
Simulation Modelling Practice and Theory 23 (2012) 71–86
Contents lists available at SciVerse ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/ locate/s impat
A SystemC/Matlab co-simulation tool for networked control systems

Davide Quaglia, Riccardo Muradore ⇑, Roberto Bragantini, Paolo Fiorini
Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy

a r t i c l e i n f o
Article history:
Received 25 February 2011
Received in revised form 29 December 2011
Accepted 12 January 2012
Available online 8 February 2012

Keywords:
Co-simulation
Network simulation
Networked control systems
SystemC
1569-190X/$ - see front matter � 2012 Elsevier B.V
doi:10.1016/j.simpat.2012.01.003

⇑ Corresponding author.
E-mail addresses: davide.quaglia@univr.it (D.

paolo.fiorini@univr.it (P. Fiorini).
a b s t r a c t

Real-time systems connected through packet networks belong to the family of networked
control systems, and they can be easily destabilized by communication delay and packet
losses, when they are not properly compensated. The largest part of the solutions available
in the literature are mainly based on control and system theory where the parameters of
the network are assumed to be given. This classical approach could be improved by design-
ing at the same time the network, e.g., by introducing quality-of-service guarantees as
currently done in teleconference applications. Such control/network co-design needs a
simulation framework where both aspects are properly and jointly addressed. The paper
addresses this topic starting from the discussion of its critical issues, and then proposing
an accurate co-simulation tool based on SystemC and Matlab/Simulink. SystemC will be
used for the network simulation and protocol design whereas Matlab/Simulink for plant
modeling and control design.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, embedded, distributed and pervasive systems have gained a significant importance in a number of appli-
cations which include exploration, industrial automation, service robotics, remotely operated vehicles, and telemedicine.
These applications go under the general name of Networked Control Systems (NCSs), i.e., feedback control systems in which
the control loop is closed through a shared digital communication network rather than by an ideal point-to-point connection
[1]. In NCS, the communication channel can significantly affect the quality of the control, as in case of the widespread TCP/IP
architecture which is however of great interest for a broad range of applications.

NCS performance is mainly affected by two problems: communication delay and packet loss. The first problem is well
known and it has been addresses by several authors. With respect to teleoperation systems, for example, algorithms have
been proposed based on impedance control [2,3], passivity theory [4], wave variables [5], and linear observer. Robust control
theory has been applied in [6], and the use of variables that are not explicitly time-dependent, so that they are not affected
by delay, has been proposed in [7]. Several authors tried to predict the delay of a sequence of packets through a mathemat-
ical model of the delay of an Internet connection [8–11]. However, this approach can be used, in practice, only for short Inter-
net segments, and it is not well suited for developing general delay models [12].

The simulation of NCS plays a crucial role in the verification, validation and fine-tuning of many of these solutions. A sim-
ulator should capture and represent both the control and communication aspects. For instance, the control aspects include
signal generation and analysis, and plant/controller specification, whereas the communication aspects include channel and
protocol specification, and packet flow generation.
. All rights reserved.

Quaglia), riccardo.muradore@univr.it (R. Muradore), roberto.bragantini@edalab.it (R. Bragantini),

http://dx.doi.org/10.1016/j.simpat.2012.01.003
mailto:davide.quaglia@univr.it
mailto:riccardo.muradore@univr.it
mailto:roberto.bragantini@edalab.it
mailto:paolo.fiorini@univr.it
http://dx.doi.org/10.1016/j.simpat.2012.01.003
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat


Fig. 1. NCS block diagram.

72 D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86
This paper addresses the problem of building an accurate simulator for NCS’s. Up to now, Matlab/Simulink is the standard
tool to design and simulate dynamical systems. Unfortunately, it does not simulate the network behavior in a simple way.
Therefore, it is necessary to integrate Matlab/Simulink with some other tool allowing the network simulation in a easy and
trustfully way. Amongst the available possibilities, SystemC endowed with an ad hoc library, SCNSL, [13], is the tool selected
to simulate a packet-based network.

The use of SystemC compares favorably with respect to other network simulation approaches (e.g., those involving NS-2
[14]) since this language provides a direct path to HW/SW design and synthesis of NCS components. The advantages of Sys-
temC/Matlab in electronic system design have been also highlighted in [15–20].

The crucial point behind this approach is the concept of co-simulation. Co-simulation is a strategy to make working
together different tools on which different parts of the overall system are simulated. Since the tools have to run simulta-
neously (to reduce the simulation time) and in a synchronized way (to provide correct results), the exchanging data mech-
anism is the key point. The contribution of this paper is a co-simulation strategy allowing Matlab/Simulink and SystemC
working together to simulate at the same time the control/modeling aspects and the networking aspects.1 Matlab/Simulink
and SystemC are executed in two different processes and they are synchronized through inter-process communications.

This co-simulation strategy can also be seen as a framework to support future co-design of both the control part and the
communication part. In fact, while the problem of controlling networked control systems has been studied during the last
two decades mainly from the control perspective (see [1,21] for recent surveys), little effort has been devoted to the devel-
opment of tools to support joint control/network simulation and design [22–29]. This work aims at filling the gap by pro-
posing a co-simulation framework where both the control and network aspects are accurately modeled.

The paper is organized as follows. Section 2 reports some preliminaries and the related work about networked control
systems and network communication. In Section 3 the problem is stated together with the design requirements. The pro-
posed co-simulation framework is fully described in Section 4 whereas its validation is reported in Section 5. Conclusions
and future work are given in Section 6.

2. Preliminaries and related work

In this section the class of networked control systems is described by highlighting all the critical aspects. The final goal of
this analysis is to clearly identify the issues that should be taken into account for an efficient and effective simulation tool.

2.1. Networked control systems

In NCS, the communication channel may significantly affect the quality of the control, because of communication delay
and data loss due to the lack of Quality-of-Service (QoS) guarantees.

Fig. 1 shows the classical block diagram scheme for a networked control system. NCS are described in several papers and
the available different control solutions are mainly due to the different assumptions on the communication channel [30–33].

From the control viewpoint, the simulation requirements are mainly focused on the possibility to design and to easily
implement advanced controllers, novel strategies to send and receive data on the network, packing/unpacking strategies,
and concealment techniques. According to the traditional block-based representation of control models, each block gener-
ates sequences of scalar or vector sampled data. To send data over a packet-based network, one or more of these samples
are grouped together. Grouping more samples into each packet introduces the so-called algorithmic delay but increases
the transmission efficiency since the overhead cost of the packet header is distributed among several bytes of the payload.
Furthermore, compression and error management techniques can be applied efficiently to groups of samples [34,35]. The
designer of a NCS has the freedom to decide how (and when) to merge different types of samples in each packet, even sam-
pled at different frequency. Therefore the creation of packets is a critical aspect in the design of NCS’s.

