Fourier Transform




The idea

A signal can be interpreted as en
electromagnetic wave. This
consists of lights of different “color”,
or frequency, that can be split apart
usign an optic prism. Each
component is a “monochromatic”
light with sinusoidal shape.

Following this analogy, each signal
can be decomposed into its
“sinusoidal” components which
represent its “colors”.

Of course these components in
general do not correspond to visible
monochromatic light. However, they
give an idea of how fast are the
changes of the signal.




Contents

Signals as functions (1D, 2D)
— Tools

Continuous Time Fourier Transform (CTFT)
Discrete Time Fourier Transform (DTFT)
Discrete Fourier Transform (DFT)

Discrete Cosine Transform (DCT)

Sampling theorem




Fourier Transform

Different formulations for the different classes of signals

— Summary table: Fourier transforms with various combinations of continuous/
discrete time and frequency variables.

— Notations:

CTFT: continuous time FT: tis real and f real (f=w) (CT, CF)
DTFT: Discrete Time FT: tis discrete (t=n), f is real (f=w) (DT, CF)

CTFS: CT Fourier Series (summation synthesis): t is real AND the function is periodic, f
is discrete (f=k), (CT, DF)

DTFS: DT Fourier Series (summation synthesis): t=n AND the function is periodic, f
discrete (f=k), (DT, DF)

P: periodical signals

T: sampling period

wg: sampling frequency (w =211/T)

For DTFT: T=1 —» w=2m

This is a hint for those who are interested in a more exhaustive theoretical
approach




Images as functions

« Gray scale images: 2D functions

— Domain of the functions: set of (x,y) values for which f{x,y) is defined : 2D lattice
[i,j] defining the pixel locations
— Set of values taken by the function : gray levels

« Digital images can be seen as functions defined over a discrete domain {i,;:
0<i<I, 0<j<J}
— I.J: number of rows (columns) of the matrix corresponding to the image
— f=f[i,j]: gray level in position [i,j]




Mathematical Background:
Complex Numbers

A complex number x 1s of the form:

PR—

x =a+ jb, where j = V-1

a: real part, b: imaginary part

Addition (a+jb)+(c+jd)y=(a+c)+ j(b+d)

Multiplication ~ (a +jb) . (¢ + jd) = (ac —bd) + j(ad + bc)




Mathematical Background:
Complex Numbers (cont’ d)

Magnitude-Phase (i.e.,vector) representation

: Magnitude:
b Phase: |x| = Va2 + b2
-
E ¢(x) =tan™(b/a)
[s)
©
£
* Phase — Magnitude notation:
x = |x]e/?™




Mathematical Background:
Complex Numbers (cont’ d)

Multiplication using magnitude-phase representation

Xy = |x]e®® _[y]e/D) = |x]| |y| e/ @H0)
Complex conjugate
Ji.’.‘Jic = — jb

Properties

x| =[x

#(x) =—g(x")

XX = |X




Mathematical Background:
Complex Numbers (cont’ d)

e Euler s formula

e? = cos(8) £ jsin(6)

el = \/cosz(f?) +sin“(0) = 1

sin(6)

¢(e™?) =tan ' (= ) = tan~' (fan(0)) = +6

*  Properties cos(6)

1 _ |
sin(0) = 5 (e? —e7)

cos(0) = % (e/? +e77?)




Mathematical Background:
Sine and Cosine Functions

Periodic functions

General form of sine and cosine functions:

y (t) = Asinfa(t + b)] y(t) = Acosla(t +b)|

|A| | amplitude

e
=)

|-|.

period

= =

phase shift
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Mathematical Background:
Sine and Cosine Functions

Special case: A=1, b=0, a=1

A N A A

N ym e D AN N
VA VARV
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Mathematical Background:
Sine and Cosine Functions (cont d)

« Shifting or translating the sine function by a const b

¥

/\/\ NVl /\\_ﬂ\ \Va - N /\ </

a) y = sint (b) y=sin(t+b),b>0 (c)y=sin(t+b),b

Note: cosine 1s a shifted sine function:

. 7T
cos(?) = sin(z + 5)
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Mathematical Background:
Sine and Cosine Functions (cont d)

« Changing the amplitude A

y =d3dsint

N b

5.

