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CHAPTER 1

First part

The complete translation of the notes in English is work in progress. Thank you for your patience.

1. Lecture of 2 october 2015: Introduction

«... nihil omnino in mundo contingit, in quo non maximi minime ratio quaepiam eluceat...»
Leonhard Euler, 1744

We will speak of optimization problem, when we have a rational and coherent agent and a set of
possible (mutually exclusive) alternatives X, among which the agent must choose. The agent
must choose one of the alternatives basing on a choice criterion, characterized by a preference
relation, that allows the comparison of pairs of alternatives x,y € X.

The rationality and coherence of the agent impose that the preference relation must be a total
order relation!, and the simplest way is to assume the existence of a function F : X — [—c0, +c0]
(called cost function) modeling the preference relation in the following way: the agent will prefer
x € Xtoy € Xifand only if F(x) < F(y).

Thus, the basic form of an optimization problem we are going to deal with is the following one.

Let Xbeaset, F: X — [—o0, +00] be a function:

i. determine inf F(x), in particular establish if inf F(x) > —oo;
xeX xeX

ii. establish if there exist points ¥ € X such that F(%) = in}f( F(x). In such case, the set
xe

arg min F(x) = {JZ €X: F(x) = ;g}f(l-"(x)}

is called the set of minimum points of F on X, and inf F(x) = min F(x);
xeX xeX

iii. characterize the points of arg mi}r{l F(x).
xe

We recall that sup F(x) = — in}f{ (—F(x)), so also the problem of the maximization could be
xeX xe
reformulated as minimization problems.

Maximization/minimizartion problems, apart from their mathematical interest, are at the basis
of almost every field of knowledge, e.g. physics, biology models, economics, social sciences, but
also industry, design, programming, resource management, transport...

Some examples:

- the distance function of a point x € R" from a nonempty set S C R" is defined as
d = inf — ,
5(x) := inf{ly — x|}

in this case x is fixed and F(y) = ||y — x||;

- Fermat’Rule in geometrical optics states that the path followed by the ligth to go from a
point A to a point B is the path which minimizes the time needed to travel from A to B
among all possible paths joining A and B;

11n some framework, in particular in economics, there are also other possibility, modeling the fact that the agent can
have multiple contrasting criteria of choice. This lead to drop the total order assumption and assuming that the preference
relation is a partial order. We will not deal with this problems in this course

1



2 1. FIRST PART

- the least action principle for a mechanical system subject to conservative forces and
smooth constraints establish that if T is the kinetic energy of the systems and V is the
potential energy, introducing the Lagrangian L = T — V, the trajectories followed by
the system from an initial state g¢ at an initial time a to a final state g; at a final time b
are the minimizers of the action

b
Fg() = [ Lita(0,q(0)

among all the trajectories g : [a,b] — R" satisfying q(a) = qo e q(b) = q1;

- usually students wants to pass exams minimizing the study time and maximizing the
final mark.

We recall the following definitions.

DEFINITION 1.1. Let X beaset, f : X - RU {£o0} a function.
(1) apoint a € X is an absolute minimizer of f if f(y) > f(a) for ally € X. The minimizer is
strictif f(y) > f(a) forally € X\ {a}.
(2) apointa € X is an absolute maximizer of f if f(y) < f(a) for all y € X. The maximizer is
strictif f(y) < f(a) forally € X\ {a}.

If X is endowed with a topology, we can give a local version of the above definitions.

DEFINITION 1.2. Let X be a topological space, f : X — R U {+o0} be a function.
(1) apoint a € X is a local minimizer of f if there exists a neighborhood U of a such that
f(y) > f(a) for all y € U. The local minimizer is strict if f(y) > f(a) forally € U\ {a}.
(2) apointa € X is a local maximizer of f if there exists a neighborhood U of a such that
f(y) < f(a) for ally € U. The local maximizer is strict if f(y) < f(a) forally € U\ {a}.

Local maxima and minima are called local extremals.

EXAMPLE 1.3. Let X = R. Consider F(x) = x* — 12x + 1. We want to minimize F over R. As
well known from the previous courses in Mathematical Analysis, we compute F/(x) = 4x3 — 12.
We have F/(x) = 0 if and only if x = v/3. Since F”(x) = 12x? and F”(+/3) > 0, we have that

% = v3is the unique minimum point for F and the value of the minimum is F (\3/5) =1-9V3.

REMARK 1.4. Let us review carefully step by step the above example:

(1) existence: notice that F € C/(IR,R), moreover ‘ ‘lim F(x) = +o0. Since F is not
X|—+00

identically +o0, we have that inﬂ% F(x) < +oo. Thus let {x, } ,en be a sequence in R
xe
such that F(x,) — in]f{ F(x) (such kind of sequences are called minimizing sequences). If
xe

|| was unbounded, it would be possible to find a subsequence {x;, }ren such that
|5, | — 400, but in this case we would have

inf F(x) = lim F(x;) = lim F(x,, )= 1 F(x) = ,

If FO) = Jim o) = i Flon) = | Jim F(x) = oo
which is a contradiction. Thus there exists M > 0 such that |x,| < M. But this implies
that

inf F = inf  F(x),
inf F(x) = _jof  F)

and since F is continuous and the interval [—M, M] is compact, we can apply
Weierstrass” Theorem: every real-valued continuous function defined on a compact set
admits absolute maxima and minima. So there exists at least one minimum point of F.
(2) necessary condition: let ¥ be a minimum point. Since F is of class C', necessarily we
must have F/(%) = 0, this lead to isolate the candidate point ¥ = v/3.
(3) sufficient condition: Since F € C?, F/(x) = 0 e F”(%) > 0 then ¥ = v/3 is a minimum
point for F on R and it is the unique minimum point.

REMARK 1.5. Attention: using necessary conditions without an existence theorem can be extremely
misleading.
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EXAMPLE 1.6 (Perron’s Paradox). Consider the problem sup x. Let ¥ > 0. We consider two
xeRT

possibilities: if ¥ > 1 then %% > %, thus & cannot be a maximum point, and if 0 < ¥ < 1 then

VX > %, 50 again ¥ cannot be a maximum point. So these two necessary conditions lead us to

isolate the point ¥ = 1. However sup x = +0o9, there are no maximum points, and the necessary
xeRt

conditions are useless.

The core of the existence part of the proof is Weierstrass Theorem, which can be summarized by

saying:

continuity + compactness = existence of maxima and minima.

Our aim is now to preserve existence weakening the other two assumptions. We preliminary

notice that Weierstrass Theorem yields existence of both maxima and minima, but we are

intrested only in the minimum points.

Thus it is natural to search for a weakened notion of continuity in some sense still respecting the
notion of minimum.

Assume that ¥ € X is a local minimum point, in this case we have that there exists a
neighborhood U of x such that

F(y) > F(x), forally € U\ {x}.

In particular, we have
inf F(y) > F(%),
int Fly) > F(9)

which leads to

su inf F(y) > F(%).

VopIZn yeV\{z} )

eV

By definition, the right hand side is the lim inf for y tending to %, thus we obtain :

h;rg;fF(y) > F(%).

If F is continuous and X is a topological Hausdorff space, we have that for every x € X it holds
lim, F(y) = F(x),

in particular
liminf F(y) = lim F(y) = F(%);
thus a natural weakening of the cointinuity which repects the notion of minimum would be
require that for every x € X it holds
h;rl}?flf(y) > F(x).
DEFINITION 1.7 (Limsup and Liminf in topological spaces). Let X be a topological Hausdorff
space, x € X, F: X — [—0c0, +-o0]. We define
liminf F(y) := su inf F(y),
y=x / v opl:;n yeV\{x} Y
xeV
limsup F(y) := inf sup F(y),

y—x Y oRen yev\{x}

LEMMA 1.8. Let X be a topological Hausdorff space, x € X, F : X — [—o0, +o0]. We have always
11;13;& F(y) < limsup F(y).

y—}X
Moreover, liLn F(y) exists if and only if
y—x
liminf F(y) = limsup F(y),
m inf F(y) mSup (¥)

and in this case we have
liminf F(y) = limsup F(y) = lim F(y).

y—x y—x y—Xx
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PROOF. Leta > limsup F(y). In particular, for any € > 0 there exists an open neighborhood
y—x

Ve of x such that

sup F(y) <limsupF(y) < sup F(y)+e
yeVe\{x} y—x yeVe\{x}

and recalling the choice of a2 we obtain
sup F(y) <a+eg,
yeVe\{x}

Given any open neighborhood V of x, we have

inf F(y)< inf F(y)< sup F(y)<a+eg

yeV\{x} T yevnVe\{x} yeV\{x}
hence by taking the supremum on V we obtain

liminf F(y) <a+e.

y—Xx

+
By letting e — 0" and a — [lim sup F(y)] , we have

y—Xx
liminf F(y) < limsup F(y).
minfF(y) < msup (v)
Indeed, assume that liLn F(y) = { exists, and take any neighborhood W of £. Then there exists a
Yy—x
neighborhood V of x such thatif y € V then F(y) € W, thus

infIW < inf F(y),
-~ yeV\{x} )

supW > sup F(y)
yeVix}

and so for all neighborhood W of ¢ we have

inf W < linLi?fF(y) <limsup F(y) < sup W.
Y

y—=x

If { € R take W = B({,1/i),if £ = —oo take W =] — 00, —i], if £ = 400 take W =]i, +o0[. In all
cases, by letting i — +co we have

¢ = lim F(y) = liminf F(y) = limsup F(y).

y—=x Yy—=x y—x

Assume now that

¢ =liminf F(y) = limsup F(y).

y—=x y—x
For any € > 0 there exist open sets V and V* such that x € V(¢) := Ve, N V¢ and
sup F(y)—e<{< inf F(y)+e

yeVe\{x} yeVe\{x}
hence
sup F(y)—e<{< inf F(y)+e
yeV(e)\{x} yeV(e)\{x}

So for every e > 0,if y € V(e) \ {X} we have F(y) € B(/,¢), hence we have that the limit exists
and

lim F(y) = ¢.

Yy—=x

The following simple remark will be often used.
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LEMMA 1.9. Let X, Y, Z be nonempty sets, and let f : X X Y X Z — [—00,+00] be a map. Then

~

sup [supf(x,y,z)} = sup [supf(x,y,z)

yeY |[zeZ z€Z | yeY

inf {mff(x v,z )] = inf {mff(x v,z ) ,

yeY |zeZ z€Z |yeY

sup [mff(x v,z )} < 1nf
yeYy

sup f(x,y,2) | -
yey ]

PROOF. Assume that M(x) > sup f(x,y,z) forall y € Y, then we have M(x) > f(x,y,z) for
zeZ
ally € Y,z € Z,and so M(x) > sup f(x,y,z) for all z € Z. Conversely, by reversing the role of y
yeY
and z we have that if M(x) > sup f(x,y,z) forall z € Z then M(x) > sup f(x,y,z) forally € Y.
yeY z€Z
This implies that M(x) > sup sup f(x,y,z) if and only if M(x) > supsup f(x,y,z), and so
yeY zeZ zeZ yeY
equality hold, proving the first relation. The second relation can be obtained similarly, by
replacing sup with inf and > with <.

For the third relation, notice that for any (x,7,z) € X X Y x Z we have
inf £(x,7,2) < f(x,9,%) < lsupf(x,yfi)] ,
zeZ er

in particular, for every 7 € Y we have

inf f(x,7,z) < lsupf(x,y,z)] ,forallz € Z,
zeZ ]/EY

and so for every i € Y we have

inf f(x,7,2) < inf
inf f(x,5,2) < inf

sup f(x,y,2 )] ,

yeY

thus

sup mff(x y,z) < mf sup f(x,y,2)| .
yey 2€2 yeY

REMARK 1.10. In the case in which X is a metric space, we have that the above definition of

lim inf reduces to the usual one. More precisely, we can characterize the topological lim inf and
lim sup by mean of sequences recalling that in every metric space a base for the topology is given
by balls (in particular, every point has a countable base of neighborhoods).

