
Semantics of Programming Languages -

Autumn 2004

Matthew Hennessy

Course Notes by Guy McCusker

Note: Not all the topics in these notes will be covered
in Autumn 2007 course

1 Introduction

As computer scientists, we are constantly talking about programs. We want
to write programs that are “right”, and we want to be able to describe
programs to other people, without having to show them the code. Some
ways in which we might describe programs are given in Slide 1.

Describing Programs

Syntax: what sequences of characters constitute

programs? Grammars, lexers, parsers, automata

theory. . .

Pragmatics: what does a given program make the

computer do? Informal descriptions. Compilers?

Semantics: what does a program mean? When are

two programs equivalent? When does a program

satisfy its specification?

Slide 1

This course is about a formal, mathematical approach to semantics. The
idea is to assign to a program a precise description of its meaning. A very
important notion is that of equivalence between programs: we can hardly
claim to know what a program means if we are not sure when two programs
mean the same! Related issues include correctness of programs with respect
to specifications, and the intuitively obvious notion of one program being an
improvement of another.

Slide 2 gives a pair of programs that might be considered equivalent. But
are they? What does that mean anyway?

Equivalent Programs?

Is the method

int add1(int x, int y)

{ return (x + y);

}

equivalent to

int add2(int x, int y)

{ return (y + x);

}

Slide 2

It turns out to be annoyingly hard to give a precise description of a program,
or rather of the collection of programs in a given language, as we will see.
However, it is a worthwhile activity: see Slide 3 for some reasons.

The disadvantages of reliance on informal descriptions should be obvious:
descriptions in the English language are usually ambiguous and can be hard
to understand. See Slide 4 for an example from the Algol 60 report [NBB+63].

That description is awful, for several reasons. Here are two.

• It is gobbledygook.

• Despite its best efforts, it is imprecise: notice the word “suitable”
towards the end. What is suitable is left to the reader’s interpretation.

You can see people arguing about the definition of Algol 60 on comp.compilers
to this day.

Benefits of Formal Semantics

Implementation: correctness of compilers, including

optimisations, static analyses etc.

Verification: semantics supports reasoning about

programs, specifications and other properties, both

mechanically and by hand.

Language design: subtle ambiguities in existing

languages often come to light, and cleaner, clearer

ways of organising things can be discovered.

Slide 3

Informal Descriptions

An extract from the Algol 60 report:

Finally the procedure body, modified as above, is

inserted in place of the procedure statement and

executed. If a procedure is called from a place

outside the scope of any nonlocal quantity of the

procedure body, the conflicts between the identifiers

inserted through this process of body replacement

and the identifiers whose declarations are valid at

the place of the procedure statement or function

designator will be avoided through suitable

systematic changes of the latter identifiers.

Slide 4

1.1 Styles of Semantics

There are several different, complementary styles of formal semantics. Three
of the most important are denotational, operational and axiomatic semantics.
We shall have at least a quick look at each of these styles.

Styles of Semantics

Denotational: a program’s meaning is given

abstractly as an element of some mathematical

structure (some kind of set).

Operational: a program’s meaning is given in terms

of the steps of computation the program makes

when you run it.

Axiomatic: a program’s meaning is given indirectly

in terms of the collection of properties it satisfies;

these properties are defined via a collection of

axioms and rules.

Slide 5

The effort to make semantics precise has been underway since the late 1960s,
and many deep and interesting discoveries have been made. However, we are
a very long way from having a complete, usable theory of programming
language semantics which accommodates the prevalent features of modern
languages. So be warned: the languages we consider on this course will be
very simplistic.

2 A Language of Expressions

Let us begin by considering a very simple language of arithmetic expressions.
This example will serve to illustrate some of the ideas behind the various
kinds of semantics, and will provide a simple setting in which to introduce
inductive definitions and proofs slightly later on.

A grammar for a simple language Exp of expressions is given on Slide 9.

We all know what these things mean intuitively, and we expect that, for
example, (3 + 7) and (5× 2) mean the same thing.

The state of the art

Denotational: successful research has focused on

very simple imperative languages and vastly

complex but seldom-used functional languages.

Operational: most sequential languages and some

concurrent languages can be given operational

semantics, but the theory tends to be hard to use.

Axiomatic: beyond simple imperative languages,

little has been done.

Slide 6

This course: semantics

We will consider:

• operational, axiomatic and denotational semantics

for a very simple imperative language;

• ways of proving facts about the semantics; and

• connections between the various semantics.

Slide 7

This course: maths

There will be some mathematics along the way:

• mathematical induction; and

• structural induction.

Slide 8

Syntax of Exp

E ∈ Exp ::= n | (E + E) | (E × E) | · · ·

where n ranges over the numerals 0, 1, We can add

more operations if we need to.

We will always work with abstract syntax. That is, we

assume all programs have already been parsed, so the

grammar above defines syntax trees rather than

concrete syntax.

Slide 9

Numbers vs Numerals Notice that we use typewriter font for the numer-
als, to distinguish them from the numbers 0, 1 and so on. The numbers are
the mathematical entities which we use in everyday life, while the numerals
are just syntax for describing these numbers. Thus, we can add numbers to-
gether, but not numerals; but we can write a program in Exp which computes
the result of “adding a pair of numerals”.

The distinction between numerals and numbers is subtle, but important,
because it is one manifestation of the difference between syntax and seman-
tics. The difference should become clearer once we have studied the various
semantics which follow.

Abstract vs Concrete Syntax Saying that we are using abstract syntax
means that all our programs are parsed before we start to worry about them.
In this course, we will never be worried about where the brackets are in an
expression like

3 + 4× 5

because we will never deal with such unparsed expressions.

Using abstract syntax in fact means we’re dealing with trees such as

×

+

3 4

5

although we use linear syntax like ((3 + 4) × 5) for them.

In this course, brackets don’t matter because we’re always using the linear
syntax as a shorthand for the abstract, tree-based syntax. But of course,
when there’s ambiguity about what abstract syntax tree is meant by a par-
ticular piece of linear “shorthand”, insert brackets if you think it will help.

Note that taking an abstract, tree-view of syntax makes it clear that +, ×
and so on are program-forming operations: they take two programs and give
you a new one. One of the points of semantics, particularly denotational
semantics, is to show that these operations on programs have corresponding
operations on meanings.

2.1 Operational Semantics for Exp

An operational semantics for Exp will tell us how to evaluate an expression
to get a natural number. This can be done in two ways:

• small-step, or structural, operational semantics gives a method for eval-
uating an expression step-by-step

• big-step, or natural, operational semantics ignores the intermediate
steps and gives the result immediately.

Let us consider big-step semantics first. The big-step semantics for Exp

takes the form of a relation ⇓ between expressions and values, which are
those expressions we deem to be a “final answer”. In this case, it seems
obvious that final answers should be numerals, so we will define a relation of
the form

E ⇓ n

where E is an expression and n is a numeral.

Should I have set this up as a relation between expressions and numbers?
Perhaps, but for more sophisticated languages, it will be necessary to have
pieces of syntax on the right hand side of the relation, so this is a more
consistent approach.

Big-Step Semantics of Exp

(b-num)

n ⇓ n

(b-add)
E1 ⇓ n1 E2 ⇓ n2

n3 = n1 + n2
(E1 + E2) ⇓ n3

There will be similar rules for multiplication and any

other operations we add.

Slide 10

Notice that the side-condition for the rule for addition, (b-add), talks about the
addition operation on numbers in order to define the semantics of addition of
numerals. Note also that we are assuming that the correspondence between
numerals and numbers is understood. If we wanted to give a semantics in
which the numeral 3 denoted the number 918, we would have to say so
somewhere! Strictly speaking we ought to say that 3 denotes 3, and so on.

What does this definition mean? Intuitively, a rule such as

E1 ⇓ V1 E2 ⇓ V2

E3 ⇓ V3

means that if it is the case that E1 ⇓ V1 and also E2 ⇓ V2, then it is the case
that E3 ⇓V3. When there are no entries above the line, the rule is an axiom,
which is to say, it always holds.

Anatomy of a Rule

(rule-name)
hypothesis hypothesis

side-condition
conclusion

Slide 11

The rules define a relation ⇓ which says when an expression evaluates to a
final answer. E ⇓ n is in this relation, or holds, only if it can be established
from the axioms and rules. So, if we want to assert that, for example,
(3+(2+1))⇓ 6, we need to show this to be the case by applying the axioms
and rules given in the definition of ⇓. A proof is given on Slide 15; note
that each step in the proof is justified by a reference to a rule in the big-step
semantics, from Slide 10

2.2 Small-step Semantics

The big-step semantics given above tells us what the final value of an ex-
pression is straight away. The rules give us a clue as to how to compute the
answer, but sometimes it is desirable to be more explicit about exactly how
programs are evaluated. A small-step semantics lets us do just this.

We shall define a relation
E → E′

saying what you get when performing one step of evaluation of E. The
definition is given on Slide 16.

How to Read Axioms

The axiom

(b-num)

n ⇓ n
says:

for every numeral n, it is the case that n ⇓ n.

Notice that n is a kind of variable: you can put any

numeral you like in its place. These are called

metavariables.

Slide 12

How to Read Rules

The rule

(b-add)
E1 ⇓ n1 E2 ⇓ n2

n3 = n1 + n2
(E1 + E2) ⇓ n3

says

for any expressions E1 and E2,

if it is the case that E1 ⇓ n1

and if it is the case that E2 ⇓ n2

then it is the case that (E1 + E2) ⇓ n3

where n3 is the numeral such that n3 = n1 + n2.

Slide 13

Rules are Schemas

Because the Es and ns in these rules are metavariables,

each rule is really a schema (pattern) for an infinite

collection of rules. Some of these instances are a bit

silly, for example:

3 ⇓ 4 4 ⇓ 5

(3 + 4) ⇓ 9

This rule is valid, but is useless, because it is not the

case that 3 ⇓ 4. That is to say, the hypotheses of the

rule are not satisfied.

Slide 14

A proof that (3 + (2 + 1)) ⇓ 6

(b-num)
3 ⇓ 3

(b-num)
2 ⇓ 2

(b-num)
1 ⇓ 1

(b-add)
(2 + 1) ⇓ 3

(b-add)
(3 + (2 + 1)) ⇓ 6

Slide 15

Small-step semantics of Exp

(s-left)
E1 → E′

1

(E1 + E2) → (E′

1 + E2)

(s-right)
E → E′

(n + E) → (n + E′)

(s-add)
where n3 = n1 + n2

(n1 + n2) → n3

Slide 16

These rules say: to evaluate an addition, first evaluate the left hand argu-
ment; when you get to a numeral, evaluate the right hand argument; when
you get to a numeral there too, add the two together to get a numeral. Note
that there are no rules to evaluate numerals, because they have already been
fully evaluated.

Consider the expression (3+(2+1)). By the axiom, the rule (s-add), we have
2+ 1→ 3, so by the second rule, (s-right), (3+(2+ 1))→ (3+ 3). The axiom
(s-add) also says that (3 + 3) → 6, so we have

(3 + (2 + 1)) → (3 + 3) → 6.

It is important to realise that the order of evaluation is fixed by this seman-
tics, so that

((1 + 2) + (3 + 4)) → (3 + (3 + 4))

and not to ((1 + 2) + 7). The big-step semantics did not, and could not,
make such a stipulation.

Exercise Write down all the expressions E in the language Exp (with
addition as the only operator) such that E → ((1 + 2) + 7). (There are not
too many of them!)

2.2.1 Getting the final answer

While the intermediate expressions of a computation are interesting, we are
ultimately concerned with the final answer yielded by evaluating an expres-
sion. To capture this mathematically, we need to consider the relation which
expresses multiple-step evaluations. See Slide 17.

Many steps of evaluation

Definition Given a relation → we define a new

relation →∗ as follows. E →∗ E′ holds if and only if

either E = E′ (so no steps of evaluation are needed to

get from E to E′) or there is a finite sequence

E → E1 → E2 · · ·→ Ek → E′.

This is called the reflexive transitive closure of →.

For our expressions, we say that n is the final answer of

E if E →∗ n.

Slide 17

2.3 Denotational Semantics

As we have seen, operational semantics talks about how an expression is
evaluated to an answer. Denotational semantics, on the other hand, has
grander aspirations. A denotational model attempts to say what a piece of
program text “really means”.

In the case of expressions, a piece of program text “is really” a number, so we
will define a function [[−]], such that for any expression E, [[E]] is a number,
giving the meaning of E. Therefore, [[−]] will be a function from expressions
to numbers, and we write

[[−]] : Exp → N

where N is the set of natural numbers.

Given a model like this, N is called the semantic domain of Exp, which
just means it is the place where the meanings live. As we come to study
more complex languages, we will find that we need more complex semantic

Denotational semantics

We will define the denotational semantics of expressions

via a function

[[−]] : Exp → N.

Slide 18

domains. The construction and study of such domains is the subject of
domain theory, an elegant mathematical theory which provides a foundation
for denotational semantics; unfortunately domain theory is beyond the scope
of this course.

For now, notice that our choice of semantic domain has certain consequences
for the semantics of our language: it implies that every expression will
“mean” exactly one number, so without even seeing the definition of [[−]],
someone looking at our semantics already knows that the language is (ex-
pected to be) normalising (every expression has an answer) and deterministic
(each expression has at most one answer).

It is easy to give a meaning to numerals:

[[n]] = n.

Note again the difference between numerals and numbers, or syntax and
semantics.

For addition expressions (E1 + E2), the meaning will of course be the sum
of the meanings of E1 and E2:

[[(E1 + E2)]] = [[E1]] + [[E2]].

We could make similar definitions for multiplication and so on.

We have defined [[−]] by induction on the structure of expressions: see Sec-
tion 3.

Denotation of expressions

Here is the definition of our semantic function. We will

see later on that this is an example of definition by

structural induction.

[[n]] = n.

[[(E1 + E2)]] = [[E1]] + [[E2]].

Slide 19

2.3.1 Remarks

1. The semantic domain is entirely separate from the syntax: the set of
natural numbers is a mathematical entity in its own right.

2. The meaning of a compound term like (E1 + E2) is given in terms of
the meanings of its subterms. Hence we have really given a meaning to
the term forming operation (. . .+ . . .). In this case the meaning of the
syntactic + is the usual addition function. We call a semantics com-
positional when it has this property, which lets us calculate meanings
bit by bit, starting from the numerals and working up. Slide 20 shows
an example of a calculation.

