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LDA Objective

• The objective of LDA is to perform 
dimensionality reduction …

– So what, PCA does this /…

• However, we want to preserve as much of the 
class discriminatory information as possible.

– OK, that’s new, let dwell deeper ☺…



Recall …
 

PCA

• In PCA, the main idea to re-express the available dataset to extract 
the relevant information by reducing the redundancy and minimize

 
the noise.

• We didn’t care about whether this dataset represent features from one 
or more classes, i.e. the discrimination power was not taken into 
consideration while we were talking about PCA.

• In PCA, we had a dataset matrix X

 

with dimensions mxn, where 
columns represent different data samples.

• We first started by subtracting the mean to have a zero mean dataset, 
then we computed the covariance matrix Sx

 

= XXT.

• Eigen

 

values and eigen

 

vectors were then computed for Sx

 

. Hence the 
new basis vectors are those eigen

 

vectors with highest eigen

 

values, 
where the number of those vectors was our choice.

• Thus, using the new basis, we can project the dataset onto a less 
dimensional space with more powerful data representation.
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Now …
 

LDA

• Consider a pattern classification problem, where we have C-
 classes, e.g. seabass, tuna, salmon …

• Each class has Ni

 

m-dimensional samples, where i = 1,2, …, C.

• Hence we have a set of m-dimensional samples {x1, x2,…, xNi} 
belong to class ωi

 

.

• Stacking these samples from different classes into one big fat 
matrix X such that each column represents one sample.

• We seek to obtain a transformation of X
 

to Y
 

through projecting 
the samples in X

 
onto a hyperplane

 
with dimension C-1.

• Let’s see what does this mean?



LDA …
 

Two Classes
• Assume we have m-dimensional samples {x1, 

x2,…, xN}, N1

 

of which belong to ω1

 

and 
N2

 

belong to ω2

 

.

• We seek to obtain a scalar y by projecting 
the samples x

 

onto a line (C-1 space, C = 2).

• Of all the possible lines we would like to 
select the one that maximizes the 
separability

 

of the scalars.
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The two classes are not well 
separated when projected onto 
this line

This line succeeded in separating 
the two classes and in the 
meantime reducing the 
dimensionality of our problem 
from two features (x1

 

,x2

 

) to only a 
scalar value y.



LDA …
 

Two Classes

• In order to find a good projection vector, we need to define a 
measure of separation between the projections.

• The mean vector of each class in x
 

and y
 

feature space is:

• We could then choose the distance between the projected means 
as our objective function
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LDA …
 

Two Classes

• However, the distance between the projected means is not a very 
good measure since it does not take into account the standard 
deviation within the classes.

This axis has a larger distance between means

This axis yields better class separability



LDA …
 

Two Classes
• The solution proposed by Fisher is to maximize a function that 

represents the difference between the means, normalized by a 
measure of the within-class variability, or the so-called scatter.

• For each class we define the scatter, an equivalent of the 
variance, as;

• measures the variability within class ωi after projecting it on 
the y-space.

• Thus  measures the variability within the two 
classes at hand after projection, hence it is called within-class scatter

 of the projected samples. 
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LDA …
 

Two Classes

• The Fisher linear discriminant

 

is defined as 
the linear function wTx

 

that maximizes the 
criterion function:

• Therefore, we will be looking for a projection 
where examples from the same class are

 

 
projected very close to each other and, at the 
same time, the projected means are as farther 
apart as possible
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LDA …
 

Two Classes

• In order to find the optimum projection w*, we need to express 
J(w)

 
as an explicit function of w.

• We will define a measure of the scatter in multivariate feature 
space x

 
which are denoted as scatter matrices;

• Where Si

 

is the covariance matrix of class ωi

 

, and Sw

 

is called the 
within-class scatter matrix.
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LDA …
 

Two Classes
• Now, the scatter of the projection y can then be expressed as a function of 

the scatter matrix in feature space x.

Where       is the within-class scatter matrix of the projected samples y.
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LDA …
 

Two Classes

• Similarly, the difference between the projected means (in y-space) can be 
expressed in terms of the means in the original feature space (x-space).

• The matrix SB

 

is called the between-class scatter of the original samples/feature 
vectors, while      is the between-class scatter of the projected samples y.

• Since SB

 

is the outer product of two vectors, its rank is at most one.
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LDA …
 

Two Classes

• We can finally express the Fisher criterion in terms of 
SW

 

and SB

 

as:

• Hence J(w)
 

is a measure of the difference between class 
means (encoded in the between-class scatter matrix) 
normalized by a measure of the within-class scatter 
matrix.
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LDA …
 

Two Classes
• To find the maximum of J(w), we differentiate and equate to 

zero.
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LDA …
 

Two Classes

• Solving the generalized eigen

 
value problem

yields 

• This is known as Fisher’s Linear Discriminant, although it is not a 
discriminant

 
but rather a specific choice of direction for the projection 

of the data down to one dimension.

• Using the same notation as PCA, the solution will be the eigen

 vector(s) of 
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LDA …
 

Two Classes -
 

Example
• Compute the Linear Discriminant

 

projection for the following two-

 dimensional dataset.