Among different simulation tools (e.g. Modelica [36], 20-sim [37]), Matlab/Simulink [38], has become the de facto tool (at
least in the academic world) to perform such a kind of analysis and synthesis. Within the Matlab framework it is easy to
introduce model uncertainties, measurement noise, saturation (just to name a few) in the modeling phase and to design con-
trollers based on standard techniques (e.g., LQG controllers, MPC controllers, passivity theory, robust control, etc.). Unfortu-
nately, the time simulation performance are not so good when highly complex nonlinear dynamical models are involved. For
this reason in some cases external host processes have to be developed in C++ to solve the differential equations of complex
systems.
1 Is important to highlight that the proposed co-simulation strategy is quite general and can be adapted to any pair of tools.



D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86 73
The stability of a NCS is not a trivial issue since packet loss and delay may compromise the control loop. In case of tele-
operation (taken as test bench in Section 5), the problem is even more critical since a human operator is within the control
loop, and force feedback is introduced to improve the perception of a virtual presence, i.e., transparency [39]. Therefore user
movement and operation depend on the feedback returned by the remote slave. With an ideal infinite-capacity network,
transparency increases with the amount of information per time unit transmitted on the channel. For instance, the increase
of the command sampling frequency improves the system promptness. Viceversa, with an actual network, when the infor-
mation rate exceeds its capacity, delay and data loss occur thus reducing control performance and transparency. Therefore, a
possible teleoperation design objective could be to find out the optimal transmission rate maximizing transparency.

2.2. Communication perspective

According to traditional results from information theory, a communication channel may loose information when trans-
mission data exceeds its capacity. In the context of NCS this case may happen when the channel is shared among different
flows. If no channel arbitration is present (as in case of local area networks and Internet) capacity overflow leads to bit errors,
packet drops, and queuing delays. Other causes of bit errors may be noise or hardware failure. In case of retransmission of
corrupted or lost packets (e.g., in wireless LAN and TCP) the final effect is an increase of the end-to-end delay. Furthermore,
due to the non-deterministic nature of data sources, packet loss rate and delay have time-varying statistical descriptions.

Communication issues can be addressed in the NCS design or in the network design, or both. From the NCS perspective,
corrupted packets, lost packets and delayed packets (which do not arrive in time to the actuator input) can be replaced in
different ways, e.g., with null data or with estimations based on the previous data [40]. In this direction a further approach
to improve robustness consists in adding redundancy to each packet according to its importance [41]. The introduction of
redundancy and the estimation of missing data requires to design a smarter receiver. Another approach consists in designing
specific transmission protocols to fully control packet creation and retransmission, e.g., those based on the User Datagram
Protocol (UDP) [1].

The described communication issues have been already faced in the attempt of introducing multimedia traffic in tradi-
tional networks [42–44]. In fact, in term of quality of service, interactive multimedia applications such as telephony-over-
IP have the same conceptual constraints as NCS’s. Quality-of-service guarantees can be introduced either by adding network
resources (over-provisioning) or by a smarter allocation of network capacity among applications (refer to [45] for a detailed
description). This last approach consists of assigning a different priority to each packet. The model named Integrated Services
assigns priorities to each level-4 flow; this approach is very precise but too complex. Other approaches are based on the
aggregation of packets into a small number of priority classes; this process can be done at IP-level with the Differentiated
Services model, at data-link level with virtual LANs, in wireless LANs with the 802.11e recommendation, or with the Mul-
ti-Protocol Label Switching (MPLS).

All these algorithms need to be easily implemented in a simulation tool that aims at supporting a co-design framework.
Furthermore, it should:

� provide parametric models of well-known traffic sources, e.g., web traffic, file transfers, voice-over-IP sessions;
� reproduce the main sources of uncertainty within the communication channel since they strongly affect the performance

level of the overall system and may also, if not properly managed, destabilize the NCS;
� model the different layers involved in the packet transmission;
� allow to model the priority-based behavior. Since traffic priorities could be a good way to provide quality-of-service guar-

antees to NCS applications, the designer should be able to test the system performance by using a fine-tuned priority
scheme.
� produce at run-time network statistics about the communication channels used by the controlled system; the collection

of statistics about packet loss rate, bit error rate, and delay distribution are decisive to assess the quality of service pro-
vided by the solution under design.

The Network consists of a set of nodes connected through communication links. Each link has specific features, e.g., the
type of channel (i.e., wired/wireless), the capacity, and the propagation delay. The way in which nodes exchange data can be
modeled at different level of detail, from packet transmission to signal propagation [14,46]. Packet-based network simula-
tors are event-driven simulators whose events consist of packet transmission, queuing in intermediate nodes, drop in case of
full queue, dequeuing and reception.

Among the different network simulators present in the literature, this work deals with SystemC [47] and the SystemC
Network Simulation Library (SCNSL) [13]. SystemC is a flexible language and simulation environment that reproduces the
behavior of concurrent HW and SW systems. SCNSL is an open source library aimed at extending the SystemC simulation
capabilities to network components.

3. Motivation and problem statement

Most of the algorithms proposed in literature assume that the network has a statistical behavior. For example the packet
loss rate are commonly simulated by using Bernoulli processes [21]. Even though the network has a random behavior, the



Fig. 2. Processes–network relationships.

74 D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86
statistics are assumed fixed whatever kind of controller is implemented. This approach follows the scheme in Fig. 2a: trans-
mission delays and packet losses modify the performance of the plant but the controller itself does not have any impact on
the network congestion. In other word the controller has a network-invariant behavior.

Such approach has some advantages from the analytical perspective: it allows to formally state and prove stability results.
On the other hand it is sometimes unrealistic. The simulation approach also takes into account the effect of the traffic due to
the measurements (from plant to controller) and to the commands (from controller to plant) on the network. Fig. 2b shows
the circular mutual effects between network and systems through congestion and communication throughput.

As described in the previous section, not all components of a NCS can be appropriately simulated through the same tool.
In digital system design, the concept of co-simulation refers to the integrated simulation of different components of the sys-
tem under test. Components can belong to different simulation domains (i.e., SW, HW, network and dynamic systems) which
may require the coordinated use of different tools and techniques. We propose the same approach for the accurate simula-
tion of NCS.