LEMMA 1.11 (Liminf and limsup in metric spaces). Let X be a metric space, x € X,
F: X — RU{zo0}. Then the following are equivalent:

(L) li%i?fF(y) =/

(I2) forall sequences {y;}jen € X \ {x} such that y; — x and {F(y;) }jen has a limit, we have

lim F(y;) > ¢, and there exists a sequence §j; — ¥ such that equality holds.
]—>oo

Symmetrically, the following are equivalent:
($1) limsupF(y) = ¢;

y—x
(S1) for all sequences {y;}jen € X\ {x} such that y; — x and {F(y;)} jen has a limit, we have

lim F(y;) < ¢, and there exists a sequence §j; — ¥ such that equality holds.
]—>00
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PROOF. We prove only the equivalence of (I;) and (I). The corresponding results for (S;)
and (S;) can be deduced by applying the results for (I;) and (I) to the function G = —F, since

liminf G = su inf G = — inf sup F = —limsup F(vy),
minfG(y) := sup inf G() Vi, S (v) msup (v)
xepv gy YV

(I, = I) Forany i € N there exists an open neighborhood U; of x such that

1
su inf F(y) < inf F(y)+ =,
Vop}zn yeV\{x} Y yeUi\{x} Y 2!
xeV
moreover, there exists r; > 0 such that B(x,r;) C U;. Without loss of generality, we may

assume also that if i > 0 we have 0 < r; < min{1/2,7;_1}. We have

1 1
su inf F(y)< inf F(y)+ = < inf  F(y)+ =.
VopIZn yeVi{x} / yeli\{x} P yeB(xri)\{x} VT
xeV
Let {y;}jen € X\ {x} be such that y; — x and {F(y;) }jen converges. For every i € N
we have that there exists j; € IN such thaty; € B(x,r;) forall i > j, since y; — x. This

implies that

1
! = su inf F < F(y;) + —, forallj > j;.
SUP e () < Flyj) + j 2 i
xeV
By letting j — oo and then i — +4-co we obtain the first part of (2).
Choose j7; € B(x,r;) \ {x} such that
1
inf F(y) < F(;) < inf F =.
s = FO) S B FY 2

Thus we have
F(y;) — 1o inf F(y) < sup inf F(y) =/

21 7 yeB(an)\ {1} V open ¥EV\{#}
xev

1 1
= e W T Sy
We conclude that: ‘
(a) since 0 < r; < 1/2' fori > 0, we have r; — 0" and so ; — x;

yEB(Tri)\{x}
sequence (the infimum is made on shrinking sets), thus it admits a limit that we
denote by ¢/;
(c) we have that F(y;) — ¢’ as y — oo by the choice of y;;
(d) we have ¢/ = / for the above chain of inequalities.

(b) since r; < r;_q fori > 0, we have that { inf F( )} is an increasing
ieN\ {0}

(L = L) If {y;} is any sequence such that y; — x and {F(y;) };cn has a limit, we have that for
every open neighborhood V of x there exists jy € IN such thaty; € V foralli > jy,
hence

inf  F(y) < E(y;), i> iy
o (y) < F(y:) jv

By letting i — +oc0, we obtain

inf F(y) < lim F(y),
jeinf  FQ) < lim Flyi)

and taking the sup on V we have

liminf F(y) < lim F(y;),

y—x i—00
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for every sequence {y; }ier such that y; — x and {F(y;) };cn has a limit. In particular,
we have that
liminf F(y) < lim F(i7;) = ¢,

y—x i—00

Let {r;}ien C [0, +00[ a monotone decreasing sequence. Then { inf- F (y)} is
yeB(%r;)\{x} ieN
an increasing sequence, thus it admits a limit #’. Choose i; € B(x, ;) \ {x} such that

1
inf F < F(i7;) < inf Fly)+ =,
yeB(xri)\{x} ) ) yeB(xri)\{x} ) 2

and notice that i7; — x and F(7;) — ¢/, thus by assumption we must have ¢ < ¢. On the
other hand, we must have
sup inf F(y) > inf  F(y),

V open y€V\{x} y)  yeB(xr)\{x}
xev

and letting i — oo we obtain
¢> sup inf F(y) >/,

V open YEV\{x}
xeV

so ¢ = {" and the proof is completed.
O

DEFINITION 1.12 (Semicontinuity). Let X be a topological Hausdorff space, F : X — [—o0, +00].
We say that F is lower semicontinuous (shortly Ls.c.) if for every x € X it holds

liminf F(y) > F(x),

where
liminf F(y) = su inf F(y).
y=x (y) Voplznyev\{x} (y)
xeV

Symmetrically, we say that F is & upper semicontinuous (shortly u.s.c.) if for every x € X it holds
limsup F(y) < F(x),
Yy—=x
where
limsupF(y) = inf sup F(y).
Yo VB yeviin)

We will give now another characterization of semicontinuous functions.

DEFINITION 1.13. Let X be a topological Hausdorff space, F : X — [—o0, +00|. Define
domF := {x € X: F(x) € R}, the domain of F;
epiF := {(x,a) € X x R: a > F(x)}, the epigraph of F;
hypoF := {(x,B) € X x R: B < F(x)}, the hypograph of F.

LEMMA 1.14. Let X be a topological vector space, F : X — [—o0, +-00]. Then

(1) Fisls.c. if and only epiF is closed in X x R (endowed with product topology);
(2) Fisu.s.c. ifand only hypo F is closed in X x IR (endowed with product topology);
(3) F is continuous if and only if it is both L.s.c. and u.s.c.

PROOEF. Assume that F is L.s.c. and want to prove that epi F is closed. Let (x, &) ¢ epiF, in
particular we have
a < F(x) <liminfF(y) = su inf F(y).
y—x 1 opIZrl yeV\{x}
xeV
Take € > 0 such that « + ¢/2 < F(x) and let V; be open such that x € V; and

€
su inf F < inf F(y)+ -,
VopI()enyGV\{x} (y) yeVe\{x} (y) 4
xeV
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hence

€ €
— < 1 —
o+ 5 < F(x) < ye‘kn\f{x}F(y) + 7

soa+¢e/4 < F(y) forall y € V,, hence Vx| — 00, a + €/4[ is an open neighborhood of (x,«) that
has empty intersection with epi F, hence the complement set of epi F is open, thus epi F is closed.

Assume now that epi F is closed in X x R and want to prove that F is 1.s.c. Given (x,a) ¢ epi F
we have that there exists an open neighborhood V of x and € > 0 such that V x B(x, ¢) has
empty intersection with epi F, since the complement of has epi F is open. In particular, we have
that F(y) > a + ¢ for every y € V, hence

inf F > u+e
yeV\{x} )

and so by passing to the sup on V

liminf F(y) > a +¢.

y—=x

This holds for every « < F(x) and for every ¢ > 0 sufficiently small, hence by letting ¢ > 0 and
a — F(x)~ we have

liminf F(y) > F(x),

y—x

thus Fisls.c.

The statement on upper semicontinuity can be proved with an analogous argument, and it is left
to the reader.

Assume that F is continuous, then is trivially l.s.c. and u.s.c. Conversely, if we assume that F is
both Ls.c. and u.s.c. we have

limsup F(y) < F(x) < liminf F(y),

y—x y—x
which implies

F(x) =limsup F(y) = li;rl)i?fl-"(y) = lim F(y),

y—x y—x

hence F is continuous. g
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ExXAMPLE 1.15. A lower semicontinu-
ous function. Since

lim f(x) =41,

x—0%
we have that

liminf f(x) = -1 > —2 = f(0). -2 -1 0 1 2
x—0

All the points (0,y) with y > —2 be- —~
long to epi f, which then is closed in
R x R. -2 ¢f(0)

EXAMPLE 1.16. An upper semicontin-
uous function. Since

li = 41,
xirgi f(X)
we have
limsup f(x) =1 <2 = g(0).
x—0

All the points (0,y) with y < 2 belong
to hypo ¢ which then is closed in R x
R.

After having discussed the weakened notion of continuity, we pass to examine compactness
assumption. Even in the first example (minimization on IR) the space X was not compact a
priori, however the fact that lim F(x) = 4oo, toghether with the fact that F was not identically

|x|—o0
+oo leaded us to say that every minimizing sequence indeed belongs to a suitable compact set.

Thus the following definition is natural:
DEFINITION 1.17 (Coercivity). Let X be a metric space, F : X — [—o0, +-c0]. We say that F is
coercive if for every t € R there exists K(t) C X, with K(t) compact subset of X, such that

{x e X: F(x) <t} CK(t).
We notice that if X is compact, coercivity property is trivial, since we can choose K(t) = X for
every t € R.

We are ready now to state the weakened version of Weierstrass Theorem.

THEOREM 1.18 (Tonelli-Weierstrass). Let X be a metric space, F : X — [—0c0, 4+00]. Assume that F is
lower semicontinuous and coercive. Then F admits at least a minimum point in X.

PROOF. If F(x) = 4o for every x € X then there is nothing to prove, since every x € X is a
minimum point. So we can assume that in}f{ F(x) =m < +oo. Lett > m and by assumption we
xe

can consider the compact set K(t) containing {x € X : F(x) < t}. We have

inf F(x) = inf F(x).
inf F(x) ot (x)
Let now {x, },,cy be a minimizing sequence. For sufficiently large n we have F(x,) < t thus
xn € K(t) which is compact. So there exists a subsequence {x, }ren converging to ¥ € K(t). By
lower semicontinuity:
F(x) < liminf F(x,, ) = lim F(x,) = m,

k—oc0 n—oo
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and this implies F(X) = m so ¥ is a minimum point for F in K(f) and in X. O

LEMMA 1.19. Let X = R", F : X — [—o0, +00|. Then F is coercive if and only if lim F(x) = +oo.

[l x| —e0

PROOE. Fix t € R. By assumption, there exists M = M(t) > 0 such that if ||x|| > M(t) then

F(x) > t. But this implies
{xeX: F(x) <t} C{xeX: |x|]| <M}

Since we are in R”, the set K(t) := W is compact, so F is coercive.
Conversely, assume that F is coercive. In that case, if {x, },eN is a sequence with ||x, || — oo and
such that lim F (xn) exists, we must necessarily have lim F (x) = +oo. In fact, if by
contradiction nlgr;o F(x;) < ¢ € R, we should have x, € K(¢+ 1), for n sufficiently large. But in
this case, since K(¢ + 1) is compact thus bounded, we could not have ||x,|| — oo. So for every

sequence such that ||x,|| — oo and lgn F(xy) exists, necessarily we have 1311 F(x;) = 4o, thus
n—oo n—oo

liminf F(x) = o0,
[l —e0

but this implies
lim F(x) = +oo.

[l ]| —e0

Summarizing, we have obtained the following fact:

lower semicontinuity + coercivity = existence of points of minimum.

2. Lecture of 6 october 2015: Weak topologies, convex sets

During the previous lecture, we discussed the problem of the existence of minima, obtaining a
more general version of Weierstrass Theorem suitable for our purpouses:

lower semicontinuity + coercivity = existence of points of minimum.
When we study the general minimization problem in}f{ F(x), is not given a priori any topology
xXe

on X. To determine a suitable topology on X to have existence of solutions is a part of the
problem.

L.s.c. functions enjoy intresting stability properties:

LEMMA 2.1. Let {F;}ie; with F; : X — [—o00, 400 for every [ € I be a family of Ls.c. functions, let
Fi, B : X — [—00,400] be Ls.c. functions, and let A > 0. Then:

(1) AFF+ Fisls.c.;

(2) Defined F(x) := sup;; F;(x), we have that F : X — [—00, +00] and F is Ls.c.

PROOF. The first statement follows from the properties of the limits:
AR (x) + B(x) < )th;rbg\flﬁ (v) + h%l?f E(y) < 111ylL1)1£1f()&F1 (v) + E(y)),

For the second, we have
epiF = ﬂ epiFj,
i€l
since by assumption epi F; is closed for all i € I, we have that epi F is also closed, thus F is
Ls.c. O

We notice that:

(1) avery strong topology on X make easier to obtain lower semicontinuity, but more
difficult to have compactness and then coercivity;

(2) avery weak topology on X make more difficult to have lower semicontinuity, but easier
to have compactness and then coercivity.
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EXAMPLE 2.2. Let ¢ € X := L?(0,1) be fixed. We are intrested in the following minimization
problem:

f F
L}QX s(),

where F, : L?(0,1) — R is defined by

- /01 u(b)[2 dt — 2/01g(t)u(t)dt

We notice that, indeed, the problem is trivial: in fact we have
1 1 1 1
Fow) = [ u)Par=2 [ ghuvdr+ [Clgt)Pdr— [ lg(t)Par
1
= [ (P = 2500 + lg()P) at - [ I3

= [F o —gtar— [ IsPar = - [Cgorar

and, on the other hand,
1
- [ sy,

and so we conclude that g is a minimum point in X for F; and the value at the minimum is Fg(g).