\

P
[ M,

| fh I||II |'_;,|J,_r N

v*U%v;U
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Mathematical Background:
Sine and Cosine Functions (cont d)

Changing the period T=2n/|q|
consider A=1, b=0: y=cos(at)

o =4
Y period 2n/4=n/2
I ) shorter period
\ = cos| 4t _
\ ."/\ L ; o higher frequency
T ! (i.e., oscillates faster)
I A T A
I'| ,'II 2 IIII III ] .
14 \/ \/ Frequency is defined as {=1/T

Alternative notation: sin(at)=sin(27nt/T)=sin(27nft)
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Fourier Series Theorem

Any periodic function can be expressed as a weighted sum (infinite) of sine
and cosine functions of varying frequency:

F(1)=ag+ 3, aycos(nfyt) + 3, b, sin(nfyl)

n=1

Jfo s called the “fundamental frequency”
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Fourier Series (cont’ d)

cos(f4t)

w/

f(t)
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Concept
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Continuous Time Fourier Transform (FT)

Transforms a signal (i.e., function) from the spatial domain to the frequency
domain.

F(0)= f f (e dr
£(1)= zF(a))ej"”da)

Time domain

Forward FT: F(f(x)) = F(u) = j F(x)e™ ™ gy

Spatial domain

Inverse FT: F_l (F(u)) = f(x) = J F(u)el*™™ du

where o9 = co5(0) + jsin(6)
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CTFT

Change of variables for simplified notations: v=2mu
F (2Jru) F(u) = f f(x)e ™ dx =
f(x)= f F(u)e™d (2mu) f F(u)e””™ du

More compact notations (same as in GW)

F(u) = } f(x)e™ ™ dx

= f F(u)e’”™ du
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Images vs Signals

1D
Signals

Frequency
— Temporal
— Spatial

Time (space) frequency
characterization of signals

Reference space for
— Filtering
— Changing the sampling rate
— Signal analysis

2D

Images

Frequency

Spatial

Space/frequency characterization of
2D signals

Reference space for

Filtering

Up/Down sampling
Image analysis
Feature extraction
Compression
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Example: Removing undesirable frequencies

frequencies

A

. Image f(x) " Individual Frequncy
To remove certain (summed frequency terms) fatvhs :

frequencies, set their
corresponding F(u)
coefficients to zero!

remove high reconstructed

/--*\ frequencies e "_'\ signal
fie J

S \\_ i

’ Filtered Freqency Terms New Summed Image
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Frequency Filtering Steps

1. Take the FT of f(x):

F(f(x)

2. Remove undesired frequencies:

D(F (f(x)))

3. Convert back to a signal:

7=F YDE )

We’ 11 talk more about this later .....
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Definitions

F(u) is a complex function:
F(u)=R(u) + jl(u)

Magnitude of FT (spectrum): F)| =N R*(u) + I* ()

I(u)
R(u) )

Phase of FT:  ¢(F(u)) = tan™'(

. o F) = |Fale™
Magnitude-Phase representation:

R*(u) + I* (1)
Energy of f(x): P(u)=|F(u)?
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Continuous Time Fourier Transform
(CTFT)

Time is a real variable (t)
Frequency is a real variable (w)

Signals : 1D

24




CTFT: Concept

WAV

W\WWVVW\ m A signal can be represented as a
JAVAVAVAVAVAN weighted sum of sinusoids.

m Fourier Transform is a change of
basis, where the basis functions
consist of sins and cosines (complex
exponentials).

FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum [Gonzalez Chapter 4]

of sines and cosines was met with skepticism.




Continuous Time Fourier Transform
(CTFT)

* Define frequency
=1/T

a5 e 04t

cycles per unit time 95
cycles per unit distance % of¢

& et

©
-04f
* Here f = 1 T=1 18}

0 05 1 15

time/length
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Fourier Transform

Cosine/sine signals are easy to define and

interpret. Im A i

: =Cos ¢ + i sin
Analysis and manipulation of sinusoidal l € p i
signals is greatly simplified by dealing with
related signals called complex exponential
signals. sin @
A complex number has real and imaginary i -
parts:z = x+jy Ofcos ¢ I Re

The Eulero formula links complex
exponential signals and trigonometric

functions o
e +e
cos = ———
ja _ o
re’* =r(cosa+ jsina) > | i _ i
sina = .
21
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CTFT