The denotational semantics for expressions is particularly easy to work with,
and much less cumbersome than the operational semantics. For example, it
is easy to prove simple facts such as the following.

Theorem 1 For all E1, E2 and E3,

[[(E1 + (E2 + E3))]] = [[((E1 + E2) + E3)]].

Proof See Slide 21. !

Exercise Show a similar fact using the operational semantics.

Calculating Semantics

[[(1 + (2 + 3))]] = [[1]] + [[(2 + 3)]]

= 1 + [[(2 + 3)]]

= 1 + (2 + 3)

= 6.

Slide 20

Associativity of addition

[[(E1 + (E2 + E3))]] = [[E1]] + [[(E2 + E3)]]

= [[E1]] + ([[E2]] + [[E3]])

= ([[E1]] + [[E2]]) + [[E3]]

= [[(E1 + E2)]] + [[E3]]

= [[((E1 + E2) + E3)]].

Slide 21

2.4 Contextual Equivalence

We shall now introduce a very important idea in semantics, that of contextual
equivalence.

One thing we might expect of equivalent programs is that they can be used
interchangeably. That is, if P1

∼= P2 and P1 is used in some context, C[P1],
then we should get the same effect if we replace P1 with P2: we expect
C[P1] ∼= C[P2].

To make this more precise, we say that a context C[−] is a program with a
hole where you would ordinarily expect to see a sub-program. Some contexts
for Exp are given on Slide 22.

Some Exp contexts

• C1[−] = −.

• C2[−] = (− + 2).

• C3[−] = ((− + 1) + −).

Slide 22

Notice that the hole can appear more than once. Given any expression E
we can fill the hole with E simply by writing E wherever the hole appears,
yielding a new expression. The results of filling the holes with the expression
(3 + 4) are given on Slide 23.

Contextual equivalence is usually defined in terms of an operational seman-
tics. The definition in terms of big-step semantics is given on Slide 24.

For a simple language like Exp, contextual equivalence doesn’t mean very
much—it turns out that two expressions are contextually equivalent if and
only if they have the same final answer. In general, though, it is a very
important notion. To see this, think about the following two pieces of code
which compute factorials: see Slides 25 and 26.

Filling the holes

• C1[(3 + 4)] = (3 + 4).

• C2[(3 + 4)] = ((3 + 4) + 2).

• C3[(3 + 4)] = (((3 + 4) + 1) + (3 + 4)).

Slide 23

Contextual equivalence

Expressions E1 and E2 are contextually equivalent with

respect to the big-step semantics if for all contexts C[−]

and all numerals n,

C[E1] ⇓ n ⇐⇒ C[E2] ⇓ n.

Slide 24

Factorial 1

int fact(int x) {

int i = 1;

int j = x;

while (j > 0) {

i = i * j;

j = j - 1;

}

return i;

}

Slide 25

Factorial 2

int fact(int x) {

if (x <= 0)

{ return 1; }

else

{ return (x * fact(x - 1));}

}

Slide 26

These two pieces of code apparently do the same thing: they each take an
integer argument and return its factorial. Whether these pieces of code are
contextually equivalent or not depends on what contexts are available, which
of course depends on the programming language.

If these two pieces of code, with syntax suitably altered, were in ML, they
would indeed be equivalent. In Java, on the other hand, they are not.

Exercise Give a Java context which distinguishes these two pieces of code.
(Hint: think about overriding the fact() method.)

2.4.1 Compositionality and Contextual Equivalence

Recall that the denotational semantics is compositional, that is, the meaning
of a large phrase is built out of the meanings of its subphrases. It follows
that each context determines a “function between meanings” i.e. for each
C[−] there is a function f : N → N such that

[[C[E]]] = f([[E]])

for any expression E.

For us, the most important consequence of this is that

if [[E1]] = [[E2]] then [[C[E1]]] = [[C[E2]]] for all C[−].

Therefore, if we can show something like

[[E]] = n ⇐⇒ E ⇓ n

we can use our semantics to reason about contextual equivalence; that is,
we will know that denotationally equivalent phrases are in fact contextually
equivalent. For Exp, this is indeed the case.

Theorem 2 For all expressions E, [[E]] = n if and only if E ⇓ n.

For more interesting languages, the relationship between operational and
denotational semantics can be more subtle, but the principle of composition-
ality allows the denotational model to be used to reason about contextual
equivalence in just the same way.

3 Induction

In the definition of the denotational semantics above, we used the principle
of structural induction for abstract syntax trees. We are going to use a lot of

Our first correspondence theorem

For all expressions E, [[E]] = n if and only if

E ⇓ n.

Slide 27

inductive techniques in this course, both to give definitions and to prove facts
about our semantics. So, it’s worth taking a little while to set out exactly
what a proof by induction is, what a definition by induction is, and so on.

Very often in computer science, and (less often) in life in general, we come
up against the problem of reasoning about unknown entities. For example,
when designing an algorithm to solve a problem, we want to know that the
result produced by the algorithm is correct, regardless of the input:

The quicksort algorithm takes a list of numbers and puts them
into ascending order.

In this example, we know that the algorithm operates on a list of numbers,
but we do not know how long that list is or exactly what numbers it contains.
Similarly one may raise questions about depth-first search of a tree: how do
we know it always visits all the nodes of a tree if we do not know the exact
size and shape of the tree?

In examples such as these, there are two important facts about the input
data which allow us to reason about arbitrary inputs:

• the input is structured in a known way; for example, a non-empty list
has a first element and a “tail”, which is the rest of the list, and a
binary tree has a root node and two subtrees.

• the input is finite.

In this situation, the technique of structural induction provides a principle
by which we may formally reason about arbitrary lists, trees and so on.

What’s induction for?

Induction is a technique for reasoning about and

working with collections of objects (things!) which are

• structured in some well-defined way,

• finite but arbitrarily large and complex.

Induction exploits the finite, structured nature of these

objects to overcome the arbitrary complexity.

Slide 28

These kinds of structured, finite objects arise in many areas of computer sci-
ence. Data structures as above are a common example, but in fact programs
themselves can be seen as structured finite objects. This means that induc-
tion can be used to prove facts about all programs in a certain language. In
semantics, we use this very frequently. We will also make use of induction
to reason about purely semantic notions, such as derivations of assertions in
the operational semantics of a language.

3.1 Mathematical Induction

The simplest form of induction is mathematical induction, that is to say, in-
duction over the natural numbers. The principle can be described as follows.

Given a property P (−) of natural numbers, to prove that P (n) holds for all
natural numbers n, it is enough to

• prove that P (0) holds, and

• prove that if P (k) holds for an arbitrary natural number k,
then P (k + 1) holds too.

It should be clear why this principle is valid: if we can prove the two things
above, then we know

You can use induction. . .

. . . to reason about things like

• natural numbers: each one is finite, but natural

numbers could be arbitrarily big

• data structures such as trees, lists and so on

• programs in a programming language: again, you

can write arbitrarily large programs, but they are

always finite

• derivations of semantic assertions like E ⇓ 4: these

derivations are finite trees of axioms and rules.

Slide 29

Proof by Mathematical Induction

Let P (−) be a property of natural numbers. The

principle of mathematical induction states that if

P (0) ∧ [∀k.P (k) =⇒ P (k + 1)]

holds then

∀n.P (n)

holds.

k is the induction parameter

Slide 30

Writing an inductive proof

To prove that P (n) holds for all natural numbers n, we

must do two things.

Base Case: prove that P (0) holds, any way you like

Inductive Step: let k be an arbitrary number, and

assume that P (k) holds. This assumption is called

the inductive hypothesis or IH, with parameter k.

Using this assumption, prove that P (k + 1) holds.

Slide 31

• P (0) holds.

• Since P (0) holds, P (1) holds.

• Since P (1) holds, P (2) holds.

• Since P (2) holds, P (3) holds.

• And so on. . .

Therefore, P (n) holds for any n, regardless of how big n is.

This conclusion can only be drawn because every natural number can be
reached by starting at zero and adding one repeatedly. The two elements of
the induction can be read as saying

• Prove that P is true at the place where you start, i.e. zero.

• Prove that the operation of adding one preserves P , that is, if P (k) is
true then P (k + 1) is true.

Since every natural number can be “built” by starting at zero and adding
one repeatedly, every natural number has the property P : as you build the
number, P is true of everything you build along the way, and it’s still true
when you’ve built the number you’re really interested in.

3.1.1 Induction in Practice

So, how do we write down a proof by induction? If we need to prove P (n)
for all natural numbers n, we do the following:

Base case: Prove directly that P (0) holds. This can be done any way you
like!

Inductive Step: Prove that P (k + 1) holds, using the assumption that
P (k) holds. That is to say

assume P (k), and use this assumption to prove P (k + 1).

In the second step above, the assumption, P (k), is called the inductive hy-
pothesis or IH. The idea is that k is some natural number about which we
know nothing except that P (k) holds. Our task is to use only this informa-
tion to show that P (k + 1) also holds.

Another way to think of this is

try to reduce the problem of showing that P (k + 1) holds to the
problem of showing that P (k) holds.

3.1.2 Example

Here is perhaps the simplest example of a proof by mathematical induction.
We shall show that

n
∑

i=0

i =
n2 + n

2
.

So here our property P (n) is

the sum of numbers from 0 to n inclusive is equal to
n2 + n

2
.

Base case: The base case, P (0), is

the sum of numbers from 0 to 0 inclusive is equal to
02 + 0

2
,

which is 0.

This is obviously true, so the base case holds.

Inductive Step: Here the inductive hypothesis, IH for parameter k, is the
statement P (k):

the sum of numbers from 0 to k inclusive is equal to
k2 + k

2
.

From this inductive hypothesis, with parameter k, we must prove that

the sum of numbers from 0 to k + 1 inclusive is equal to
(k + 1)2 + (k + 1)

2
.

The proof is a simple calculation.

k+1
∑

i=0

i = (
k

∑

i=0

i) + (k + 1)

=
k2 + k

2
+ (k + 1) using IH for k

=
k2 + k + 2k + 2

2

=
(k2 + 2k + 1) + (k + 1)

2

=
(k + 1)2 + (k + 1)

2

which is what we had to prove.

3.1.3 Defining Functions and Relations

As well as using induction to prove properties of natural numbers, we can
use it to define functions which operate on natural numbers.

Just as proof by induction proves a property P (n) by considering the case of
zero and the case of adding one to a number known to satisfy P , so definition
of a function f by induction works by giving the definition of f(0) directly,
and building the value of f(k + 1) out of f(k).

All this is saying is that if you define the value of a function at zero, by giving
some a, and you show how to calculate the value at k + 1 from that at k,
then this does indeed define a function. This function is “unique”, meaning
that it is completely defined by the information you have given—there is no
choice about what f can be.

Roughly, the fact that we use f(k) to define f(k + 1) in this definition cor-
responds to the fact that we assume P (k) to prove P (k + 1) in a proof by
induction.

For example, Slide 33 gives an inductive definition of the factorial function
over the natural numbers.

Slide 34 contains another definitional use of induction. We have already
seen, in Slide 16, the effect of one computation step on expressions E from
Exp. This is represented as a relation E → E′ over expressions. Suppose

Definition by induction

You can define a function f on natural numbers by

Base Case: giving a value for f(0) directly

Inductive Step: giving a value for f(k + 1) in terms

of f(k).

Slide 32

Inductive definition of factorial

• fact(0) = 1.

• fact(k + 1) = (k + 1) × fact(k).

Slide 33

we wanted to define what is the effect of k reduction steps, for any natural
number k. This would mean defining a family of relations →k, one for each
natural number k. Intuitively E→k E′ is supposed to mean that by applying
exactly k computation rules to E we obtain E′.

A formal definition of these relations can be given by induction on k. In
Slide 34 we see a definition with two clauses. The first defines the relation
→0 outright. In zero steps an expression remains untouched, so E →0 E, for
every expression E. In the second clause the relation →(k+1) is defined in
terms of →k It says that E reduces to E′ in (k + 1) steps if

• there is some intermediary expression E′′ to which E reduces to in k
steps

• this intermediary expression E′′ reduces to E′ in one step.

The principle of induction now says that each of the infinite collection of
relations →k are well-defined.

Multi-step reductions in Exp

• E →0 E for every expression E in Exp

• E →(k+1) E′ if there is some E′′ such that

– E →k E′′

– and E′′ → E′.

Slide 34

3.2 A Structural View of Mathematical Induction

We said in the last section that mathematical induction is a valid principle
because every natural number can be “built” using zero as a starting point
and the operation of adding one as a method of building new numbers from

old. We can turn mathematical induction into a form of structural induction
by viewing numbers as elements of the following grammar:

N ::= zero | succ(N).

Here succ, short for successor, should be thought of as the operation of adding
one. Therefore zero represents 0, and 3 is represented by

succ(succ(succ(zero))).

With this view, it really is the case that a number is built by starting from
zero and repeatedly applying succ. Numbers, when thought of like this, are
finite, structured objects. The structure can be described as follows.

A number is either zero, which is indecomposable, or has the form
succ(N), where N is another number.

(We might refer to this N as a sub-number, since it is a substructure of
the bigger number; but in this case that nomenclature is very unusual and
clumsy.)

The principle of induction now says that to prove P (N) for all numbers N ,
it suffices to do two things.

Base case: Prove that P (zero) holds.

Inductive Step: The IH (inductive hypothesis) is that P (K) holds for
some number K. From this IH prove that P (succ(K)) also holds.

This is summarised in Slideslide:structural-mathematical-induction

3.2.1 In Practice. . .

Again, in practice an inductive proof looks like this:

Base case: Prove that P (zero) holds.

Inductive Step: Assume P (K) holds for some K; this is the inductive
hypothesis for K. From this assumption prove that P (succ(K)) also
holds.

Note that when trying to prove P (succ(K)), the inductive hypothesis tells
us that we may assume P holds of the substructure of succ(K), that is, we
may assume P (K) holds.

This principle is identical to the one above, but written in a structural way.
The reason it is valid is the same as before:

Structural view Mathematical Induction

A grammar for natural numbers

N ::= zero | succ(N).

Base case: Prove P (zero) holds.

Inductive Step: IH is that P (K) holds for some K.

Assuming IH, prove that P (succ(K)) follows.

Conclusion: P (N) is true for every number N

Slide 35

• P (zero) holds,

• so P (succ(zero)) holds,

• so P (succ(succ(zero))) holds,

• so P (succ(succ(succ(zero)))) holds,

• and so on. . .