We are now intrested in testing the assumptions of the generalized Weierstrass Theorem in the
above simple situation. Suppose to endow X = L?(0, 1) with the strong topology of the norm
| - ||;2 coming from the scalar product of L?. Then we have

Fo(u) = ||ullfz — 2(g,u).2
Let us check the assumption of the Tonelli-Weierstrass Theorem:

(1) The functional is continuous, indeed, given a sequence {u, },cn in L?(0,1) converging
to u € L2(0,1) according to the norm of L?(0, 1), by Schwarz’s inequality we have:

|Fg(un) — Fg(u)| = ‘Ilunlliz —lJullfz — 2(g,un — ) 2

(g un — u) 12|

< un — w, uy +w) 2| + ||l 2 lun — ull 2

< [Jlnl22 = lull2

< luw = ull 2 l[uen +ull 2 + gl ot = ull 2
< lJun = w2 (lun + ul] 2 +llg]l12) = 0, pern — oo,
since the term in brackets is bounded. Being continuous, in particular the functional is

lower semicontinuous.
(2) We check now the coercivity property. We preliminary observe that

Fo(u) < llullfz + 2]l 2llg] o
Let us consider the sequence of functions {uy(t) := sin(27tkt) }rcny. We have

1

skt Pdt = —— [ sin?(kx) d
a2 = [ [sin@rkt)Pat = 5 [ sin? (k) dx = 3,

thus
1
Fo(uy) < 5T V2|gllp2 =: M.
If F; was coercive, it should exist a compact K = K(M) such that u; € K(M) for every

k € IN. But in this case it would be possible to extract from {uy }xcn @ subsequence
{uk], }jew converging in L? norm to a function @ € K(M). According to

Riemann-Lebesgue’s Lemma, we have for every ¢ € L2(0,1)

lim ( uk, = hm/ ) sin(27tk;jx) dx = 0,

]*}
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and in particular:

lim (uy,, 1) =0,
joo

but we should have also

lim (g, ) = (1,7),2 = 7],
j—roo

thus @ = 0. But this leads to the following contradiction
1

5 = lugllz = fl@ll2 = 0.

Thus the functional is not coercive.
We recall now from the previous courses in calculus the following definitions:

DEFINITION 2.3 (Topological dual). Let E be a Banach space, we denote by E’ its topological dual,
ie.,

E':={f:E— R: fislinear and continuous}
The space E’ is a Banach space endowed with the following norm:

HfHE’ = sup |f(x)|

xeE\{0} llx||E

We recall that if dim E < 4-co then every linear map is also automatically continuous. This fact is
no longer true when E has infinite dimension.

DEFINITION 2.4 (weak topology). The weak topology o(E, E') on E is the weaker topology on E
(i.e. with minimal number of open sets) such that allthe elements of E’ are continuous. Given a
sequence {x, },eN in E and x € E we say that x,, weakly converges to x and write x,, — x or

xy, — xino(E, E') if

(f,xn)pr g — (f,x)inR, forall f € E/,

where we denote with (f, x,)p g = f(xn) € R the evaluation of f at x,,.

THEOREM 2.5 (properties of the weak topology). The weak topology enjoys the following properties:

(1) The weak topology is Hausdorff (equivalently, if the weak limit exists, then it is unique).
(2) Given xq € E, a basis of neighborhoods of x for o(E, E') is given by finite intersection of sets of
the form
Vi={x€E: [{f,x —xo)p | <&}
wheree >0, f € E/.
(3) If x — x strongly (i.e., according to the norm of E, equivalently if ||x, — x||g — 0) then
Xp — X, the converse in general does not hold.
(4) If x,, — x then || x| g is bounded and ||x||g < h,?liof}f || || E-
(5) Ifxy — xand ||fy — fllg — O then fu(xn) — f(x).
(6) If E is finite-dimensional, the weak and the strong topology coincide on E, otherwise the weak
topology is strictly weaker.

PROOF. See Propositions I11.3, 111.4, I11.5, I11.6 at pp.52-54 of [3]. O
DEFINITION 2.6 (Convex sets). Let X be a vector space on R or C, F C X a nonempty set. We
say that F is convex if for every A € [0,1], x,y € F wehave Ax+ (1 —A)x € F.

It is immediate to prove that a nonempty arbitrary intersection of convex sets is convex, thus
given a nonempty set S, is possible to consider the intersection of all the subsets of X containing
it. This intersection, called co(S), is the smaller convex set (in the sense of inclusion) containing S
and is named the convexification or convex hull of S. If holds:

n n
co(S) := {;J/\jxj: nelN, A e [O,l],xj €Sforall0<j<mn, ;)Aj = 1},
= =
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set of all finite convex combination of elements of S.

Since the intersection of an arbitrary family of closed sets is closed, is possibile to dermine also
the smallest closed convex set containing S, which is the intersection of all the closed convex sets
containing S and coincides with ¢o(S), i.e., the closure of the convex hull.

Attention: the closure of the convex hull in general does not coincide with the convex hull of the
closure!

EXAMPLE 2.7. Consider a separable Hilbert space with orthonormal basis S = {e; };cn. Given
two elements ¢;, ¢; € S with i # j we have [le; — ¢j|| > V2,50 S = S is closed. Thus co(S) is the
set of finite convex combinations of elements of S. We show now that 0 ¢ co(S). Indeed, since all
the elements of S = S are linearly independent, we have

N
0= Z )\iei
i=1

if and only if A; = 0 for all i, but in this case 0 ¢ co(S) because we must have A; > 0and Y_A; = 1
so at least one of the A; must be nonzero.

However, it is well known that e; — 0 for i — oo, in particular 0 € oS (since ¢; can be viewed as
a convex combination made of a single element) because strong and weak topology coincides on
convex sets.

EXAMPLE 2.8. Set X := L?(—7, ) with the strong topology. Consider
1  cos(kx) sin(kx) }
S = , , ,keIN\{0
{ Van Jm N3 \ 10}
Given f1, f» €S, fi # fo, we have ||fi — f2|| > V2,50 S = S and it is closed. Thus co(S) is the set

of finite convex combinations of elements of S, in particular co(S) € C®(] — 7, 7t[). On the other
hand, for every N € IN, consider the function fy : [—7, 1] — R defined by

Such function belongs to co(S) for every n € N and converges in L? to

6 & sin(nx)
foo(x) := 7372 ngl n2
The sequence of the first derivatives converges in L? to
6 & cos(nx)
4 —
foo(x) T 7_[3/2n n .

=1
but such function is not continuous in x = 0, thus fe € ©0(S) \ co(S).
DEFINITION 2.9. Let E be a vector space, A, B nonempty subsets of E, f : E — IR be a linear
function not identically 0, and « € R. We say that

(1) H is the hyperplane of equation f = « if

H:={x€E: f(x)=a};
(2) H separates A and B in the weak sense if f(1) < a and f(b) > a foreverya € A, b € B;
(3) H separates A and B in the strict sense if there exists ¢ > 0 with f(a) < a — ¢ and
f(b) > a+eforeverya € A, b€ B.

If E is a normed space, then H is closed in E if and only if f is continuous.

We recall now the geometric form of Hahn-Banach’s Theorem:
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THEOREM 2.10 (Hahn-Banach, geometric form). Let E be a normed vector space, A, B C E convex,
nonempty, disjoint.
(1) If A is open, then there exists a closed hyperplane separating A and B in the weak sense;
(2) If Ais closed and B is compact, then there exists a closed hyperplane separating A e B in the
strict sense.

PROOF. Omitted. See Theorem 1.6, 1.7, pp. 5-10 in [3]. O

3. Lecture of 9 october 2015: Convex sets and convex functions, continuity (3 h)

DEFINITION 3.1. Let E be a normed space, H be a closed hyperplane of equation f = a, A C E,
a € A. We say that H is a supporting hyperplane to A at the supporting point a if a € H and at least
one of the following conditions holds true:

(1) either f(x) < aforallx € A;
(2) or f(x) > aforall x € A.

Geometrically, we have that A is entirely contained in at least one of the closed half-spaces:
HY:={x€E: f(x) >a}, H :={x€E: f(x) <a}.

We say that a convex set is strictly convex if every supporting hyperplane intersects it in a unique
point.

Hahn-Banach’s Theorem now yields:

COROLLARY 3.2. Let E be a normed space, A C E be convex.

(1) ifint (A) # @, then every point of the boundary of A is a supporting point;
(2) every closed convex set is the intersection of all the half-spaces containing it;
(3) a convex set is weakly closed if and only if it is strongly closed.

THEOREM 3.3 (Mazur). Let X be a normed space, E be a totally bounded set. Then H := co(E) is
totally bounded.

PROOF. Lete > 0, U = B(0,¢). Set V = B(0,¢/2). There exists a finite set E; such that
E C E; + V. Let Hy = co(E;). Denoted E; = {eq, ..., en }, we consider the set

m
S:= {(tl,...,tm) eR™:t;>0foralli = 1...m,2ti = 1},
i=1

(m-dimensional simplex) and the map o : S — Hj, 0(ty, ..., tm) = Lj-; tie;. The map o is
continuous and surjective, thus since S is compact also H; is compact. Given x € H, we have
that x = a1x1 + ... + apx, where a; € [0,1], x; € Eforalli = 1..nand a1 + ... + a, = 1. By
definition of Ej, there exist y; € E1 such that x; —y; € V fori = 1,...,n. We decompose x in the
sum x = x' + x” with ¥’ = Y a;y; € Hy and x” = ¥ a;(x; — y;). By convexity we have that

x" € V,so E C Hy + V. By compactness, there exists a finite set F such that H; C F + V, so

E CF+V 4V CF+ U. By arbitrariness of € and hence of U the proof is concluded. O

COROLLARY 3.4. If X is a normed space and {x, } en C X weakly converges to ii then there exists a
sequence of convex combinations {vy }neN of {xn }nen C X such that v, converges to i and

n
vn:Z)\kxk, Z)\kZL )\kZO, 1<k<n.
k=1 k=1
EXERCISE 3.5. Let X be a topological vector space (i.e. a vector space endowed with an
Hausdorff topology such that the sum and the multiplication by scalars are continuous), C C X
be a nonempty convex set.

(1) if intC # @ then int C is convex;
(2) Cis convex.
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SOLUTION. Lety € X be fixed. The function f; : Xx]0,1[— X defined by
fy(Ax) = Ay + (1 —A)x

is continuous. Moreover, for every fixed A €]0, 1], the function x — f, 1 (x) := fy(A, x) is
invertible with continuous inverse given by:

z—A
gyalz) = —.

So for every fixed A €]0,1], the function x — f, ) (x) maps open sets on open sets. By convexity,
we have also thatif y € C and A €]0,1[ then f, ) (x) € C for every x € C.

Let C be a convex set with nonempty inte-
riot, x1, Xp € int C. We must prove that
y:=Ax;+ (1 —A)xy € intC,
forevery A €]0,1[. Fix A €]0,1], by assump-
tion there exists an open neighborhood V of
x; contained in C, and so fy, (A, V) C C by
convexity. Since y € fy, (A, V) and fy, (A, V)
is open (since fy, A(-) maps open sets to
open sets), we conclude that y € intC.

Suppose now that x,y € C and take A €
10,1[. Setz = Ax+ (1 — A)y, and we want to
prove that z € C. Since the map (x,y’) —
Ax"+ (1 — M)y’ is continuous, for any neigh-
borhood V;, of z there are neighborhoods U,
and U, of x and y respectively such that if
x' € Uyandy' € Uy then Ax' + (1-A)y €
V,. By assumption, we have U, NC # @
and U, N C # @, since x,y € C. By con-
vexity, z/ = Ax' + (1 —A)y’ € CNV; for all
x' € UyNCandy € U, NC. In particular,
for any neighborhood V, of z we have that
7 € V,NC # @and so z € C, thus C is
convex.

We have already noticed that if F is a l.s.c. function with convex epigraph w.r.t. strong topology,
it remains l.s.c. also if we equip the space with the weak topology. So if we pass from the strong
topology to the weak topology, from one side we are not threatening the lower semicontinuity of the
functions with convex epigraph, and on the other side in general, may help to prove coecivity and
level set compactness.

It turns out to be natural, in this framework, to study the minimization problems of lower
semicontinuous functionals with convex epigraph.

DEFINITION 3.6. Let X be a vector space, F : X — [—o0, +-c0]. We say that F is convex if
F(Ax + (1= A)y) < AF(x) + (1 = ME(y),

for every A € [0,1] and for every x,yy € X such that we have not F(x) = —F(y) = %00, i.e. the
right hand side is not +co — co or —co + co.
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n
By induction, if x1,...,x, € X and Aq,..., A, € [0,1] with Z)\i =1 then
i=1

F <i Aixl) < iAiF(xi),
i=1 j

i=1

if the right hand side is well-defined (i.e. it has no expressions +co — c0).

