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LDA Objective

* The objective of LDA 1s to perform
dimensionality reduction ...

— So what, PCA does this ®...

* However, we want to preserve as much ot the
class discriminatory information as possible.

— OK, that’s new, let dwell deeper © ...



Recall ... PCA

In PCA, the main idea to re-express the available dataset to extract
the relevant information by reducing the redundancy and minimize
the noise.

We didn’t care about whether this dataset represent features from one
or more classes, i.e. the discrimination power was not taken into
consideration while we were talking about PCA.

In PCA, we had a dataset matrix X with dimensions mxz, where
columns represent different data samples.

We first started by subtracting the mean to have a zero mean dataset,
then we computed the covariance matrix S, = XXT.

Eigen values and eigen vectors were then computed for S_. Hence the
new basis vectors are those eigen vectors with highest eigen values,
where the number of those vectors was our choice.

Thus, using the new basis, we can project the dataset onto a less
dimensional space with more powerful data representation.

m - dimensional feature vector

—_—

n— sample vectors



Now ... LDA

Consider a pattern classification problem, where we have C-
classes, e.g. seabass, tuna, salmon ...

Each class has N; 7-dimensional samples, where 7 = 7,2, ..., C.

Hence we have a set of z-dimensional samples {x!, x2,...; xN}

belong to class w,.

Stacking these samples from different classes into one big fat
matrix X such that each column represents one sample.

We seek to obtain a transformation of X to Y through projecting
the samples in X onto a hyperplane with dimension C-7.

Let’s see what does this mean?



LDA ... Two Classes

The two classes are not well

%2 . : :
Sflpalriated when projected onto e Assume we have z-dimensional samples {x!,
this line .
X2y..0y XN} N, of which belong to w; and
N, belong to w,.
* We seek to obtain a scalar y by projecting
the samples x onto a line (C-1 space, C = 2).
> Xl Wl
xll T ]
R y=w X where x= and w=
Xo )
_Xm_ _Wm_

* Of all the possible lines we would like to
. . . select the one that maximizes the
This line succeeded in separating

the two classes and in the separabﬂity of the scalars.
meantime reducing the

dimensionality of our problem
from two features (x,,X,) to only a
scalar value y.

>
X4



LDA ... Two Classes

In order to find a good projection vector, we need to define a
measure of separation between the projections.

The mean vector of each class in x and y feature space is:

1 ~ 1 1
“i:WZX and yi=WZy=WZWTx

I Xew, i Yeo | XEw;

=WTNLZX=WTlui

i Xea)i

We could then choose the distance between the projected means
as our objective function

J(W) =iz, - | = W' —WTﬂ2\=\WT(ﬂ1 —ﬂz]




LDA ... Two Classes

* However, the distance between the projected means 1s not a very
good measure since it does not take into account the standard
deviation within the classes.

X5

This axis yields better class separability { —

This axis has a larger distance between means



LDA ... Two Classes

The solution proposed by Fisher is to maximize a function that
represents the difference between the means, normalized by a
measure of the within-class variability, or the so-called scatter.

For each class we define the scatter, an equivalent of the

5 = Z(y—/ji)z

Yeo,

variance, as;

=2 A o L,
S;” measures the variability within class w, after projecting it on

the y-space.

Thus §12 + §22 measures the variability within the two
classes at hand after projection, hence it is called within-class scatter
ot the projected samples.



LDA ... Two Classes

The Fisher linear discriminant i1s defined as
the linear function wIx that maximizes the
criterion function:

- -2
‘/U _/uz‘

J(W) ="——
S, +5S,

Therefore, we will be looking for a projection
where examples from the same class are
projected very close to each other and, at the
same time, the projected means are as farther
apart as possible




LDA ... Two Classes

e In order to find the optimum projection w*, we need to express
J(w) as an explicit function of w.

e We will define a2 measure of the scatter in multivariate feature
space x which are denoted as scatter matrices;

S, = 3 (x- 1 Yo~

Xea)i

S, =95, +3,

* Where S, is the covariance matrix of class w,, and S, is called the
within-class scatter matrix.