Continuous Time Fourier Transform
Continuous time a-periodic signal

Both time (space) and frequency are continuous variables

Fourier spectra are continuous

— A signal is represented as a sum of sinusoids (or exponentials) of all
frequencies over a continuous frequency interval

Fourier integral F(a)) =ff(t)e_jwtdt analysis
t

1 ”
SO == [F(@)e™dw  synthesis
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CTFT of real signals

Real signals: each signal sample is a real number

Property: the CTFT is Hermttian-symmetric -> the spectrum is symmetric

f(-)=f"(@)

A

RN

eV

)= 7o)
f(=t)= f(-o)=1"(0)
Proof

+00

3= J (e de=[ 1 (0)e = (o)

-0
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Sinusoids

+00
Frequency domain characterization of signals £ (@) = ff(t)e_jwtdt

7

05+

Signal domain

| |
50 100 150 200 250

80
Frequency domain
(spectrum, absolute
& | value of the

20L J transform)

!
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Gaussian

Time domain
1 T T T T
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rect

Time domain
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40

sinc function
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200 250

300
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Example

;-r:r"r'.

L 7
de

05 00 035 10 35
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Properties qui

Table 2.1 Fourier Transform Froperties

Property Function Fourier Transform
I [ (@)

Inverse fin 27 f(—w) (2.15)
Convolution f1* f2(1) f1l@) 2 (w) (2.16)
Multiplication fi(t) f2(1) ifu_ﬁg{m} (2.17)
Translation flt—u) e " f(w) (2.18)
Modulation e f(n) flw—§&) (2.19)
Scaling f(tfs) |s] /(s @) (2.20)
Time derivatives PN (i) [ (@) (2.21)
Frequency derivatives (—it (1) FWP)w) (2.22)
Complex conjugate I*) T*(—w) (2.23)
Hermitian symmetry fihel Ji—@) =" w) (2.24)
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Discrete Fourier Transform (DFT)

Applies to finite length discrete time (sampled) signals and
time series

The easiest way to get to it
Time is a discrete variable (t=n)

Frequency is a discrete variable (f=k)
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DFT

The DFT can be considered as a generalization of the CTFT to discrete
series

It is the FT of a discrete (sampled) function of one variable
1| 2kn/ N
Flk]l=— nle /<"
[£] ¥ Eof [n]e
N-1
f[n] _ /EF[k]ejZEkn/N
=0

— The 1/N factor is put either in the analysis formula or in the synthesis one, or the
1/sqrt(N) is put in front of both.

Calculating the DFT takes about N2 calculations

36




In practice..

In order to calculate the DFT we start with k=0, calculate F(0) as in the
formula below, then we change to u=1 etc

FO1= S (kY = LS I 7

F[0] is the mean value of the function f[n]
— This is also the case for the CTFT

The transformed function F[k] has the same number of terms as f[n] and
always exists

The transform is always reversible by construction so that we can always
recover f given F

37




Highlights on DF T properties

The DFT of a real signal is symmetric
(Hermitian symmetry)

amplitudet The DFT of a real symmetric signal

(even like the cosine) is real and
symmetric
The DFT is N-periodic
Hence

‘ ‘ ‘ The DFT of a real symmetric signal only

» needs to be specified in [0, N/2]
0 time
Pl F[O] low-pass
characteristic
— N/2 \)/ Frequency (k)
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Visualization of the basic repetition

To show a full period, we need to translate the origin of the transform at u=N/2 (or
at (N/2,N/2) in 2D)
f[n]€2nuon _>f[k—u0]
N
uO = ? Fiud
N =
-r-'-:“ —— period —— e
A . | |
Fi
! , [F(u-N/2)|
“— s _:1:—-- T ',l,_h \. :»I A N =g
Lih e (i | ———
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DFT

« About N2 multiplications are needed to calculate the DFT
« The transform F[k] has the same number of components of f[n], that is N

 The DFT always exists for signals that do not go to infinity at any point
« Using the Eulero’ s formula
e’ = cos@ + jsiné.