EXERCISE 3.7. If F is convex, then {x : F(x) <u}and {x: F(x) < u} are either convex or
empty for every u € [—oo, +o0]. The converse in general fails: there are nonconvex functions F
such that {x : F(x) <u}and {x: F(x) < u} are either empty or convex for every

u € [—o0, 4o00]. In particular, if F is convex then dom F is convex.

We motivate now the choice to allow F to take the value f-co. Consider the following constrained
minimization problem: let V. C X and F : V — [—c0, +-o0]. We are interested in

o

If is natural to redefine F by setting [ : X — [—o0, o0]

Flx) im {F(x) ifx eV
+o0, ifx €V,

and study

)

This problem has the same properties of the original one, but now we can take advantage of the
fact that F is defined on the whole space.

So we will always assume that our function are defined on the whole space, unless explicitely
stated. To add constraints, it turns out to be very useful the following

DEFINITION 3.8 (Indicator function). Let X be a set, V a nonempty subset of X. We define the
indicator function Iy : X — [0, +oo[ setting Iy (x) = 0if x € V and Iy (x) = +oif x ¢ V. So

inf F
Inf F(x)

becomes

inf (F(x) + Iy (x))

Notice that Iy, is a convex function if and only if V is convex, and it is l.s.c. if and only if V is
closed.

We will treat later the case —oo.

DEFINITION 3.9. Let X be a vector space, F : X — [—o0, +00] be convex. We say that F is proper
if F(x) > —oo for every x € X and there exists at least one y € X for which F(y) € R
(equivalently, F > —oo and dom F # Q).

We now clarify the link between convex functions and function with convex epigraph.

LEMMA 3.10. Let X be a vector space, F : X — [—o0, +00|. Then F is convex if and only if epiF is
convex. Hence, if F, G, {F;}c] are proper convex functions and A > 0 we have that:

(1) AF + G is convex;
(2) H(x) := sup F(x) is convex.
icl

PROOF. Left as an exercise. O
DEFINITION 3.11. We say that F is strictly convex if epi F is stricly convex.
An immediate consequence of the definition is the following.

LEMMA 3.12. Let X be a Banach space. F : X — [—0c0, 400] convex and strongly Ls.c. Then it is weakly
Ls.c.
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We prove now a particular case of Hahn-Banach Theorem applied to convex functions. Before it,
we recall that we can identify (X x R)" and X’ x R in the following way: given f € (X x R)’,
the couple (¢,a) € X’ x R defined as ¢(x) = f(x,0) and « = £(0, 1) satisfies f(x,r) = £(x) + ar.
Conversely, given (¢,a) € X' x R, we can define f € (X x R)’ by setting f(x,r) = £(x) + ar.

LEMMA 3.13 (affine minorants of convex Ls.c. functions). Let X be a Banach space.
F: X —] — 00,400 be convex and Ls.c. Let (x,7y) & epiF. Then there exists a continuous linear
functional £ : X — R, £ # 0and a, & > 0 such that

0(x)+ay <Lly)+ap—e¢
forall (y,B) € epiF.

PROOF. If F = 4o then epi F = @ and there is nothing to prove. So we assume the existence
of z € X with F(z) < 4o0. By assumption the closed set epi F and the compact set {(x, )} are
disjoint, so by Hahn-Banach Theorem in its second geometric form, it is possible to find a
continuous linear functional f : X X R — R and # € RR such that they are stricly separated by
the closed hyperplane (closed in X x R) whose equation is f(p,r) = 7. Recalling the
isomorphism (X x IR) ~ X' x R, we can 1dent1fy f with a couple (4,a) € X' x R.

To avoid triviality assume epiF # O or,
equivalently, dom F # @.

Choose z € dom F, thus F(z) < 0.

Separate the closed epiF and the compact
{(x, )} with an hyperplane whose equation
is £(p) + ar = 17 in such a way that

(x,7) € He = A{(p,r) : £(p) +ar <7y — e},

epiF C H := {(p,r) : €(p) + ar > 1 +¢}.

The separation is strict, thus & > 0.
Since {z} x [F(z),+o0[C H,", we must have
a > 0.
If x € dom F then « > 0: otherwise, if « = 0
the conditions (x,7v) € H; and (x,F(z)) €
‘ epi F C H, lead to a contradiction.
Assume x ¢ domF and a=0, thus {(x) <n < {(y) for all y € domF, or equivalently,
l(y) —L(x) >n—¥{(x) > 0forall y € domF. Since z € dom F, we take u < F(z) and we can
separate (z,u) ¢ epiF from epiF by an hyperplane of equation ¢'(p) 4+ «’(r) = # in such a way
that ¢/(z) + &’'u < £(y) +a’Bforall (y,B) €epiFand a’ > 0.Set =kl +¢',a =&’ > 0and
choose k such that #(x) + &7y + ¢ < ¢(y) + ap for all (y, B) € epi F. Substituting, we obtain

o L)) — () +ap) +
y) — U(x)
The denominator of the right hand side is larger than 7 — ¢(x) and the numerator is less than
U'(x) +a'(x) — ('(z) + a’u) + ¢, thus the inequality is fulfilled by choosing
U(x)+a'(x) — ('(z) +a'u) +¢
1 —{(x) '

£, forall (y,B) € epiF.

k>

O

EXAMPLE 3.14. Assume that X = R, F : X —] — o0, +0c0] be convex and l.s.c. Let (xg, o) 9é epiF.
In this case, X' = R, thus according to the previous theorem, we have that there exists m’ € R,
« > 0, and 5 such that

m'xg+ayg <y <m'x;+ay; —e
forall (x1,y1) € epiF. Since & > 0, we can divide all by « and define m = m'/a, g =1/«
obtaining that the line y = mx + g stricly separates (x¢, o) and epi F. So since « > 0 we have
find that the separating line is not vertical. More precisely, if we can separate (xo, o) from epi F
with a vertical line, we can also make the separation with a nonvertical line.
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We discuss now the case of convex l.s.c. functions which take the value —co.

LEMMA 3.15. Let X be a Banach space, F : X — [—00, 00| be convex and L.s.c. If there exists uy € X
such that F(uy) = —oo then dom F = @.

PROOF. By contradiction, suppose dom F # @, in particular there exist i € X and 4 € R
such that @ < F(i1) € R. By lemma 3.13 there exist £ € X" and a > 0 such that

(i) +aa < L(y) +ap

forall (v, B) € epiF. Taking y = uy, since (1o, ) € epiF for all p € R, and dividing by « > 0 we
have

1
By letting 8 — —oo we obtain a contradiction, since the left hand side is finite. O

We are going now to state some results about continuity of convex functions. We will prove that
a convex function cannot be have as discontinuity jumps of finite length (in other words, we
cannot have that lim sup and lim inf are different and both finite). Convexity gives to the
function a rigid structure, which we are going to examine.

The rigidity of the convex functions allows us in a certain sense to fransfer information from one
point of the domain to another one.

PROPOSITION 3.16. Let X be a topological vector space. Let F : X — [—o0, 00| be convex. The
following are equivalent:
(i.) there exists u € X with F(u) > —oo, a € R and a neighborhood W of u, such that F(v) < a for
allv e W;
(ii.) there exists u € dom F such that F is continuous at u;
(iii.) there exists a nonempty open set O and a € R such that Fyo is not identically —oo and
F(v) <aforallv e O;
(iv.) F is proper and is continuous in the interior of its domain, which is nonempty;
(v.) if X is a normed space, then the domain of F has nonempty interior and F is locally Lipschitz
continuous on the interior of dom F.

REMARK 3.17. Notice that if we have just information on a subset of the domain of F (local
information), we are still able to derive global regularity properties for F.

PROOF.
(i.) <= (ii.). Trivially (ii.) = (i.). Let us prove the converse implication. Up to translation, without
loss of generality, we can assume # = 0 and F(u) = 0 and that SW C W forall |f| <1
(if X is a Banach space, we take W = B(0, ) for a suitable 6 > 0). By assumption, we
have co {W x {a},(0,0)} C epiF, thus for every 0 < ¢ < 1if x € eW, hence x/e € W,
we must have

F(x):F(&g—i-(l—s)-O) SsF(%)—i—(l—e)F(O) < ea.

Moreover, since also —x € ¢W, we have F(—x) < ea, thus

2 2 2 2 2

which implies F(x) > —ea. Thus we have |F(x)| < ea for all x € eW, which yields
continuity of F at u.

0=F(0)=F (1 'x+1(—x)> < 1F(JC) + 1F(—x) < %F(x) + ! - ea,

(ii.) <= (iii.) By continuity, we have (ii.) = (iii.). Conversely, (iii.) implies that there exists at least
one point in O fulfilling (i.), hence F is continuous at that point, thus (ii.) is fulfilled.

(iii.) <= (iv.) Trivially, (iv.) = (iii.). Conversely, assume (iii.). Since F is continuous in at least one
point of O, in particular is bounded around that point, by possibly shrinking O we can
assume that O C intdom F. and F|0 is bounded, hence there exists a € R such that
F(x) <aforallx € O. In particular, intdom F # @. Letu € O, v € intdomF, v # u.
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For p > 0 sufficiently small z;, := u + (1 + u)(v — u) belongs to intdom F since z;, — v
for y — 0T. Fix p# > 0 such that z, € intdomF, and let > F(z,). For any fixed

A €]0,1[ consider the continuous map f)(x) = Ax + (1 — A)z,. As already observed,
this map is invertible and its inverse is continuous. Moreover,

) =+ A=) (u+A+p)(v—u)=A-p+Apu+ (1—(A—p+Au))o,

thus choosing A = Lﬂ €]0,1[, we have f) (1) = v. Moreover, f,(O) is an open

1+
neighborhood of v and given y € f,(O), we have y = f,(x) for a certain x € O

F(y) = F(fa(x)) = F(Ax + (1 = A)z,) < AF(x) + (1= A)F(z,) < Aa+B.

Since F is bounded from above in a neighborhood of v, we have that it is continuous at
v. By the arbitrariness of v € intdom F, we have that F is continuous in intdom F.

(i.) <= (v.) Trivially, (v.) = (i.). Conversely, assume (i.). Without loss of generality, we can take
u=0,F(u) =0and W = B(0, ). Take v1,v, € B(0,6/2), v1 # vy and set

= 3or o]l > 1. Notice that z;, := v + p(v2 — v1) € B(0,0). As before, we consider
fa(x) = x + A(z; — x), noticing that for A = 141_}1 we have f) (v1) = vy, moreover,
F(o2) = F(f 1 (01)) < F(oq) + 1 F(z) — F(o0)) < F(oy) + 1o
Tp 14+u 14+u
thus F(vp) — F(v1) < 12_:1‘11. Reversing the roles of v1, v, we have
F(o2) — Fon)| < 1o = = 22|‘5| -l My ),

Without loss of generality, (1, F(u)) =
(0,0), and W = B(0, d).
/ We have eW C W for all |e| < 1.

Given v € ¢W, we have v/e € W and
+v € eW, thus by convexity of epiF,
the triangle co{(0,0),(£v/e,a)} C
epi F, hence the graph of F restricted to
the segment joining (+v/¢, a) must be
below that triangle.

We write v as convex combination of
0 and +v/¢e with coefficients %ﬂ and ¢,
obtaining F(+v) < eF(+v/¢) = ea.

On the other hand, since 0 is the mid-

point of that segment, by convexity the

value of the function at 0 (i.e. 0) must

v be below the midpoint of the values of
e0— the function at +v.

]
]
v

This implies that the sum of the values
0— of the function at v must be positive,
and since F(—v) < ea, we have F(v) >
—ea.

Thus |F(v)| < ea, which yields conti-
nuity by letting e — 0.

REMARK 3.18. Taking F(x) =1 for x > 0 and F(x) = —1 for x < 0, we see that these properties
are far from being true if F is not convex!
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EXERCISE 3.19. For every x € H}(Q), 6, M > 0and x* € H1(Q) \ L?(Q) there exists
xp € H(Q) with |2 — xp]|;2 < 6 and (" xm) g g > M.

