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Outline

Introduc5on	
▶ What	is	image	processing?	

▶ Rela5onship	to	other	fields	

▶ Basic	concepts	

Point	opera5ons	
▶ Scaling,	inverse,	gamma	correc5on,	histogram	equaliza5on	

Spa5al	filters	
▶ Filtering,	correla5on,	convolu5on	

▶ Blurring,	sharpening,	edge	detec5on	

Filtering	in	Fourier	space	
▶ Frequency	domain,	low-	and	high-pass	filters
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What	is	image	processing?																																						(1/3)

Image	processing	is	the	study	of	any	algorithm	that	takes	an	
image	as	input	and	returns	an	image	as	output

Example:	contrast	adjustment

3Input	image	:	I Output	image	:	J

I J = f ( I )

algorithm	f
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What	is	image	processing?																																						(2/3)

Example:	noise	removal

Example:	edge	detec?on
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What	is	image	processing?																																						(3/3)

Advanced	examples	(not	seen	in	this	course)
▶ Compression

▶ Restora5on

5Damaged Restored

Original	(1.9MB) Compressed	(230	KB,	12%) Compressed	(126	KB,	7%)
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Rela?onship	to	other	fields

Image	Processing	
▶ Image	enhancement,	noise	removal,	feature	detec5on	…

Image	Analysis	
▶ Segmenta5on,	image	registra5on,	matching	…	

▶ Medical	diagnosis	from	an	image

Computer	Vision		
▶ Object	detec5on/recogni5on,	shape	analysis,	tracking	

▶ Use	of	Ar5ficial	Intelligence	(AI)	and	Machine	Learning	(ML)

NOTE	
▶ Computer	graphics/visualiza2on	deals	with	the	synthesis	of	images

6
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Recall	of	basic	concepts																																												(1/2)

Images	as	func5ons	
▶ We	can	think	of	the	intensity	of	an	image	as	a	func5on	of	posi5on	(u, v)	

▶ Let																		be	the	image	domain.	Then	an	image	is	a	discrete	func?on:	

Example
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A	simple	image Image	func5on	as	a	height	field	
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Recall	of	basic	concepts																																												(2/2)

Represen5ng	an	image	
▶ The	data	structure	for	an	image	is	simply	a	2D	array	of	values:	

▶ The	values	in	the	array	can	be	any	data	type	(8-bit,	16-bit…,	signed/unsigned	etc)		

Note	

▶ Here	we	work	with	grayscale	2D	images…	

▶ …but	in	medical	imaging	they	can	have	more	dimensions	and	channels!
8
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Histogram	of	an	image																																														(1/2)

A	histogram	is	a	func5on	h(i)	that	gives	the	frequency	of  
each	intensity	i	that	occur	in	an	image	
▶ Given	an	image																																							,	its	histogram	is	the	func5on:

In	other	words	
▶ h(i)	=	number	of	pixels	with	intensity	i

Notes	
▶ Low-contrast	image		➜	histogram	is	narrow	

▶ High-contrast	image	➜	histogram	is	spread	out	

▶ In	general,	image	processing	alters	the	histogram
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Histogram	of	an	image																																														(2/2)

Probabilis5c	interpreta5on	
▶ Ques?on:	

- if	we	pick	a	pixel	at	random,	what	is	the	probability 
that	the	intensity	of	this	voxel	is	equal	to	i?		

▶ Answer:	
- P( I(u,v)=i ) = #	pixels	with	value	i	/	#	pixels	of	the	image	

- P( I(u,v)=i ) = h(i) / MN 

Generaliza?on:	a	binned	histogram	gives	the	frequency	of	
image	intensi5es	that	fall	into	small	intervals	(or	bins)	
▶ Given	an	image																																							,	its	binned	histogram	is	the	func5on: 
 
 
 
where	

▶ Typically,	we	choose	equally	spaced	bins
10
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Point	opera?ons
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Defini?on

A	point	opera?on	on	an	image	is	an	algorithm	that 
changes	each	pixel	value	according	to	some	func5on	

▶ The	func5on	f	depends	only	on	the	pixel	value	

▶ It	is	independent	of	the	spa2al	loca2on	(u, v)

▶ The	range	of	f	determines	the	output	datatype,	e.g.	uint16	or	float32

Pseudocode	
▶ Input:	image	I(u, v)	defined	on	[0 . . . M-1] × [0 . . . N-1]	

▶ Output:	new	image	J(u, v) 	

▶ for		v	=	0…N-1  
								for		u	=	0…M-1  
													set		J(u, v)  =  f [ I(u, v) ]

12
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Basic	examples

Any	func5on	ca	be	used,	e.g.	f(x)=x2,	but	not	all	are	useful

Most	common	
▶ Addi5on	and	mul5plica5on	

- f (p)  =  p + k
- f (p)  =  p·x

▶ Inverse	
- f (p)  =  L - p

▶ Gamma	correc5on	
- f (p)  =  pγ

▶ Log	transform	
- f (p)  =  log( 1+p )

Notes	
▶ What	happens	to	their	histograms?	