– Samples for class ω1

 

: X1

 

=(x1

 

,x2

 

)={(4,2),(2,4),(2,3),(3,6),(4,4)}

– Sample for class ω2

 

: X2

 

=(x1

 

,x2

 

)={(9,10),(6,8),(9,5),(8,7),(10,8)}
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LDA …
 

Two Classes -
 

Example

• The classes mean are :
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LDA …
 

Two Classes -
 

Example

• Covariance matrix of the first class:
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LDA …
 

Two Classes -
 

Example

• Covariance matrix of the second class:
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LDA …
 

Two Classes -
 

Example

• Within-class scatter matrix:
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LDA …
 

Two Classes -
 

Example

• Between-class scatter matrix:
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LDA …
 

Two Classes -
 

Example
• The LDA projection is then obtained as the solution of the generalized eigen

 value problem
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LDA …
 

Two Classes -
 

Example

• Hence

• The optimal projection is the one that given maximum  λ

 

= J(w)

{

*
21

2

1
2

2

1
1

4173.0
9088.0

8178.0
5755.0

;

2007.12
9794.22339.4
489.62213.9

0
9794.22339.4
489.62213.9

2

1

wwandw

Thus

w
w

w

and
w
w

w

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

43421
λ

λ



LDA …
 

Two Classes -
 

Example
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LDA -
 

Projection
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LDA -
 

Projection
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LDA …
 

C-Classes

• Now, we have C-classes instead of just two.

• We are now seeking (C-1) projections [y1

 

, y2

 

, …, yC-1

 

] by means 
of (C-1) projection vectors wi

 

. 

• wi

 

can be arranged by columns
 

into a projection matrix W

 
= 

[w1

 

|w2

 

|…|wC-1

 

] such that:
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LDA …
 

C-Classes

• If we have n-feature vectors, we can stack them into one matrix 
as follows;
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LDA –
 

C-Classes

• Recall the two classes case, the 
within-class scatter was computed as:

• This can be generalized in the C-
 classes case as:

21 SSSw +=

( )( )

∑

∑

∑

∈

∈

=

=

−−=

=

i

i

xi
i

T
i

x
ii

C

i
iW

x
N

and

xxSwhere

SS

ω

ω

μ

μμ

1

1

x1

x2
μ1

μ2

μ3

S
w1

S w3

Sw2

Example of two-dimensional 
features (m = 2),

 

with three 
classes C = 3.

Ni

 

: number of data samples 
in class ωi
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LDA –
 

C-Classes

• Recall the two classes case, the between-

 class scatter was computed as:

• For C-classes case, we will measure the 
between-class scatter with respect to the 
mean of all class as follows:
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features (m = 2),

 

with three 
classes C = 3.
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: number of data samples 
in class ωi
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N: number of all data .



LDA –
 

C-Classes

• Similarly, 

– We can define the mean vectors for the projected samples y

 

as:

– While the scatter matrices for the projected samples y

 

will be:
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LDA –
 

C-Classes

• Recall in two-classes case, we have expressed the scatter matrices of the 
projected samples in terms of those of the original samples as:

This still hold in C-classes case.

• Recall that we are looking for a projection that maximizes the ratio of 
between-class to within-class scatter. 

• Since the projection is no longer a scalar (it has C-1

 

dimensions), we then use 
the determinant of the scatter matrices to obtain a scalar objective function:

• And we will seek the projection W*

 

that maximizes this ratio.
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LDA –
 

C-Classes
• To find the maximum of J(W), we differentiate with respect to W

 

and equate 
to zero.

• Recall in two-classes case, we solved the eigen

 

value problem.

• For C-classes case, we have C-1

 

projection vectors, hence the eigen

 

value 
problem can be generalized  to the C-classes case as:

• Thus, It can be shown that the optimal projection matrix W*

 

is the one whose 
columns are the eigenvectors corresponding to the largest eigen

 

values of the 
following generalized eigen

 

value problem:
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Illustration –
 

3 Classes
• Let’s

 
generate a dataset for each 

class to simulate the three 
classes shown

• For each class do the following,

– Use the random number generator 
to generate a uniform stream of 
500 samples that follows U(0,1). 

– Using the Box-Muller approach, 
convert the generated uniform 
stream to N(0,1). 

x1

x2
μ1

μ2

μ3μ

– Then use the method of eigen

 

values 
and eigen

 

vectors to manipulate the 
standard normal to have the required 
mean vector and covariance matrix .

– Estimate the mean and covariance 
matrix of the resulted dataset.



• By visual inspection of the figure, 
classes parameters (means and 
covariance matrices can be given as 
follows:

Dataset Generation
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In Matlab
 
☺



It’s Working …
 
☺
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Computing LDA Projection Vectors
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Let’s visualize the projection vectors W
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Projection …
 

y = WTx
Along first

 

projection vector
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Projection …
 

y = WTx
Along second

 

projection vector

-10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y

p
(y

|
w

i)

Classes PDF : using the second projection vector with eigen value = 1878.8511



Which is Better?!!!
• Apparently, the projection vector that has the highest eigen

 value provides higher discrimination power between classes
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PCA vs
 

LDA



Limitations of LDA /

• LDA produces at most C-1 feature projections

– If the classification error estimates establish that more features are needed, some other method must be 
employed to provide those additional features

• LDA is a parametric method since it assumes unimodal

 

Gaussian likelihoods

– If the distributions are significantly non-Gaussian, the LDA projections will not be able to preserve any 
complex structure of the data, which may be needed for classification.



Limitations of LDA /

• LDA will fail when the discriminatory information is not in the mean but 
rather in the variance of the data



Thank You
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