N - N-1
i flnle fz”k”/N=iEf[n](cos(jzjrkn/N)—jsin(j2jrkn/N))

[ A |

frequency component k discrete trigonometric functions

40




2D example

f(x, y)(=1)"" @ F'(y — N/2.v— N/2)

no translation after translation
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Going back to the intuition

The FT decomposed the signal over its harmonic components and thus
represents it as a sum of linearly independent complex exponential
functions

Thus, it can be interpreted as a “mathematical prism”

42




DFT

Each term of the DFT, namely each value of F[K], results of the
contributions of all the samples in the signal (f[n] for n=1,..,N)

The samples of f[n] are multiplied by trigonometric functions of different
frequencies

The domain over which F[k] lives is called frequency domain

Each term of the summation which gives F[k] is called frequency component
of harmonic component
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DFT is a complex number

F[k] in general are complex numbers

F[k]=Re{F[k]}+ jIm{F[k]}

[ ]= Fl ]\GXP{J'RF [£]}

\/Re{F

J\

"+ Im{
Im{F[k

RF[k]=tan™' {-

Re {F [k

i

F[&]

S

magnitude or spectrum

phase or angle

power spectrum
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Stretching vs shrinking

points

st
f(x)

——— M points ———

retched

2K points

——— M points ——

X

X

F(u))
AK_

M

——— M points —————1

F(u)
2AK
M

shrinked

0 poinls——————

cid
FIGURE 4.2 (a) A
discrete function
of M points, and
(b) its Fourier
spectrum. (¢) A
discrete function
w  with twice the
number of
nonzero points,
and (d) its Fourier
spectrum.

u
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Periodization vs discretization

Linking continuous and discrete domains

»

A

[
»

fi=f(KT,)

amplitude
amplitude

v

@
.
e
R

°

_l
w

DT (discrete time) signals can be seen as sampled versions of CT
(continuous time) signals

Both CT and DT signals can be of finite duration or periodic

There is a duality between periodicity and discretization
— Periodic signals have discrete frequency (sampled) transform
— Discrete time signals have periodic transform
— DT periodic signals have discrete (sampled) periodic transforms
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Increasing the resolution by Zero Padding

Consider the analysis formula
_2mjkn
Ef "

If f[n] consists of N samples than F[k] consists of N samples as well, it is
discrete (k is an integer) and it is periodic (because the signal f[n] is discrete

time, namely n is an integer)

The value of each F[k], for all k, is given by a weighted sum of the values of
f[n], for n=1,.., N-1

Key point: if we artificially increase the length of the signal adding M zeros
on the right, we get a signal f,[m] for which m=1,...,N+M-1. Since

f flm] for O0=m<N
f][m]=<

0 for N=m<N+M

47




Increasing the resolution through ZP

Then the value of each F[k] is obtained by a weighted sum of the “real”
values of f[n] for 0<k<N-1, which are the only ones different from zero, but
they happen at different “normalized frequencies” since the frequency axis
has been rescaled. In consequence, F[k] is more “densely sampled” and
thus features a higher resolution.

48




Increasing the resolution by Zero Padding

F(Q) (DTFT) in shade
F[K]: “sampled version”

N

N

211

41T
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Zero padding

zero padding

Increasing the number of zeros
augments the “resolution” of
the transform since the samples
of the DFT get “closer”

211

417 Kk
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Summary of dualities

SIGNAL DOMAIN FOURIER DOMAIN

Periodicity

Sampling

DTES/DFT Sampling +Periodicity
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Discrete Cosine Transform (DCT)

Applies to digital (sampled) finite length signals AND uses
only cosines.

The DCT coefficients are all real numbers

52




Discrete Cosine Transform (DCT)

Operate on finite discrete sequences (as DFT)

A discrete cosine transform (DCT) expresses a sequence of finitely many
data points in terms of a sum of cosine functions oscillating at different
frequencies

DCT is a Fourier-related transform similar to the DFT but using only real
numbers

DCT is equivalent to DFT of roughly twice the length, operating on real data
with even symmetry (since the Fourier transform of a real and even function
is real and even), where in some variants the input and/or output data are
shifted by half a sample

There are eight standard DCT variants, out of which four are common

Strong connection with the Karunen-Loeven transform
— VERY important for signal compression
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DCT

DCT implies different boundary conditions than the DFT or other related
transforms

A DCT, like a cosine transform, implies an even periodic extension of the
original function

Tricky part
— First, one has to specify whether the function is even or odd at both the left and
right boundaries of the domain
— Second, one has to specify around what point the function is even or odd