▶ Beware	of	output	data	type	(overflow)
13

originalf (x) = x+1000 f (x) = x·2

original inverted

original log-transformed
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Useful	func?ons

Clamping	
▶ Limit	intensi2es	to	a	given	interval	[a, b]

Windowing	
▶ Clamping	followed	by	intensity	stretching 

to	fill	the	full	possible	range	[0, M]

Threshold	
▶ Also	called	image	binariza2on

14
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Automa?c	contrast	adjustment																														(1/2)

Histogram	equaliza?on	aims	at	improving 
the	contrast	by	rescaling	the	histogram:	
▶ The	histogram	of	the	new	image	is	spread	out	

▶ The	intensi2es	range	over	all	possible	gray	levels

Based	on	the	cumula2ve	distribu2on	func2on	of	h(i)  
(also	called	cumula?ve	histogram)	

▶ H(i)	=	number	of	pixels	that	have	intensity	less	than	or	equal	to	i

Note:	ideally,	the	resul5ng	image	has	a	flat	histogram	
▶ Histogram	cannot	be	made	exactly	flat	(peaks	cannot	be	increased/decreased	by	point	opera5ons)	

▶ This	point	opera5on	makes	the	histogram	as	close	as	possible	to	flat
15
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Automa?c	contrast	adjustment																														(2/2)

Procedure	
(1) Compute	the	histogram	h(i)	of	the	image	

(2) Normalize	h(i) s.t.	its	range	is	[0, 1] (i.e.	divide	by	the	total	number	of	pixels) 

(3) Calculate	the	cumula2ve	histogram	H(i)	

(4) Apply	the	following	point	opera2on	func2on	to	every	pixel	p: 

 
where	L	is	the	number	of	gray	levels	of	the	image	(i.e.	[0,	L-1]	range)

Example

16
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“Curves”	opera?on

Most	soAware	packages	allow	us	to	manually	alter	histograms	
by	adjus5ng	the	contrast	by	a	con?nuous	curve	

Con?nuous	point-opera5on	func5ons	
▶ Let’s	assume	for	simplicity:	

- That	the	image	has	con2nuous	pixel	type	(floa5ng	point)	
- The	intensity	range	is	in	the	interval	[0, 1],	i.e.	

▶ A	con2nuous	point-opera2on	is	any	func5on	

The	contrast	is	changed	as…	
▶ slope	=	1	➜	no	contrast	change	

▶ slope	<	1	➜	contrast	is	decreased	

▶ slope	>	1	➜	contrast	is	increased	
17



Spa?al	filters

18



Biomedical	Image	Processing Alessandro	Daducci

Limita?ons	of	point	opera?ons

Limita5ons	
▶ They	don’t	know	where	they	are	in	an	image	

▶ They	don’t	know	anything	about	their	neighbors

Most	image	features	(e.g.	edges)	involve	a	spa?al	
neighborhood	of	pixels

If	we	want	to	enhance	these	features 
we	need	to	go	beyond	point	opera?ons

19

Requires	deriva5ves	(i.e.	spa5al	informa5on)
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Filtering	concept																																																								(1/2)

Analogy:	as	a	water	filter	removes	impuri5es,  
image	processing	filters	remove	undesired  
features	from	an	image	(e.g.	noise)

Spa?al	filtering	is	an	image	opera5on	where	a	pixel	I(u, v) is	
changed	by	a	func5on	of	the	pixels	in	a	neighborhood	of	(u, v)	

Example	
▶ Consider	compu?ng	the	mean	in	a	3	×	3	neighborhood

20
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Filtering	concept																																																								(2/2)

General	filter	equa?on	

▶ I(u, v) and	I’(u, v) are,	respec5vely,	the	input	and	output	images	

▶ H(i, j) : RH → [0, K−1]	is	the	filter	(a.k.a.	kernel	or	mask)	

▶ RH	describes	the	spa2al	neighborhood	of	a	voxel

In	other	words	
▶ A	small	2D	matrix	moves	across	the	image 

affec5ng	only	one	pixel	at	a	2me	

▶ The	coefficients	in	H	determine	the	effect 
on	the	output	image

21

This	opera5on	is	known	as	
correla?on	of	I	and	H 

 ( I ⊗ H )
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What	do	these	filters	do?																																									(1/2)

Filter	1

Filter	2

22

➜		nothing!