That is to say, we have shown that every way of building a number preserves
the property P , and that P is true of the basic building block zero, so P is
true of every number.

3.2.2 Defining Functions

The principle of defining functions by induction works for this representation
of the natural numbers in exactly the same way as before. To define a
function f which operates on these numbers, we must

• Define f(zero) directly

• Define f(succ(K)) in terms of f(K).

In this presentation, the definition of f(succ(K)) looks very much like a
recursive definition in ML, with the proviso that the recursive call must be
to f(K).

3.3 Structural Induction for Binary Trees

Binary trees are a commonly used data structure. Roughly, a binary tree is
either a single leaf node, or a branch node which has two subtrees. That is,
trees take the form

or

T1 T2

Here T1 and T2 are the two subtrees of the bigger tree. For example,

is one such composite tree, in which both of the subtrees are leaf nodes.
Another example is

Here the left subtree is a single leaf node, while the right subtree is the simple
composite tree from above.

To make it easier to talk about trees like this, let us introduce a BNF-like
syntax for them, similar to that for arithmetic expressions. See Slide 36.

A syntax for binary trees

bTree ::= Node | Branch(bTree, bTree)

Note similarity with arithmetic expressions

Slide 36

In this syntax, the four trees above are written as

Node,

Branch(T1, T2),

Branch(Node, Node),

and
Branch(Node, Branch(Node, Node))

respectively.

The principle of structural induction over binary trees states that to prove a
property P (T) for all trees T , it is sufficient to do the following two things:

Base case: Prove that P (Node) holds.

Inductive Step: The inductive hypothesis IH is that P (T1) and P (T2)
hold for some arbitrary trees T1 and T2. Then from this assumption
prove that P (Branch(T1, T2)) also holds.

Again, in the inductive step, we assume that the property holds of T1 and
T2 and use this assumption to prove that it holds of Branch(T1, T2). The
conclusion is that P (T) is true for every tree T .

To put this another way: to do a proof by induction on the structure of trees,
consider all possible cases of what a tree can look like. The grammar above
tells us that there are two cases.

Structural Induction on Binary Trees

To prove a property P (−) of all binary trees, we must

do two things.

Base case: Prove that P (Node) holds.

Inductive Step: The inductive hypothesis IH is that

P (T1) and P (T2) hold for some arbitrary trees T1

and T2. Assuming IH prove that P (Branch(T1, T2))

follows.

The conclusion is that P (T) is true of all trees T .

Slide 37

• The case of Node. Prove that P (Node) holds directly.

• The case of Branch(T1, T2). In this case, the inductive hypothesis says
that we may assume that P (T1) and P (T2) hold while we are trying to
prove P (Branch(T1, T2)). We do not know anything else about T1 and
T2: they could be any size or shape, as long as they are binary trees
which satisfy P .

3.3.1 Defining Functions

Using exactly the same principle as before, we may give definitions of func-
tions which take binary trees as their arguments, by induction on the struc-
ture of the trees.

As you can probably guess by now, to define a function f which takes an
arbitrary binary tree, we must

• Define f(Node) directly.

• Define f(Branch(T1, T2)) in terms of f(T1) and f(T2).

This is summarised in Slide 38

Again this definition looks like a recursive function definition in ML, with
the proviso that we may make recursive calls only to f(T1) and f(T2). That

Defining functions over binary trees

To define a function f on binary trees we must

Base Case: give a value for f(Node) directly

Inductive Step: define f(Branch(T1, T2), using (if

necessary) f(T1) and f(T2).

f(T) is then defined for every tree T .

Slide 38

is to say, the recursive calls must be with the immediate subtrees of the tree
we are interested in.

Another way to think of such a function definition is that it says how to
build up the value of f(T) for any tree, in the same way that the tree is
built up. Since any tree can be built starting with some Nodes and putting
things together using Branch(−,−), a definition like this lets us calculate
f(T) bit-by-bit.

3.3.2 Example

Here is an example of a pair of inductive definitions over trees, and a proof
of a relationship between them.

We first define the function leaves which returns the number of leaf Nodes in
a tree.

Base case: leaves(Node) = 1.

Inductive Step: leaves(Branch(T1, T2)) = leaves(T1) + leaves(T2).

We now define another function, branches, which counts the number of
Branch(−,−) nodes in a tree.

Base case: branches(Node) = 0.

Inductive Step: branches(Branch(T1, T2)) = branches(T1)+branches(T2)+
1.

Let us illustrate how branches works. Consider the tree

Branch(Branch(Node, Node), Node)

which looks like

This clearly has two branch nodes. Let us see how the function branches
calculates this by building this tree up from the bottom.

First, the left sub-tree is built by taking two Nodes and putting them together
with a Branch. The definition of branches says that the value on a Node is
zero, while the value of a Branch is obtained by adding together the values
for the things you’re putting together, and adding one. Therefore, the value
of branches on the left subtree is 0 + 0 + 1 = 1.

The value of branches on the right subtree is 0, since this tree is just a Node.

The whole tree is built by putting the left and right subtrees together with a
Branch. The definition of branches again tells us to add together the values
for each subtree, and add one. Therefore, the overall value is 1 + 0 + 1 = 2,
as we expected.

The purpose of this discussion is of course just to show you how the value
of an inductively defined function on a tree is built from the bottom up, in
the same way the tree is built. You can also see it as going from the top
down, in the usual way of thinking about recursively defined functions: to
calculate f(Branch(T1, T2)), we break the tree down into its two subtrees,
calculate f(T1) and f(T2) with a recursive call, and combine the values of
those in some way to get the final value.

Let us now prove, by induction on the structure of trees, that for any tree
T ,

leaves(T) = branches(T) + 1.

Let us refer to this property as P (T). To show that P (T) is true of all binary
trees T the principle of induction says that we must do two things.

Base case: Prove that P (Node) is true; that is that leaves(Node) = branches(Node)+
1.

Inductive Step: The inductive hypothesis IH is that P (T1) and P (T2) are
both true, for some T1 and T2. So we can assume IH, namely that

leaves(T1) = branches(T1) + 1

and
leaves(T2) = branches(T2) + 1

From this assumption we have to derive P (Branch(T1, T2)), namely
that

leaves(Branch(T1, T2)) = branches(Branch(T1, T2)) + 1.

Proof

Base case: By definition,

leaves(Node) = 1 = 1 + branches(Node)

as required.

Inductive Step: By definition,

leaves(Branch(T1, T2)) = leaves(T1) + leaves(T2).

By the inductive hypothesis IH,

leaves(T1) = branches(T1) + 1

and
leaves(T2) = branches(T2) + 1.

We therefore have

leaves(Branch(T1, T2)) = branches(T1) + 1 + branches(T2) + 1.

By definition of branches,

branches(Branch(T1, T2)) = branches(T1) + branches(T2) + 1.

It is therefore the case that

leaves(Branch(T1, T2)) = branches(Branch(T1, T2)) + 1.

!

3.4 Structural Induction over the Language of Expres-
sions

The syntax of our illustrative language Exp of expressions also gives a collec-
tion of structured, finite, but arbitrarily large objects over which induction
may be used.

The syntax is given below.

E ∈ Exp ::= n | (E + E) | (E × E).

Recall that n ranges over the numerals 0, 1, 2 and so on. This means that in
this language there are in fact an infinite number of indecomposable expres-
sions; contrast this with the cases above, where 0 is the only “indecomposable
natural number”, and Node is the only indecomposable binary tree.

In the previous examples, there was only one way of building new things
from old: in the case of natural numbers, we built a new one from old by
adding one (applying succ); and in the case of binary trees, we built a new
tree from two old ones using Branch(−,−).

Here, on the other hand, we can build new expressions from old in two ways:
using + and using ×.

The principle of induction for expressions reflects these differences as follows.
If P is a property of expressions, then to prove that P (E) holds for any E,
it suffices to do the following.

Base cases: Prove that P (n) holds for every numeral n.

Inductive Step: Here the inductive hypothesis IH is that P (E1) and P (E2)
hold for some E1 and E2. Assuming IH we must show that both
P ((E1 + E2)) and P ((E1 × E2)) follow.

The conclusion will then be that P (E) is true of every expression E.

Again, this induction principle can be seen as a case-analysis: expressions
come in two forms:

• numerals, which cannot be decomposed, so we have to prove P (n)
directly for each of them; and

• composite expressions (E1 + E2) and (E1 ×E2), which can be decom-
posed into subexpressions E1 and E2. In this case, induction says that
we may assume P (E1) and P (E2) when trying to prove P ((E1 + E2))
and P ((E1 × E2)).

Structural Induction for Terms of Exp

To prove that property P (−) holds for all terms of Exp,

it suffices to prove

base cases: P (n) holds for all n, and

inductive step: The inductive hypothesis IH is that

P (E1) and P (E2) both hold for some arbitrary

expressions E1 and E2. From IH we must prove

that P (E1 + E2) and P (E1 × E2) follow.

Slide 39

3.4.1 Example

We shall prove by induction on the structure of expressions that for any
expression E, there is some numeral n for which E⇓n. This property is called
normalisation: it says that all programs in our language have a final answer
or so-called “normal form”. It goes hand in hand with another property,
called determinacy, which we shall prove later.

Proposition 3 (Normalisation) For every expression E, there is some n
such that E ⇓ n.

Proof By structural induction on E. The property P (E) of expressions
we wish to prove is

P (E) - there is some numeral n such that E ⇓ n.

The principle of structural induction says that to prove P (E) holds for every
expression E we are required to establish two facts:

Base cases: P (n) holds for every numeral n.

For any numeral n, the axiom of the big-step semantics, (b-num), gives
us that n ⇓ n, so the property is true of every n, as required.

Determinacy and Normalisation

Determinacy says that an expression cannot evaluate to

more than one answer:

For any expression E, if E ⇓ n and E ⇓ n′ then

n = n′.

Normalisation says that an expression evaluates to at

least one answer:

For every expression E, there is some n such

that E ⇓ n.

Slide 40

Inductive Step: The inductive hypothesis IH is that P (E1) and P (E2)
hold for some arbitrary E1 and E2. From IH we are required to prove
both P (E1 +E2) and P (E1 ×E2) follow. We shall consider the case of
(E1 + E2) in detail; the case of (E1 × E2) is similar.

We must show P (E1 + E2), namely that for some n, it is the case that
(E1 + E2) ⇓ n.

By the inductive hypothesis IH , we may assume that there are numerals
n1 and n2 for which E1 ⇓ n1 and E2 ⇓ n2. We can then apply the rule
(b-add) to obtain

E1 ⇓ n1 E2 ⇓ n2

(E1 + E2) ⇓ n3

where n3 = n1 + n2. So n3 is the required numeral which makes
P (E1 + E2) true.

!

3.4.2 Defining Functions over Expressions

We may also use the principle of induction to define functions which operate
on expressions. To define a function f which can take an arbitrary expression
as an argument, we must

• define f(n) directly, for each numeral n,

• define f((E1 + E2)) in terms of f(E1) and f(E2), and

• define f((E1 × E2)) in terms of f(E1) and f(E2).

Definition by Induction for Exp

To define a function on all terms of Exp, it suffices to do

the following.

• define f(n) directly, for each numeral n,

• define f((E1 + E2)) in terms of f(E1) and f(E2),

and

• define f((E1 × E2)) in terms of f(E1) and f(E2).

Slide 41

The denotational semantics of Exp is an example of such an inductive def-
inition. In the notes, the denotational semantic function is written as [[−]],
but here we will write it as den to make the definition look more like the
ones we have seen before.

The idea is to define, for each expression E, a number den(E) which is
the “meaning” or in this case the “final answer” of E. The definition is a
straightforward inductive one.

• den(n) = n for each numeral n. That is to say, den(0) = 0, den(7) = 7
and so on.

• den((E1 + E2)) = den(E1) + den(E2).

• den((E1 × E2)) = den(E1) × den(E2).

Again, this definition should be thought of as showing how to build up the
“meaning” of a complex term as the term itself is built up from numerals
and uses of + and ×.

3.5 Structural Induction over Derivations

The final example of a collection of finite, structured objects which we have
seen is the collection of proofs of statements E ⇓ n in the big-step semantics
of Exp. In general, an operational semantics given by axioms and proof rules
defines a collection of proofs of this kind, and induction is available to us in
reasoning about them.

To clarify the presentation, let us refer to such proofs as derivations in this
section.

Here is the derivation of (3 + (2 + 1)) ⇓ 6.

3 ⇓ 3

2 ⇓ 2 1 ⇓ 1

(2 + 1) ⇓ 3

(3 + (2 + 1)) ⇓ 6

This derivation has three key elements: the conclusion (3+ (2+ 1))⇓ 6, and
the two subderivations, which are

3 ⇓ 3

and

2 ⇓ 2 1 ⇓ 1

(2 + 1) ⇓ 3

We can think of a complex derivation like this as a structured object:

h1

D1

h2

D2

c

Here we see a derivation whose last rule is

h1 h2

c

where h1 and h2 are the hypotheses of the rule and c is the conclusion of
the rule; c is also the conclusion of the whole derivation. Since the hypothe-
ses themselves must be derived, there are subderivations D1 and D2 with
conclusions h1 and h2.

The only derivations which do not decompose into a last rule and a collec-
tion of subderivations are those which are simply axioms. Our principle of
induction will therefore treat the axioms as the base cases, and the more
complex proofs as the inductive step.

The principle of structural induction for derivations says that to prove a
property P (D) for every derivation D, it is enough to do the following.

Base cases: Prove that P (A) holds for every axiom A. In the case of the
big-step semantics, we must prove that every derivation

n ⇓ n

satisfies property P .

Inductive Step: For each rule of the form

h1 · · ·hn

c

prove that any derivation ending with a use of this rule satisfies the
property. Such a derivation has subderivations with conclusions h1,
. . . , hn, and we may assume that property P holds for each of these
subderivations. These assumptions form the inductive hypothesis.

3.5.1 Example

Let us now treat a simple example. Consider the language of expressions,
restricted so that the only arithmetic operation is +.

Given a derivation in the big-step semantics, there are obvious notions of

• the number of + symbols in the conclusion of the derivation, and

• the number of rules used in the derivation.

We shall now prove that these two numbers are equal. (This is rather a
pointless thing to prove, but it is mildly more straightforward than the more
useful example which follows.)

Proof

Base cases: Consider a derivation consisting just of an axiom

n ⇓ n

This derivation contains no rules, since it is just an axiom; and the
conclusion contains no + symbols, so the two numbers in question are
indeed equal.