LDA ... Two Classes

* Now, the scatter of the projection y can then be expressed as a function of
the scatter matrix in feature space x.

5 = é(y_ﬁi)z :;(WTX_WTM)Z
= > W (X = J(x= g ) w

XECOi

=w'S.w

[V

—~

52 +57 =w'Sw+w'S,w=w"(S,+S, w=w'S,w=S,

[ A

Whete §  is the within-class scatter matrix of the projected samples y.




LDA ... Two Classes

e Similarly, the difference between the projected means (in y-space) can be
expressed in terms of the means in the original feature space (x-space).

[ . Y
(i~ ] = (W gy~ W s, f
=W (14— 1, Nt = 11, ) W

J/

4

Sg

~

=w'S,w=S,

e The matrix Sy is called the besween-class scatter of the original samples/feature
vectors, while S, is the between-class scatter of the projected samples y.

e Since S, is the outer product of two vectors, its rank 1s at most one.
B p 5



LDA ... Two Classes

* We can finally express the Fisher criterion in terms of
Sy and Sy as:

Y
H _/uz‘ _WTSBW

1
S°+S,  w'S,w

J(w) =

* Hence J(w) 1s a measure of the difference between class
means (encoded in the between-class scatter matrix)
normalized by a measure of the within-class scatter
matrix.



LDA ... Two Classes

* To find the maximum of J(w), we differentiate and equate to

ZCYO.

d
d—WJ(W):

—

—

d [ w'S;w o
dw| w'S, w

[WT S, W)C;j—w (WT S BW)— (WT S BW);—W (WT S, W) =0

w'S,, W)ZSBW— (WT SBW)ZSWW =0

Dividing by 2w'S, w:

T T
N (w SWWJSBW_(WT SBWJSWW: 0

w'S,,w w'S,w

= Sgw—-J(wW)S,,w=0

= S, SgW—J(W)w =0



LDA ... Two Classes

Solving the generalized eigen value problem

S, SeW=Aw  where A=J(w)=scalar
yields

WS, W

. w'S w 4

w" = arg max J (w) = arg max| — =S, ey — 1)
W w

This is known as Fisher’s Linear Discriminant, although it i1s not a

discriminant but rather a specific choice of direction for the projection

of the data down to one dimension.

Using the same notation as PCA, the solution will be the eigen
-1
vector(s) of SX = SW SB



LDA ... Two Classes - Example

* Compute the Linear Discriminant projection for the following two-
dimensional dataset.

— Samples for class w, : X;=(x,X,)={(4,2),(2,4),(2,3),(3,6),(4,4)}

— Sample for class o, : X,=(x,,%,)={(9,10),(6,8),(9,5),(8,7),(10,8)}

10y
| | l l l l l l l l samples for class 1
I . TS K= 14,2
l l l l l l l ‘ l l 2,4;
7"""T’""T""’T""’T""’T’""T’""T""*”"T"’"ﬁ 2,3;
| | ‘ 3,6;
] & | 1,41
NN 5,,,,,,L,,,,,L,,,,,L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘ ,,,,,
4"””:F’”""’”’:f””‘f"":*’””:*’””%’””%’””%””’f samples for class 2
l l l l l l l l l 1 X2 = [9,10;
3@ 6,8;
l l l ‘ l l l l l l 9,5;
2"""T’""T""’T""*""’T’""T’""T""’T""’T""W 8,7;
1 e E e e T B 10,81
O 1 1 1 1 ; 1 1 1 1 |
0 1 2 3 4 5 6 7 8 9 10



LDA ... Two Classes - Example

e The classes mean are :

% class means
Mul = mean(X1l)';
MuZ = mean(X2)';




LDA ... Two Classes - Example

e (Covariance matrix of the first class:

SICIAT) {E‘Z‘j@ﬂz {@[?iﬂz 2
{((2]1[3?8](]2%{(2)[338)} (e8]