The combined use of different simulation tools requires their synchronization to share the same simulation time. Fig. 3
shows the tools involved in the simulation of a NCS. For the reason explained in the previous section, the chosen tools are
Matlab/Simulink and SystemC. The standard block diagram is reported in Fig. 4 where the two shadowed regions refer to
Matlab/Simulink, to model the control architecture, and SystemC, to model the network, respectively. A similar list of pro-
cesses can be found in the teleoperation scenario shown in Fig. 8 of Section 5 where there are also two C++ executable mod-
ules integrating robot master’s and slave’s differential equations. All these processes must communicate in a proper way. In
this work, we focus on the interaction between Matlab and SystemC because it is the most critical point.2

The first issue to be solved is the interconnection of the simulation tools. Assuming that each tool is executed by a specific
process in the host operating system, simulation data should be exchanged by using inter-process communications, e.g.,
shared memory or network sockets. The former is more efficient but the latter allows distributed simulations over different
machines. The transfer of simulation data between tools should be efficient and independent of the complexity of the sim-
ulated model.

Another issue consists in the introduction of new modeling entities in each tool to represent the connection of the standard
entities provided by the tool with the other components modeled by the other tool. For example, with reference to Fig. 4, in
Matlab/Simulink workspace new blocks are needed to represent the fact that the controller and the plant are connected to-
gether through a component modeled by SystemC. Clearly, the same issue concerns the network model in the SystemC tool
in which there should be a clear representation that some nodes exchange data with Matlab.

The third issue is the creation of the same time domain for the global simulation which implies that tools should perform
simulation in a synchronized way and that cause-effect relationship between events belonging to different tools should be
preserved. For example, when Matlab generates data for SystemC, message transfer is not enough since this event has to be
seen with the same simulation time by both tools. Events caused by the external tool should co-exist with internal events
and generate other subsequent events giving the effect that a unique simulation is performed.

4. The co-simulation framework

A co-simulation framework consists of a communication mechanism between the simulation tools, specific modeling
entities, and a synchronization algorithm to create a global simulation time. These issues are described here in details.

4.1. Communication mechanism between simulators

In this section, we discuss how Matlab and SystemC have to be modified to build an integrated simulation environment.
Each simulator consists of a kernel and a set of simulated modules. The kernel controls the simulation time and calls sim-
ulated modules according to a given policy. Matlab kernel is a time-driven simulator and calls modules periodically. SystemC
kernel is an event-driven simulator and it manages a list of time-sorted simulation events.
2 It is worth highlighting that the proposed approach can be easily adapted to make SystemC jointly working with any other tool handling the control part.



Fig. 3. Co-simulation and available tools.

Fig. 4. Chosen tools for NCS co-simulation.

D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86 75
When a simulated module needs to communicate with another module belonging to the other simulator, two solutions
are given, i.e., module-based communication and kernel-based communication. In the first case, each pair of modules belonging
to different simulators should manage an inter-process channel (e.g., a socket). In this case, an explicit user-level API for mes-
sage exchange has to be placed in both modules limiting their re-use. Furthermore, each pair of interacting modules needs a
different channel leading to scalability issues. Finally, consistent time synchronization is not easy to achieve since simulation
time is managed within each simulation kernel. In kernel-based communication, the simulation kernels directly exchange
messages to transfer data between models and to keep synchronization. With respect to the former approach, synchroniza-
tion is easier to maintain and communication overhead is lower when multiple module pairs are involved in the interaction.

As depicted in Fig. 5, this work follows a mixed approach. Kernel-based communication is used at SystemC side since an
open source implementation of the kernel has been extended. Module-based communication is used at Matlab side since it is
a proprietary tool. To this purpose, a special Simulink block, named Matlab Wrapper, has been developed as Level-2
S-function.

All modules interacting with SystemC are connected to this Wrapper which concentrates all inter-tool communications
thus preserving scalability. The notion of simulation time can be recovered in the Wrapper since Matlab simulation is time-
driven and events happen at constant rate.

The Matlab Wrapper uses a socket library to connect to the SystemC kernel. The use of sockets, instead of shared memory
mechanisms, allows to distribute simulation not only among different CPU’s but also among different hosts to enable load-
balancing or remote on-demand business models.

4.2. New entities

In this section new entities at the Matlab/Simulink side and at the SystemC side will be illustrated. They are based on the
concept of port which is shared between the interacting modules belonging to different tools. The port has a unique identifier
and a storage size which in this Matlab/SystemC co-simulation tool allows to record a double-precision floating-point
number.



Fig. 5. Relationship between the new entities in Matlab and SystemC.

76 D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86
4.2.1. New entities in Matlab/Simulink
In Matlab’s models the role of bridge towards the other simulation tool is played by the Matlab Wrapper. This block can

be connected to a user-defined number of scalar and vector input and output ports. Each port has a unique identification
number and a given update frequency. Matlab executes this block at the highest of these frequency values and for each in-
put/output port to be updated it calls the corresponding Packer/Unpacker, respectively.

The Packer collects data from the port, puts them in the body of a co-simulation message to be sent to the SystemC kernel.
The message also contains the identification number of the port and the simulation timestamp. The Unpacker writes data on
a given port when the Wrapper receives and elaborate a message coming from SystemC with the corresponding destination
identifier. As discussed in Section 3, the creation of the message body from raw data is a design task and, therefore, the de-
signer of the NCS is in charge of the implementation of the different Packers/Unpackers.

All messages to/from Wrapper’s input/output ports are multiplexed in the socket connected to SystemC kernel.

4.2.2. New entities in SystemC
The SystemC library has been extended to provide the new ports cosim_out and cosim_in to send/receive data to/from

another simulation tool (in our case Matlab). They are derived by template classes sc_out and sc_in, and are managed by
overriding methods write () and read (). Each instance of cosim_out and cosim_in has a unique identification number
which is used to associate it to the corresponding port in the Matlab Wrapper.

Whenever the SystemC kernel receives a message from Matlab, it generates an event for the destination cosim_in port
with the timestamp specified in the message. The kernel then wakes up the function sensitive to that event and this function
can retrieve data by calling the read () method. Whenever a SystemC process calls the write () method to send data to a
cosim_out port, the simulation kernel builds a message for Matlab.

4.2.3. Use of entities to model NCS
Fig. 5 shows a possible use of these entities in a modeling scenario for NCS’s as in Fig. 1. The Simulink block named Con-

troller exchanges data on the network through Node0; to this purpose, the output flow of Controller is linked to a Sys-
temC input port (cosim_in) in Node0 and the input flow is linked to SystemC output port (cosim_out) in Node0. Similarly,
Node2 receives data from the network and sends them to the Simulink block named Plant. Node0 and Node2 are connected
through a network simulated by SCNSL that is not reported in Fig. 5.

4.3. Synchronization

The synchronization between simulation tools should take into account different simulation approaches, i.e., time-driven
and event-driven approaches. Matlab follows a time-driven approach in which:

� the output and the internal state are evaluated at constant-time steps,
� the length of the time step may change during simulation to better describe the evolution of the system.