Inductive Step: Consider a derivation which ends in a use of the rule for
+. This derivation must have the form

E1 ⇓ n1

D1

E2 ⇓ n2

D2

(E1 + E2) ⇓ n3

The inductive hypothesis tells us that the number of rules used in D1

is the same as the number of + symbols in E1; and D2 and E2 are
similarly related.

The number of + symbols in the conclusion of this derivation is clearly
equal to the number in E1, plus the number in E2, plus 1. Similarly,
the number of rules used in this derivation is the number in D1 plus
the number in D2 plus 1. Therefore, these two numbers are identical,
as required.

!

3.5.2 A Harder Example

As a second example, consider the property of determinacy of the big-step
semantics of Exp.

Proposition 4 (Determinacy) For any expression E, if E ⇓ n and E ⇓ n′

then n = n′.

Proof We prove this by induction on the structure of the proof that E ⇓n.

This in itself requires a little thought. The property we wish to prove is:

For any derivation D,
if the conclusion of D is E ⇓ n, and it is also the case that E ⇓ n′

is derivable,
then n = n′.

So, during this proof, we will consider

• a derivation D of a statement E ⇓ n, and

• another statement E ⇓ n′ which is derivable

and try to show that n = n′. We will apply induction to the derivation D,
and not to the derivation of E ⇓ n′.

Base case: E ⇓ n is an axiom. In this case, E = n. We also have E ⇓ n′,
that is, n ⇓ n′. By examining the rules of the big-step semantics, it is clear
that this can only be the case if n ⇓ n′ is an axiom. It follows that n = n′.

Inductive step: If the proof is not an axiom, it must have the form

E1 ⇓ n1

D1

E2 ⇓ n2

D2

(E1 + E2) ⇓ n

where E = (E1 + E2) and n = n1 + n2. Call this whole derivation D.

The inductive hypothesis applies to the subderivations D1 and D2. In the
case of D1, it says

Since D1 has conclusion E1⇓n1, if a statement E1⇓n′′ is derivable,
then we may assume that n1 = n′′.

We will use this in a moment.

We must show that if E ⇓ n′ then n = n′. So suppose that E ⇓ n′, i.e.
(E1 + E2) ⇓ n′ is derivable. This could not be derived using an axiom, so it
must be the case that it was derived using a rule

E1 ⇓ n3 E2 ⇓ n4

(E1 + E2) ⇓ n′

where n′ = n3 + n4.

This means that E1 ⇓ n3 is derivable, and E2 ⇓ n4 is derivable.

Using the inductive hypothesis as spelled out above, we may assume that
n1 = n3, and by applying IH to D2, we may assume that n2 = n4. Since we
have the equations

n = n1 + n2 and n′ = n3 + n4

it follows that n = n′ as required. !

This is a tricky proof, because we do induction on the derivation of E⇓n, but
we must perform some analysis on the derivation of E ⇓ n′ too. Make sure
you understand all the previous examples before getting too worried about
this one; but do attempt to understand this technique, because it crops up
all the time in semantics.

3.6 Some proofs about the small-step semantics

We have seen how to use induction to prove simple facts about the big-step
semantics of Exp. In this section we will see how to carry out similar proofs
for the small-step semantics, both to reassure ourselves that we’re on the
right course and to make some intuitively obvious facts about our language
into formal theorems.

An important property of the small-step semantics is that it is deterministic
in a very strong sense: not only does each expression have at most one final
answer, as in the big-step semantics, but also each expression can be evalu-
ated to its final answer in exactly one way. Slide 42 shows three properties
that we will prove. We will in fact give two different proofs for the first of
these properties.

Properties of evaluation

For any expression E,

• if E → E1 and E → E2 then E1 = E2;

• if E →∗ n and E →∗ n′ then n = n′; and

• there is some n such that E →∗ n.

Slide 42

Lemma 5 If E → E1 and E → E2 then E1 = E2.

Proof In this particular proof we use structural induction on the derivation
that E → E1.

Base case The axiom for this semantics is the case where E is (n1 + n2)
and E1 is n3, where n3 = n1 +n2. Consider the derivation that E→E2, that
is (n1 + n2)→E2. If this derivation is just an axiom, then E2 must be n3 as

required. Otherwise, the last rule of this derivation is either

n1 → E′

(n1 + n2) → (E′ + n2)

or
n2 → E′

(n1 + n2) → (n1 + E′).

This implies that there is a derivation of n1 → E′ or n2 → E′, but it is easy
to see that no such derivation exists. Therefore this case can’t happen!

Inductive Step If E →E1 was established by a more complex derivation,
we must consider two possible cases, one for each rule that may have been
used last in the derivation.

1. For some E3, E4 and E′
3, it is the case that E = (E3 + E4) and the

last line of the derivation is

E3 → E′

3

(E3 + E4) → (E′
3 + E4).

We also know that E → E2, i.e. (E3 + E4) → E2. Since E3 → E′
3, E3

cannot be a numeral, so the last line in the derivation of this reduction
must have the form

E3 → E′′

3

(E3 + E4) → (E′′

3 + E4).

But the derivation of E3 → E′
3 is a subtree of that of E → E1, so our

inductive hypothesis allows us to assume that E′
3 = E′′

3 . It therefore
follows that E1 = E2.

2. In the second case, E = (n + E3) and the derivation of E → E1 has

E3 → E′

3

(n + E3) → (n + E′

3)

as its last line. Again we know that E3 is not a numeral, so the deriva-
tion that E → E2 must also end with a rule of the form

E3 → E′′

3

(n + E3) → (n + E′′

3).

Again we may apply the inductive hypothesis to deduce that E′
3 = E′′

3 ,
from which it follows that E1 = E2.

!

Lemma 5 (Revisited) If E → E1 and E → E2 then E1 = E2.

Proof Here we will prove the result using structural induction on the
structure of E.

Let P (E) be the property:

For any F1, F2, if E → F1 and E → F2, then F1 = F2

We prove P (E) holds for every expression E by structural induction on E.
There are two cases.

Base case We have to show P (n) is true for every numeral n.

But this is vacuously true because according to the rules of the small-step
semantics of Exp, on Slide 16, there are no possible F1 or F2 such that n→F1

or n→ F2.

Inductive case Here we assume the inductive hypothesis IH, namely that
for some (unknown) E1 and E2 both P (E1) and P (E2) are true. Using IH
we have to show that P (E1 + E2) is true.

So suppose E1 + E2 → F1 and E1 + E2 → F2; we have to show F1 = F2.
There are two possibilities.

• E1 is a numeral, say n1. In this case how can n1 +E2 →F1 be derived?
Examining the rules in Slide 16 we see that there are two possibilities.

– Suppose the rule which was applied was (s-right), giving a deriva-
tion of the form

E2 → G1
(s-right)

(n1 + E2) → (n1 + G1)

In other words F1 must take the form n1 + G1, for some G1 such
that E2 → G1.

Since there is a derivation E2 → G1 it means that E2 is not a
numeral. This is turn means any derivation from E2 must also
use (s-right). So a similar analysis can be made of the derivation
E1 + E2 → F2; this must take the form

E2 → G2
(s-right)

(n1 + E2) → (n1 + G2)

where F2 is n1 + G2.

But now we can use part of the inductive hypothesis, namely
P (E2); this tells us that G1 = G2. From this it follows that
F1 = F2.

– The second possibility is that n1 + E2 → F1 is derived by an ap-
plication of the rule (s-add). So E2 must be a numeral, say n2 and
so F1 is also a numeral, n3, where n1 + n2 = n3.

Now looking at the second derivation n1+E2→F2, since E2 is the
numeral n2, again the only possible rule which can be applied is
(s-add), with the result that F2 is also n3; in other words, F1 = F2.

• So let us suppose that E1 is not a numeral. Here, what rules from
Slide 16 can be used to infer E1 + E2 → F1? The rules (s-right) and
(s-add) require that E1 be a numeral. So the only possibility is (s-left),
giving a derivation of the form the form

E1 → G1
(s-right)

(E1 + E2) → (G1 + E2)

So F1 must be of the form G1 + E2 for some G1 such that E1 → G1.

A similar analysis gives that F2 must also be of the form G2 + E2 for
some G2 such that E1 → G2.

Now we can apply P (E1), which is part of the inductive hypothesis, to
obtain that G1 = G2. It follows that F1 = F2.

!

This result says that the one-step relation is deterministic. Let us now see
how from this we can prove that there can be at most one final answer.
First we show that the k-step reduction relation, defined in Slide 34, is also
deterministic.

Corollary 6 For every natural number k and every expression E, if E →k

E1 and E →k E2 then E1 = E2.

Proof We prove this by mathematical induction on the natural number k.
So let P (k) be the statement

E →k E1 and E →k E2 implies E1 = E2

By mathematical induction to prove P (n) holds for every n we need to
establish two facts.

Base case Here we establish P (0), namely that if E →0 E1 and E →0 E2

then E1 = E2.

But this is trivial. Looking at the definition of →k in Slide 34 we see that
the only possibility for E1 and E2 is that they are E itself, and therefore
must be equal.

Inductive case Here we assume the inductive hypothesis, namely P (k).
From this we must prove P (k+1), namely that if E→(k+1)E1 and E→(k+1)E2

then E1 = E2.

Again looking at the definition of →(k+1) in Slide 34 we know that there
must exist some expressions E′

1 and E′
2 such that

E →k E′

1 → E1

E →k E′

2 → E2

But the inductive hypothesis gives that E′
1 = E′

2, and the determinism of the
one-step relation, proved in the previous Lemma, gives the required E1 = E2.

!

This corollary leads directly to the determinacy of the final result.

Lemma 7 If E →∗ n and E →∗ n′ then n = n′.

Proof The statement E →∗ n means that E reduces to n in some finite
number of steps. So there is some natural number k1 such that E →k1 n1.
Similarly we have some k2 such that E →k2 n2. Now either k1 ≤ k2 or
k2 ≤ k1. Let us assume the former; the proof in the latter case is completely
symmetric. Then these derivations take the form

E →k1 n1

E →k1 E′ →(k2−k1) n2

for some intermediary expression E′.

But by the previous Corollary E′ must be the same as n. According to the
rules in Slide 16 no reductions can be made from numerals. So the reduction
E′ →(k2−k1) n2 must be the trivial one n1 →0 n2. In other words n1 = n2. !

We now know that every term reaches at most one final answer; of course for
this simple language we can show that normalisation also holds, i.e. there is
a final answer for every expression.

Lemma 8 For all E there is some n such that E →∗ n.

Proof By induction (!!!) on the structure of E.

Base Case E is a numeral n. Then n→∗ n as required.

Inductive Step E is (E1 + E2). By the inductive hypothesis, we have
numbers n1 and n2 such that E1 →∗ n1 and E2 →∗ n2. For each step in the
reduction

E1 → E′

1 → E′′

1 · · ·→ n1

applying the rule for reducing the left argument of an addition gives

(E1 + E2) → (E′

1 + E2) → (E′′

1 + E2) · · ·→ (n1 + E2).

Applying the other rule to the sequence for E2 →∗ n2 allows us to deduce
that

(n1 + E2) →
∗ (n1 + n2) → n3

where n3 = n1 + n2. Hence (E1 + E2) →∗ n3. !

Corollary 9 For every expression E there is exactly one n such that E→∗n.

We now know that our small-step semantics computes exactly one final an-
swer for any given expression. We expect that the final answers given by the
small-step and big-step semantics should agree, and indeed they do.

Theorem 10 For any expression E,

E ⇓ n if and only if E →∗ n

Exercise Prove this theorem by induction on the structure of expressions.

3.7 The correspondence theorem

We previously stated the following theorem which relates the denotational
semantics of Exp to the big-step semantics. Let us now prove this result.

Theorem 11 For all expressions E, [[E]] = n if and only if E ⇓ n.

Proof By induction on the structure of E. If E is a numeral n, clearly
[[E]] = n and E ⇓ n, so the base case is trivial.

So suppose E is of the form (E1 + E2). We have to prove (E1 + E2) ⇓ n if
and only if [[E]] = n.

First suppose (E1 + E2) ⇓ n. This can only be proved using the rule (b-add)

from Slide 10. In other words there is an application of the rule of the form

E1 ⇓ n1 E2 ⇓ n2

(E1 + E2) ⇓ n3

for some numbers n1, n2 such that n3 = n1+n2. By the inductive hypothesis,
[[Ei]] = ni for i = 1, 2, and therefore

[[E1]] + [[E2]] = n1 + n2 = n3.

Conversely suppose [[E1]] + [[E2]] = n for some number n. Looking up the
definition of the denotational semantics of Exp in Slide 19 we see that there
must be two numbers n1 and n2, namely [[E1]] and [[E2]] respectively, such
that n = n1+n2. Since [[Ei]] = ni we can apply structural induction to obtain
Ei ⇓ni and an application of the rule (b-add) gives the required (E1 +E2)⇓n.

!

To sum up the results of this chapter, we have seen three different semantics
for the language Exp, a denotational one, given in Slide 19, and two opera-
tional ones, in Slide 10 and Slide 16. We now know that these three different
views actually coincide. For every expression E

[[E]] = n if and only if E ⇓ n if and only if E →∗ n

4 A Simple Programming Language

Let us now consider a “proper” programming language. The language While
of while-programs has a grammar consisting of three syntax-categories: ex-
pressions as before, which we now denote with N to indicate that they are
numeric expressions; booleans, which are very similar to expressions but
represent truth-values rather than numbers; and commands, which are im-
perative statements which affect the store of the computer. The grammar is
given on Slide 43.

The collection of expressions now includes a class x of mutable variables;
here x ranges over some fixed, infinite set of identifiers. The expression x is
intended to mean “the value currently stored in x”. The intended meaning
of the commands should be obvious to anyone familiar with imperative pro-
gramming; we use the syntax x := E for the assignment statement, which
evaluates E and stores the result in x.

