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A Simplified view of MapReduce 
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From theory to practice 

!  The story so far 

–  MapReduce programming model 

–  High level view of the execution framework 

!  Next, we’ll see 

–  Implementation of MapReduce: Hadoop 

•  Implementation details 

•  Types and Formats 

!  Before this, we present the special file-system used in Hadoop 
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Hadoop Distributed File-System (HDFS) 
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Data and computation colocation 

!  As dataset sizes increase, more computing capacity is required for 
processing 

!  As compute capacity grows, the link between the compute nodes and the 
storage nodes becomes a bottleneck 

–  One could think of special-purpose interconnects for high-performance 
networking 

–  This is often a costly solution as cost does not increase linearly with 
performance 

!  Key idea: abandon the separation between compute and storage nodes 

–  This is exactly what happens in current implementations of the MapReduce 
framework 

–  A distributed filesystem is not mandatory, but highly desirable 
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The Hadoop Distributed Filesystem 

!  Large dataset(s) outgrowing the storage capacity of a single physical machine 

–  Need to partition it across a number of separate machines 

–  Network-based system, with all its complications 

–  Tolerate failures of machines 

!  Distributed filesystems are not new! 

–  HDFS builds upon previous results, tailored to the specific requirements of MapReduce 

–  Write once, read many workloads 

–  Does not handle concurrency, but allow replication 

–  Optimized for throughput, not latency 

!  Hadoop Distributed Filesystem 

–  Very large files 

–  Streaming data access 

–  Commodity hardware 
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HDFS Blocks 

!  (Big) files are broken into block-sized chunks 

–  E.g, 64 MB or 128 MB 

–  NOTE: A file that is smaller than a single block does not occupy a full block’s 
worth of underlying storage 

!  Blocks are stored on independent machines 

–  Replicate across the local disks of nodes in the cluster 

–  Reliability and parallel access 

–  Replication is handled by storage nodes themselves (similar to chain 
replication) 

!  Why is a block so large? 

–  Make transfer times larger than seek latency 

–  E.g.: Assume seek time is 10ms and the transfer rate is 100 MB/s, if you want 
seek time to be 1% of transfer time, then the block size should be 100MB 
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NameNodes and DataNodes 

!  NameNode!
–  Keeps metadata in RAM 

–  Each block information occupies roughly 150 bytes of memory 

–  Without NameNode, the filesystem cannot be used 

•  Persistence of metadata: synchronous and atomic writes to NFS 

!  Secondary NameNode!
–  Merges the namespace with the edit log 

–  A useful trick to recover from a failure of the NameNode is to use the NFS copy 
of metadata and switch the secondary to primary 

!  DataNode!
–  They store data and talk to clients 

–  They report periodically to the NameNode the list of blocks they hold 
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Architecture 
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Architecture 
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Anatomy of a File Read 

!  NameNode is only used to get block location 

–  Unresponsive DataNode are discarded by clients 

–  Batch reading of blocks is allowed 

!  “External” clients 

–  For each block, the NameNode returns a set of DataNodes holding a copy 
thereof 

–  DataNodes are sorted according to their proximity to the client 

!  “MapReduce” clients 

–  TaskTracker and DataNodes are colocated 

–  For each block, the NameNode usually returns the local DataNode!
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Anatomy of a File Write 

!  Details on replication 

–  Clients ask NameNode for a list of suitable DataNodes!
–  This list forms a pipeline: first DataNode stores a copy of a block, then 

forwards it to the second, and so on 

!  Replica Placement 

–  Tradeoff between reliability and bandwidth 

–  Default placement: 

•  First copy on the “same” node of the client, second replica is off-rack, third replica 
is on the same rack as the second but on a different node 

•  Since Hadoop 0.21, replica placement can be customized 
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Network Topology and HDFS 
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HDFS Coherency Model 

!  Read your writes is not guaranteed 

–  The namespace is updated 

–  Block contents may not be visible after a write is finished 

–  Application design (other than MapReduce) should use sync() to force 
synchronization 

–  sync() involves some overhead: tradeoff between robustness/consistency and 
throughput 

!  Multiple writers (for the same block) are not supported 

–  Instead, different blocks can be written in parallel (using MapReduce) 
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Hadoop MapReduce:  
the Execution Framework 
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Disclaimer 