SystemC follows an event-driven approach in which:

� events do not happen at constant rate,
� events have a fire time and they are kept in a ordered list according to the fire time.

Each tool, i.e., Matlab and SystemC, contains a part of the whole simulation model and performs simulation on it; tools
are executed concurrently by the operating system. Therefore a synchronization mechanism is needed to assure that the
same simulation time is kept by both tools. For instance, if a simulator reads/writes data from/to another simulator whose



D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86 77
simulation time is different, then the effect of such data in the first/other simulator may not be correct. In the rest of the
section different synchronization approaches are presented. All of them are based on the exchange of messages through
the socket; each message contains the port identifier, the command (e.g., read value and write value), the simulation time
of the tool which generated it and the data (in case of write operation). Synchronization is performed by blocking read/write
operations on the socket. In fact, a blocking socket operation can interrupt simulation both in the Matlab Wrapper and in the
SystemC kernel. The exact approach is based on the traditional algorithm to access shared memory; it assures perfect align-
ment of simulation times but it requires that just one tool is running at each time. The other approaches allow concurrent
execution at the cost of more complex algorithms.

4.3.1. Exact approach
In the exact approach each port between the SystemC model and the Matlab Wrapper is considered as a variable shared

between two concurrent processes. Each simulator executes until a cosimulation event is to be scheduled; at this point it
blocks itself and notifies its simulation time to the other simulator which is blocked on another cosimulation event; an hand-
shake is performed in which the simulation times are compared and the simulator with the lower one is re-started.

4.3.2. Approach 1
Fig. 6 shows the pseudocode of the first approach of the synchronization algorithm implemented in the SystemC kernel

(left side) and in the Matlab Wrapper (right side). Both algorithms start by reading messages coming from the other peer
tool. The corresponding events are put in a time-sorted queue. In SystemC kernel this queue also contains internally-gener-
ated events either involving internal modules or requiring to send a message to the peer. Then, SystemC kernel executes all
the queued events belonging to the same time while Matlab executes all the queued events belonging to past and current
time slots. An event to be executed could be old if it comes from the other peer whose simulation time is lower. In this case,
its timestamp is updated to the current time before execution and a warning notification is issued to the designer since sim-
ulation output may not be correct. Then, Matlab sends a message to SystemC for each input port of the Wrapper. Finally, both
tools wait for an acknowledge for each request of a read or write operation and increase the simulation time.

An acknowledge is waited after the request of a read or write operation; in case of read command, the acknowledge also
bears the requested value. If a tool receives a request with a lower simulation time, sends immediately the acknowledge and
issues a warning on the user console since simulation results may be wrong. If the request has a greater simulation time, the
receiver serves it when the same simulation time is reached; since the acknowledge is delayed the tool which made the re-
quest is forced to wait this realigning.

4.3.3. Approach 2
The second approach is based on the first one but introduces a further mechanism to re-align simulation times. If a tool

has a higher simulation time than the one of the received command, it sends immediately the acknowledge and issues a
warning as in approach 1 in Section 4.3.2; then it blocks itself after having asked the requester to be notified when it reaches
the same simulation time.

4.3.4. Approach 3
To use this synchronization approach each tool has to know the timing of future events involving data exchange with the

other tool. This approach is based on the definition of some synchronization checkpoints. The first checkpoint is fixed in the
setup phase, tools exchange the time of the next event involving cosimulation, i.e. read/write operations. A special message
(called NEXT in the following) is used. The tool receiving a NEXT message records the time of the next event in its event
queue (Fig. 7a and b).
Fig. 6. Pseudocode of the time-synchronization procedure implemented in (left) the SystemC kernel and (right) the Matlab network wrapper.



78 D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86
After this setup phase the tools start execution till the first checkpoint. At the checkpoint, the enqueued NEXT message
blocks the receiver waiting for the read/write message of the other tool, Fig. 7c. The other tool sends the corresponding mes-
sage, computes the next cosimulation event, sends a new NEXT message and waits for a NEXT message coming from the
cosimulation peer to update its queue with the new checkpoint. On the other side, after handling the event, Fig. 7d, the tool
waits for the NEXT event message of the peer, computes its next cosimulation event and sends a NEXT event message, Fig. 7e
and f.

Once tools have updated their event queue with the new NEXT messages, the next synchronization point is defined and
both events executed till the next checkpoint, Fig. 7g.

In case of Matlab, the evaluation of the next co-simulation event is simple since the update frequency of the Wrapper
ports is known. In case of SystemC, only the next event in the queue is known and it could not be a cosimulation event.
For this reason, a virtual clock has been introduced to generate periodic synchronization events inside SystemC simulator;
if the next event is not a cosimulation event, the virtual synchronization event is used. The virtual clock frequency is set by
the user in SystemC at the beginning of the cosimulation session; the higher is the frequency, the slower is the simulation
but a too low frequency could lead to mis-alignment of the simulation times. The right trade-off depends on the simulation
model.

The detailed pseudo-code of this approach is reported in Appendix A.

5. Tool validation

A particular example of NCS is a bilateral teleoperation system that is introduced here as a test-bench scenario. A bilateral
teleoperation system consists of a master device through which the operator controls the remote slave robot and a packet-
based communication channel which delivers all the signals (e.g., commands and measurements). Fig. 8 shows the block dia-
gram of a teleoperation architecture. A model of a Unimation PUMA 560 is used as slave robot having the same degrees of
freedom of the master device.

The master device interacts with a human operator O and is controlled by the master controller Cm, whereas the slave
robot interacts with the environment E and is controlled by the slave controller Cs. A packet-based communication network
connects the two sides and the interface blocks, Im and Is, encode commands and measurements into network packets. Usu-
ally teleoperation is used on very delicate and dangerous tasks as robotic surgery and nuclear plant maintenance. This means
that a very accurate tool to simulate the overall plant (devices and network) is crucial. Some recent results about the
teleoperation control problem can be found in [48–56].
Fig. 7. Synchronization phases of the co-simulation Section 4.3.4.



Fig. 8. Teleoperation scheme.

D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86 79
The dynamic model of any serial link manipulator with n degrees of freedom (as the Puma robot) can be written as a set of
nonlinear differential equations:
MðqÞ€qþ Cðq; _qÞ _qþ Nðq; _qÞ ¼ u ð1Þ
where u ¼ u1 . . . un½ �T is the command torque vector, q ¼ q1 . . . qn½ �T is the vector of generalized coordinates (e.g., an-
gles) with corresponding velocity _q and acceleration €q. In this standard Lagrangian representation, M is the symmetric non
singular inertia matrix, C is the Coriolis and centrifugal force matrix and N is the gravitational and frictional torques at the
joints [57].