Abstract Syntax A reminder: we always deal with abstract syntax, even
though the grammar above looks a bit like the kind of concrete syntax you
might type in to a computer. So, we’re really dealing with trees built up
out of the term-forming operators given above. The operators we have for
commands are:

• assignment, which takes a variable and an expression and gives a com-
mand, written x := E

Syntax of While

B ∈ Bool ::= true | false | E = E | E < E | · · ·

| B&B | ¬ B | · · ·

E ∈ Exp ::= x | n | (E + E) | · · ·

C ∈ Com ::= x := E | if B then C else C

| C ; C | skip | while B do C

Slide 43

Example program

x := z + y

while y > 0 do

x := x + z;

y := y − 1;

z := z − 1;

Slide 44

• the conditional, taking a boolean and two commands and yielding a
command, written if B then C1 else C2

• sequential composition, which takes two commands and yields a com-
mand, written C1 ; C2 (note that the semicolon here is an operator
joining two commands into one, and not just a piece of punctuation at
the end of a command)

• the “do nothing” constant skip

• the loop constructor, which takes a boolean and a command and yields
a command, written while B do C.

4.1 Small-step Semantics

How should we give a small-step semantics to While? In particular, how do
we evaluate a variable:

x → ?

or an assignment
x := n→ ?

Obviously, we need some more information, about the state of the machine’s
memory. Slide 45 gives the definition of a state suitable for modelling While.
Intuitively, a state s tells us what, if anything, is stored in the memory
location corresponding to each identifier of the language, and s[x ,→ n] is the
state s updated so that the location corresponding to x contains n.

Our small-step semantics will therefore be concerned with programs together
with their store, so we define a relation of the form

〈P, s〉→ 〈P ′, s′〉.

Expressions and Booleans Expressions and booleans do not present any
difficulty. The only really new kind of expression is the variable. Its semantics
involves fetching the appropriate value from the store. The corresponding
rule, and some of the old rules updated for the new language, are shown in
Slide 46.

Exercise Write down the other rules for expressions, and all the rules for
booleans.

States

• A state is a partial function from identifiers to

numerals such that s(x) is defined only for finitely

many x.

• The state s[x ,→ n] is defined by

s[x ,→ n](y) =







n if y = x

s(y) otherwise

Slide 45

Expressions

(w-exp.num)
s(x) = n

〈x, s〉 → 〈n, s〉

(w-exp.add)
n3 = n1 + n2

〈(n1 + n2), s〉 → 〈n3, s〉

(w-exp.left)
〈E1, s〉 → 〈E′

1, s
′〉

〈(E1 + E2), s〉 → 〈(E′

1 + E2), s
′〉

Slide 46

Commands The rules defining the semantics for commands are different:
they will alter the store in interesting ways. Intuitively, we want our rules to
show how commands update the store, and we will know that a command
has finished its work when it reduces to skip. We shall now consider each
kind of command in turn and write down the appropriate rules.

For assignment, x := E, we first want to evaluate E to some numeral n, and
then update the store so that x contains n. See Slide 47.

Assignment

(w-ass.exp)
〈E, s〉→ 〈E′, s′〉

〈x := E, s〉 → 〈x := E′, s′〉

(w-ass.num) 〈x := n, s〉 → 〈skip, s[x ,→ n]〉

Slide 47

For sequential composition, C1 ; C2, we first allow C1 to run to completion,
changing the store as it does so, and then compute C2. See Slide 48.

For conditionals, we first evaluate the boolean guard; if this returns true we
take the first branch; if it returns false we take the second branch. One
rule for this is given on Slide 49.

Exercise Write down the other rules for the conditional.

What about while? Obviously, we want to evaluate the boolean guard, and,
if true, run the command and then go back to the beginning and start again.
Perhaps something like Slide 50 would do the trick?

What’s the problem here? The problem is that the only rule we’ve got which
is capable of entering the loop body is the one for while true do C, which
ought to be an infinite loop. By evaluating the boolean guard “in place”
with the rule

〈B, s〉→ 〈B′, s〉

〈while B do C, s〉→ 〈while B′ do C, s′〉

Sequential Composition

(w-seq.left)
〈C1, s〉 → 〈C′

1, s
′〉

〈C1 ; C2, s〉 → 〈C′
1 ; C2, s

′〉

(w-seq.skip) 〈skip ; C2, s〉 → 〈C2, s〉

Slide 48

Conditional

(w-cond.true) 〈if true then C1 else C2, s〉 → 〈C1, s〉

Slide 49

Incorrect Semantics for while

〈B, s〉→ 〈B′, s〉

〈while B do C, s〉→ 〈while B′ do C, s′〉

〈while false do C, s〉→ 〈skip, s〉

〈while true do C, s〉→ ?

Slide 50

we have made a serious error; the point is that we do not want to evaluate
this boolean once and use that value for ever more, but rather to evaluate
the boolean every time we go through the loop. So, when we evaluate it the
first time, it is vital that we don’t throw away the “old” B, which this rule
does.

The solution is to make a copy of B to evaluate each time, and luckily for
us, our syntax allows us to express this in a rather sneaky way. The single
rule that we need for while is given on Slide 51.

4.1.1 An example

Slide 52 shows a program for computing the factorial of x and storing the
answer in variable a.

Let s be the state (x ,→ 3, y ,→ 2, a ,→ 9), using an obvious notation for
states. It should be the case that

〈P, s〉→∗ 〈skip, s′〉

where s′(a) = 6. (Can you predict the final values of x and y?)

Let’s check that. First, some abbreviations: we write P ′ for the sub-program

while y > 0 do
a := a × y;
y := y − 1

Correct semantics for while

〈while B do C, s〉→

〈if B then (C ; while B do C) else skip, s〉

All that this rule does is to “unfold” the while loop

once. If we could write down the infinite unfolding,

there would be no need for the while syntax.

Slide 51

A factorial program!

P = y := x ; a := 1;

while y > 0 do

(a := a × y;

y := y − 1)

Slide 52

and si,j,k for the state mapping x to i, y to j and a to k. Thus s = s3,2,9.
Okay, let’s dive in to the evaluation. Each line should really be justified by
reference to one of the rules of the operational semantics.

〈y := x ; a := 1 ; P ′, s〉

→ 〈y := 3 ; a := 1 ; P ′, s〉

→ 〈skip ; a := 1 ; P ′, s3,3,9〉

→ 〈a := 1 ; P ′, s3,3,9〉

→ 〈skip ; P ′, s3,3,1〉

→ 〈P ′, s3,3,1〉

→ 〈if y > 0 then (a := a × y ; y := y − 1 ; P ′) else skip, s3,3,1〉

→ 〈if 3 > 0 then (a := a × y ; y := y − 1 ; P ′) else skip, s3,3,1〉

→ 〈if true then (a := a × y ; y := y − 1 ; P ′) else skip, s3,3,1〉

→ 〈a := a × y ; y := y − 1 ; P ′, s3,3,1〉

→ 〈a := 1× y ; y := y − 1 ; P ′, s3,3,1〉

→ 〈a := 1× 3 ; y := y − 1 ; P ′, s3,3,1〉

→ 〈a := 3 ; y := y − 1 ; P ′, s3,3,1〉

→ 〈skip ; y := y − 1 ; P ′, s3,3,3〉

→ 〈y := y − 1 ; P ′, s3,3,3〉

→ 〈y := 3− 1 ; P ′, s3,3,3〉

→ 〈y := 2 ; P ′, s3,3,3〉

→ 〈skip ; P ′, s3,2,3〉

→ 〈P ′, s3,2,3〉

→ 〈if y > 0 then (a := a × y ; y := y − 1 ; P ′) else skip, s3,2,3〉

→ 〈if 2 > 0 then (a := a × y ; y := y − 1 ; P ′) else skip, s3,2,3〉

→ 〈if true then (a := a × y ; y := y − 1 ; P ′) else skip, s3,2,3〉

→ 〈a := a × y ; y := y − 1 ; P ′, s3,2,3〉

→ 〈a := 3× y ; y := y − 1 ; P ′, s3,2,3〉

→ 〈a := 3× 2 ; y := y − 1 ; P ′, s3,2,3〉

→ 〈a := 6 ; y := y − 1 ; P ′, s3,2,3〉

→ 〈skip ; y := y − 1 ; P ′, s3,2,6〉

→ 〈y := y − 1 ; P ′, s3,2,6〉

→ 〈y := 2− 1 ; P ′, s3,2,6〉

→ 〈y := 1 ; P ′, s3,2,6〉

→ 〈skip ; P ′, s3,1,6〉

→ 〈P ′, s3,1,6〉

→ 〈if y > 0 then (a := a × y ; y := y − 1 ; P ′) else skip, s3,1,6〉

→ 〈if 1 > 0 then (a := a × y ; y := y − 1 ; P ′) else skip, s3,1,6〉

→ 〈if true then (a := a × y ; y := y − 1 ; P ′) else skip, s3,1,6〉

→ 〈a := a × y ; y := y − 1 ; P ′, s3,1,6〉

→ 〈a := 6× y ; y := y − 1 ; P ′, s3,1,6〉

→ 〈a := 6× 1 ; y := y − 1 ; P ′, s3,1,6〉

→ 〈a := 6 ; y := y − 1 ; P ′, s3,1,6〉

→ 〈skip ; y := y − 1 ; P ′, s3,1,6〉

→ 〈y := y − 1 ; P ′, s3,1,6〉

→ 〈y := 1− 1 ; P ′, s3,1,6〉

→ 〈y := 0 ; P ′, s3,1,6〉

→ 〈skip ; P ′, s3,0,6〉

→ 〈P ′, s3,0,6〉

→ 〈if y > 0 then (a := a × y ; y := y − 1 ; P ′) else skip, s3,0,6〉

→ 〈if 0 > 0 then (a := a × y ; y := y − 1 ; P ′) else skip, s3,0,6〉

→ 〈if false then (a := a × y ; y := y − 1 ; P ′) else skip, s3,0,6〉

→ 〈skip, s3,0,6〉.

As you can see, this kind of calculation is agonising. But,

• it can be automated to give a simple interpreter for the language, based
directly on the semantics.

• it is formal and precise, and there can be no argument about what
should happen at a given time.

• it did compute the right answer, thank goodness!

4.1.2 The operational semantic function

To compute a final answer in this language, we’re really interested in the
state that is left when a program is evaluated to completion. That is to say,
we want to know about s′, where

〈P, s〉→∗ 〈skip, s′〉.

But what should the initial state s be? We could fix a particular s which
we think of as the state in which all programs start. For example, we could
decide that the starting state leaves every identifier undefined. This would
be a perfectly reasonable approach, but it is probably more useful to define
an operational semantic function: for each program, this function will take
an initial state and return the final state left after running the program. The
definition is given on Slide 53.

Small-step semantic function for While

OS [[P]](s) = s′ ⇐⇒ 〈P, s〉→∗ 〈skip, s′〉.

Does this indeed define a function? In fact it does not.

Slide 53

One problem with this definition is that in certain states, some programs
become “stuck”, which is to say that they are not fully evaluated but have
nowhere to go. An example is shown on Slide 54.

This problem is not particularly severe. It seems likely that a type system
could be imposed, for example, to prevent programs from attempting to
read from variables that have not been initialised. A much more serious
obstruction to the definition of OS [[−]] is the possibility of a nonterminating
computation, that is, an infinite loop; see Slide 55.

Let us prove the claim we made, that while true do skip never reaches a
result. Before we do so, let us record a familiar fact about this semantics:
determinacy.

Lemma 12 The small-step semantics is deterministic, that is to say, for any
configuration 〈P, s〉, there is at most one 〈P ′, s′〉 such that 〈P, s〉→ 〈P ′, s′〉.

Exercise Prove this claim. You should concentrate on the cases of com-
mands, and just give an indication of any interesting nuances for the cases

A stuck configuration

Let s be the state mapping x to 3 and undefined on

every other identifier. Then what is OS [[y := y + 1]](s)?

〈s, y := y + 1〉 → ?

We need to evaluate the expression y + 1, but there is

no rule which can be applied.

Slide 54

Infinite loops

The program while true do skip loops forever.

Therefore, we expect that there are no states s and s′

such that

〈while true do skip, s〉→∗ 〈skip, s′〉

so OS [[−]] as we have defined it does not give a function

in this case.

Slide 55

of expressions and booleans.

Theorem 13 For any state s, there is no s′ such that

〈while true do skip, s〉 →∗ 〈skip, s′〉.

Proof Let us first calculate a few steps of the evaluation of this program.

〈while true do skip, s〉

→ 〈if true then (skip ; while true do skip) else skip, s〉

→ 〈skip ; while true do skip, s〉

→ 〈while true do skip, s〉

As you can see, it seems unlikely that this will ever get anywhere! But we
need to prove this rigorously.

Suppose on the contrary that it is possible for

〈while true do skip, s〉 →∗ 〈skip, s′〉,

and let n be the number of steps taken for this evaluation. Note that since
the semantics is deterministic, this number n is well-defined.

Again, determinacy tells us that the first three steps of the evaluation must
be the steps we calculated above, and then the remaining n − 3 steps of the
evaluation show that

〈while true do skip, s〉 →∗ 〈skip, s′〉,

which is not possible, since this takes n steps! This is a contradiction, so we
deduce that no such evaluation can exist. !

Therefore, inherent in our language is the fact that some computations do not
yield final answers. However, the definition we have given for our semantic
function is reasonable; so we just accept it and live with the fact that it is
partial.

4.1.3 Discussion: Side-effects and Evaluation Order

Something worth noticing about our language is that the only phrases which
affect the store directly are the assignment statements, and these statements
are always contained inside commands. Furthermore, commands are strictly
sequenced by the ; operator. This means that there is never any confusion
about what should be in the store at a given time, and none of the decisions
we have made about order of evaluation affect the overall semantic function.

Small-step semantic function for While

For each program P , we define a partial function OS [[P]]

from states to states as follows.

OS [[P]](s) = s′ ⇐⇒ 〈P, s〉→∗ 〈skip, s′〉.

Slide 56

In more sophisticated languages, this happy situation can be compromised.
For example, commands can often creep into the language of expressions via
constructs like Java’s return. For example, the code

x := x + 1 ; return(x)

which we think of as an expression, because it returns a numerical result,
has a side-effect on the store.

We can now write a composite expression like

(x := x + 1 ; return(x)) + (x := x × 2 ; return(x)).

It is now vital that we pay close attention to the semantics of addition. Does
+ evaluate its argument left-to-right or right-to-left?

Exercise Write down the sets of rules corresponding to each evaluation
strategy for +, and evaluate the above in the state (x ,→ 0) under each set
of rules.

Strictness In the case of addition, the only reasonable choices for evalua-
tion are left-to-right and right-to-left, although other choices do exist, such
as evaluating both arguments twice! In any case, it is clear that both argu-
ments must be evaluated at least once before the result of the addition can
be calculated. For some kinds of expression, this is not the case.