% cowvariance matrix of the first eclass
S1 = cov(X1l);




LDA ... Two Classes - Example

e (Covariance matrix of the second class:

- giombend <[} Ga] DG
{(@}3@@}0}%{@)(i;‘;ﬂ (i

% covariance matrix of the first class
S2 = cov(X2) ;




LDA ... Two Classes - Example

e Within-class scatter matrix:

1 —0.25 2.3 —0.05
S, =5, +S, = +
-0.25 2.2 -0.05 3.3

(33 -03
=03 55

% within-class scatter matrix
Sw = S1 + S2 ;




LDA ... Two Classes - Example

e Between-class scatter matrix:

Se =1t — 1, Nty — 11,

(5ol

(-5

= '4j(—5.4 -3.8)

-3.8

% between-class scatter matrix
SB = (Mul-Mu2)* (Mul-Mu2)';

29.16 20.52
20.52 14.44




LDA ... Two Classes - Example

* 'The LDA projection is then obtained as the solution of the generalized eigen

value problem S\X/l S, W

—

—

= AW

Sy'Ss —Al|=0

33 -03)7(29.16 2052 /11
03 55 ) |2052 14.44 0

y

0.3045 0.0166Y29.16 20.52 ; 1 0 0
0.0166 0.1827 | 20.52 14.44 0 1)
0.2213—-1  6.489
42339 2.9794- 1

=(9.2213-1)(2.9794 - 1)-6.489x4.2339 =0

= 1*—12.20074 =0 = A(4-12.2007)=0
= 4, =0,4, =12.2007



LDA ... Two Classes - Example

Hence

9.2213 6.489 W,
w, =0
4.2339 2.9794 AW,

and

s computing the LDA projection
invSw = inwv (Sw) ;

invSw_by SB = invSw * SB;

% getting the projection vector

[V,D] = eig(invSw_by SB)

s the projection wvector

W= V(:,1);
9.2213 6.489 W,
w, =(12.2007
4.2339 2.9794 W,
Thus;
—0.5755 0.9088 .
W, = and |w, = =W
0.8178 0.4173

The optimal projection is the one that given maximum A = J(w)




LDA ... Two Classes - Example

Or directly;

- 33 -03)[(3) (84
W =S~ 1) = —03 55 [l38) |76
(03045 0.0166)-5.4
- 10.0166 0.1827 | —3.8

- (0.9088
104173
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LDA ... C-Classes

Now, we have C-classes instead of just two.

We are now seeking (C-7) projections [yq, Vps --+5 Yc.q] Py means
ot (C-7) projection vectors w;.

w, can be arranged by clumns into a projection matrix W =

[wy|W,]|...| W] such that:

.
Yi =W X

= y=W'x _

where X .=

m

yC -1x1 —

and W ., = [Wl | W, |

Y1

Yeau

| Wes.




LDA ... C-Classes

* If we have n-feature vectors, we can stack them into one matrix

as follows;

where X =

and Wp.c, = [Wl | W, |

m

X2

m

Y —

W' X

J YC ~Ixn

W, |

Y1

2
Ycu




LDA — C-Classes

Example of two-dimensional
features (m = 2), with three

Recall the two classes case, the \;ﬂssesc:i

Wz

X2 4 \

within-class scatter was computed as:

S, =S, +5,
This can be generalized in the C-
classes case as: el
C S
Sw =25, pd
=1 SwZ
where ;= Z(X_ﬂi )(X_ﬂi )T £

i Xew, in class w;.

1
and Hi = N_ Z X I—) N; : number of data samples




LDA — C-Classes

Example of two-dimensional
features (m = 2), with three

* Recall the two classes case, the between- \ ;135565 C=3
class scatter was computed as: -

X, 4 N

T
Se = (10— 11, Nt — 1)
* For C-classes case, we will measure the Ses
between-class scatter with respect to the * S
©
mean of all class as follows: W /
C T S
Sg :ZNi(ﬂi_ﬂ)(ﬂi_ﬂ) /
=1
SWZ
where —1Zx—1ZN g
H= N x B N x i N: number of all data .
| I

i xeo in class ;.