!  MapReduce APIs 

–  Fast evolving 

–  Sometimes confusing 

 

!  Do NOT reply on these slides as a reference 

–  Use appropriate API docs 
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Terminology 

!  MapReduce: 

–  Job: an execution of a Mapper and Reducer across a data set 

–  Task: an execution of a Mapper or a Reducer on a slice of data 

–  Task Attempt: instance of an attempt to execute a task 

–  Example: 
•  Running “Word Count” across 20 files is one job 

•  20 files to be mapped = 20 map tasks + some number of reduce tasks 

•  At least 20 attempts will be performed... more if a machine crashes 

!  Task Attempts 

–  Task attempted at least once, possibly more 

–  Multiple crashes on input imply discarding it 

–  Multiple attempts may occur in parallel (speculative execution) 
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Anatomy of a MapReduce Job Run 
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Job Submission 

!  JobClient class 

–  The runJob() method creates a new instance of a JobClient 

–  Then it calls the submitJob() on this class 

!  Simple verifications on the Job 

–  Is there an output directory? 

–  Are there any input splits? 

–  Can I copy the JAR of the job to HDFS? 

!  Note: the JAR of the job is replicated 10 times 
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Job Initialization 

!  The JobTracker is responsible for: 

–  Create an object for the job 

–  Encapsulate its tasks 

–  Bookkeeping with the tasks’ status and progress 

!  This is where the scheduling happens 

–  JobTracker performs scheduling by maintaining a queue 

–  Queueing disciplines are pluggable 

!  Compute mappers and reducers 

–  JobTracker retrieves input splits (computed by JobClient) 

–  Determines the number of Mappers based on the number of input splits 

–  Reads the configuration file to set the number of Reducers 
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Task Assignment 

!  Hearbeat-based mechanism 

–  TaskTrackers periodically send heartbeats to the JobTracker!
•  TaskTrackers is alive 

•  Heartbeat contains information on availability of the TaskTrackers to execute a task 

–  JobTracker piggybacks a task if TaskTracker is available 

!  Selecting a task 

–  JobTracker first needs to select a job (i.e. job scheduling) 

–  TaskTrackers have a fixed number of slots for map and reduce tasks 

–  JobTracker gives priority to map tasks (WHY?) 

!  Data locality 

–  JobTracker is topology aware 

•  Useful for map tasks, unused for reduce tasks (WHY?) 
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Task Execution 

!  Task Assignment is done, now TaskTrackers can execute 

–  Copy the JAR from the HDFS 

–  Create a local working directory 

–  Create an instance of TaskRunner!

!  TaskRunner launches a child JVM 

–  This prevents bugs from stalling the TaskTracker!
–  A new child JVM is created per InputSplit!

•  Can be overridden by specifying JVM Reuse option, which is very useful for custom, 
in-memory, combiners 

!  Streaming and Pipes 

–  User-defined map and reduce methods need not to be in Java 

–  Streaming and Pipes allow C++ or python mappers and reducers 
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Scheduling 

!  FIFO Scheduler (default behavior) 
–  Each job uses the whole cluster 

–  Not suitable for shared production-level cluster 

•  Long jobs monopolize the cluster 

•  Short jobs can hold back and have no guarantees on execution time 

!  Fair Scheduler 
–  Every user gets a fair share of the cluster capacity over time 

–  Jobs are placed in to pools, one for each user 

•  Users that submit more jobs have no more resources than others 

•  Can guarantee minimum capacity per pool 

–  Supports preemption 

!  Capacity Scheduler 
–  Hierarchical queues (mimic an organization) 

–  FIFO scheduling in each queue 

–  Supports priority 
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Handling Failures 

In the real world, code is buggy, processes crash and machines fail 

!  Task Failure 
–  Case 1: map or reduce task throws a runtime exception 

•  The child JVM reports back to the parent TaskTracker!
•  TaskTracker logs the error and marks the TaskAttempt as failed 

•  TaskTracker frees up a slot to run another task 

–  Case 2: Hanging tasks 

•  TaskTracker notices no progress updates (timeout = 10 minutes) 

•  TaskTracker kills the child JVM 

–  JobTracker is notified of a failed task 

•  Avoids rescheduling the task on the same TaskTracker!
•  If a task fails 4 times, it is not re-scheduled 

•  Default behavior: if any task fails 4 times, the job fails 
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Handling Failures (cont’d) 

!  TaskTracker Failure 
–  Types: crash, running very slowly 

–  Heartbeats will not be sent to JobTracker!
–  JobTracker waits for a timeout (10 minutes), then it removes the TaskTracker from 

its scheduling pool 

–  JobTracker needs to reschedule even completed tasks (WHY?) 