In this scenario, the slave robot moves according to the commands coming from the master through the network and it
has to replicate as accurately as possible the movement of the master robot due to the operator O (eventually, by using a
scaling factor to improve accuracy). At the slave side, controller Cs aims at:

� increasing performance (model-based controller, gravity compensation),
� preventing undesirable effects due to disturbance and/or out of range commands,
� interacting safely with the environment E.

At the master side, controller Cm aims at:

� providing a weightless and frictionless master device for the operator (gravity and friction compensation),
� providing force feedback perception (i.e., tele-presence).

The goal of any teleoperation systems is to improve transparency by enhancing both the operator promptness and the
robustness against communication delays and packet losses.

Let qm(t) and qs(t) be the joint angular positions at the master and at the slave side, respectively. The vector qm(t) is sent
by the master robot to the slave side through the network. The slave controller receives this data after the communication
delay from master to slave sm2s(t) or never if the packet gets lost. The controller Cs uses this data as reference signal and com-
putes the command in order to have qs(t) close to qm(t). The sensors at the slave side measure the joint angles qs(t) and send
them back to the master side. The operator experiences these values after the communication delay from slave to master
ss2m(t) or never if the packet gets lost. The communication delays sm2s(t) and ss2m(t) are related to the state of the network
at time t.

The following tracking error gives a measure of the teleoperation performance:
emsðtÞ :¼ qmðtÞ � qsðtÞ: ð2Þ
It summarizes the overall displacements between the slave angles and the master angles due to the control aspects and the
network aspects. The simulations refer to a sampling frequency of 100 Hz for the controllers and to a teleoperated scenario
without force feedback (i.e., the slave is moving in an unconstrained environment).

The proposed simulator aims at testing the effect of both the control strategy and the communication problems (i.e., de-
lays and packet losses) on the overall system performance. As said before, the objective of the paper is to verify that co-sim-
ulation can be a proper tool to accurately reproduce the behavior of a networked control system and to study novel control
algorithms and network protocols.

Fig. 9 shows the network scenario described with SCNSL and implemented in the present test bench. Nodes are repre-
sented by circles and links by continuous arrows. For each link, capacity C and delay D are defined. The scenario represents
a typical bottleneck topology in which peripheral nodes are connected through dedicated links to a shared backbone link.
Nodes have queues to store packets exiting towards a busy link; the Figure reports the queues of Nodes 1 and 2 which
are the crossing points of different network paths. Since the backbone capacity is shared among the different traffic flows,
queue level may vary during simulation and congestion may happen. Over this topology two end-to-end application flows
have been defined between applications end-points; in the figure, they are represented by dashed lines between squared



Fig. 9. Example of network scenario described with the SystemC network simulation library.

80 D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86
boxes. The packet flow between master and slave sides in the teleoperation application (in general, between controller and
plant in a NCS) has a constant bit-rate since samples of commands and measurements are taken at constant rate and put in
packets. A concurrent flow has been modeled between Nodes 4 and 5. It features an ON/OFF behavior with constant bit-rate
during ON periods.

Table 1 reports all the parameters related to the simulated network scenario. The capacity of edge links CE has been cho-
sen to allow each corresponding traffic. Viceversa, to study the effect of network congestion, the capacity CB of the bottleneck
link has been chosen to be smaller than the sum of the bit rates of the teleoperation application BAPP and the concurrent traf-
fic BCONC. This means that when the concurrent traffic is ON, packets are accumulated in the queues at Nodes 1 and 2 and they
experience increasing transmission delay. Having the queues a finite length LQ, the teleoperation system will also experience
packet dropouts. In the simulated scenario, the parameters have been chosen in such a way that in the congested intervals
the percentage of lost packets is around 20% for the teleoperation application. Propagation delays DB and DE refer to the time
needed to move a bit on the link. The delay experienced by a packet to traverse a link is the sum of the propagation delay of
the link and the time needed to enter the link which depends on packet size and link capacity. Therefore, when the simulated
network is not congested, the delay experienced by a teleoperation packet is:
DE þ
SAPP � 8

CE
þ DB þ

SAPP � 8
CB

þ DE þ
SAPP � 8

CE
: ð3Þ
Starting from this network scenario, two test cases have been considered. In the first test case only the teleoperation
application uses the network and thus there is no congestion. In the second test case, the concurrent traffic is introduced
to reduce channel availability. The master and slave controllers are the same in both test cases. The same trajectory is applied
by the operator to the master device.

Fig. 10 shows the tracking error (joint by joint) in the first test case when there is no congestion, i.e., when the delays
sm2s(t) and ss2m(t) are constant and computed according to Eq. 3.

With reference to Fig. 9, in the second test case the concurrent traffic flow has been introduced to study the control per-
formance when the network experiences congestion. Figs. 11 and 12 show the communication delays sm2s, ss2m and the
packet loss rates pm2s, ps2m, respectively. The vertical lines separate the ON and OFF intervals in both directions. During
OFF periods, the delay is constant and equal to Eq. 3 as in the previous case. This is the lower bound value of the propagation
Table 1
Parameters of the simulated network scenario.

Name Value Description

DE 5 � 10�4 s Propagation delay in both direction
(edge links)

DB 5 � 10�4 s Propagation delay in both direction (bottleneck link)
CE 1312 kbit/s Capacity of edge links (both directions)
CB 6560 kbit/s Capacity of the bottleneck (both directions)
SAPP 1000 byte Packet size (application flow)
SCONC 1000 byte Packet size (concurrent flow)
Ts 0.01 s Sample time of the control loops

(master and slave side)
LQ 40,000 byte Queue length
BAPP 800 kbit/s Bit rate of the teleoperation application (both directions)
BCONC 6320 kbit/s Bit rate of concurrent traffic when active (both directions)



0 5 10 15 20
−15

−10

−5

0

5

10

15

20
joint 1

time (s)

an
gu

la
r p

os
iti

on
 (d

eg
)

0 5 10 15 20
−15

−10

−5

0

5

10

15
joint 3

time (s)

an
gu

la
r p

os
iti

on
 (d

eg
)

0 5 10 15 20
−15

−10

−5

0

5

10

15
joint 4

time (s)

an
gu

la
r p

os
iti

on
 (d

eg
)

0 5 10 15 20
−10

−5

0

5

10
joint 5

time (s)

an
gu

la
r p

os
iti

on
 (d

eg
)

0 5 10 15 20
−15

−10

−5

0

5

10

15
joint 6

time (s)
an

gu
la

r p
os

iti
on

 (d
eg

)

0 5 10 15 20
−15

−10

−5

0

5

10

15
joint 2

time (s)
an

gu
la

r p
os

iti
on

 (d
eg

)

Fig. 10. Joint angular errors ems(t) in the un-congested network scenario.

