste un polinomio irriducibile di grado m per qualsiasi $m \in \mathbb{N}$.

6.3 Campi di riducibilità completa di polinomi irriducibili su campi finiti.

Sia p primo, $m \in \mathbb{N}$, e sia $K = \mathbb{F}_s$ campo di $s = p^m$ elementi. Sia inoltre $h \in K[x]$ un polinomio monico irriducibile di grado d, e sia $q = s^d$. Allora

- 1. Se $K \subset F$ è un'estensione di campi che contiene uno zero α di h, allora h è già prodotto di fattori lineari in F[x].
- 2. \mathbb{F}_q è campo di riducibilità completa di h su K.
- 3. h divide il polinomio $x^q x$ in K[x].

6.4 Fattorizzazione di $x^q - x$.

Siano p primo, $m, t \in \mathbb{N}$, $s = p^m$, $q = s^t$, e sia $K = \mathbb{F}_s$.

- 1. Se h è il polinomio minimo di un elemento $\alpha \in \mathbb{F}_q$ su K, allora h divide il polinomio $x^q x$ in K[x], $d = \deg h$ divide t, e h possiede d zeri distinti in \mathbb{F}_q .
- 2. Se $\{h_1,\ldots,h_r\}$ è l'insieme di tutti i polinomi minimi di elementi di \mathbb{F}_q su K, allora

$$x^q - x = h_1 \cdot \ldots \cdot h_r$$
.

3. Se $\{f_1,\ldots,f_u\}$ è l'insieme di tutti i polinomi monici irriducibili in K[x] il cui grado divide t, allora

$$x^q - x = f_1 \cdot \ldots \cdot f_u$$
.

6.5 Corollario

Sia p primo, $m \in \mathbb{N}$, $s = p^m$, e sia $K \subset F$ un'estensione finita di $K = \mathbb{F}_s$. Se h è il polinomio minimo su K di un elemento $\alpha \in F$, allora

- 1. $d = \deg h$ è il minimo intero positivo tale che $\alpha^{pd} = \alpha$,
- 2. $\{\alpha^{s^{\ell}} \mid \ell = 0, 1, \dots, d-1\}$ sono i *d* zeri di *h* in *F*.

6.6 Laterali s-ciclotomici

Siano p primo, $m, t \in \mathbb{N}$, $s = p^m$, $q = s^t$, e sia $\mathbb{F}_q = \{0, 1, \gamma, \gamma^2, \dots, \gamma^{q-2}\}$ per un elemento primitivo γ . Per $\alpha = \gamma^i \in \mathbb{F}_q \setminus \{0\}$ e $n \in \mathbb{N}$ si ha

$$\alpha^{s^n} = \alpha$$
 se e solo se $[i \cdot s^n] = [i]$ in $\mathbb{Z}/(q-1)\mathbb{Z}$.

Se d è il minimo intero positivo con questa proprietà, l'insieme

$$C_i = \{i, is, is^2, \dots, is^{d-1}\}$$

è detto laterale s-ciclotomico di i modulo q-1.

 $\underline{\text{OSSERVAZIONE}} \text{ I laterali } s\text{-ciclotomici modulo } q-1 \text{ danno una partizione dell'insieme } \{0,1,\ldots,q-2\}.$

16 6 POLINOMI MINIMI

6.7 Calcolo del polinomio minimo.

Siano p primo, $m, t \in \mathbb{N}$, $s = p^m$, $q = s^t$, e sia $K = \mathbb{F}_s$. Sia inoltre γ un elemento primitivo di \mathbb{F}_q . Il polinomio minimo di $\alpha = \gamma^i$ su K è

$$h = \prod_{\ell \in C_i} (x - \gamma^{\ell}).$$

In particolare, deg $h = |C_i|$ e gli elementi $\gamma^{\ell}, \ell \in C_i$, hanno lo stesso polinomio minimo h.

6.8 Esempi

(1) Costruiamo \mathbb{F}_8 come $\mathbb{F}_2[x]/(x^3+x+1)$ con la base $1, \alpha, \alpha^2$ su \mathbb{F}_2 , dove $\alpha = \overline{x}$. Usando che

$$\alpha^3 + \alpha + 1 = 0$$

vediamo che gli elementi sono

$$0$$

$$1$$

$$\alpha$$

$$\alpha^{2}$$

$$1 + \alpha = \alpha^{3}$$

$$\alpha + \alpha^{2} = \alpha^{4}$$

$$1 + \alpha + \alpha^{2} = \alpha^{5}$$

$$1 + \alpha^{2} = \alpha^{6}$$

Calcolando i laterali 2-ciclotomici si possono raggruppare gli elementi con lo stesso polinomio minimo.