PROOE. Since x* ¢ L2, it cannot be continuous for the L2-norm, otherwise we have x* € L2,
thus there exists a sequence {x, },eny € C&(Q) such that x, — 0in L? and (x*,x,) — +c0. The
general case can be obtained by translation. O

4. Lecture of 13 october 2015: Affine minorants of convex functions

We have already seen that a closed convex set coincides with the intersection of all the closed
half-spaces containing it. If the closed convex set is the epigraph of a convex Ls.c function

G : X — [—00, 40|, this can be equivalently stated by saying that epi G coincides with the
epigraph of the function defined as pointwise supremum of all the affine continuous function
whose graphs are below the graph of G, since their epigraphs form a family of closed half-space
containing epi G, and the pointwise supremum yields the intersection of the family. We will
precise now that notion.

DEFINITION 4.1. Let X be a normed space, F : X — [—o0, +-00] be a function (not necessarily
convex). Define
F(x) =sup{h(x): h: X — [—o0, +oo] is Ls.c. and h(y) < F(y) forally € X}.

Since the pointwise supremum of Ls.c. functions is 1.s.c., we have that F is the largest Ls.c.
function everywhere less or equal to F, we will call F the L.s.c. reqularization of F.
LEMMA 4.2 (closure and convexification of epigraphs). Let X be a normed space,
F: X — [—0c0,400] be a function (not necessarily convex). Then:

(1) there exists G : X — [—o0, +-00] such that epi G = epi F, moreover we have

G(x) = liir;i?f F(y).

(2) there exists G : X — [—o0, +00] such that epi G = co(epiF);
(3) epi F = epiF.

PROOF. We define:
G(x) =inf{B € R: (x,B) € epiF},
G(x) =inf{B € R: (x,B) € co(epi) F},

where we set inf{@} = +co.

(1) If (%, B) € epiF then (%, B) € epiF thus G(x) < Band so (%, B) € epi G. Hence
epi F C epiG. Conversely, assume that (x, ) € epiG. By definition, there exists
{€i}nen € Rsuch that {(x, &) }uenw CepiFand B < &, < B+ 1/nforalln € N. Since
(x,&1) — (x,B) in X x IR, by the closedness of epi F we obtain (x, B) € epiF.
So we have epi F C epi G C epi F, and by taking the closure we have epi G = epi F.
Define now G/(x) = li?lg\fl—“(y), we want to prove epi G’ = epiF, thus G = G'. Let

(x,B) € epi G/, thus B — G'(x) > 0, and take a neighborhood V x I of (x,8) in X x R.
Without loss of generality, we may assume that I = B(, 2¢). We want to prove that
(VxI)NepiF # @. We have

> G'(x) = su inf F(y)> inf F(y),
pzG) Wognyew\{x} ) —yeV\{x} )
xeW

and there exists y € V' \ {x} such that

> inf F(y) > F(y.) — ¢,
ﬁfye%,r{{x} (y) > F(ye) —¢

thus B+ € > F(ye), hence (ye, B +¢) € (V. xI)NepiF.
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(2) Repeat first part of the above argument replacing G and epi F with G and co(epi F),
respectively.

(3) Since F is Ls.c. and is everywhere less or equal than F, we have that epi F is closed and
contains epi F, thus by taking the closure we have epi F D epiF. Moreover, by
definition we have that G is everywhere less than F, since G is a L.s.c. function below F
and F is the pointwise supremum of all such functions, thus epi G 2 epiF.

Recalling that epi G = epi F, we have

epiF =epiG DepiF DepiF,

so equality holds.
O
LEMMA 4.3. A function f : X — [—oc0, +00] is Ls.c. at xg € X if and only if f(x0) = f(xo).
PROOF. We recall that f(y) < f(y) forall y € X. Assume that f(xg) = f(xo), then
f(x0) = f(xo) < liminf f(x) < liminf f(x).
Conversely, let f be Ls.c. at xg. If f(xg) = +oo the proof is concluded, otherwise let
(x0,t) € epi f = epi f. We have a sequence (xp, t,) € epi f with x, — xo, t, — t. Then
flxg) < hrrlr_1>1£ff(xn) < hﬂg}ftn =t
so f(xg) < tforallt > f(xg). But then f(xg) < f(xo) and so equality holds. O

Among the Ls.c. minorants, a distinguished role is played by the continuous affine functions, i.e.
functions f of the form f(v) = ¢(v) + a where ¢ € X’ (so linear and continuous from X to R) and
« € R. Thus the following definition is quite natural.

DEFINITION 4.4. Let X be a topological vector space where every points has a basis of
neighborhoods made by convex sets (such spaces are called locally convex l.c.s.), we define

I(Xx):= {P : X — [—00,+00] : F(x) = sup{f;(x)} where f; is continuous affine} ,
i€l
We define its subset I'g(X) by removing from I'(X) the constant functions taking everywhere
vaues 00 or —oo.

REMARK 4.5. The pointwise supremum of elements of I'(X) is still an element of I'(X). Indeed,

let G(x) = sup ki(x) with k; € T(X) for all i € I, and let ¥ be fixed. Take any sequence ¢; — 07,
and notice bl;Ideﬁnition that there exists i € I such that k;(x) < G(x) for all x € X and
G(x) —e; < ki(x) < G(x).
Since k; € T'(X), there exists a continuous affine function f; such that f;(x) < k;(x) < G(x) for all
x € X and satisfying k;(%) —&; < f;j(X). So we have
G(X) —2¢; < ki(%) —¢&; < fi(x) < G(%).
So G(x) = s‘ullofi(x) hence G € I'(X).
ic
PROPOSITION 4.6. We have that F € T'(X) if and only if F : X — [—00,4-00] is a convex l.s.c.
function such that if there exists at least a point where it take the value —oo, then it is identically —oo.

PROOF. Assume that F € I'(X). Since it is pointwise supremum for convex Ls.c. functions, it
is a convex l.s.c. function. Moreover, if I = @ then F is identically —co, otherwise, F cannot take
the value —co at any point.

Conversely, let F : X — [—0c0, +-o0] be a convex L.s.c. function such that F(x) > —oo for every

x € X. If F is identically +oco then F is the pointwise supremum of all continuous affine functions
from X to R, if F = —oo, it is the supremum of the empty family of affine continuous function,
thus it remains the case epi F # @ and epi F # X x R.
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We have already seen in Lemma 3.13 that if P := (x,u) ¢ epiF, there exist { = {p € X/,
a = ap >0, e = ep such that p(x) + apu < {p(y) + app —ep forall (y, B) € epiF, or,
equivalently,

1
fely) = o [=tp(y) + £p(x) +ep] +u < B
for all (y, B) € epiF. Notice that the map y — fp(y) is continuous and affine (since P = (x, u) is

fixed) and we have epi F C epi fp. Moreover, we have fp(x) = 2 +u > u, thus P ¢ epi fp.
Define G(x) = sup{fp(x) : P ¢ epiF}. Clearly G € I'. Moreover,
epiG= (] epifp DepiF,
PéepiF

since epi fp 2 epiF for all P ¢ epi F. On the other hand, given Q ¢ epi F, we have Q ¢ epi fg
thus Q ¢ epi G. Hence epi F = epi G thus F = G. O

DEFINITION 4.7. Let F : X — [—00, +o0] be a function (not necessarily convex). We say that G is
the I'-regularization of F if it is the largest function of I'(X) such that G(x) < F(x) for every

x € X, i.e. if it is the pointwise supremum of all function g € I'(x) such that g(x) < F(x) for all
x e X.

PROPOSITION 4.8. Let F,G : X — [—00,+00].

(1) G is the I'-reqularization of F if and only if G is the pointwise supremum of all continuous affine
minorants of F;

(2) if F € T(X) then F coincides with its T-reqularization;

(3) if F admits at least one continuous affine minorant, and G is the I'-reqularization of F, then
epiG = coepiF;

(4) if G is the T-reqularization of F then G < F < F;

() if F is convex and admits at least one continuous affine minorant, and G is the I'-reqularization
of F, then G = F.

PROOF.
(1) We use the convention that inf @, and define

Gi(x) :=sup{h(x) : h(y) < F(y) forall y € X, h continuous and affine},
Ga(x) :=sup{k(x) : k(y) < F(y) forally € X, k € T'(X)}.

We have Gy, G, € I'(X) since the pointwise supremum of elements of I'(X) is in
r(X).

Since all the continuous affine functions belong to I'(X), being sup of a family made
by a single element of continuous affine functions), the following holds:

(@) Gi(x) < Gy(x) for all x € X by definition (the sup in the definition of G, is on a
larger set than in the definition of G1), so all the continuous affine minorants of G;
are continuous affine minorants of G,.

(b) since G,(x) < F(x) for all x € X, every continuous affine minorant of G; is a
function of I'(X) which is also a minorant of F. So by definition of Gy, every
continuous affine minorant of G, must be also a continuous affine minorant of Gj.

So Gy and G, are elements of I'(X) which have the same set of continuous affine
minorants, thus G; = Gj.
(2) Trivial.
(3) Let f be a continuous affine minorant of F. Take a Ls.c. convex function G such that
epi G = coepi F. Since
epi F CcoepiF = epiG C epif,
we have f < G < F, and by passing to the pointwise supremum on the minorants f, we
have that G < G. Since G € I'(X) we have by definition G < G, so we obtain G = G'.

(4) Trivial by the previous items.
(5) Trivial by the previous items.
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5. Lecture of 17 october 2015: Conjugate of convex functions (3 h)

The importance of the study of continuous affine minorants of convex functions can be
motivated by the following simple remark. If epi F admits at (¥, a) the supporting hyperplane of
equation f = ad, where f(x,a) = {(x) +aa and « > 0, £(x) = 0, necessarily for every given
(x,a) € epiF we have a > i for every x € X. Thus, since F(%) = a and we can always take
a = F(x), we obtain that X is a minimum point for F and the value of the minimum is 4.
Let F: X — [—00,400], x* € X/, & € R. The continuous affine function f(x) := (x*,x)x x — a is
everywhere less than F if and only if for every x € X we have.

a > (x*,x)x x — F(x).
So the following definition is quite natural:

DEFINITION 5.1. Let F: X — [—o0,+o0], x* € X/, w € R. Define the convex conjugate
F* : X" — [—00, +00] (also called polar or Legendre-Fenchel transformed) of F by setting for all
xte X
F*(x*) = sup { (x", x) 0, — F(¥)} .
xeX
Notice that F*(x*) < w if and only if the continuous affine function f(x) := (x*,x)x x —a is
everywhere less than F. Equivalently, (x*,a) € epi F* if and only if epi F C epi f(y+ o), where

f(x*,:x)(x) = <x*, X> — Q.

Now our problem is: in order to have good regularity properties on F*, which topology is better
to endow X’ with? F* is a pointwise supremum of affine functions x* — (x*,x)x x — F(x) (here
x is fixed). A minimum natural requirement is to ask all these functions to be continuous. This
amounts to endow X’ with the weaker topology such that the maps x* — (x*, x) are continuous
for every x € X.

From the course in Functional Analysis, we know that this topology is the weak*-topology
o (X', X). We will review now some basic notions about that topology.

DEFINITION 5.2. Let X be a Banach space, X’ its dual and X" := (X’)’ its bidual, i.e., the dual of
X' endowed with his norm as dual space. Then there exists an isometric embedding J : X — X"
defined as follows

<]x, x*>X///X/ = <x*, x)X/,X
for every x € X and x* € X'. | is trivially linear, and
[Tl = [lx[]x-

If | is surjective, the space X is called reflexive.
DEFINITION 5.3. The weak*-topology o (X', X) on X’ is the smallest topology which make all the
functions of the set Jx := {Jx : x € X} be continuous. Since Jx C X", this topology is weaker
than the weak topology ¢ (X', X”) which make continuous all the functions of X”.
PROPOSITION 5.4. The following properties hold:

(1) the weak® topology is Hausdorff;

(2) given f € X', a basis for the set of neighborhoods of f in the weak* topology is given by

V=A{feX: |(f-foxi)xx| <e foralliec I},
where 1 is finite, x; € X foralli € I and e > 0;

Let { fu}nen be a sequence in X', f € X', {xy }nen be a sequence, x € X. Then:

(1) fu =" f (ie., f weakly* converges to f) if and only if {fu, x)x' x — (f, x)x' x forall x € X;

(2) If fu — f strongly, then f, — f weakly in o(X', X"), and if f, — f weakly in o(X', X"") then
fn —* f (ie., weakly*, or in o(X', X));

(3) If fu —* f, then || fu|| is bounded and || f|| < liminf || f,||;

4) If fu =" fand x, — x strongly in X, then (fy, xn) — (f, x).