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

time (s)

de
la

y 
(m

s)

master to slave

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

time (s)

de
la

y 
(m

s)

slave to master

Fig. 11. Communication delays experienced by the teleoperation application in the congested scenario. Top: master to slave route. Bottom: slave to master
route.

D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86 81
delay. When the concurrent source is switched on, queues at the edges of the shared link start to grow and the delay
increases. When the queues are full, arriving packets are dropped as Fig. 12 shows. The time needed to fill a queue
completely depends on the queue length and on the bit rate difference between incoming flows and exiting flow; in the
simulated case the filling time is:



0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

time (s)

pa
ck

et
 lo

ss
 ra

te
 (%

) master to slave

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

time (s)

pa
ck

et
 lo

ss
 ra

te
 (%

) slave to master

Fig. 12. Packet loss rate experienced by the teleoperation application in the congested scenario. Top: master to slave route. Bottom: slave to master route.

0 5 10 15 20
−15

−10

−5

0

5

10

15

20
joint 1

time (s)

an
gu

la
r p

os
iti

on
 (d

eg
)

0 5 10 15 20
−15

−10

−5

0

5

10

15
joint 2

time (s)

an
gu

la
r p

os
iti

on
 (d

eg
)

0 5 10 15 20
−15

−10

−5

0

5

10

15
joint 3

time (s)

an
gu

la
r p

os
iti

on
 (d

eg
)

0 5 10 15 20
−15

−10

−5

0

5

10

15
joint 4

time (s)

an
gu

la
r p

os
iti

on
 (d

eg
)

0 5 10 15 20
−10

−5

0

5

10
joint 5

time (s)

an
gu

la
r p

os
iti

on
 (d

eg
)

0 5 10 15 20
−15

−10

−5

0

5

10

15
joint 6

time (s)

an
gu

la
r p

os
iti

on
 (d

eg
)

Fig. 13. Joint angular errors ems(t) in the congested network scenario.

82 D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86
LQ � 8
BAPP þ BCONC � CB

: ð4Þ
During congestion the queue remains full since a new packet is enqueued only when another packet leaves the queue.
These packets experience an additional delay of LQ � 8/CB seconds which leads to the almost horizontal plateau of Fig. 11.
When the concurrent traffic is switched off, the number of enqueued packets decreases and the queue becomes empty after



D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86 83
LQ � 8/(CB � BAPP) seconds. In the reported case this slope seems almost vertical. This phenomenon leads to the ‘‘trapezoidal
shapes’’ plotted in Fig. 11. Comparing Figs. 10 and 13, it is easy to see that the error increases whenever the network is con-
gested. Figs. 10 and 13 have been generated by Matlab while Figs. 11 and 12 have been generated by SCNSL.

These results show that the co-simulation tool works as expected according to the reported equations. More complicated
network scenarios and concurrent traffic models (e.g., probabilistic, actual recorded traffic, etc.) can be easily implemented
to model all possible kinds of working conditions.

6. Conclusions and future work

A comprehensive and formally-correct co-simulation framework for networked control systems has been developed
and presented. It combines a network simulator (SystemC) and Matlab/Simulink for control design and modeling. To
reach this goal, several critical aspects have been discussed and analyzed. The most important is the time synchroniza-
tion of the different tools. An algorithm has been developed and implemented in Matlab and in SystemC by ad hoc com-
ponents. The proposed co-simulation strategy has been validated on a detailed model of a teleoperated system in which
master commands and slave measurements are transmitted over a packet-based network. Teleoperation packets share a
network link with interfering ON/OFF traffic thus leading to congestion. Simulation results capture well the effect of con-
gestion in term of increasing delay, packet loss and tracking error thus showing the effectiveness of the tool to validate
different design solutions both from the control and the network perspective. Future work will exploit the tool to ex-
plore joint control/network design solutions; for instance, different mechanisms can be introduced in the network to as-
sure a given quality of service and the controller can be designed to take into account the network behavior.

Acknowledgement

This work has been partially supported by the European Project CONtrol FOR COORDination of distributed systems
(CON4COORD – FP7-2007-IST-2-223844).

Appendix A. Pseudocode approach 3

The following pseudo-code shows the scheduler of an event-driven simulator, i.e., SystemC, extended to synchronize with
Matlab by using the approach described in Section 4.3.4. The following definitions holds:
read-nb ()
 socket non-blocking read

read-b ()
 socket blocking read

write ()
 write a message on the socket

msg
 message exchanged between tools

enqueue ()
 put an event on the time-sorted event queue

dequeue ()
 extract the next event from the time-sorted event queue

queue.next-event ()
 get (without extracting) the next event
from the time-sorted event queue

execute ()
 execute an event
The pseudo-code is as follows:

1 get_hello_message ();// Get the hello message from ISS/Matlab instance;

2 msg = read_nb (socket);// Get the next event from peer;

3 if (msg.type!=NEXT) print_error_message;
4 else enqueue (msg);// Compute the next event

5// Search in the queue events to the peer

6 for (j = 1; j < event_queue->size (); j++){
7 if(event.type==TO_PEER){
8 found = true;

9 next_ev.type = NEXT_EVENT;
10 next_ev.time = event.time;
11 //Communicate to peer the time of my next event

12 write (next_ev, socket);
13 }
14}

(continued on next page)



84 D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86
15 if (found==false){// Unable to compute my next event

16 next_ev.type = NEXT_EVENT;
17 next_ev.time = next_v_tick;
18 //Communicate to peer a virtual time in which we’ll synchronize

19 write (next_ev, socket);
19}
20 while (T < Tmax){// Start to execute events

21 do {
22 event = dequeue ();

23 if (event.type==READ k event.type==WRITE k event.type==INTERRUPT
23 kevent.type==STOP)
24 ret = execute (event);

25 else if (event.type==NEXT_EVENT){
26 // Found a next event message computed by me

27 if(event.isInternal){// Compute the next event

28 // Search in the queue events to the peer

29 for (j = 1; j < event_queue->size (); j++){
30 if(event.type==TO_PEER){
31 found = true;

32 next_ev.type = NEXT_EVENT;
33 next_ev.time = event.time;
34 // Communicate to peer the time of my next event

35 write (next_ev, socket);
36 }
37 }
38 // I was unable to compute my next event

39 if (found==false){
40 next_ev.type = NEXT_EVENT;
41 next_ev.time = next_v_tick;
42 // Communicate to peer a virtual time in which

43 // we’ll synchronize

45 write (next_ev, socket); synchronize
46 }
47 // Handle events until a next message from peer

48 // gets received

49 while (1){
50 msg = read_b (socket);

51 if (msg.type==READ k msg.type==WRITE k msg.type==INTERRUPT
52 k msg.type==STOP)
53 ret = execute (msg);

54 else if(msg.type==NEXT_EVENT){
55 // Replace eventually old next event from peer

56 // with this new next event message

57 for (j = 1; j < event_queue->size (); j++){
58 if (event.type==TO_PEER & & event.isExternal==true)

59 extract (event);

60 }
61 push (msg);

62 break (while);
63 }
64 }
65 }// end if (event.isInternal)

66 else {// Found a next event coming from peer

67 // Prevent to handle an old next_event of the peer

68 if (msg.time < last_v_tick) break;

69 // Search if there’s a fake event with the same

70 // notify_time of this next_event.
71 // If I find it I won’t serve it.