Side-effecting expressions

If we allow expressions like

x := x + 1 ; return(x)

then

(x := x + 1 ; return(x)) + (x := x × 2 ; return(x))

depends on evaluation order.

Slide 57

For example, the logical “and” operator, written & in our syntax, when
applied to false and any other boolean, must return false. It is therefore
possible to write a semantics for & as on Slide 58.

The programmer needs to know what the semantics is! We no longer have
the equivalence

(B1&B2) ∼= (B2&B1)

since for example, in any state

false&(while true do skip ; return(true)) → false

while
(while true do skip ; return(true))&false

gets into an infinite loop.

Procedure and method calls Though we will not consider languages
with procedures or method calls formally on this course, we can informally
apply these ideas to obtain a deeper understanding of such languages. The
issues of strictness and evaluation order crop up again in this setting.

For example, in a method like

void aMethod(int x) {
return;

}

Short-circuit semantics of &

B1 → B′

1

(B1&B2) → (B′

1&B2)

(false&B2) → false (true&B2) → B2

Slide 58

Strictness

An operation is called strict in one of its arguments if it

always needs to evaluate that argument.

Addition is strict in both arguments, or bi-strict.

The semantics of & given above makes & a left-strict

operator. It is non-strict in its right argument.

Slide 59

the argument x is never used. So in a call such as

aMethod(y := y + 1; return y)

do we need to evaluate the argument? Clearly, the outcome of a program
containing a call like this will depend on the semantic decision we make here.

In a method call such as

anotherMethod(exp1, exp2)

in what order should we evaluate the arguments, if they are used? If an
argument is used twice in the body of the method, should it be evaluated
twice? There are plenty of different semantic decisions to be made here.
Some popular choices are:

• evaluate all arguments, left to right, and use the result of this evaluation
each time the argument is used; this is called call-by-value, and is
roughly what Java and ML do.

• replace each use of an argument in the method body by the text of the
actual parameter the programmer has supplied, so that each time the
argument is called, it is re-evaluated. This is call-by-name, and is what
Algol 60 did (does?).

• evaluate an argument only when it is actually used in the body of the
method, but then remember the result so that if the argument is used
again, it is not re-evaluated. This is call-by-need, and is what a large
number of functional languages like Haskell do.

Exercise Write the code of a method myMethod(exp1, exp2) and a par-
ticular call of this method, such that the three evaluation strategies above
all give different results.

The purpose of this discussion is to alert you to the fact that there may
be several reasonable but nonetheless crucially different choices to be made
about the semantics of various language constructs. One role of a formal
study of semantics is to help discover where such choices and ambiguities lie,
and to resolve them in a fixed, clear and well-documented way.

4.2 Denotational Semantics

We shall now try to give a denotational semantics to the simple language of
while-programs. The first step is to choose our semantic domains.

4.2.1 Semantic Domain for Commands

Let us focus first of all on commands, which are the biggest difference between
While and Exp. The small-step operational semantics gave us a partial
function of the form

OS [[C]](s) = s′

that is, given a command, we have a partial function OS [[C]] from states to
states. This suggests that we might use the set of partial functions from
states to states, or something like it, as our semantic domain for commands.

Let Σ be the set of all states. Define Σ⊥ to be the set Σ ∪ {⊥}, that is, the
set Σ together with an extra element ⊥, called undefined or bottom, which
represents a stuck computation or an infinite loop. Then the set of state
transformers is defined on Slide 60.

State Transformers

The set of state transformers is defined to be

ST = [Σ→ Σ⊥]

that is, the set of (total) functions which take a starting

state and return either ⊥, to indicate that the

computation got stuck or looped forever, or a final state.

Slide 60

The set ST will be our semantic domain for commands.

A note on notation The metavariable s, and variants of it like s′ and so
on, will be used to range over proper states, not including ⊥. So, if we say
that f(s) = s′, it is implicit that s′ 1= ⊥.

4.2.2 Other Semantic Domains

For booleans and expressions, note that our language allows a boolean or
an expression to depend upon the store, but not to change it. Also, though

expressions and booleans cannot get into infinite loops, they may become
stuck, so we have to account for this in our choice of semantic domain.

We model booleans with the domain of predicates P and expressions with
the domain E given on Slide 61.

Domains for expressions and booleans

The domain of predicates is defined to be

P = [Σ→ B⊥]

where B = {tt, ff}. The domain of expressions is

E = [Σ→ N⊥].

Slide 61

Remark As before, fixing the semantic domains tells us something about
the language. For example, using ST for the commands acknowledges the
possibility of non-termination, but makes clear that a command will yield
at most one final state in any given starting state. Similarly, our choice
of domain for the booleans automatically eliminates any possibility of side-
effects being caused by booleans.

4.2.3 Semantic Functions

We shall now attempt to define three semantic functions, one for each cate-
gory in the grammar of While. See Slide 62.

Semantics of Expressions We shall give the semantics only for the new
kind of expression, namely the variable. The others will be left as an exercise.
The semantics of variable lookup is given on Slide 63.

Semantic functions for While

C[[−]] : Com → ST

E [[−]] : Exp → E

B[[−]] : Bool → P

Slide 62

Variable Lookup

The semantics of a variable is simple: the store is

examined to see if there is a value in the variable. If so,

the value is returned, and if not, the expression is stuck

so we return ⊥.

E [[x]](s) =







s(x) if s(x) defined

⊥ otherwise.

Slide 63

Semantics of Commands To define the semantics of a command, we
ask ourselves how the command transforms the state, and attempt to write
down a function which captures our intuition. The next few slides give the
definitions for assignment, the skip command, and sequential composition.

Assignment

This is easy: an assignment x := E transforms store s

by updating x to contain the value of E. We have to

take account of the possibility of stuck expressions,

however.

C[[x := E]](s) =







s[x ,→ E [[E]](s)] if E [[E]](s) 1= ⊥

⊥ otherwise.

Note that in this definition, E is evaluated in store s.

Slide 64

Exercise Give definitions of the semantics of all the remaining constructs
apart from while.

Example We have now given enough definitions to allow us to calculate
the meanings of a few commands. Consider for example

C = x := 0 ; x := x + 1.

We shall show that C[[C]](s) = s[x ,→ 1].

C[[C]](s) = (C[[x := 0]] ;C[[x := x + 1]])(s)

= C[[x := x + 1]](C[[x := 0]](s))

= C[[x := x + 1]](s[x ,→ 0])

= s[x ,→ E [[x + 1]](s[x ,→ 0])].

Clearly,
E [[x + 1]](s[x ,→ 0]) = 1

so
C[[C]](s) = s[x ,→ 1]

as we claimed.

skip

The easiest of all: skip leaves the store alone.

C[[skip]](s) = s.

Slide 65

Sequential Composition

How does C1 ; C2 transform a store? Intuitively, first C1

transforms the original state s to some s′, then C2

starts running in state s′, leaving some s′′, which is the

outcome of the whole command.

If C1 gets stuck or into an infinite loop, so does the

whole command; similarly for C2.

We shall define a state transformer for C1 ; C2 to reflect

this intuition.

Slide 66

Semantics of Sequential Composition

The state transformer C[[C1 ; C2]] is defined by

C[[C1 ; C2]](s) =







⊥ if C[[C1]](s) = ⊥

C[[C2]](C[[C1]](s)) otherwise.

Notice that the second line is “well-typed”, because if

C[[C1]](s) 1= ⊥ then C[[C1]](s) ∈ Σ, so we can indeed

apply C[[C2]] to it.

Slide 67

Conditional

A command if B then C1 else C2 transforms a state s

as follows:

• work out if B is true or false in state s

• if true, transform the state s by running C1

• if false, transform the state s by running C2.

Slide 68

Conditional, continued

We therefore define C[[if B then C1 else C2]](s) to be

C[[C1]](s) if B[[B]](s) = tt

C[[C2]](s) if B[[B]](s) = ff

⊥ otherwise

Slide 69

4.2.4 Compositionality

As for the language of expressions, the denotational semantics is composi-
tional, so the meaning of a program is built up out of the meanings of its
subprograms. This means that each of the term forming operations in the
language While has a denotational meaning.

For example, the term forming operation ; which takes two commands and
gives back their sequential composition, has as its meaning the function seq,
defined on Slide 70.

It is now reasonable to say that [[;]] = seq.

This is really no more than rewriting the original definitions, but it makes the
point that denotational semantics gives meaning to term-forming operations,
not just individual programs.

4.2.5 Semantics of while

Okay, what about while? How can we write down a “looping” state trans-
former?

Recall the trick that we used to give a small-step semantics to while:

〈while B do C, s〉 → 〈if B then (C ; while B do C) else skip, s〉.

Semantics of the Sequential Composition

Operator

We define the function

seq : ST × ST → ST

by

seq(f, g)(s) =







⊥ if f(s) = ⊥

g(f(s)) otherwise.

Slide 70

Semantics of the Conditional Operator

We define the function

cond : P × ST × ST → ST

by

cond(p, f, g)(s) =















f(s) if p(s) = tt

g(s) if p(s) = ff

⊥ otherwise

Slide 71

This says that the way while B do C transforms the state is the same as
the transformation given by

if B then (C ; while B do C) else skip.

In denotational terms, this statement looks like the equation on Slide 72.

An equation for while

C[[while B do C]]

= C[[if B then (C ; while B do C) else skip]].

Slide 72

But can we use this equation as a definition?

We are trying to define the semantics of program phrases by induction on
their structure. That means, as usual, that when we define the semantics of
a compound phrase, we may assume that the semantics of each of its sub-
phrases have already been defined. Bearing this in mind, it is clear that each
of the definitions we have given so far is well-defined, i.e. the formula on the
right-hand side denotes an element of the semantic domain.

The equation above is different. It contains, on the right, a reference to

C[[while B do C]]

which we have not yet defined: it is not a sub-phrase of itself! So we have
a circular definition, or to put it another way, we don’t have a definition at
all.

The approach we’ve used before guided us to good definitions of semantic
functions, so let’s try to answer the following question: how does while B do C
transform a state s?

We need a fixed point

What we need to do is to find some f ∈ ST such that

f = cond(B[[B]], (C[[C]] ;f), id)

where id, the identity function is the semantics of skip

we have already defined. We can then use f as the

semantics of while B do C.

Slide 73

A helper function

To put this another way, define a function F : ST → ST

by

F (f) = cond(B[[B]], (C[[C]] ;f), id).

Slide 74

A first approximation of while

If B is false in state s, it does nothing, that is, it returns

the state s. In this particular case, the transformation is

the same as that given by

if B then anything else skip.

Slide 75

A sneaky step

Since the “anything” above could be anything (!!!), let

us replace it with the phrase (C ; anything). That gives

us

if B then (C ; anything) else skip.

The semantics of this is now F (anything).

Slide 76

A second approximant

If B is true in state s but becomes false after running

the loop body C once, then the loop transforms the

state in the same way as

if B then C ; (if B then C ; anything else skip)

else skip

The semantics of this is F (F (anything)).

Slide 77

• If B is false in state s, it does nothing, that is, it returns the state s.
In this particular case, the transformation is the same as that given by

if B then anything else skip.

Since the “anything” above could be anything (!!!), let us replace it
with the phrase (C ; anything). That gives us

if B then (C ; anything) else skip.

We have done this for a sneaky reason: the semantics of the phrase
above is now the same as F (f), where F is the function we defined
earlier and f is the semantics of “anything”.

This phrase acts the same way as while B do C on those states which
do not require entering the loop body at all. Of course, if the loop
body is entered, it is very different.

The key point is that this is a phrase for which we already have a
semantics, and it gives us the right answer some of the time. We shall
now improve on this by finding a phrase which gives us the right answer
more often.

• If B is true in state s, while B do C runs the command C, transforming
the state to s′; if B is now false, that is the end of the computation.
In this case, therefore, the transformation is the same as that given by

if B then C ; (if B then anything else skip) else skip.

Again replacing anything with (C ; anything) gives

if B then C ; (if B then (C ; anything) else skip) else skip.

This semantics of this is F (F (f)), and gives the right state transfor-
mation in the case that the loop body is entered no times, or one time;
but if the loop body needs to be entered more than once, it might not
be correct. Still, we’re getting closer. . . . Our new phrase works for all
the states the previous one worked for, and some more.

• The phrase corresponding to F (F (F (f))) gives the correct transforma-
tion for states which require going round the loop no times, once or
twice. If we write Fn(f) for the same phrase with n uses of F , we get
the right state transformer for those states which require going round
the loop n − 1 or fewer times.

A sequence of approximants

Given a starting state s:

• if, starting in state s, the loop body would be

executed less than n times, then for any state

transformer f , Fn(f)(s) gives the same final state

that the loop would give;

• if more than n executions of the loop body would

be required, Fn(f)(s) may give the wrong answer.

Note that as n gets bigger, Fn(f) is right on more and

more starting states.

Slide 78

These ideas are enough to let us define a state transformer which gives the
fixed point we require: see Slides 79 and 80.

Rather than going into the proof that the f we’ve just defined (on Slide 80)
is really a state transformer and is really a fixed point of F , let’s try to do
the same tricks using the syntax of While.

Recall that diverge is a program which immediately goes into an infinite
loop. Let’s add diverge as a primitive to our language, just for now, and
define

C[[diverge]](s) = ⊥

Better Approximants

In the above, set f to be the state transformer which

gives ⊥ for any starting state s. Write this state

transformer as ⊥ too! Then

• if, starting in state s, the loop body would be

executed less than n times, then Fn(⊥)(s) gives the

same final state that the loop would give;

• if more than n executions of the loop body would

be required, Fn(f)(⊥) gives ⊥, which may be

incorrect.

Note that if Fn(⊥)(s) 1= ⊥, we know it must be the

right answer.

Slide 79

We’ve got a fixed point

Define a state transformer f as follows.

f(s) =







Fn(s) if Fn(s) 1= ⊥ for some n

⊥ otherwise.

This is well-defined and is a fixed point of F .

Slide 80

for all states s.

Then we can define a sequence of syntactic approximants to the loop while B do C
as shown on Slide 81.

Approximating a while-loop

We define the approximants of while B do C as follows.

C0 = diverge

C1 = if B then C ; diverge else skip

...

Cn+1 = if B then C ; Cn else skip

This is an inductive definition (mathematical induction

on the subscript i of the Ci).

Slide 81

We have argued before that the command Cn has the same effect as while B do C
in those states which require going fewer than n times round the loop to ter-
minate. Let us now prove that this sequence of approximations really does
get better as you go on.