–  JobTracker needs to reschedule tasks in progress 

–  JobTracker may even blacklist a TaskTracker if too many tasks failed 

!  JobTracker Failure 
–  Currently, Hadoop has no mechanism for this kind of failure 

–  In future (and commercial) releases: 

•  Multiple JobTrackers!
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Shuffle and Sort 

!  The MapReduce framework guarantees the input to every reducer to be 
sorted by key 

–  The process by which the system sorts and transfers map outputs to reducers is 
known as shuffle 

!  Shuffle is the most important part of the framework, where the “magic” 
happens 

–  Good understanding allows optimizing both the framework and the execution 
time of MapReduce jobs 

!  Subject to continuous refinements 
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Shuffle and Sort: the Map Side 
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Shuffle and Sort: the Map Side 

!  The output of a map task is not simply written to disk 

–  In memory buffering 

–  Pre-sorting 

!  Circular memory buffer 

–  100 MB by default 

–  Threshold based mechanism to spill buffer content to disk 

–  Map output written to the buffer while spilling to disk 

–  If buffer fills up while spilling, the map task is blocked 

!  Disk spills 

–  Written in round-robin to a local dir 

–  Output data is partitioned corresponding to the reducers they will be sent to 

–  Within each partition, data is sorted (in-memory) 

–  Optionally, if there is a combiner, it is executed just after the sort phase 
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Shuffle and Sort: the Map Side 

!  More on spills and memory buffer 

–  Each time the buffer is full, a new spill is created 

–  Once the map task finishes, there are many spills 

–  Such spills are merged into a single partitioned and sorted output file 

!  The output file partitions are made available to reducers over HTTP 

–  There are 40 (default) threads dedicated to serve the file partitions to reducers 
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Shuffle and Sort: the Reduce Side 

!  The map output file is located on the local disk of tasktracker 

!  Another tasktracker (in charge of a reduce task) requires input from many 
other TaskTracker (that finished their map tasks) 

–  How do reducers know which tasktrackers to fetch map output from? 

•  When a map task finishes it notifies the parent tasktracker 

•  The tasktracker notifies (with the heartbeat mechanism) the jobtracker 

•  A thread in the reducer polls periodically the jobtracker 

•  Tasktrackers do not delete local map output as soon as a reduce task has fetched 
them (WHY?)  

!  Copy phase: a pull approach 

–  There is a small number (5) of copy threads that can fetch map outputs in 
parallel 
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Shuffle and Sort: the Reduce Side 

!  The map outputs are copied to the the trasktracker running the reducer in 
memory (if they fit) 

–  Otherwise they are copied to disk 

!  Input consolidation 

–  A background thread merges all partial inputs into larger, sorted files 

–  Note that if compression was used (for map outputs to save bandwidth), 
decompression will take place in memory 

!  Sorting the input 

–  When all map outputs have been copied a merge phase starts 
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Hadoop MapReduce:  
Types and Formats 
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Data Types: Keys and Values 

Writable ! Defines a de/serialization protocol. Every 
data type in Hadoop is a Writable.!

WritableComprable! Defines a sort order.  All keys must be of this 
type (but not values).!

IntWritable"
LongWritable!

Text!
…!

Concrete classes for different data types.!

SequenceFiles! Binary encoded of a sequence of "
key/value pairs!
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Map interface 

!  Input / output to mappers and reducers 

–  map: (k1, v1) � [(k2, v2)] 

–  reduce: (k2, [v2]) � [(k3, v3)] 

!  In Hadoop, a mapper is created as follows: 

void map(k1 key, v1 value, Context context) 

!  Types: 

–  k1 types implement WritableComparable!
–  v1 types implement Writable!