72 for (j = 1; j < event_queue->size (); j++){



D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86 85
73 if (event.type==TO_PEER & & event.time==msg.time){
74 break;}// Do not serve it.

75 }
76 // Handle events until a next message from peer

77 // gets received

78 while (1)

79 msg = read_b (socket);

80 if (msg.type==READ k msg.type==WRITE k msg.type==INTERRUPT
81 k msg.type==STOP)
82 ret = execute (msg);

83 else if (msg.type==NEXT_EVENT){
84 // Replace eventually old next event from

85 // peer with this new next event message

86 for (j = 1; j < event_queue->size (); j++){
87 if (event.type==NEXT_EVENT & & event.isExternal==true)

88 extract (event);

89 }
90 push (msg);

91 break (while);
92 }
93 }
94 }// end if (event.isExternal)

95 }
96 else {
97 print_error_message ();

98 exit;
99 }
100 T = event.time;

101 }
102 }
References

[1] J. Hespanha, P. Naghshtabrizi, Y. Xu, A survey of recent results in networked control systems, Proceedings of the IEEE 95 (1) (2007) 138–162.
[2] B. Hannaford, Stability and performance tradeoffs in bi-lateral telemanipulation, in: Proceedings of the IEEE International Conference on Robotics and

Automation, 1989.
[3] J. Colgate, Robust impedance shaping telemanipulation, IEEE Transactions on Robotics and Automation 9 (4) (1993) 374–384.
[4] A. Eusebi, Sistemi di teleoperazione bilaterale di posizione e forza in presenza di ritardi, Ph.D. thesis, Universita degli studi di Bologna, 1995.
[5] C. Benedetti, M. Franchini, P. Fiorini, Stable tracking in variable time-delay teleoperation, in: Proceedings of 2001 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2001.
[6] G. Leung, B. Francis, J. Apkarian, Bilateral controller for teleoperators with time delay via mu;-synthesis, IEEE Transactions on Robotics and Automation

11 (1) (1995) 105–116.
[7] R. Oboe, P. Fiorini, A design and control environment for internet-based telerobotics, The International Journal of Robotics Research 17 (4) (1998) 433.
[8] L. Huang, K. Sezaki, End-to-end internet delay dynamics, in: Proceedings of the 6th Asia–Pacific Conference on Communications (APCC), 2000.
[9] Q. Li, D. Mills, Jitter-based delay-boundary prediction of wide-area networks, IEEE/ACM Transactions on Networking 9 (5) (2001) 578–590.

[10] P.H. Bauer, M.L. Sichitiu, K. Premaratne, On the nature of the time-variant communication delays, in: Proceedings of the IASTED Conference on
Modeling, Identification and Control (MIC’01), 2001.

[11] Y. Tsang, M. Coates, R. Nowak, Network delay tomography, IEEE Transactions on Signal Processing 51 (8) (2003) 2125–2136.
[12] S. Floyd, V. Paxson, Difficulties in simulating the internet, IEEE/ACM Transactions on Networking 9 (4) (2001) 392–403.
[13] F. Stefanni, D. Quaglia, F. Fummi, SystemC Simulation of Networked Embedded Systems, in: Languages for Embedded Systems and their Applications,

Springer Lecture Notes in Electrical Engineering, vol. 36, 2009, pp. 201–211.
[14] S. McCanne, S. Floyd, NS Network Simulator – version 2 <http://www.isi.edu/nsnam/ns>.
[15] C. Xi, X. Ningyi, Z. Zucheng, A methodology for SystemC algorithmic model verification applying MATLAB, in: Proceedings of 5th International

Conference on ASIC, 2003, vol. 1, IEEE, 2004, pp. 294–297.
[16] Y. Vanderperren, G. Sonck, A. Paul van Oostende, A design methodology for the development of a complex SoC using UML and executable system

models, in: The Proceedings of Forum on sSpecification & Design Language, 2002, pp. 64–69.
[17] K. Hylla, J. Oetjens, W. Nebel, Using SystemC for an extended MATLAB/Simulink verification flow, in: Specification, Verification and Design Languages,

2008, FDL 2008, Forum on, IEEE, 2008, pp. 221–226.
[18] J. Boland, C. Thibeault, Z. Zilic, Using MATLAB and Simulink in a SystemC verification environment, in: North American SystemC Users Group Meeting,

2004.
[19] K. Tomasena, J. Sevillano, N. Arrue, A. Cortés, I. Vélez, Embedding Matlab in SystemC transaction level modeling for verification, in: Design of Circuits

and Integrated Systems Conference, DCIS, 2009.
[20] W. Hassairi, M. Bousselmi, M. Abid, C. Sakuyama, Using matlab and Simulink in SystemC verification environment By JPEG algorithm, in: 16th IEEE

International Conference on Electronics, Circuits, and Systems, 2009, ICECS 2009, IEEE, 2010, pp. 912–915.
[21] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, S. Sastry, Foundations of control and estimation over lossy networks, Proceedings of the IEEE 95 (1)

(2007) 163–187.

http://www.isi.edu/nsnam/ns


86 D. Quaglia et al. / Simulation Modelling Practice and Theory 23 (2012) 71–86
[22] A. Chamaken, L. Litz, M. Kramer, R. Gotzhein, Cross-layer design of wireless networked control systems with energy limitations, in: European Control
Conference 2009 (ECC’09), Budapest, Hungary, 2009, pp. 2325–2330.

[23] L. Xiao, M. Johansson, H. Hindi, S. Boyd, A. Goldsmith, Joint optimization of communication rates and linear systems, IEEE Transactions on Automatic
Control 48 (1) (2003) 148–153.