zeri	polinomio minimo	laterali 2-ciclotomici
0	X	
1	x+1	$C_0 = \{0\}$
$\alpha, \alpha^2, \alpha^4$	$x^3 + x + 1$	$C_1 = \{1, 2, 4\}$
$\alpha^3, \alpha^6, \alpha^5$	$x^3 + x^2 + 1$	$C_3 = \{3, 6, 5\}$

I polinomi nella colonna centrale si ottengono come

$$(x-\alpha)(x-\alpha^2)(x-\alpha^4) = \dots = x^3 + x + 1,$$

$$(x - \alpha^3)(x - \alpha^6)(x - \alpha^5) = \dots = x^3 + x^2 + 1.$$

Si verifichi che la scomposizione in fattori irriducibili è

$$x^{8} - x = x(x+1)(x^{3} + x + 1)(x^{3} + x^{2} + 1)$$

e si noti che la colonna centrale contiene tutti i polinomi monici irriducibili in $\mathbb{F}_2[x]$ di grado 1 e 3 (cioè il cui grado divide 3).

(2) I laterali 2-ciclotomici modulo 15 sono:

$$C_0 = \{0\}, C_1 = \{1, 2, 4, 8, \}, C_3 = \{3, 6, 12, 9\}, C_5 = \{5, 10\}, C_7 = \{7, 14, 13, 11\}.$$

Dunque $x^{15} - 1$ è prodotto di cinque polinomi irriducibili in $\mathbb{F}_2[x]$, e $x^{16} - x$ è prodotto di sei polinomi irriducibili in $\mathbb{F}_2[x]$: due di grado 1, uno di grado 2, e tre di grado 4.

Si trovino i laterali 4-ciclotomici modulo 15 e si verifichi che $x^{16} - x$ è prodotto di 10 polinomi irriducibili in $\mathbb{F}_4[x]$: quattro di grado 1 e sei di grado 2.

(3) Costruiamo \mathbb{F}_9 come $\mathbb{F}_3[x]/(x^2+2x+2)$ con la base $1, \alpha = \overline{x}$ su \mathbb{F}_3 . Come sopra si vede che

$$x^{9} - x = x(x+2)(x^{2}+2x+2)(x^{2}+1)(x+1)(x^{2}+x+2)$$

e la scomposizione contiene tutti i polinomi monici irriducibili di grado 1 e 2 in $\mathbb{F}_3[x]$. Si noti che $\alpha, \alpha^3, \alpha^5, \alpha^7$ sono elementi primitivi di \mathbb{F}_9 , vedi 5.5.

7 Polinomi ciclotomici

7.1 Radici *m*-esime dell'unità

Sia $m \in \mathbb{N}$ e sia K un campo finito la cui caratteristica p non divide m. Sia K_m il campo di riducibilità completa di $f = x^m - 1$ su K. Gli zeri di f si chiamano $radici \, m$ -esime dell'unità e formano un sottogruppo del gruppo $(K_m \setminus \{0\}, \cdot)$ di ordine $|E_m(K)| = m$ che indichiamo con $E_m(K)$.

Segue da 5.4 che $E_m(K)$ è un gruppo ciclico, quindi $E_m(K) \cong (\mathbb{Z}/m\mathbb{Z}, +)$.

Le radici m-esime dell'unità che generano il gruppo $E_m(K)$ sono dette radici primitive. Esse formano un sottoinsieme $P_m(K) \subset E_m(K)$ di ordine

$$|P_m(K)| = |\{a \in \mathbb{Z} \mid 1 \le a < m, MCD(a, m) = 1\}| = \varphi(m)$$

dove φ denota la funzione di Eulero, vedi 2.2.

7.2 Polinomi ciclotomici.

Sia dunque $P_m(K) = \{a_1, a_2, ..., a_{\varphi(m)}\}.$

Il polinomio

$$\phi_m = (x - a_1)(x - a_2) \cdot \dots \cdot (x - a_{\varphi(m)}) \in K_m[x]$$

si chiama $polinomio\ ciclotomico.$

Si ha $deg \ \phi_m = \varphi(m)$ e si dimostra $\phi_m \in K[x]$.

7.3 Esempi

	$\varphi(m)$	$E_m(\mathbf{K})$	$P_m(K)$	ϕ_m
m = 1	1	1	1	x-1
m=2	1	1, -1	-1	x+1
m = 3	2	$1, \alpha, \alpha^2$	α, α^2	$(x - \alpha)(x - \alpha^2) = x^2 + x + 1$

Si noti che $\phi_1 \cdot \phi_2 = x^2 - 1$ e $\phi_1 \cdot \phi_3 = x^3 - 1$.