PROOF. See [3], Section I11.4, in particular Propositions I11.10, II1.11, IIL.12 pp. 59-61. O

We recall now the following fundamental theorems:
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THEOREM 5.5 (Banach-Alaoglu-Bourbaki). The closed unit ball B := {x* € X" : ||x*||x» <1} of
X' is weakly*-compact.

PROOF. See Theorem II1.15 in [3] pp. 64—66. O

THEOREM 5.6 (Kakutani). The closed unit ball B := {x € X : ||x||x < 1} of X is weakly compact if
and only if X is reflexive.

PROOF. See Theorem II1.16 in [3] p. 66. ]
If we endow X’ with the weak* topology, we have the following result.

PROPOSITION 5.7. Let F : X — [—o00, 400|. The convex conjugate F* : X' — [—o0, +00] enjoys the
following properties:

(1) F*is always convex and w*-lower semicontinuous (i.e., L.s.c. with respect to weak*-topology);
(2) if F is proper (not necessarily convex), then F*(x*) > —oo for all x*;

(3) if F is convex, L.s.c. and proper, then F* is proper;

(4) if F is proper, for all x* € X" and x € X the Young’s inequality holds:

(¥, x)xr x < F(x) + F*(x).

PROOF.

(1) F*is a pointwise supremum of continuous affine functions, so it is a pointwise
supremum of convex lLs.c. functions, so is convex l.s.c.

(2) If F is proper, then dom F # @, so there exists x € X with —oco < F(x) < +c0. But then
F*(x*) > (x*,x)x x — F(x) > —oo.

(3) Since F is proper, convex and L.s.c., we have F € T'(X), thus there exists a continuous
affine minorant (x*, x) — a dove x* € X’ and w € RR. But then, by using the definition of
F*, we have F*(x*) < «, so F* is not identically +oco.

(4) Trivial since F*(x*) > (x*,x)x x — F(x) forall x € X, x* € X', and the sum
F(x) 4 F(x*) is always well-defined (cannot be 400 — o).

O
Immediately from the definition of F* we have the following properties:
PROPOSITION 5.8. Let F,G,F; : X — [—o0,+0o0],i € I. Then:
(1) F*(0) = —infyex F(x);
(2) if F < G then F* > G%;
3) <inf Fi) = <sup F;‘) and (sup Fi> < (inf Fi*>/'
i€l iel iel i€l
(4) (AF)*(x*) = AF*(x*/A), forall A > 0, x* € X/;
(5) defined (F + «)(x) = F(x) + a, we have (F + a)* = F* —w, foralla € R
(6) fixw € X and set Fyy(x) = F(x — w), then F(x*) = F*(x*) + (x*, w) x' x.
PROOF. Trivial from the definition. For item (3), use Lemma 1.9. O

We give now some examples of convex conjugate:

EXAMPLE 5.9. Let X = R.
(1) The convex conjugate of F(x) = |x|is F*(y) = I|_11)(y).
(2) The convex conjugate of G(x) = e* is defined by G*(y) = 4o if y < 0, G*(0) = 0, and
G*(y) = y(logy — 1) ify > 0.
(3) The convex conjugate of H(x) = |x|’/p where 1 < p < +oois H*(y) = |y|7/q with
1/p+1/g=1

LEMMA 5.10 (Marginals). Let X, Y be normed spaces, and ® : X x Y —] — oo, +0c0| be a convex

function. We define the functions ®x : Y —| — oo, +-00] and &y —] — oo, 00| by setting

Px(y) = in)f(CD(x,y) and Oy (x) = inlf/CD(x,y). Then ®x and Py are convex functions, moreover
xe ye

D% (y*) = @*(0,y*) and D} (x*) = ®*(x*,0). The functions Dx and Py are called first and second
marginal of ®.
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PROOF. We know that the pointwise supremum of convex L.s.c. functions is a convex L.s.c.
function, hence since we deal with a pointwise infimum a proof is required. We will prove only
the statements for ®x, being the others completely symmetric. Given A € [0,1], 1,12 € Y,
a1 > Px(y1) and a, > Ox(y2), there exists xq, x, € X such that Px(y;) < P(x;,y;) < a;,i=1,2.

Px(Ay1+ (1 =A)y2) < P(Axy + (1= A)x2), Ayr + (1= A)y2) = P(A(x1,y1) + (1= A) (x2,2))
S ADP(x, 1) + (1= A)D(x2,y2) < Aag + (1= A)ay.

By the arbitrariness of a1 and ap, we can let a; — dx(y)"t,i=1,2, obtaining convexity. We have

O3 (y*) =sup { (v, y)y y — Px(y)} = sup {(y*,ww,y — inf qI>(x,y)}
yeY yeY xeX

= supsup {{y*,y)yy — P(x,y)} = supsup {((0,¥), (x, ¥)) xxv' xxy — P(x, )}
yeY xeX yeY xeX

=0°(0,y").
O

DEFINITION 5.11 (Bipolar). We can iterate the construction of convex conjugate considering the
bipolar of F : X — [—o00,400], i.e., the function F** : X"/ — R defined as F** = (F*)*. We have in
particular
Fr(x®) = (%, x)x,x — F(x)
which implies
F(x) 2 (2%, x)x0,x — F*(x") = {(Jx,x") xr x = F*(x")
and by taking the sup on x* € X’ we have
F(x) > sup (Jx,x")xnx = F*(x") = F**(]x).
xeX’
The following theorem gives a full characterization of the cases in which equality holds.

THEOREM 5.12 (Fenchel-Moreau). Let X be a normed space and F : X —] — oo, +00| be not
identically +o0. Then F = F** o ] if and only if F is convex and L.s.c.

PROOF. Suppose F = F** o |. We already know that F** is convex. Since ] is linear, for
x,y € X, A € [0,1] we have

FAx + (1 =A)y) = F*(J(Ax + (1 = V)y)) = F*(A]x + (1 = A)Jy)
SAFT(Jx) + (1= MF(Jy) = AF(x) + (1 = V)F(y),
so F is convex. Moreover F** is L.s.c. for weak™ topology on X**, so F = F** o | is convex and

Ls.c. for both the weak and the strong topology on X.

Conversely, assume that F is convex and l.s.c. Since F** o | < F, the thesis is trivial if

F**(x) = 4o00. Since F is proper, F* is not identically +o0, and so F** > —oo. So we have to prove
that if F**(Jx) € R we have F(x) = F**(Jx). By contradiction, suppose that there exists xy € X
such that F**(Jxo) < F(xg) so (xo, F**(Jxo)) ¢ epiF. We can separate the closed epi F (recalling
that F is 1.s.c.) and the compact (xo, F**(Jxo)) in the same way as we did in the characterization
of I'(X), obtaining ¢ € X', « > 0, B € R such that

0(xg) +aF**(Jxg) < B:= " t)irggpip(é(x) + at)

= inf (0(x)+aF(x)) = —a sup (W{F(x))

xedom F yedom F o
= —aF*"(—{/a).
We obtain
0(x0) + aF™ (Jxo) < —aF*(—{/)
and so

Y4
(Jxo, _&>X“,X’ > F*(Jxo) + F*(—={/a),
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however by Young’s inequality, being F** > —co, we should have

*k * l
F (]x0)+F (—E/Oé) Z <].X'0,—&>X//,X/,
which lead to a contradiction. O

COROLLARY 5.13. Let X be a normed, F : X — [—o0, 00| convex but not necessarily l.s.c. Then
F** o ] = F. In particular, F** o J(x) = F(x) if and only if F is Ls.c. at x.

PROOF. F** o [isal.s.c. minorant of F, so F** o | < F. On the other hand, if G is a convex
Ls.c. functions with G < F we have G* > F* e G** < F** so by Fenchel-Moreau Theorem, we
have G = G** o ] < F** o ]. By the arbitrariness of G, we have F < F** o |. d

REMARK 5.14. A consequence of the previous lemma, we have F*** = F*, in fact F* is convex
and ls.c., so (F*)** coincides with F* (we identify X’ with its image in X"”).

DEFINITION 5.15 (Support function). Let U C X be nonempty, we consider its indicator
function Iy;. Its convex conjugate is called support function to U:

ou(p) = SUP<P/”>X',X-
ueld

On the other hand, the minimal (w.r.t. inclusion) closed convex set containing U is co U, so for
the previous result we have

If o] =Isu.

By passing to the conjugate again, oy;(p) = cesu(p)-

6. Lecture of 20 october 2015: Normal cone and subdifferential of convex analysis

Consider now a function f : R? — R. If f is differentiable and if x is a critical point for f, then
the affine hyperplane in R*! defined by the equation x;,; = f(x) is tangent at (x, f(x)) to the
graph of f (the hyperplanes defined by equations of the type x;,1 = cost. will be often called
horizontal hyperplanes, this terminology being imprecise but suggestive).

If f is a convex differentiable function, and x is a critical point for f, then epi f is all contained in
the half space {(y,B) : ¥ € Q), B > f(x)} thus a posteriori for convex differentiable function, the
notion of critical point and point of minimum coincide.

If f is convex, not necessarily differentiable at x, but there exists an horizontal supporting
hyperplane to epi f at (x, f(x)), then epi f is all contained in the half space
{(y,B): y€Q, B> f(x)}, and so x is a point of minimum.

It is thus natural to associate at every (x, f(x)) the set of supporting hyperplanes to epi f at

(x, f(x)). Each of such hyperplane is completely determined by the direction of its normal,
whose orientation is choosen in order to point towards the half space not containing epi f, thus
we associate to (x, f(x)) the set of all the normals of all the supporting hyperplanes to epi f
passing by (x, f(x)) and pointing towards the half space not containing epi f.

More generally, given a closed convex set C, we can associate to each x € C the set of the
normals to the supporting hyperplanes to C passing through x and pointing towards the half
space not containing C.

DEFINITION 6.1 (Normal cone in the sense of convex analysis). Let X be a normed space, C be a
closed convex nonempty subset of X, x € C. We define the normal cone in the sense of convex
analysis to C at x by setting:

Ne(x) :={ve X : (v,y—x)y x <0forally e C} ={v e X": oc(v) = (v,x)x x}-

The normal cone N¢(x) is trivially a w*-closed, convex and nonempty subset of X" and if A > 0,
v € Nc(x) then Av € Ne(x).
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Geometrical interpretation of the
normal cone. The scalar prod-
uct between every element of the
cone at x and every segment join-
ing x to any other point of K must
be nonpositive.

Nk(B)

REMARK 6.2.

(1) To recover the geometrical interpretation, let v € Nc(x), v # 0. Set « = (v, x) x/ x and
consider the hyperplane H of equation (v,y) = a. Clearly, we have x € H, moreover by
definition

(v, y—x)x x = (v, y)xx —a <0, forally € C,
hence CC {y e X: (v,y) < a}.

(2) If X is an Hilbert space and C is a closed convex nonempty subset of H, then by the
projection theorem we have always z — 71¢(z) € N¢(m¢e(2)).

(3) Notice that the action of the vector v € N¢(x) (which should be imagined as applied at
x) on all the vectors y — x (that also must be imagined as applied at x) yields a real
nonpositive number for all y € C.

REMARK 6.3. If C = epi F, with F : X —] — o0, +00] convex and ls.c., given (x, B) € epiF we
have

Ne(x,B) :={ve X' xR: (v, (y, ) — (x,B))xrxr xxRr < Oforall (y,«) € epiF}.
In particular, if we choose y = x, « > f(x) = B, we have that if v = (vy, &) € Nc(x, B) where

vy € X" and ¢ € R then necessarily ¢ < 0. Thus if ¢ # 0 we have (ré], —1) € Nc(x, B).

DEFINITION 6.4 (Subdifferential of convex analysis). Let F : X —] — oo, +0c0] a convex lL.s.c.
function, x € dom F. We define the subdifferential in the sense of convex analysis by setting

OF (x) := {vx € X' : (0x,—1) € Nepir(x, F(x))}.
If x ¢ dom F, we will set 0F (x) = @. Equivalently, v, € oF(x) if and only if x € dom F and
F(y) — F(x) > (vx,y — x)x x, forally € X.
We will set dom oF := {x € X : 0F(x) # @}.

REMARK 6.5. If f is classically (Fréchet) differentiable at x, then 9f(x) = {f’(x)}. Indeed, if f is
differentiable at x then it is continuous at x, thus subdifferentiable at x. Moreover, given
A € [0, 1] sufficiently small, we have for all y # x

flx+ My —x)) < f(x) +Af(y) = f(x)],
leading to
[ My —x)) = f(x) = (f' (), My —x)) _ fly) = f(x) = {f'(x),y — %)
Aly — x| - ly — x| ’
By letting A — 0, the left hand side vanishes by definition of differential. Multiplying by

|y — x|, we obtain
fy) = f(x) = {f'(x),y = x),
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hence f'(x) € 9f(x). Conversely, given ¢ € df (x), we have for all t € R with |¢| sufficiently
small that

flx+tly—x)) = f(x) = {5y —x) <0.