➜		blurring	(mean)
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What	do	these	filters	do?																																									(2/2)

Filter	3

Filter	4

23

➜		sharpening	(iden5ty	minus	mean	filter)

➜		shi]	le]	by	one	pixel
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Notes:	what	to	do	at	the	boundary?

The	neighborhood	is	not	available	at	the	boundary

Some	op5ons

24
crop pad extend wrap
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Notes:	effect	of	filter	size

Example:	mean	filters  
(similar	effects	with	any	filter)

25

original 7	×	7 15	×	15 41	×	41
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Notes:	filter	normaliza?on

Mul5plying	all	entries	in	H	by	a	constant	would	cause	 
the	image	to	be	mul?plied	by	that	constant

Hence,	to	keep	the	overall	brightness	constant 
we	need	H	to	sum	up	to	one

No5ce	how	all	previous	filter	examples	indeed	sum	up	to	one!

26
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Edge	detec?on																																																												(1/4)

What	is	an	edge?	
▶ An	abrupt	transi2on	in	intensity	between	two	regions	

▶ Image	deriva2ves	are	high	(or	low)	at	edges

How	do	we	compute	image	deriva?ves?
27

image	intensity	along	red	line

corresponding	x-deriva?ve
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Edge	detec?on																																																												(2/4)

Discrete	func?ons:	leA	and	right	deriva2ves	don’t	match	
▶ Forward	differences  

																																																	(right	slope)	

▶ Backward	differences  
																																																	(ler	slope)

Solu?on:	take	the	average	
▶ Central	differences  
 
																																																																																																																(average	slope	)

Central	differences	as	spa?al	filter

28

f (x+1)

f (x-1)
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Edge	detec?on																																																												(3/4)

Deriva5ves	of	images	
▶ Images	have	two	dimensions:	I(u, v)	

▶ We	can	take	deriva5ves	with	respect	to	u	or	v

Combining	u	and	v	deriva5ves	
▶ The	discrete	gradient	of	I(u, v) is	the	2D	vector	

▶ The	gradient	magnitude	is

29

⊗																	=

u-deriva5ve	using	central	differences

⊗																	=

v-deriva5ve	using	central	differences

gradient	magnitude
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Edge	detec?on																																																												(4/4)

Prewia	operator	
▶ Finite	differences	are	sensi?ve	to	noise	

▶ More	robust	deriva5ves	by	averaging	in	the	neighborhood	

▶ No?ce:

Sobel	operator	
▶ Similar	to	Prewis,	but	averaging	is	higher	in	middle

30

deriva5ve

averaging
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Noise	reduc?on																																																										(1/3)

Image	pixels	are	the	result	of	a	signal	intensity	measurement	
▶ All	recording	devices	are	suscep5ble	to	noise	

▶ Noise	causes	fluctua2ons	in	actual	signal	intensi5es	

▶ Noise	proper5es	depend	on	acquisi5on	equipment

“Addi5ve”	noise	model	

▶ 				is	observed	signal	intensity	

▶ 				is	the	true	value	

▶ 				is	the	noise	value

Noise	reduc5on	is	the	process	of	removing	noise	from	a	signal  
(i.e.	all	pixels	in	the	image)

31
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Noise	reduc?on																																																										(2/3)

Typical	noise:	Addi5ve	White	Gaussian	Noise	(AWGN)	
▶ Many	random	processes	that	occur	in	nature	follow	this	model	

▶ Note:	white	noise	has	zero	mean

IDEA:	if	we	can	average	several	pixels	in	a	neighborhood	with	
the	same	signal,	the	noise	will	“average	out”

Any	filter	that	averages	in	a	neighborhood	will	reduce	noise	

▶ Fourier	theory	tells	us	why	some	are	beser	than	others
32
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Noise	reduc?on																																																										(3/3)

Note	1:	par5cular	noise	sources	require	specific	algorithms	
▶ Example:	Salt-and-Pepper	noise		