!  What about “context”? 
–  Used to send the data to the reducers  

–  context.write(k2 outKey, v2 outValue) 

•  k2 implements WritableComparable, v2 implements Writable!
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How the mapper get the data? 
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Reading data 

!  Datasets are specified by InputFormats!
–  InputFormats define input data (e.g. a file, a directory) 

–  InputFormats identify partitions of the data that form an InputSplit!
•  InputSplit is a (reference to a) chunk of the input processed by a single map 

–  InputFormats is a factory for RecordReader objects to extract key-value 
records from the input source 

!  Splits and records are logical, they are not physically bound to a file 

 38 

Relationship between InputSplit and HDFS blocks 
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FileInputFormat!

!  Base class for all implementations of InputFormat that use files as 
their data source 

!  It provides a method for specifying the path where the input file(s) are 
stored 

–  The path can be a directory with many files in it 

!  Example of implementation: TextInputFormat 

–  treats each newline-terminated line of a file as a value 
On the top of the Crumpetty Tree  "  (0, On the top of the Crumpetty Tree) 

The Quangle Wangle sat,   "  (33, The Quangle Wangle sat,) 

But his face you could not see,   "  (57, But his face you could not see,)  

On account of his Beaver Hat.   "  (89, On account of his Beaver Hat.) 

 40 

Reduce interface 

!  In Hadoop, a reducer is created as follows: 

void reduce(k2 key, iterator<v2> values, Context context) 

!  Types: 

–  k2 types implement WritableComparable!
–  v2 types implement Writable!
–  Context is used to write data to the output 
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Writing the output 

 42 

Writing the output 

!  Analogous to InputFormat!

!  TextOutputFormat writes “key value <newline>” strings to output file 

 

!  NullOutputFormat discards output 
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Detour: how to divide the work among reducers? 

!  Solution: Partitioner 

–  It is in charge of assigning intermediate keys to reducers 

–  it can be customized 

!  Default: Hash-based partitioner 

–  Computes the hash of the key modulo the number of reducers r 

–  This ensures a roughly even partitioning of the key space 

•  However, it ignores values: this can cause imbalance in the data processed by each 
reducer 

–  When dealing with complex keys, even the base partitioner may need 
customization 
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Mapper Mapper Mapper Mapper Mapper 

Partitioner Partitioner Partitioner Partitioner Partitioner 

Intermediates Intermediates Intermediates Intermediates Intermediates 

Reducer Reducer Reduce 

Intermediates Intermediates Intermediates 

(combiners omitted here) 

Partitioners 
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Hadoop MapReduce:  
Summary 
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Basic Cluster Components 

!  One of each: 

–  Namenode (NN): master node for HDFS 

–  Jobtracker (JT): master node for job submission 

!  Set of each per slave machine: 

–  Tasktracker (TT): contains multiple task slots 

–  Datanode (DN): serves HDFS data blocks 

* Not quite… leaving aside YARN for now!
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Putting everything together… 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

namenode 

namenode daemon 

job submission node 

jobtracker 
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Basic Hadoop API 

!  Mapper 

–  void setup(Mapper.Context context)  
Called once at the beginning of the task 

–  void map(K key, V value, Mapper.Context context)  
Called once for each key/value pair in the input split 

–  void cleanup(Mapper.Context context)  
Called once at the end of the task 

!  Reducer/Combiner 

–  void setup(Reducer.Context context)  
Called once at the start of the task 

–  void reduce(K key, Iterable<V> values, Reducer.Context 
context)  
Called once for each key 

–  void cleanup(Reducer.Context context)  
Called once at the end of the task *Note that there are two versions of the API!!
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Basic Hadoop API 

!  Partitioner 

–  int getPartition(K key, V value, int numPartitions)  
Get the partition number given total number of partitions  

!  Job 

–  Represents a packaged Hadoop job for submission to cluster 

–  Need to specify input and output paths 

–  Need to specify input and output formats 

–  Need to specify mapper, reducer, combiner, partitioner classes 

–  Need to specify intermediate/final key/value classes 

–  Need to specify number of reducers (WHY?) 

*Note that there are two versions of the API!!

 50 

Three Gotchas 

!  Avoid object creation at all costs 

–  Reuse Writable objects, change the payload 

!  Execution framework reuses value object in reducer 

!  Passing parameters via class statics 