1
and Hi = N— Z X r N; : number of data samples




LDA — C-Classes

e Similarly,

— We can define the mean vectors for the projected samples y as:

1 1
M—Wzy and u—ﬁvzy‘,y

i yea)i

— While the scatter matrices for the projected samples y will be:



LDA — C-Classes

Recall in two-classes case, we have expressed the scatter matrices of the
projected samples in terms of those of the original samples as:

S, =WTS,W

S g = W T S BW This still hold in C-classes case.

Recall that we are looking for a projection that maximizes the ratio of
between-class to within-class scatter.

Since the projection is no longer a scalar (it has C-7 dimensions), we then use
the determinant of the scatter matrices to obtain a scalar objective function:

\§B RGEAY
‘S~W‘ RIAERY

And we will seek the projection W* that maximizes this ratio.

JW) =



LDA — C-Classes

To find the maximum of (W), we ditferentiate with respect to W and equate
to zero.

Recall in two-classes case, we solved the eigen value problem.
S, SeW=Aw  where A=J(w)=scalar

For C-classes case, we have C-7 projection vectors, hence the eigen value
problem can be generalized to the C-classes case as:

S, 'SeW. =Aw.  where A =J(w)=scalar and i=12..C-1

Thus, It can be shown that the optimal projection matrix W is the one whose
columns are the eigenvectors corresponding to the largest eigen values of the
following generalized eigen value problem:

Sy SeW ™ =AW~

where A=JW ) =scalar and W*:[Wﬂ w,| ... |WC_1]



Illustration —

Let’s generate a dataset for each

class to simulate the three

classes shown

For each class do the following,

— Use the random number generator
to generate a uniform stream of

500 samples that follows U(0,1).

— Using the Box-Muller approach,
convert the generated uniform

stream to N(0,1).

3 Classes

@p

>

X1

— Then use the method of eigen values

and eigen vectors to manipulate the
standard normal to have the required
mean vector and covariance matrix .

— Estimate the mean and covariance

matrix of the resulted dataset.



Dataset Generation

By visual inspection of the figure, X, A
classes  parameters (means and
covariance matrices can be given as

follows:
5
Overallmean ﬂ:M "
s -3 s —25 7
= . = , = U+
H=H 7 h=H 35 e =H 5 S
X1

5 _
Sl :(_3 3 =P Negative covariance to lead to data samples distributed along the y = -x line.

4 0
S = Zero covariance to lead to data samples distributed horizontally.
> (0 4

S _ 35 1 jﬁ Positive covariance to lead to data samples distributed along the y = x line.
3

3 25



In Matlab ©

8 let the center of all classes be
Mu = [ 5:5];

2% for the first class
Mul = [Mu(l)-3; Mu{2)+7];
CovMl = [§5 -1; -3 3];

Generating feature wectors using Box-Muller approach

Generate a random variable following uniform({0,1l) having two features and
1000 feature vectors

= rand (22,1000} ;

C & W &

% Extracting from the generated uniform random wvariable two independent
% uniform random variables

ul = U{:,1:2:end) ;

u2 = U{:,2:2:end) ;

% Using ul and uZ, we will use Box-Muller method to generate the feature
g2 vectors to follow standard normal

X = sgrce((-2).*logf{ul)}) .* (cos(2%pi.*u2));

clear ul w2 wU;

B Mow ... Manipulating the generated Features N({0,1l) to following certain
% mean and covariance other than the standard normal

% First we will change its wvariance then we will change its mean

B Getting the eigen wvectors and values of the covariance matrix
[V.D] = @ig{CovMl); % D is the sigen values matrix and V is the sigen wvectors
matrix
newid = i;:
for § = 1 : size(X,2)
newX{:,j) = V * agrt(D} * X(:,3);
end

B changing its mean
news = newrx + repmat(Mul,l.size(newi.,2)}):;