 In particular, consider a sequence abcd of four equally spaced data points, and say that

we specify an even left boundary. There are two sensible possibilities: either the data is
even about the sample a, in which case the even extension is dcbabcd, or the data is

even about the point halfway between a and the previous point, in which case the even
extension is dcbaabcd (a is repeated).
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Symmetries

-= =4+ -

o]
o o
oOoOOOoOo




DCT

N, -1
3 TT |
X, = X cos|—|n+— |k k=0,..,N,-1
k nz=0 n NO( 2) 0
N, -1
xn=i l)(O+Z)(kcos 7k k+l
N, |2 ~ 0 2

Warning: the normalization factor in front of these transform definitions is merely a
convention and differs between treatments.
— Some authors multiply the transforms by (2/N,)"? so that the inverse does not require any
additional multiplicative factor.

« Combined with appropriate factors of V2 (see above), this can be used to make the transform matrix
orthogonal.
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Sampling

From continuous to discrete time
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m Define a comb function (impulse train) as follows

comb

Impulse Train

Eén IN]

[=—00

where M and N are integers

comb,|n]

L

—> N

(¢)}

(0 ¢]










Consequences

Sampling (Nyquist) theorem
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Sampling

J (%) Fu)
) > < > U
comb,,(x) comb, (1)
<T T 1 1 T T 1 > X o <T T T > U
N —
f(x)comb,,(x) F(u)*comb , (u)

JHITfT,x ®</\/IL/1 »

[als)
U4




Sampling

f(x) F )
) > X < > U
f(x)comb,,(x) F(u)* comb i (1)
= A
<II[I1TT>X (/1 A>u
; S

1

M

Nyquist theorem: No aliasing if ﬁ >2W

»
w




Sampling

F(u)*comb , (u)

£ (x)comb, (x)
. <:></15/R/\

: =

If there is no aliasing, the original signal
can be recovered from its samples by
low-pass filtering.




J (%)

Sampling

> X

f(x)comb, (x)

Aliased




Sampling

F(u)

A Anti-aliasing
=177 filter

f(x)
- /*/ooo =
<2 > X <2
S (x)*h(x) —
| £ (x)*h(x) |comb,, (x)




Sampling

= Without anti-aliasing filter:

J (x)comb,, (x)

= With anti-aliasing filter:

| £ (x)*h(x) |comb,, (x)




2D Continuous FT
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How do frequencies show up in an image?

Low frequencies correspond to slowly varying information (e.g., continuous
surface).

High frequencies correspond to quickly varying information (e.g., edges)

Original Image Low-passed
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2D Frequency domain

Large vertical
frequencies correspond
to horizontal lines ———

Small horizontal and
vertical frequencies
correspond smooth
grayscale changes in
both directions

Large horizontal and
vertical frequencies
correspond sharp
grayscale changes in
both directions

Large horizontal
frequencies correspond
to vertical lines
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2D spatial frequencies

2D spatial frequencies characterize the image spatial changes in the
horizontal (x) and vertical (y) directions

— Smooth variations -> low frequencies
— Sharp variations -> high frequencies




2D Continuous Fourier Transform

2D Continuous Fourier Transform (notation 2)

f‘(u,v) = ff(x,y)e_ﬂ”(”“vy)dxdy

f(x,y)= ff(u,v)eﬂ”(”“vy)dudv =

}}|f(x’ y)|2 a’xdy = }}‘fA(ua V)‘2 dudv Plancherel’ s equality

—00 —00 —00 —00
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Delta

« Sampling property of the 2D-delta function (Dirac’ s delta)

fé(x—xo»y - yo) S (x, y)dxdy = f(x,,,)

 Transform of the delta function

F {(5()6, y)} = }}(S(X, V)e 2T ddy = 1

—00 —00

o -2 (ux+ —J 27w (uxy +vyy hifti
F{8(e=x, 0=y} = [ [[00r=0sy =y )™ ddy = 2o UG

—00 —00
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Constant functions

Inverse transform of the impulse function

F! {5 (u, v)} = }}5 (u,v)e’ " dudy =’ =1

—00 —00

Fourier Transform of the constant (=1 for all x and y)

k(x,y)=1Vx,y

F(u,v)= ffe‘jz”(”“vy)dxdy =0(u,v)