▶ Averaging	does	not	work	well	because	the	outlier 
is	included	in	the	mean	(biasing	the	result)		

▶ Taking	the	median	does	a	good	job

Note	2:	image	features	(e.g.	edges)	are	not	constant 
and	they	also	get	blurred	by	averaging	filters

To	summarize:	more	advanced	filters	are	needed
33

measured	image denoised	1 denoised	2



Fourier	filtering
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Convolu?on																																																																	(1/3)

Convolu?on	of	an	image	I	by	a	kernel	H	is	given	by	

▶ I(u, v) and	I’(u, v) are,	respec5vely,	the	input	and	output	images	

▶ H(i, j) : RH → [0, K−1]	is	the	filter	

▶ RH	describes	the	spa2al	neighborhood	of	a	voxel

Notes	
▶ Recall	the	defini5on	of	correla?on:	

▶ Similar	to	correla5on,	but	with	nega5ve	signs	on	the	I	indices	

▶ Equivalent	to	ver?cal	and	horizontal	flipping	of	H

35

Correla?on	of	I	and	H 
 ( I ⊗ H )

Convolu?on	of	I	and	H 
 ( I ∗ H )
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Convolu?on																																																																	(2/3)

Why	then	another	defini5on?	
▶ Correla?on	was	easier	to	explain	for	introducing	spa5al	filters	

▶ Convolu?on	has	more	useful	proper5es

Basic	proper?es	of	convolu5on	
▶ Linear	

▶ Commuta2ve	

▶ Associa2ve

Convolu?on	theorem	
▶ Let	f,	g	be	two	func5ons	with	convolu2on	f∗g	and	Fourier	transforms	F{	f }	and	F{	g }.  

Then:	

▶ In	other	words,	convolu5on	in	a	domain	equals	point-wise	mul5plica5on	in	the	other
36

F{	f ∗ g }	=	F{	f }	·	F{	g } F{	f · g }	=	F{	f }	∗	F{	g }
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Convolu?on																																																																	(3/3)

Filtering	is	simpler	in	Fourier	space!	
▶ In	spa5al	domain,		I∗H		is	performed	by	sliding	H	on	the	image	I		(very	slow) 

▶ In	frequency	domain,	the	opera5on	is	replaced	by	a	simple	mul2plica2on	

▶ NB:	FFT	is	efficient,	mul2plica2on	is	efficient.	Filtering	in	Fourier	space	is	faster!

To	make	the	theory	work	out,	we	need	a	mathema?cal	trick	
▶ Let’s	define	our	image	and	kernel	domains	to	be	infinite:	

▶ Now	convolu5on	is	an	infinite	sum:	

▶ We	can	s5ll	imagine	that	the	image 
is	defined	on	a	finite	domain	[0, M] × [0, N]  
but	is	set	to	zero	outside	this	range

37

New	defini?on	of	I∗H

image	pixels

zero

F{	I ∗ H }	=	F{	I }	·	F{	H } I ∗ H	=	F-1{	F{	I }	·	F{	H }	}
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Filtering	in	frequency	domain																																	(1/4)

Example	1:	lowpass	filters	
▶ Low	frequencies	of	the	image	(from	the	Fourier	transform)	are	kept	

▶ High	frequencies	are	blocked	(containing	all	fine	details)	

▶ Used	to	smooth	the	image	or	reduce	noise

Ideal	filter

Example

38image	I FFT{	I	} filter	H I’ = I∗H

d0

1D 2D

Do	you	remember	
the	mean	filter?
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Filtering	in	frequency	domain																																	(2/4)

Note:	the	mean	filter	gives	blocky	blurring/ringing.	Why?	

Gaussian	filter	

Example

39

2D1D

FFT

box sinc

image	I FFT{	I	} filter	H I’ = I∗H
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Filtering	in	frequency	domain																																	(3/4)

40
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Filtering	in	frequency	domain																																	(4/4)

Example	2:	highpass	filters	
▶ Inverse	of	lowpass	filters	(high	frequencies	are	kept,	while	low	ones	are	blocked)	

▶ Used	to	sharpen	the	edges	of	the	image

Ideal	vs	Gaussian	filters	
▶ Same	pros/cons	of	lowpass	filters

NB:	any	filter	can	be	used	in	frequency	domain	
▶ Usually	they	are	more	efficient	

▶ The	process	to	move	to	the	frequency	domain	provides 
valuable	insight	into	the	nature	of	the	image	and	filter

41

Gaussianideal