% now our dataset for the first class matrix will be
X1l = naw ; % sach column is a feature vector, esach row iz a single feature

8 ... do the same for the other two classes with difference means and
covarianoe matrices




0

XZA

It’s Working ... ©

15 20

10

X - the first feature

20

9IN1e3J PUOIIS YY) - X



Computing LDA Projection Vectors

%% computing the LDA
% cla=s= means

Mul = mean(¥xl')';
Mu2 = mean(#2') "' ;
Mu3d = mean(¥3') "' ;

% overall mean
Mu = (Mol + Mu2 + Mu3)./3;

% class covariance matrices
51 = cov(¥l');
52 cov (H2') ;
53 cov (¥3') ;

% within-class scatter matrix
Sw = 51 + 32 + 53 ;

% number of samples of each class
Nl = size(¥X1,2);
NZ size (X2,2) ;
N3 = =ize(¥3,2);

Recall ...

Xea)i

% between-class =scatter matrix
SBl = N1 .* (Mul-Mu)*(Mul-Mu)"';
SB2 = N2 .* (MuZ-Mu)* (MuZ-Mu)';
SB3 = N3 .* (Mu3-Mu)* (Mu3-Mu)';

SB = SB1

+ SB2 + SB3; -1
SW SB

% computing the LDA projection

invsw = inwv(5w) ;
invSw by SB = invsSw * SB; *

% getting the projection wvectors

%[v,D] = EIG(¥) produces a diagonal matrix D of eigenvalues and a
%full matrix V whose columns are the corresponding eigenvectors
[V,D] = eig(invSw_by_SB);

% the projection wvectors - we will hawve at most C-1 projection wectors,
from which we can choose the most important ones ranked by their

a0 oo

corresponding eigen wvalues lets investigate the two projectiocn

0

¥ vectors
Wl = V(:,1);
W2 = Vi(:,2);




Let’s visualize the projection vectors W

%% lets visualize them ...

% we will plot the scatter plot to better wisualize the features

hfig = figure:
axesl = axes('Parent', hfig, 'FontWeight', 'bold','Fonti3ize',12);
hold('=all'):
% Create xlabel
®xlabel {'¥ 1 - the first feature','FontWeight', 'bold','Font3ize’, 12,...
'FontName', ' Garamond') ; 8
2
% Create vlabel 8
ylabel ('L Z - the second feature','Fontweight','buld','FontSize',lZ,.:;
'FontNawe', ' Garamond') (=]
S
% the first class 8
scatter (E1(1,:) ,Z1(2,:), 'r','LineWidth',2,'Parent’' ,axesl); o
hold on F‘?‘
S
% olass's mean ><
plot{Mul est{l), Mul est {2}, 'co', 'Markeriize', 8, 'HarkerEdgeColor','c', ...
'Color','c','LineWidth' &, 'HarkerFaceColor','c','Parent’' ,axesl);
hold on
% the second class
scatter (X201, ) X2 (2,1, 'g','LineWidch',2, ' Parent'  axesl):
hold on
X - the first feature
% olass's mean 1
plot (Mu2 esc(l),Muz est(2), 'mo', 'Marker3ize',8, 'MarkerEdgeColor', 'm', ...
'Colgr','m','Ligewidth',2,'HarkerFaceColur','m','Parent',axesl]; i draWi?g the prejectien vectors
% the first wvector
hold on t = -10:25;
line_xl =+t .* Wl(1l);:
% the third class line y1 = t .* Wi1(1);
scatter (X3 (1, :) ,X3(2,:), 'b','LineWidth',2, " 'Parent' , axesl):;
hold on % the =econd wvector
t = -5:20;
line x2 = t .* W2(1);
% class's mean line y2 = t .* W2(2);
plot{Mu3d_est{l), Mui_est{Z),'yo', 'LinelWlidth',2, 'Marker3iize', 8, 'NarkerEdgeColor', ... -
'g','Color','y', 'MarkerFaceColor','y', 'Parent',axesl); plot(line x1,line yl,'k-', 'LineWidth', 3});
hold on hold on

plot(linq_x2,line_y2,'m—','LineWidth',B);
grid on



Projection ... y = WIx

Along first projection vector

Classes PDF : using the first projection vector with eigen value # 4508.2089'