7.4 Teorema sulla scomposizione in polinomi ciclotomici

Se $d_1, ..., d_r$ sono i divisori positivi di m, allora in K[x] abbiamo

$$x^m - 1 = \phi_{d_1} \cdot \phi_{d_2} \cdot \dots \cdot \phi_{d_r}$$

$\underline{DIMOSTRAZIONE}$

Sia d un divisore di m, m = dq. Allora $(x^d - 1)(x^{d(q-1)} + x^{d(q-2)} + ... + x^d + 1) = x^m - 1$.

Possiamo quindi considerare $E_d(K) = \{ \text{ zeri di } x^d - 1 \}$ come sottoinsieme di $E_m(K)$. Allora gli elementi di $P_d(K)$ appartengono a $E_m(K)$ e generano il sottogruppo $E_d(K)$ di ordine d, ovvero sono quegli elementi di $E_m(K)$ che hanno ordine d. D'altra parte ogni elemento di $E_m(K)$ ha come ordine un divisore di m poichè $|E_m(K)| = m$ (vedi capitolo 2). Otteniamo quindi

$$E_m(K) = P_{d_1}(K) \cup P_{d_2}(K) \cup ... \cup P_{d_r}(K)$$

Scomponendo (x^m-1) nei suoi fattori linerari e raggruppando tutti gli elementi di ordine d_1 , tutti gli elementi di ordine d_2 , ecc... vediamo che $x^m-1=\phi_{d_1}\phi_{d_2}...\phi_{d_r}$. \square

7.5 Corollario: calcolo ricorsivo dei polinomi ciclotomici

(1)
$$x^4 - 1 = \phi_1 \phi_2 \phi_4$$
 implies $\phi_4 = \frac{x^4 - 1}{\phi_1 \phi_2} = \frac{x^4 - 1}{x^2 - 1} = x^2 + 1$.

(2) Se
$$p$$
 è primo, $x^p - 1 = \phi_1 \phi_p = (x - 1)(x^{p-1} + x^{p-2} + \dots + x + 1)$ implica $\phi_p = x^{p-1} + x^{p-2} + \dots + x + 1$.

7.6 Esempio

Siano p primo e $n \in \mathbb{N}$. Se $K = \mathbb{Z}/p\mathbb{Z}$ e $m = p^n - 1$, allora $E_m(K) = \mathbb{F}_{p^n} \setminus \{0\}$.

Siano ad esempio p=2, n=4, quindi m=15. Abbiamo $x^{15}-1=\phi_1\phi_3\phi_5\phi_{15}\in K[x]$. Quanti fattori irriducibili possiede $x^{15}-1$?

 $\phi_1 = x - 1$ e $\phi_3 = x^2 + x + 1$ sono entrambi irriducibili su K.

Esaminiamo ϕ_5 . Il suo grado è $\deg(\phi_5) = \varphi(5) = 4$. Ogni suo fattore irriducibile f è (a meno di una costante) polinomio minimo di un elemento $\alpha \in P_5(K)$, ovvero di un elemento $\alpha \in E_{15}(K) = \mathbb{F}_{16} \setminus \{0\}$ che ha ordine 5. Per 6.5 (1) sappiamo che $\deg f = d$ è il minimo intero positivo tale che $\alpha^{2^d} = \alpha$, ovvero $\alpha^{2^d-1} = 1$. Dunque $d \leq \deg \phi_5 = 4$ ed è il minimo intero positivo tale che 5, l'ordine di α , divida $2^d - 1$. Abbiamo $\{2^d - 1 | d \leq 4\} = \{1, 3, 7, 15\}$ e concludiamo d = 4. Dunque ϕ_5 è irriducibile.

Esaminiamo adesso Φ_{15} . Il suo grado é $\varphi(15)=8$. I suoi fattori irriducibili sono (a meno di una costante) polinomi minimi di radici primitive quindicesime dell'unità, vale a dire di elementi di $\mathbb{F}_{16} \setminus \{0\}$ di ordine 15, e quindi hanno tutti grado d dove $d \leq 8$ è il minimo intero positivo tale che 15 divida $2^d - 1$. Come sopra segue $2^d - 1 = 15$ e d = 4. Ciò dimostra che Φ_{15} è prodotto di due polinomi irriducibili di grado 4.

In tutto abbiamo quindi 1+1+1+2=5 fattori irriducibili, come già visto in 6.8(2).