Assuming t > 0, dividing by t|y — x| > 0 and letting t — 07, setting z = x + t(y — x) we have

@) = f) - @22 _,

limsu
0" 2 — ]

Assuming t < 0 and performing the same computations, we have

hl’nlnff(z) _f(x) — <§/Z — X> > 0.

240 |z — x| -

Hence

i fE) = F0) = (62=x)
z—0 |z — x|
and by the uniqueness of the differential, we have ¢ = f'(x).

EXAMPLE 6.6 (Subdifferential of the norm). Let X be a normed real space, and consider

p: X =R, p(x) =||x||x. Then dp(0) = Bx/(0,1). Indeed, we have that ¢ € X’ belongs to dp(0)
if and only if p(x) > p(0) + (¢, x) for all x € X, hence ||x||x > (¢, x). But we have also

p(—x) > p(0) + (¢, —x) for all x € X, thus ||x|[x > — (¢, x). So ¢ € dp(0) if and only if

[{¢,x)| < ||x| x, therefore if and only if ¢ € Byx/(0,1).

PROPOSITION 6.7 (Properties of the subdifferential). Let X be a normed space, f : X — RU {+oco}
be a proper convex function, xo € dom f.

(1) ifaf(xg) # D, then of (xp) is convex and w*-closed in X';

(2) given a sequence {(xn, &) }nen C X x X' such that x, — x strongly in X and &, —* &

weakly* in X', if &, € of (xn) foralln € N then & € of (x);

(3) if f is continuous at xq then df (xg) is bounded, thus w*-compact;

(4) sihache f(xg) = arggf(x) seesolose0 € of (xp);

(5) ifof (xo) # @ then f(xo) = (f™ o ])(x0);

6) if f(x0) = f* (Jx) then 3f (xo) = a(f** o J)(x0);

(7) we have @y € of (xo) if and only if f(xo) + f*(90) = (@0, X0)x' x- In this case ¢y € dom f*;

(8) we have gy € Of (xo) ifand only if | € Of*(go) and f(xo) = f** o J(xo).

(9) if f is proper, convex, l.s.c. and X is reflexive, then p* € of(x) if and only if x € of*(p™).

PROOF.
(1) Given &;1,& € 9f(xp), A € [0,1] we have

f(x) = f(x0) = A(f(x) = f(x0)) + (1 = A)(f(x) = f(x0))
> AG1,x = x0) + (1= A) (G2, x — x0) = (Ag1 + (1= A)52, x — x0),
thus AZ1 + (1 — A)&2 € 9f (xg), which therefore turns out to be convex. Given
{&n}nen C 9f (x0) w*-converging to & € X', we have ({,, x — x9) — (&, x — x) for all
x € X, therefore f(x) — f(xo) > (Gn, x — x0) — (¢, x — x0), which yields the w*-closure.
(2) Forally € X we have
) = f(xn) 2 Gy —xn) = (G = &y — xn) + (G, Y — Xn)
=(Cn =Gy —x)+ (& — & x —xu) + {5,y — xn)
= (Gn = &y —x) = [1&n = Sllxr - [lx = xullx + (S, ¥ — xn)
The first term of the last line vanishes as n — +o0 by definition of weak™ convergence.
The second one vanishes since, by the properties of w*-convergence, we have that

| — €| x» remains bounded (and ||x, — x||x — 0 by assumption). The third term
converges to (¢, — x) since ¢ € X' thus it is continuous. So we have for ally € X

Fy) = £(x) 2 f(y) —lim inf f(xn) = limsup £(y) = f(xn) = &y — %),
therefore & € of (x).
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(8) We have already proved the w*-closure of the subdifferential. According to
Banach-Alaoglu theorem, to prove its w* compactness it remains to prove its
boundedness. By continuity of f at xo, fixed € = 1 there exists § > 0 such that if

lx — xo||x < 6 then [f(x) — f(x0)| <1.Letp € 9f(xp). Then for all x € B(xp,d) we
have

{9, x —x0) < f(x) = fx0) < [f(x) = fx0)| <1
and so sup |{(¢@,u)| <1, therefore ||¢||x < 1/6.
[[ul<é

(4) Trivial.

(5) Let¢ € of(xp) and set (x) = f(xp) + (&, x — xp). We have that ¢ is a continuous affine
minorant of f such that ¥»(x) < f(x) atall x € X and ¢(xp) = f(xp). Since f** o ] = f is
the largest lower semicontinuous minorant of f, we must have
P(x) < f*oJ(x) < f(x), so at x = xy we have equality.

(6) Let @ € o(f** o J)(x0). Then

fx) = f*o](x) = f7 o J(x0) + (@, x = x0) = f(x0) + (¢, x — x0),
hence ¢ € df(x), therefore 9(f** o J)(x9) C 9f (xp). Conversely, let ¢ € df(xg). This
implies f(xp) € R. Then

f(x) = f(x0) + (@, x = x0) = f o] (x0) + (¢, x — x0) =: P(x),

Since ¢ is a continuous affine minorant of f, we have f** o J(x) > i(x) thus
@ €0(f** oJ)(xp), hence d(f** o J)(x9) 2 9f(xp). Thus equality holds.

(7) By definition, ¢y € 9f(xp) if and only if for all x € X we have
f(x) > f(x0) + (®o, x — x0), which is equivalent to

(@0, x0) — f(x0) = {0, x) — f(x).

By taking the sup on x € X we have

(@0, x0) — f(x0) = f*(¢0)-

On the other hand, by definition we have (¢g, xo) — f(x0) < f*(¢p), thus equality
holds.

(8) Suppose Jxo € 0f*(¢o) and f(x9) = f** o J(xp). Applying (7) to f* we have
[ (@) + £ (Jxo) = {Jx0, 90)

and so, recalling the assumptions,

f*(9o) + f(x0) = (@0, x0),

thus by (7) applied to f we have ¢y € 9f(xg). Conversely, let ¢g € 9f(xp). By (7) we
have

f*(90) + f(x0) = (@0, x0),
and recalling (4) we have f(xg) = f** o J(x¢) thus
f*(po) + £ (Jxo) = {Jx0, po),

and we conclude by (7) that Jxo € 9f*(¢o).
(9) Trivial by (8).

7. Lecture of 23 october 2015: Subdifferential calculus and minimization problems (3 h)

PROPOSITION 7.1 (Subdifferentiability criterion). Let X be a normed space and f : X — R U {+4co0}
be a convex function. If there exists xo € X such that f is continuous at xo, then of (x) # @ for all
x € intdom f and in particular o f (xo) # @.
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PROOF. By continuity, f is upper bounded in a neighborhood of xg, hence xy € intdom f.
Moreover, epi f is a convex set with nonempty interior, thus if admits a supporting hyperplane
at every point of the boundary. So given x € intdom f, we have that there exists
(0,0) # (vy,a) € X’ x [0, 4+00[ such that

(0x,0), (v, f(1) — (x, f(x))) <0, forall y € dom f.
If x = 0 we would have (vy,y — x) < 0forall y € dom f and since x € intdom f we can choose
4 > 0 such that y — x € B(0, ), thus obtaining vy = 0, a contradiction. Hence & > 0 and so
vy/|a| € 9f (x). O

PROPOSITION 7.2 (Subdifferential calculus). Let X be a real normed space, f,g : X —] — oo, +oc0] be
proper convex Ls.c. functions. Then
(1) if A > 0 we have d(Af)(xg) = Adf(xo);
(2) o(f + g)(x) D of(x) + 9g(x), the inclusion may be strict;
(3) if there exists xg € dom(f) N dom(g) such that f is continuous at x then
a(f+g)(x) =of(x) +9g(x) forall x € dom(f) Ndom(g).
(4) let Y be anormed space, j € Y, A : Y — X be linear and continuous, g be continuous and finite
at A(77). Then 0(go A)(y) = A*0g(Ay) forally € Y.

PROOF.
(1) Given A >0, ¢ € X/, we have f(x) > f(xo) + (&, x — x¢) if and only if
Af(x) > Af(xg) + (AL, x — xg), thus ¢ € of (xg) if and only if A§ € (A f)(xp).
(2) Let¢r € 9f(x0), e Gg € 9g(x0). Then

(f +8)(x) = (f +8)(x0) = (f(x) = f(x0)) + (8(x) — g(x0))
> (Cf,x — x0) + (g, x — x0) = (&5 + &g, x — x0)-
Therefore {r + &g € d(f + g)(x0). However the inclusion o(f + g)(x) 2 9f(x) + 9g(x)
may be strict, as shown in the example below.

(3) According to (2), we have to prove that given ¢ € 9(f + g)(x) there exist ¢ € 9f(x)
and ¢, € dg(x) such that ¢ = ¢ + ¢>. By assumption, for all y € X we have

fy) +8y) — f(x) —g(x) > (@, y — x).
Define

Ai={(y,a) € XxR: fly) = f(x) = {9y —x) <a}
B:={(z,b) e X xR:b<g(x)—g(z)},

and notice that they are nonempty, for instance we have (xg,0) € AN B. Since the map
y— o) = f(y) — f(x) — (¢, y — x) is convex Ls.c. and A = epi ¢, we have that A is
convex and closed, moreover, since ¢ is continuous at xp, we have int A # @. Since f
must be upper bounded in a neighborhood V of x by continuity, we have that also ¢(-)
is upper bounded in a neighborhood of x, thus there is a constant ay, such that

(y,ay,) € intAforally € V. In particular, (xp,ay,) € int A. In the same way, by
convexity and Ls.c. of z — g(z) — g(x), we have that B is convex and closed.

We prove now thatint AN B = @. Assume (y,a) € int AN B. Then we have that
there exists ¢ > 0 such that (y,a — ¢) € A, and so we have
f(y) = f(x) = (@, y —x) <a—canda < g(x) —g(y), yielding
fy) +8(y) — f(x) —g(x) < {g,y — x) — ¢ contradicting ¢ € 9(f +g)(x).

By Hahn-Banach Theorem, we can separate int A and B by a closed affine
hyperplane, thus there exist € X', t € R, B € R such that (¢, t) # (0,0) and

P(z) +tb < B < (y) +ta, forall (z,b) € Band (y,a) € int A.

Since A is an epigraph, we can send a — 400, thus we must have t > 0. We prove that
t > 0 by contradiction. Assume t = 0, hence necessarily ¢ # 0 and ¥(z) < g < ¢(y) for
all (z,b) € Band (y,a) € int A. We choose z = xg, b = g(x0) — g(x), ¥ = X0, 4 = ay,,
recalling that (xp, ay,) € int A, obtaining = (xg), and so we must then have



7. LECTURE OF 23 OCTOBER 2015: SUBDIFFERENTIAL CALCULUS AND MINIMIZATION PROBLEMS (3 H) 31

P(xo) < P(y),ie. 0 < ¢(y — xp). Since (y, ay,) € int A for all y in a neighborhood of xg
we have that 0 < ¢(#) for all # in a neighborhood of 0. But this implies ¢ = 0, because
if () > 0 for some 17 € B(0,6) then ¢(—n) < 0and —5 € B(0, ), leading to a
contradiction, hence t > 0.

Since (x,0) € AN B, by applying the separation inequality with z = y = x and
a = b = 0 we obtain = i(x). If we take now the separation inequality with
b= g(z) — g(x) anda = f(y) — f(x) — (g,y — x), we obtain

8(2) ~3(0) > 19 — p(2)] = (L2 x)

Fl) £ 2 TGy oLy,

~~

Setting s = ¢ — % €af(x),Cg = % € dg(x), we have that
¢ =G+ G5 € If (x) +9g(x).

(4) Forallz,y € Y, ¢ € 0g(Ay) we have
§oA(z) —goAly) = g(Az) —g(Ay) > (§, Az— Ay) = (§, Az —y)) = (NG z—y),
hence A*¢ € 9(go A)(y), so A*9g(Ay) C a(goA)(y).
Conversely, let ¢ € 9(g o A)(y), hence
goA(z) >goA(y)+(,z—y), forallze Y.
Define:
A:={(x,a) e XxR: g(x) <a}:=epig,
B:={(Az,b) e XxR: ({,z—y)+goA(y) > b, forallz € Y}.