Theorem 14 For any natural number n and any state s, if C[[Cn]](s) 1= ⊥
then C[[Cn+1]](s) = C[[Cn]](s).

Proof By induction on n.

Base case: In the case n = 0, Cn = diverge so it is never the case that
C[[Cn]](s) 1= ⊥. There is therefore nothing to prove.

Inductive step: Consider the case n = k + 1. By definition,

C[[Ck+1]] = C[[if B then (C ; Ck) else skip]]

= cond(B[[B]], (C[[C]] ; C[[Ck]]), id).

Since we are assuming that C[[Ck+1]](s) 1= ⊥, it cannot be that B[[B]](s) =
⊥. It There are therefore two subcases to consider.

• If B[[B]](s) = false, then clearly C[[Ck+1]](s) = s, and similarly
C[[Ck+2]](s) = s, which gives the desired conclusion.

• If B[[B]](s) = true, then C[[Ck+1]](s) = (C[[C]] ; C[[Ck]])(s). Since
we know this is not ⊥, it must be the case that C[[C]](s) 1= ⊥, so,

C[[Ck+1]](s) = C[[Ck]](C[[C]](s)).

By the inductive hypothesis,

C[[Ck+1]](C[[C]](s)) = C[[Ck]](C[[C]](s)).

Putting these two together, we get

C[[Ck+1]](s) = C[[Ck+1]](C[[C]](s)) = C[[Ck+2]](s)

which is what we needed to prove.

!

We therefore have an improving sequence of approximations to our while-
loop. We can now define the semantics of while B do C as follows.

Semantics of while

C[[while B do C]](s) =







s′, if any C[[Ck]](s) = s′

⊥, otherwise

Slide 82

It should be reasonably obvious that this is the same state transformer we
previously claimed was a fixed point of F ; see Slide 80.

The preceding theorem tells us that this does indeed define a function. Let
us now make use of our semantics of while to prove a simple fact. Here we

will prove that the state left after the execution of a loop always makes the
boolean guard B is false.

We prove this by first showing an appropriate fact about the syntactic ap-
proximants to the loop.

Lemma 15 For any natural number n and any state s, if C[[Cn]](s) = s′

then B[[B]](s′) = false.

Proof By induction on n.

Base case: In the case n = 0, C0 = diverge so it never holds that
C[[Cn]](s) = s′. There is therefore nothing to prove.

Inductive step: Consider the case n = k + 1. By definition,

C[[Ck+1]] = C[[if B then C ; Ck else skip]]

= cond(B[[B]], C[[C]] ; C[[Ck]], id).

So, if C[[Ck+1]](s) = s′, there are two cases:

• either B[[B]](s) = false and s = s′, in which case B[[B]](s′) =
false as required, or

• B[[B]](s) = true, and then

s′ = (C[[C]] ; C[[Ck]])(s)

In this case, it is clear that

s′ = C[[Ck]](s′′)

where s′′ = C[[C]](s). But the inductive hypothesis tells us that
any state coming from C[[Ck]] makes B[[B]] false, that is

B[[B]](s′) = false

as required.

!

Theorem 16 If C[[while B do C]](s) = s′ then B[[B]](s′) = false.

Proof By the definition of the semantics of while, if C[[while B do C]](s) =

s′ then s′ = C[[Cn]](s) for some n. By the previous lemma, B[[B]](s′) = false
as required. !

Exercise Prove that

• C[[x := y ; y := x]] = C[[x := y]].

• C[[x := z ; y := z]] = C[[y := z ; x := z]].

• C[[C1 ; (C2 ; C3)]] = C[[(C1 ; C2) ; C3]].

Is it the case that C[[x := x]] = C[[skip]] in this language? If so, give a proof;
if not, give a counterexample.

4.3 Axiomatic Semantics

We have so far seen two distinct approaches to semantics.

operational: explains how to evaluate programs.

denotational: gives meaning to a program by identifying an element of a
mathematical structure which “is” the program’s meaning.

Using either of these styles of semantics we can prove various facts about
programs, verify correctness of programs with respect to their specification,
and so on. We have seen a few examples of this.

The final form of semantics that we shall consider is aimed directly at sup-
porting such reasoning and verification.

axiomatic: gives a proof system for verifying program properties.

The axiomatic semantics we shall study is called Hoare logic, after its inven-
tor, Tony Hoare. It is sometimes called Floyd-Hoare logic in recognition of
an earlier contribution by Floyd.

4.3.1 Partial Correctness

Hoare logic is a system for demonstrating that certain partial correctness
assertions hold of programs. A partial correctness assertion takes the form
shown on Slide 83.

This is called a partial correctness assertion because it says nothing about
what happens if C fails to terminate, and it says nothing about whether C
terminates or not.

Partial correctness assertions

if we run command C in a starting state which

satisfies property P , then if C terminates, the

final state satisfies Q.

We use the notation

{P}C{Q}

for this situation. P is called the precondition, and Q is

the postcondition.

Slide 83

Exercise What do you think total correctness assertions would be? Can
you see why total correctness might be harder to work with than partial
correctness? Think about while loops. . .

A question arises immediately: what are we allowed to put in the conditions
P and Q? That is, what is the syntax of these predicates? We shall not
be too precise about this on this course, but let us ask that at least every
Boolean expression from our language While may be used. That gives us at
the very least things like equality tests, logical “and”, “or” and “not”, and
so on. Sophisticated versions of axiomatic semantics may include ∀, ∃ and
many other kinds of logical operation; let’s not worry about that.

Slide 84 gives some examples of simple partial correctness assertions which
hold in our language.

The first of these says that assignment really does change the value in a
variable; the second says that assignment to x leaves y unchanged. The
third says that skip changes nothing. The last one is quite interesting. It
says

If you start the program while true do skip in any state (more
accurately, any state which satisfies true, which is any state at
all), if it terminates, the final state satisfies false.

Since no state satisfies false, this is tantamount to saying that the program
while true do skip never terminates.

Some example assertions

• {x = 3}x := 4{x = 4}.

• {y = 3}x := 4{y = 3}.

• {P}skip{P}.

• {true}while true do skip{false}.

Slide 84

4.3.2 The formal system

We shall now give a collection of axioms and rules for deriving partial correct-
ness assertions. Each construct of the programming language is associated
with one axiom or rule; additionally there are some purely logical rules which
allow us to manipulate the pre- and postconditions in certain ways.

The best we can say of skip is that it never changes anything. We would
like to say that it always terminates, but partial correctness does not let us
do so. Slide 85 gives the axiom for skip, which is the same “do nothing”
assertion we saw before.

For sequential composition C1 ;C2, the obvious rule is that if C1 takes a state
satisfying P to one satisfying Q, and C2 takes such an intermediate state to
one satisfying R, then C1 ; C2 takes a state satisfying P to one satisfying R.
Slide 86 makes this into a rule of our system.

For conditional statements, if we are to guarantee that Q holds after

if B then C1 else C2

terminates, then we need it to be the case that, if B is true, C1 makes Q
true, and if B is false, C2 makes Q true. The rule for conditionals is therefore
that on Slide 87.

Let us now consider assignment statements of the form x := E. Again, let
us think backwards. Suppose we want to say that a predicate Q is satisfied

Hoare triple for skip

(h-skip) {P}skip{P}

Slide 85

Sequential composition

(h-seq)
{P}C1{Q} {Q}C2{R}

{P}C1 ; C2{R}

Slide 86

Conditionals

(h-cond)
{P ∧ B}C1{Q} {P ∧ ¬B}C2{Q}

{P}if B then C1 else C2{Q}

Slide 87

after executing x := E. Q is a predicate which talks about the new value
of x (among other things). What we need as our precondition is a predicate
which says the same thing in terms of the old value of x. For example, if we
have an assignment like

x := (x + x)

and we want to ensure that the predicate x = 4 holds afterwards, it is enough
to ensure that x + x = 4 held beforehand. That is, if we replace x by x + x,
we get the appropriate predicate.

Let us write Q[E/x] for the predicate Q with each occurrence of x replaced
by E. In the above example, (x = 4)[x + x/x] is (x + x) = 4. Thus Q[E/x]
is the “same” predicate as Q but written “in terms of the old value of x”.

This idea gives us the axiom for assignment, which is shown in Slide 88.

Some simple examples of this axiom:

• {y + y = 4}x := y + y{x = 4}.

• {y = 3}x := 4{y = 3}.

Exercise Can we yet show that

{x = 3}x := 4{x = 4}

holds?

Assignment

(h-ass) {Q[E/x]}x := E{Q}

Slide 88

Let us now consider while B do C. One thing that we know about this
command is that if it terminates, the boolean guard B is false. So here’s a
valid assertion:

{true}while B do C{¬B}

This doesn’t tell us much of interest. To say more, we need a new idea.
Roughly speaking, if we want some predicate P to be true after while B do C
terminates, it must be true no matter how many times the loop body is run:
since the loop body could be run no times, it must be true at the beginning;
and since it could be run once, it must be true after going once round the
loop; or twice; or three times; and so on.

This is the idea of a loop invariant. A loop invariant is a predicate P which
is preserved by going round the loop. That is to say, if P holds at the start
of a trip round the loop, it should hold afterwards too. As a first guess, we
might say P is a loop invariant if

{P}C{P}

holds.

This is indeed enough to guarantee that P is a good loop invariant, but we
can do better: because the loop body is only executed when B is true, the
command C only needs to maintain the truth of P in the case when B holds
initially: see Slide 89.

Loop invariant

The predicate P is a loop invariant for the loop

while B do C iff

{P ∧ B}C{P}

Slide 89

In this situation, we know that if we start while B do C in a state satisfying
P , then P will be true every time we finish the loop body. Therefore, if the
loop terminates, we will know two things:

• P is true, since P is an invariant

• B is false, since that’s the only way the loop can stop.

We therefore have the rule for while-loops shown on Slide

Exercise Why does the rule not have the conclusion

{P ∧ B}while B do C{P ∧ ¬B}?

Example: while true do skip Instantiating the above rule with while true do skip,
and letting P be true too, gives us the following.

{true ∧ true}skip{true}

{true}while true do skip{true ∧ ¬true}

This allows us to deduce that

{true}while true do skip{false}

which says that, in any starting state, if the program while true do skip
terminates, false holds. Since false never holds, we can conclude that this
loop does not terminate, which is a good thing!

Axiomatic semantics of while

(h-while)
{P ∧ B}C{P}

{P}while B do C{P ∧ ¬B}

Slide 90

Some purely logical rules The rules that we have so far make good
sense, but it turns out that as they stand they are not quite good enough
to let us prove some of the assertions we expect to hold. By adding a few
purely logical rules, we can obtain greater manipulative power.

The rule of consequence, on Slide 91, says that we can use logical implication
to alter the precondition and postcondition of an assertion in the expected
way.

The first rule on Slide 92 says that if the same postcondition can be estab-
lished from a number of preconditions, then taking the disjunction of the
preconditions (the “or” of them all) also establishes the postcondition. The
second rule is a nullary case of this: the precondition false is never satisfied,
so the assertion in this rule is rather meaningless.

The rules on Slide 93 are similar to those on the previous slide. These say
that if several postconditions follow from the same precondition, then the
conjunction or “and” of them all also follows. The nullary case of this is that
the postcondition true may always be concluded: since we are interested
in partial correctness only, this rule tells us nothing. However, it might
sometimes come in handy when using the rules given above as a purely
formal system.

Example: factorial again! Slide 94 shows yet another program for com-
puting factorials.

The rule of consequence

(h-cons)
P =⇒ P ′ {P ′}C{Q′} Q′ =⇒ Q

{P}C{Q}

Slide 91

Precondition disjunction

(h-pre.or)
{P1}C{Q} · · · {Pn}C{Q}

{P1 ∨ · · · ∨ Pn}C{Q}

(h-pre.false) {false}C{Q}

Slide 92

Postcondition conjunction

(h-post.and)
{P}C{Q1} · · · {P}C{Qn}

{P}C{Q1 ∧ · · · ∧ Qn}

(h-post.true) {P}C{true}

Slide 93

Another factorial program

C = y := 1 ; a := 1;

while y 1= x do

(y := y + 1;

a := a × y)

Slide 94

We are going to show, using the rules given above (but leaving out some of
the details), that this program computes the value of x!, leaving the result
in the variable a.

The partial correctness assertion we want to establish is

{true}C{a = x!}.

The interesting part here is the loop invariant. The idea of the loop is that a
holds a “running product” of all the numbers between 1 and y, so that when
y reaches x, a holds x!.

We might therefore guess that the loop invariant should be

a = 1 × · · ·× y.

Therefore our first task is to show that

{(a = 1 × · · ·× y) ∧ (y 1= x)}y := y + 1 ; a := a × y{a = 1 × · · ·× y}

is a valid assertion. Let us call the precondition above P , and the postcon-
dition Q.

We shall show this assertion is valid by applying the rules for assignment
and sequential composition. The assignment rule works right-to-left, so we
work backwards through the assignments as shown on Slide 95.

Working backwards through assignments

The assertion

{a × y = 1 × · · ·× y}a := a × y{a = 1 × · · ·× y}

is an instance of the axiom for assignments: the

precondition has been calculated by substituting a × y

for a in the postcondition.

Similarly we can obtain

{a×(y+1) = 1×· · ·×(y+1)}y := y+1{a×y = 1×· · ·×y}

Slide 95

Notice that in doing this calculation, we work from right to left: starting
from the postcondition we need to establish, we calculate a precondition for

the last command in the sequential composition. This precondition is then
used as a postcondition for the previous command, and we calculate its own
precondition.

We can now use the rule for sequential composition. First let us define the
abbreviations

P1 for (a × (y + 1) = 1 × · · ·× (y + 1))

P2 for (a × y = 1 × · · ·× y)

Our application of the rule for sequential composition is that shown on
Slide 96.

Sequentially composing

{P1}y := y + 1{P2} {P2}a := a × y{Q}

{P1}y := y + 1 ; a := a × y{Q}

Slide 96

This is almost what we need. The postcondition, Q, is the right thing.
But the precondition P1 is not the same as the P we need. Our desired
precondition P is

(a = 1 × · · ·× y) ∧ (x 1= y)

which certainly implies that

a = 1 × · · ·× y.

By multiplying both sides by y + 1, we see that this implies

a × (y + 1) = 1 × · · ·× (y + 1)

We therefore use the rule of consequence as shown on Slide 97.