—00 —00
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Trigonometric functions

« Cosine function oscillating along the x axis
— Constant along the y axis

s(x,y) =cos(27 fx)

F{cos(2x fx)} = }}COS(ZJZ’ f)e T dxdy =

—00 —00

+ e—jzﬂ(fX) ]

2

e—j2ﬂ(ux+vy)dxdy

-JJ

—00 —00

1
2

© ® |:ej2fr(fx)

[T eI g D ¢ iy =
_ %fe_JZJ[\/ydyf [e—j27r(u—f)x + e‘jzﬂ(u'l'f)x ] dx

—0

1

=51f [e—j2ﬂ(u—f)x +e—j27r(u+f)x]dX=

%[5(14 ~f)+0u+ f)]




Vertical grating
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Double grating
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Smooth rings

AR
|/
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Vertical grating

2rf
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2D box

2D sinc
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m Linearity

= Shifting

= Modulation

= Convolution
= Multiplication

m Separability

CTFT properties

af (x,y)+bg(x,y) < aF(u,v)+bG(u,v)

f(x=xp,y-x,) < e_jm(uXOJrvyO)F(uaV)

ejzyr(uoxwoy)f(x’ y) P F(u —u,,V - VO)

fx,y)*g(x,y) <= Fu,v)G(u,v)
f(x,p)gx,y)< F(u,v)*G(u,v)

J(xp)=f(0)f(y) = Fu,v)=Fu)FQ©)
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Separability

1. Separability of the 2D Fourier transform

— 2D Fourier Transforms can be implemented as a sequence of 1D Fourier
Transform operations performed independently along the two axis

Fu,v) = [ [ £ p)e > dxdy =

—00 —00

o oo o]

fff(x’ y)e_jzﬂuxe—jZﬂ’Vydxdy — fe—j2miydy}f(x,y)e—jznuxdx _

—00 —00 —00

= fF(u,y)e'jZ””ydy = F(u,v)

1D FT along

| 1D FT along
2DFT :> the rows the cols




Separability

Separable functions can be written as  f(x,y) = f(x)g(»)

. The FT of a separable function is the product of the FTs of the two functions

Fu,v) = [ [ fxp)e 0 dvdy =

—00 —00

ffh(x)g(y)e‘jz””xe"jz”wdxdy = fg(y)e"jzmydyf h(x)e ™ dx =

—00 —00

_ H(u)G(v)

S(6p)=h(x)g(y)=F(u,v)=H(u)G(v)
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Discrete Time Fourier Transform (DTFT)

Applies to Discrete domain signals and time series - 2D
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Fourier Transform: 2D Discrete Signals

m Fourier Transform of a 2D discrete signal is defined as

Fu,v) = i i fIm,nle >t

mM=—00 p=-—00

m Inverse Fourier Transform
1/2 1/2
fmnl= [ [ F(u,v)e’ " dydy

-1/2-1/2

(0 ¢]
(@)}




Properties

Periodicity: 2D Fourier Transform of a discrete a-periodic signal is periodic

— The period is 1 for the unitary frequency notations and 21 for normalized
frequency notations.

— Proof (referring to the firsts case)

Fu+k,v+l)= E E flm,nle —J2fr((u+k)m+(v+z)n

o

E E f m I’l —]2ﬂ(um+vn e—]2ﬂkm —]2Jrln

Arbitrary P00 im0

integers o
_ 2: 2: f[m n]e—jZJr(umH/n)
5

m=—0 pp=—-00

= F(u,v)
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Fourier Transform: Properties

m Linearity, shifting, modulation, convolution, multiplication,
separability, energy conservation properties also exist for the
2D Fourier Transform of discrete signals.