[24] L. Shi, K. Johansson, R. Murray, Estimation over wireless sensor networks: Tradeoff between communication, computation and estimation qualities, in:
Proceedings of IFAC World Congress, vol. 17, 2008, pp. 605–611.

[25] A. Al-Hammouri, M. Branicky, V. Liberatore, Co-simulation tools for networked control systems, hybrid systems: computation and control, in: HSCC
2008, LNCS, vol. 4981, 2008, pp. 16–29.

[26] S. Shakkottai, T. Rappaport, P. Karlsson, Cross-layer design for wireless networks, IEEE Communications Magazine 41 (10) (2003) 74–80.
[27] M. Branicky, S. Phillips, W. Zhang, Scheduling and feedback co-design for networked control systems (I), in: IEEE Conference on Decision and Control,

vol. 2, 2002, pp. 1211–1217.
[28] D. Dacic, D. Nesic, Simultaneous controller and protocol design for networked control systems with packet based communication, in: 2006 45th IEEE

Conference on Decision and Control, 2006, pp. 508–513.
[29] Z. Lei, H. Dimitrios, Communication and control co-design for networked control systems, Automatica 42 (6) (2006) 953–958.
[30] M.-Y. Chow, Z. Sun, H. Li, Optimal stabilizing gain selection for networked control systems with time delays and packet losses, IEEE Transactions on

Control Systems Technology 17 (5) (2009) 1154–1162.
[31] T. Matiakis, S. Hirche, M. Buss, Control of networked systems using the scattering transformation, IEEE Transactions on Control Systems Technology 17

(1) (2009) 60–67.
[32] G. Walsh, H. Ye, L. Bushnell, Stability analysis of networked control systems, IEEE Transactions on Control Systems Technology 10 (3) (2002) 438–446.
[33] F.-L. Lian, J. Moyne, D. Tilbury, Network design consideration for distributed control systems, IEEE Transactions on Control Systems Technology 10 (2)

(2002) 297–307.
[34] Jerry D. Gibson et al, Digital Compression for Multimedia: Principles and Standards, Morgan Kaufmann, 1998.
[35] Y. Wang, Q. Zhu, Error control and concealment for video communication: a review, Proceedings of the IEEE 86 (5) (1998) 974–997.
[36] Modelica Association, Modelica <http://www.modelica.org>.
[37] Controllab Products B.V., 20-sim <http://www.20sim.com>.
[38] Mathworks Co., Matlab <http://www.mathworks.com>.
[39] P. Hokayem, M. Spong, Bilateral teleoperation: an historical survey, Automatica 42 (12) (2006) 2035–2057.
[40] L. Schenato, To zero or to hold control inputs with lossy links?, IEEE Transactions on Automatic Control 54 (5) (2009) 1093–1099
[41] S. Lin, D.J. Costello, Error Control Coding: Fundamentals and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1983.
[42] D. Quaglia, J. De Martin, Delivery of MPEG video streams with constant perceptual quality of service, in: Proceedings of the International Conference

Multimedia and Exhibition, vol. 2, 2002, pp. 85–88.
[43] J. De Martin, D. Quaglia, Distortion-based packet marking for MPEG video transmission over DiffServ networks, in: IEEE International Conference on

Multimedia and Expo, 2001.
[44] E. Masala, D. Quaglia, J. De Martin, Variable time scale multimedia streaming over ip networks, IEEE Transactions on Multimedia 10 (8) (2008) 1657–

1670.
[45] R. Hunt, A review of quality of service mechanisms in IP-based networks – integrated and differentiated services, multi-layer switching, MPLS and

traffic engineering, Computer Communications 25 (1) (2002) 100–108.
[46] AWE Communications, WinProp: Software-Tool for the Planning of Mobile Communication Networks <http://www.awe-communications.com>.
[47] IEEE Std 1666 – 2005, IEEE Standard SystemC Language Reference Manual, IEEE Std 1666–2005, 2006, pp. 1–423.
[48] A. Aziminejad, M. Tavakoli, R. Patel, M. Moallem, Transparent time-delayed bilateral teleoperation using wave variables, IEEE Transactions on Control

Systems Technology 16 (3) (2008) 548–555.
[49] N. Chopra, P. Berestesky, M. Spong, Bilateral teleoperation over unreliable communication networks, IEEE Transactions on Control Systems Technology

16 (2) (2008) 304–313.
[50] J. Yan, S. Salcudean, Teleoperation controller design using infty-optimization with application to motion-scaling, IEEE Transactions on Control Systems

Technology 4 (3) (1996) 244–258.
[51] Y. Xu, H.B. Brown, Jr., M. Friedman, T. Kanade, Control system of the self-mobile space manipulator, IEEE Transactions on Control Systems Technology

2(3) (1994) 207–219.
[52] M. Sirouspour, S. Salcudean, Suppressing operator-induced oscillations in manual control systems with movable bases, IEEE Transactions on Control

Systems Technology 11 (4) (2003) 448–459.
[53] I. Aliaga, A. Rubio, E. Sanchez, Experimental quantitative comparison of different control architectures for master–slave teleoperation, IEEE

Transactions on Control Systems Technology 12 (1) (2004) 2–11.
[54] J.-H. Ryu, C. Preusche, B. Hannaford, G. Hirzinger, Time domain passivity control with reference energy following, IEEE Transactions on Control Systems

Technology 13 (5) (2005) 737–742.
[55] J. Speich, M. Goldfarb, An implementation of loop-shaping compensation for multidegree-of-freedom macro–microscaled telemanipulation, IEEE

Transactions on Control Systems Technology 13 (3) (2005) 459–464.
[56] A. Casavola, E. Mosca, M. Papini, Predictive teleoperation of constrained dynamic systems via internet-like channels, IEEE Transactions on Control

Systems Technology 14 (4) (2006) 681–694.
[57] R. Murray, Z. Li, S. Sastry, A Mathematical Introduction to Robotic Manipulation, CRC Press, 1994.

http://www.modelica.org
http://www.20sim.com
http://www.mathworks.com
http://www.awe-communications.com

	A SystemC/Matlab co-simulation tool for networked control systems
	1 Introduction
	2 Preliminaries and related work
	2.1 Networked control systems
	2.2 Communication perspective

	3 Motivation and problem statement
	4 The co-simulation framework
	4.1 Communication mechanism between simulators
	4.2 New entities
	4.2.1 New entities in Matlab/Simulink
	4.2.2 New entities in SystemC
	4.2.3 Use of entities to model NCS

	4.3 Synchronization
	4.3.1 Exact approach
	4.3.2 Approach 1
	4.3.3 Approach 2
	4.3.4 Approach 3


	5 Tool validation
	6 Conclusions and future work
	Acknowledgement
	Appendix A Pseudocode approach 3
	References