Using the rule of consequence

P =⇒ P1 {P1}y := y + 1 ; a := a × y{Q}

{P}y := y + 1 ; a := a × y{Q}

Slide 97

The loop invariant has therefore been established, so we can use the rule for
while as shown on Slide 98. Note that P is the same as Q ∧ (x 1= y).

Exercise Show that

{true}y := 1 ; a := 1{Q}

is valid.

Once we have also shown that

{true}y := 1 ; a := 1{Q}

is valid, we can then use the rule of sequential composition again to conclude
that

{true}C{Q ∧ (x = y)}.

Finally, it is clear that

(Q ∧ (x = y)) =⇒ (a = x!)

so by the rule of consequence we conclude that

{true}C{a = x!}

as required.

Using the rule for while

{Q ∧ (x 1= y)}y := y + 1 ; a := a × y{Q}

{Q}

while y 1= x do

(y := y + 1;

a := a × y)

{Q ∧ (x = y)}

Slide 98

Exercise There are clearly many commands C which satisfy the assertion

{true}C{a = x!}

since any program which computes the factorial of x and stores the result
in a will do. But here is another program which also satisfies the above
assertion.

x := 0 ; a := 1

• Prove that this program also satisfies the assertion above using the rules of
Hoare logic.

• What additional assertion do we need to say that a program really does
compute the factorial of the value initially stored in x?

5 Relating the semantics

We have now given three ways of describing and reasoning about programs
in the simple language While. Our intuition tells us that everything we have
done corresponds to the same underlying ideas. It ought to be the case,
therefore, that the three different semantics are related in some way.

For the purposes of this course, we will take the view that the denotational
semantics is primary: the denotational semantics says what a program “really

means”. In this case, a program “really means” a partial function from states
to states.

We shall prove two soundness results.

Soundness for small-step semantics

Given a command C and a state s, if

〈C, s〉→∗ 〈skip, s′〉

then

C[[C]](s) = s′.

Slide 99

We might also be interested in completeness statements like these:

• for the small-step operational semantics, if C[[C]](s) = s′ then 〈C, s〉→∗

〈skip, s′〉.

• for the axiomatic semantics, given predicates P and Q and a command
C, if it is the case that for any state s satisfying P , either C[[C]](s) = ⊥
or C[[C]](s) = s′ for some s′ which satisfies Q, then {P}C{Q} can be
proved using Hoare logic.

The first of these certainly holds, although we will (probably) not prove that
it does in this course. The second statement, and things like it, are rather
trickier, and certainly beyond the scope of this course.

5.1 Soundness for small-step semantics

The soundness theorem for small-step semantics talks about what happens
over many steps of evaluation. To prove it, we will work with single steps of
evaluation, by induction on their derivation, as usual.

Soundness for axiomatic semantics

If

{P}C{Q}

can be proved, then

if s is any state satisfying P and C[[C]](s) = s′,

then s′ is a state satisfying Q.

Slide 100

First of all, since our denotational semantics does not take account of any
state-changes caused by evaluating expressions or booleans, we need to show
that there are in fact no state changes in the small-step semantics.

Lemma 17 For any expression E and state s, if 〈E, s〉→〈E′, s′〉 then s = s′.
A similar statement holds for booleans.

Exercise Prove this lemma.

We now show that doing a step of the small-step semantics does not change
the denotational “final answer”. See Slide 101.

We shall prove this lemma by induction on the derivation of the step 〈C, s〉→
〈C′, s′〉. Our proof technique is the usual one: for each rule (or axiom),
assume that the steps above the line satisfy this condition, and prove that
the step below the line does too. We will not organise this proof into base
cases and inductive steps, since it is better organised by considering the
semantics of each operation of the language in turn.

Assignment For assignment, there is one axiom and one rule. The axiom
is

〈x := n, s〉 → 〈skip, s[x ,→ n]〉

so we must prove that

C[[x := n]](s) = C[[skip]](s[x ,→ n]).

Single step soundness

Lemma 18 For any command C and state s, if

〈C, s〉 → 〈C′, s′〉, then C[[C]](s) = C[[C′]](s′). Similar

statements hold for the expressions and booleans.

Slide 101

But by definition, C[[skip]] = id, so

C[[skip]](s[x ,→ n]) = s[x ,→ n]

and by definition of the semantics of assignment,

C[[x := n]](s) = s[x ,→ n]

as required.

The rule is
〈E, s〉→ 〈E′, s′〉

〈x := E, s〉→ 〈x := E′, s′〉

We must prove that

C[[x := E]](s) = C[[x := E′]](s′)

using the assumption that

E [[E]](s) = E [[E′]](s′).

By the previous lemma, s = s′. By definition of the semantics of
assignment,

C[[x := E]](s) = s[x ,→ E [[E]](s)]

= s′[x ,→ E [[E′]](s′)]

= C[[x := E′]](s′)

as required.

Sequential Composition Again we have one axiom and one rule to con-
sider. The axiom is

〈skip ; C, s〉→ 〈C, s〉

so we must prove that

C[[skip ; C]](s) = C[[C]](s).

By definition,

C[[skip ; C]](s) = (C[[skip]] ; C[[C]])(s)

= C[[C]](id(s))

= C[[C]](s)

as required.

The rule is
〈C1, s〉 → 〈C′

1, s
′〉

〈C1 ; C2, s〉 → 〈C′

1 ; C2, s
′〉

so we must prove that

C[[C1 ; C2]](s) = C[[C′

1 ; C2]](s
′)

using the assumption that

C[[C1]](s) = C[[C′

1]](s
′).

There are two cases: either C[[C1]](s) = ⊥, in which case C[[C1 ;C2]](s) =
C[[C′

1 ; C2]](s′) = ⊥, or C[[C1]](s) 1= ⊥. In this case,

C[[C1 ; C2]](s) = C[[C2]](C[[C1]](s))

= C[[C2]](C[[C′

1]](s
′))

= C[[C′

1 ; C2]](s
′).

The result therefore follows.

Skip There is no rule for skip since it makes no steps, so there is nothing
to prove.

Conditional The cases for the conditional follow in a similar way to those
for sequential composition and assignment, so we omit them.

While The rule for while is

〈while B do C, s〉→
〈if B then (C ; while B do C) else skip, s〉

so we must prove that

C[[while B do C]](s) = C[[if B then (C ; while B do C) else skip]](s)

This is exactly the equation that we originally set out to solve when
defining the denotational semantics of while. We didn’t quite give the
proof that it is satisfied, but. . .

5.2 Soundness for Axiomatic Semantics

Our final task in this course is to prove that the axiomatic soundness only
lets us derive partial correctness assertions that are true with respect to the
operational semantics.

First of all, we need to say what that means.

5.2.1 Semantics of Predicates

We first need to say what the denotational semantics of a predicate is. Since
we have not been specific about what predicates we allow, this is a bit tricky!
Slide 102 shows a slightly informal approach.

Semantics of Predicates

If a predicate is part of the language of boolean

expressions, then it is given semantics using the function

B[[−]] from the denotational semantics of While:

[[P]] = B[[P]].

For other predicates, we need to use common sense. . .

Slide 102

There is a lot of room for extra precision.

Examples

• [[x = 3]](s) = true iff s(x) = 3.

• [[x = y]](s) = true iff s(x) = s(y) 1= ⊥.

Slide 103

5.2.2 Semantics of assertions

We can now say what the semantics of a partial correctness assertion {P}C{Q}
is. Slide 104 contains the definition.

We can now state our soundness theorem, as follows.

Theorem 19 If a partial correctness assertion {P}C{Q} can be derived
using the axioms and rules of Hoare logic, then [[{P}C{Q}]] = true.

To prove this, we again use the method of induction over the derivation of
the assertion {P}C{Q}.

Skip The axiom for skip gives us the assertion {P}skip{P}. By definition,
C[[skip]](s) = s for any state s. So it is clear that if [[P]](s) = true
then [[P]](s) = true!

Sequential Composition The rule for sequential composition is

{P}C1{Q} {Q}C2{R}

{P}C1 ; C2{R}

Suppose that [[P]](s) = true and C[[C1 ; C2]](s) = s′. By definition of
the denotational semantics, there must be some s′′ such that

C[[C1]](s) = s′′

C[[C2]](s
′′) = s′.

Semantics of Assertions

We define [[{P}C{Q}]] = true if and only if

for all states s and s′, if [[P]](s) = true and

C[[C]](s) = s′, then [[Q]](s′) = true.

In any other case, [[{P}C{Q}]] = false.

Slide 104

Soundness of Axiomatic Semantics

If a partial correctness assertion {P}C{Q} can be

derived using the axioms and rules of Hoare logic, then

[[{P}C{Q}]] = true.

Slide 105

Using the inductive hypothesis, we know that [[{P}C1{Q}]] = true and
[[{Q}C2{R}]] = true. This means that [[Q]](s′′) = true, and therefore
that [[R]](s′) = true as required.

Conditional The rule for the conditional is

{P ∧ B}C1{Q} {P ∧ ¬B}C2{Q}

{P}if B then C1 else C2{Q}.

Suppose that [[P]](s) = true and C[[if B then C1 else C2]](s) = s′

for some states s and s′. There are two cases: either B[[B]](s) = true
or B[[B]](s) = false. (The only other possibility is that B[[B]](s) = ⊥,
but then C[[if B then C1 else C2]](s) = ⊥ too, and we’ve assumed
that is not the case.)

• If B[[B]](s) = true then we know that [[P ∧ B]](s) = true, so
applying the inductive hypothesis to the first assertion above the
line tells us that if C[[C1]](s) = s′′ then [[Q]](s′′) = true. But
in this case, we also know that C[[if B then C1 else C2]](s) =
C[[C1]](s) = s′, so it follows that [[Q]](s′) = true as required.

• The case of B[[B]](s) = false is similar.

Assignment The axiom for assignment is

{Q[E/x]}x := E{Q}.

To prove that this is sound, we must prove that if [[Q[E/x]]](s) = true
then

[[Q]](s[x ,→ E [[E]](s)]) = true,

for every predicate Q, variable x, expression E and state s. To do this
properly we would use induction on the structure of the predicate. We
have not made the syntax of predicates precise, so we can’t do that
formally. We therefore omit a proof of this case, leaving it to your
intuition.

While The rule for while is

{P ∧ B}C{P}

{P}while B do C{P ∧ ¬B}

Let us suppose that [[P]](s) = true and that C[[while B do C]](s) = s′.
We must show that [[P ∧ ¬B]](s) = true, using the assumption that
[[{P ∧ B}C{P}]] = true.

By definition of the semantics of while, s′ = C[[Ci]](s) for one of the
approximants Cn. It is therefore enough for us to show that the asser-
tion

{P}Cn{P ∧ ¬B}

is semantically valid for each n. This we do by induction on n.

For the base case, since C[[C0]](s) = ⊥ always, there is nothing to prove.

For the inductive step, suppose that {P}Ck{P ∧ ¬B} is valid. By
definition, Ck+1 is the command

if B then C ; Ck else skip

and we need to show that {P}Ck+1{P ∧ ¬B} is semantically valid.
Since we have already argued that the rules for skip, sequential com-
position and conditional preserve semantic validity, we can use these
rules to help us. The rule for conditional tells us that it will be enough
to show that both

{P ∧ B}C ; Ck{P ∧ ¬B}

and
{P ∧ ¬B}skip{P ∧ ¬B}

are valid. The second of these obviously holds: it is an instance of the
rule for skip. For the first, the rule for sequential composition tells us
that it will be enough to find some predicate Q such that both

{P ∧ B}C{Q}

and
{Q}Ck{P ∧ ¬B}

are valid.

But by the inductive hypothesis for this inner induction,

{P}Ck{P ∧ ¬B}

is valid, and by the inductive hypothesis for the outer induction, so is

{P ∧ B}C{P}.

So letting Q be P completes the inner induction, and hence the proof
for this case.

Logical rules The purely logical rules are very straightforward to verify, so
we omit their proofs.

So, both the operational and axiomatic semantics are correct with respect
to the denotational semantics. We have therefore given an account of the
meaning of simple programs in terms of state transformers which can be
used to show that a simple kind of interpreter (the small-step semantics)
works properly, and that certain reasoning principles (Hoare logic) are valid.
Thus we have a reasonably complete semantic theory for these very simple
programs.

6 The end

And, er, that’s it. Just for fun, why not think about how you might give a
small-step semantics to an extension of our language While with commands
like

C1‖C2

which runs the commands C1 and C2 “in parallel”. The idea is to simulate
concurrent execution by interleaved execution, which is to say that at any
given time, a computation step of C1‖C2 may be a step of C1 or of C2. What
happens to the property of determinacy? And can you give a corresponding
denotational semantics?

6.1 Why Semantics Matters

This course has been about a formal, mathematical approach to semantics.
The greatest advantage of formality is that if you don’t take anything for
granted, you won’t miss any subtle points. Of course, many of the really
useful discoveries one can make by studying semantics formally can also be
made by thinking hard about programs without the aid of a formalism.

Here are another couple of examples of places where real programming lan-
guages have semantic quirks which can trip you up if you’re not careful.

We all know that
(x + (y + z)) = ((x + y) + z).

But in Java, the expressions

(x + (y + z))

and

((x + y) + z)

are not equivalent.

To see why, consider the following code:

int x = 3;
int y = 7;
String z = "";
System.out.println((x + y) + z); // prints out 10
System.out.println(x + (y + z)); // prints out 37

Is this cheating? Not really: the semantics of + in Java is complicated
because it is an overloaded operator. As a programmer, you probably knew
this already. But if we gave a formal semantics to Java, we would have to
make the distinction between the numeric + and the string + explicit, so
that there was no confusion.

The second example illustrates the need to understand evaluation order,
strictness and so on when programming.

Java’s && operator, for logical “and”, is a left-to-right, short-circuit operator.
That is, in an expression

x && y

if x evaluates to false, Java does not evaluate y. However, method parame-
ters are passed by value, which means they are always evaluated. Therefore,
a method like

boolean logicalAnd(boolean x, boolean y) {
return (x && y);

}

is not equivalent to &&. Can you come up with an example context to dis-
tinguish them?

References

[NBB+63] Peter Naur, J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. Mc-
Carthy, A. J. Perlis, H. Rutishauer, K. Samelson, B. Vauquois,
J. H. Wegstein, A. van Wijngaarden, and M. Woodger. Revised
report on the algorithmic language ALGOL 60. Communications
of the ACM, 6(1):1–17, January 1963.