DTFT Properties

m Linearity  af[m,n]+bg[m,n] < al'(u,v)+bG(u,v)

O Sh|ft|ng f[m — mO’ n— I’ZO: <= e‘j2ﬂ(umo+vno)F(u,v)

= Modulation
= Convolution

= Multiplication

e

sertem ) fim n] < Fu—u,,v-v,)
Sflm,n]*glm,n] < F(u,v)G(u,v)
fIm,n]g[m,n] < F(u,v)*G(u,v)

m Separable functions f[m,n]= f[m]f[n ]@F(u v) Fu)F(

= Energy conservation 2 E‘f[m ”]‘ ‘ff

—00 —00

(0 ¢]
(0 ¢]



Fourier Transform: Properties

m Define Kronecker delta function

1, form=0andn=0}

0, otherwise

olm,n] = {

m Fourier Transform of the Kronecker delta function
F(u,v)= E

m=—00 n=

[5[7}’1, n]e—jZJr(umﬂin):I _ e—j2ﬂ(u0+v0) —1

o0

(0}
()




m Define a comb function (impulse train) as follows

comb,, \[m,n]

Impulse Train

o0

= 2 i olm—-kM ,n—-IN]

k=—00[=—

where M and N are integers

comb,|n]

L

—> N

(o}

(@)




Impulse Train

comb,, EE(Sm kM ,n—IN]

k=—00 Z=—oo

comb,, \ (x,y) = i i é(x—kM,y—lN)

k=—OO l=—OO

Fourier Transform of an impulse train is also an impulse train:

EE m-kM,n-IN]< EE(S(M—— v—%)

k -0 /

J J
Y Y

comb,, \|m,n] combl 1 (,v)
M'N

(o]
A







Impulse Train

comb,, \ (x,y) = i i (S(x—kM,y—lN)

k=—OO l=—OO

* In the case of continuous signals:

[
kzwlzwd x—kM,y - IN @—kzwlzé(u—— V_N)

_/ _/

<

~
comb,, \(x,Y) comb | ) (u,v)

<
=

(o}
w







2D DTFT: constant

m Fourier Transform of 1

flk,11=1,Vk,I

Flu,v]= E i [1 X e_jzn(ukm)] =

k=—00 [=—00

o0 o0
periodic with period 1
along u and v

I
g
\g
2
=
|
b
<
<
N’

1o prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that
the Fourier Transform has to be periodic with period 1.
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Sampling theorem revisited
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Sampling

J (%) Fu)
) > < > U
comb,,(x) comb, (1)
<T T 1 1 T T 1 > X o <T T T > U
N —
f(x)comb,,(x) F(u)*comb , (u)

<THMTT,x ®</1/TL/1 o




Sampling

f(x) F )
) > X < > U
f(x)comb,,(x) F(u)* comb i (1)
= A
<II[I1TT>X (/1 A>u
; S

1

M

Nyquist theorem: No aliasing if ﬁ >2W

(o}
o




Sampling

F(u)*comb , (u)

£ (x)comb, (x)
. <:></15/R/\

: =

If there is no aliasing, the original signal
can be recovered from its samples by
low-pass filtering.

(o}

()




J (%)

Sampling

> X

f(x)comb, (x)

Aliased




Sampling

F(u)

A Anti-aliasing
=177 filter

f(x)
- /*/ooo =
<2 > X <2
S (x)*h(x) —
| £ (x)*h(x) |comb,, (x)




Sampling

= Without anti-aliasing filter:

J (x)comb,, (x)

= With anti-aliasing filter:

| £ (x)*h(x) |comb,, (x)




y

f(x,p)

,J«/ comb,, \ (x,y)
—>x
| e
v
M

A

Sampling in 2D (images)

F(u,v)

iy
NV

/4

v

v
A

> U

comb, | (u,v)

b

<
=

v
-
1
M

—> U
1
N

N
D
w




Sampling

o

F(y)comby o (%)) = O . } |

oD@
/\\/3/—\\>

N

v
-
1
M

W,

ST | 1
No aliasing if — >2W, and — >2W,
M N




Interpolation (low pass filtering)

OQ x

Ideal reconstruction
filter:

H(u,v) =

D

o_o
-

MN foru<L andV<L
2M

2N
0, otherwise

N
D
(&)




a=imread( ‘barbara.tif’ );

Anti-Aliasing
=
-




a=imread( ‘barbara.tif” );
b=imresize(a,0.25);
c=imresize(b,4);

Anti-Aliasing




a=imread( ‘barbara.tif” );
b=imresize(a,0.25);
c=imresize(b,4);

H=zeros(512,512);
H(256-64:256+64, 256-64:256+64)=1; F

Da=fft2(a);
Da=fftshift(Da);
Dd=Da.*H;
Dd=fftshift(Dd);
d=real(ifft2(Dd));