% project data samples along the projections axes 04-
% the first projection wector

¥1 wl = W1'*¥1;

¥2_ wl = Wl'*¥2;

3 wl = W1'*¥3;

e ! 0.35

% projection limits

minY = min/( [minl:'yl_wl) ,min l:'y2_w1) ,min('_r,rB_wl) 1) ;

max¥ = max([max(yl wl) max(y2 wl) max(y3 wl)]); 0.3
y wl = minY¥:0.05:max¥; '

for wisualization lets compute the probability
density function of the 0.25
classes after projection '

ooge o de

% the first class
yl_wl_}llu = mean(yl_wl:l;
¥l wl =sigma = std(yl_wl);

¥l wl pdf = mvnpdf(y wl',yl wl Mu,yl wl =sigma) ; 0.2

p(y|w)

% the =second class

Y2_w1_Mu = mean{y2_wl};
¥2 wl =sigma = std(y2 wl); 0.15

y2 wl pdf = mvnpdf(y_wl',y2 wl Mu,y2 wl sigma) ;

% the third class
YB_wl_Mu = mean(yB_wl:l;

0.1

¥3 wl sigma = std(y3 wl);
y3 wl pdf = mvnpdf(y_wl',y3 wl Mu,y3 wl sigma);

0.05




Projection ... y = WIx

Along second projection vector

Classes PDF : using the second projection vector with eigen value # 1878.8511

04r
% project data samples along the projections axes
% the second projection wector 0.35F
yl w2 = W2'*x1; '
¥2_w2 = W2'*¥2;
¥3_w2 = W2'*¥3;

031

% projection limits

minY = min([min(yl w2) ,min(y2 w2) ,min(y3 w2)]) ;
max¥ = max([max(yl w2) max(y2 w2) max(y3 w2)]);
y w2 = minY:0.0E:mg_xY; - -

0.25

@

for wisualization lets compute the probability

% density function of the

% classes after projection Ll

% the first class E 0.2
vl w2 Mu = mean(yl w2); ) ’
¥l w2 sigma = std(yl w2); o

¥l w2 pdf = mvnpdf(y w2',yl w2 Mu,yl w2 sigma) ;

0.15

% the second class

y2_w2_}llu = mean(y2_w2:l :

v2 w2 sigma = std(y2 w2);

y2:w2:pdf = mvnpdf l:y:w2' ;¥2_ w2 Mu,y2 w2 sigma) ;
0.1

% the third class

y3_w2_Mu = mean(yB_le;

y3 w2 sigma = std(y3 w2);

y3:w2:pdf = mvnpdf l:y:w2' ;¥3 w2 Mu,y3 w2 sigma) ; 0.05




Which 1s Better?!!!

* Apparently, the projection vector that has the highest eigen
value provides higher discrimination power between classes

Classes PDF : using the first projection vector with eigen value  4508.2089 Classes PDF : using the second projection vector with eigen value|= 1878.8511
04r 04r
0.35F 0.35f
03r 0.3r
0.25r 0.25F
B | >
= -
0.15f 0.15+
0.1r 01k
0.05 r 0.05 |
0 .
> 0 10 5 0




PCA vs LDA

—— LD& direction
— FLCA direction

LDna,

PCA




Limitations of LDA ®

* LDA produces at most C-1 feature projections

— If the classification error estimates establish that more features are needed, some other method must be
employed to provide those additional features

* LDA is a parametric method since it assumes unimodal Gaussian likelihoods

— If the distributions are significantly non-Gaussian, the LDA projections will not be able to preserve any
complex structure of the data, which may be needed for classification.

[ —Ha—l




Limitations of LDA ®

e LDA will fail when the discriminatory information 1s not in the mean but
rather in the variance of the data




Thank You
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