Asin (3), we have that A, B are closed, convex and nonempty, moreover int A # @ and
int AN B = @, By Hahn-Banach Theorem, we can separate int A and B by a closed
affine hyperplane, thus there exist € X', t € R, B € R such that (¢,t) # (0,0) and

(Y, Az)xr x +tb < B < (,x)x x + ta, forall (Az,b) € Band (x,a) € A.
Exactly as before, we can prove that ¢ > 0.

If we take now the separation inequality with b = (¢,z — y) + g o A(y), and recall
that (, Az)x x = (A", z)y y we have

(N, z)yy +t(Ez—y)yy +8§oA(y)) < B

thus for all z € Y we must have

(AW +¢,2)yy < é —8oA(y) +(& Yy ys

and this implies A*% + ¢ = 0, otherwise we can send the left hand side to +co by

choosing a suitable sequence {z, },en C Y with |z,| — 400, while the right hand side
is bounded. We have then

0<Bgonm+i-aLyyy,
thus the least € R that we can take is
B=tgoAl) — (—L Av)wx.

t

The other separation inequality with a = g(x) yields ¢(x) + tg(x) > B, thus
g(x) —g(Ay) > (—%,x — Ay)x x, forallx € X,

and so —TIP € dg(Ay). We conclude that { = A* (_tl'[]> € A*9g(Ay), thus

A*9g(Ay) 2 (g o A)(y).
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EXAMPLE 7.3 (Strict inclusion in the subdifferential of the sum).

X

epi f epig Let f(x) = —/[x|(1 + [ o 0) () and g (x) = f(—x).
We have 0 € dom f Ndom g and 9f(0) = dg(0) = @,
thus 9f(0) 4+ 9g(0) = @.

However f(x) + g(x) = Ip(x), in particular f + g has
a minimum at 0, hence 0 € 9(f + ¢)(0).

Therefore o(f + g)(x) # @ = 9f (x) + 9g(x).

EXAMPLE 7.4 (Normal cone as subdifferential). Let X be a Banach space, K C X closed and
convex. Then 9l (x) = Ng(x) if x € K, otherwise dlg(x) = @. Indeed, if x # K we Ix(x) = +oo,
thus dIg(x) = @. Let x € K, hence Ix(x) = 0. We have ¢ € dIg(x) if and only if

Ix(y) — Ix(x) = Ix(y) > (@,y — x), forally € X.
If y ¢ K, the inequality holds for every ¢, but if y € K we must have (¢, y — x) < 0, hence
¢ € Nx (x)
EXAMPLE 7.5 (Subdifferential of the norm squared). Given an Hilbert space Z, v € Z, and
defined wy(x) = 1||x —v||?,, we want to compute dw,(x). We have that & € dw,(x) if and only if
forally € H

1 1
Sy = olld > Sl = ol + ©y - 1),
equivalently,
1 1
Slly =l > Sllx —olf + (6 (v —0) = (x = 0))m,
hence

1 1 1 1
2y — ol — &y — ohn + 160 2 3llx ol — (& x o) + S eI

thus we must have ||y — v — ||}, > [[x — v — ||} for all y € H. We notice that this relation is
satisfied if { = x — v, while if we take { # x — vand y = § + v it fails. We conclude that
owy(x) = x —v.

LEMMA 7.6 (Jensen’s inequality). Let (Q, .#, u) be a measure space such that u(Q)) = 1. Given
g € L,(Q;R) and a convex function ® : R — R we have

@ (f sdut)) < [ @ogx) duta)

PROOF. Since @ is defined on the whole of IR, in particular it is continuous at
Zp = / g(x) du(x), so it is subdifferentiable at zy and we have a € R such that
Q
P(z) > D(z0) +a(z — zp) for all z € R, in particular by taking z = g(x) we have

@og(x) 2 @a0) +alg(x) 20 = @ ( [ g () +a (86~ [ goantx)).
Integrating in x w.r.t. 4, and recalling that 1(Q) = 1, the thesis follows. O

We will face the problem of the existence of solutions of in)f( F(u) where X is a normed space,
ue

F : X —] — 00, 40| a proper, convex, l.s.c. function.
We notice that in Banach reflexive space the following result holds.

PROPOSITION 7.7 (Coercivity in reflexive spaces). Let X be a Banach reflexive space, K C X.
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(1) If K is bounded closed and convex, then it is weak compact (i.e., compact in (X, X"))
(2) If K is closed convex (and nonempty) and F is a proper l.s.c. convex functions such that:
(a) if K is unbounded it holds lim F(x) = +oo,

[l €] o0
x€eK
(b) otherwise if K is bounded no additional assumptions,

then F admits a minimum point in K.

PROOF.

(1) We recall that the ball is weak compact in reflexive spaces by Kakutani Theorem. Since
K is convex, weak and strong closure coincides, so K is weakly closed. Being bounded,
it is contained in a closed ball, so it is a closed subset of a weak compact set, and hence
it is compact.

(2) If F is identically 40 on K, the result is trivial, otherwise there exists x € K, A € R such
that F(x) = A. But then

SEFD = PO

where C := KN F~1(] — o0, A]). C is convex and weakly closed, since F is l.s.c. and
convex, so its sublevels are convex and closed w.r.t. both strong and weak topology,
and K is closed and convex, so weakly closed. If K is bounded, we have that C is convex
and closed w.r.t. both strong and weak topology, so weakly compact and so we can
apply Tonelli-Weierstrass Theorem to conclude. Otherwise, we notice that by
assumption there exists R > 0 such that if ||x|| > R we have F(x) > A, so we consider
C N B(0, R) concluding the proof in the same way of bounded K.

O

DEFINITION 7.8 (Primal and dual problems). Let X be a normed space, F : X —] — 00, +o0| a
proper, convex, Ls.c. function. Given another normed space Y and a proper, convex, Ls.c.
function ¢ : X x Y —| — o0, +o0] with ¢(x,0) = F(x), we consider the first marginal

h(y) := inf ¢(x, ),

i.e., we embed the problem in}f( F(x) in a family of minimization problems (perturbed problem).
xe
We will call:

- primal problem the minimization of F over X;
- dual problem the maximization of —¢*(0, -) over Y’.

According to Lemma 5.10, 4 is convex and h*(¢) = ¢*(0, ¢), moreover we have

sup —¢*(0,y*) = sup —h*(y*) = h** 0 J(0) = h(0) < h(0) = inf ¢(x,0) = inf F(x).
y*ey/ y*eyl xeX xeX
This quantity is less than oo since F is proper, but it can assume the value —oo.

We say that the primal problem is

- normal if h(0) € R and h is L.s.c. at 0.
- stable if 9h(0) # @.

8. Lecture of 27 october 2015: Necessary condition in minimization of convex functionals
DEFINITION 8.1 (Lagrangian function). We introduce the Lagrangian function
L:X xY" — [—o00,+00] of the primal problem by setting
Lxy") = inf{op(xy) = " yvxh

ie., y* — L(x,y*) is the opposite of the conjugate of y* — ¢(x,y*) for every fixed x € X. For this
reason, we have that y* — L(x,y*) is u.s.c. and concave for all x € X, while by Lemma 5.10 we
have that x — L(x,y*) is convex for all y* € Y'.
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DEFINITION 8.2 (Saddle point). We say that (£,7*) € X x Y’ is a saddle point for L if for every
x € X, y* € Y itholds

L(%y") < L(%§") < L(x,§7).
Equivalently, (£,7*) € X x Y’ is a saddle point for L, if and only if

sup L(x,7%) = L(%,§") = inf L(x, 7).
yrey’ xeX

Below we collected some consequences of the above definitions.

PROPOSITION 8.3. Same notation of Definition 7.8.
(1) the primal problem can be written as mf sup {L(x,y")};
y ey’
(2) the dual problem can be written as sup mf {L(x v}
yrey'
(3) In general we have

sup inf{L(x,y")} < 1nf sup {L(x,y")}.
yreY’ xeX y ey’

(4) the primal problem is normal if and only if
sup —¢*(0,y*) = inf ¢(x,0).
y* cy’ xeX
(5) the primal problem is stable if and only if is normal and the dual problem has a solution;

(6) the set of solutions of the dual problem is given by oh** o J(0);
(7) if the primal problem is stable, then the set of solutions of the dual problem if 0h(0);

PROOF.
(1) We have (recalling Lemma 1.9)
—¢*(0,y") = —su§{<y*,y>w,y —¢(x,y)} = inf —[p(x,)]"(y") = inf L(x,y").
x€

xeX xeX
yeY

(2) Similarly, since ¢ is convex ls.c.,
¢(x,0) = [p(x, )] 2 J(0) = sup {=[p(x,)]"(y*)} = sup L(x,y").
}/* eyl y* eyl

(3) See Lemma 1.9.

(4) Suppose that the primal problem is normal, then h** o J(0) = h(0) = h(0) € R
Conversely, if ** o J(0) = h(0) = h(0) € R then the problem is normal.

(5) Assume that the primal problem is stable, in particular #(0) € R. Then there exists
y$ € Y such that h(y) > h(0) + (v, y)y vy for ally € Y. By taking the liminf for
lly|| — 0 we have

liminfh(y) > h(0),
lylly—0

i.e., the Ls.c. of I at 0, so the primal problem is normal. For all y* € Y/, y € Y, recalling
that J0 = 0in Y”, we have

=" (0,y") = —h*(y*) = {JO, @)y y —h*(y*) <h™ 0 ](0) = h(0) < h(y) — (vo, ¥) vy
By taking the inf on y € Y we have for all y* € Y’
—¢"(0,y") < yigg{h(y) — oWy y}= —Su§{<y8/y>w,y —h(y)} = —h"(vo) = —¢*(0,y0),
ye
hence y;; solves the dual problem.

Conversely, let the primal problem be normal and let y;; be a solution of the dual
problem. Then —h*(y§) > —h*(y*) for all y* € Y'. We have then

—h*(yo) = sup —h"(y) = 1" 2 J(0) = h(0).
yey’

So h(0) < —(y3,v)yy +h(y) for all y € Y, hence the primal problem is stable.
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(6) maximize —¢*(0,-) = —h*(-) is the same of minimizing the convex l.s.c. function
h* 1 Y' — [—o0, +00], hence the set of solution is given by 0h** o J(0).
(7) by the properties of the subdifferential, if the problem is normal then h(0) = h** o J(0)
thus 0h(0) = oh** o J(0).
O

We state now an important stability criterion.

LEMMA 8.4 (Stability criterion). Same notation of Definition 7.8. Assume h(0) > —oo and that there
exists xg € X such that y — ¢(xo,y) is continuous at 0 and ¢(xo,0) € R. Then the primal problem is
stable.

PROOF. The function y — ¢(xg,y) is continuous at 0, hence bounded above in an open
neighborhood of V of 0 by a constant K. Given y € V we have

h(y) < inf ¢(x,y) < ¢(x0,y) < K.

Since h is convex and bounded from above in V, it is also continuous and finite at 0, so epih has
nonempty interior and there exists a supporting hyperplane to epih at (0,4(0)), in particular
there are y* € Y’, t > 0 such that for every (y, B) € epih we have

(¥, 0)yr,y +th(0) < (y",y)v,y + tp.
Dividing by t > 0 and taking y = h(y) we have for all y € Y that

*

AR(0) < (% )y +h(y),
which concludes the proof since it implies —y*/A € 9h(0). O

The most important necessary condition for the convex optimization problem that we are
studying is the following.

THEOREM 8.5 (Extremality conditions). Same notation of Definition 7.8. Assume that the problem is
stable.

(1) let g* € Y' a solution of the dual problem. Given any solution £ € X of the primal problem, the
following extremality condition holds

¢(£,0) +¢(0,7°) =0,
or, equivalently,
(0.97) € 9¢(%,0).
(2) Conuversely, given £ € X and §* € Y’ such that the extremality condition holds, then

¢(£,0) = min¢(x,0) = max —¢*(0,y") = —¢*(0,7"),
xeX yrey’
ie. X € X solves the primal problem and §* € Y' solves the dual problem.

PROOF. By stability of the primal problem we have

sup —¢*(0,y*) = inf ¢(x,0).
yrey’ xeX

Recalling that £ € X solves the primal problem and §* € Y’ solves the dual problem, the
extremality condition holds.

Conversely, assume that the extremality condition holds for given £ € X and 7* € Y'. By
stability, the dual problem admits a solution, hence

¢(£,0) = inf ¢(x,0) = max —¢™(0,y") = —¢*(0,7") = ¢(%,0),
X y*eY

so equality holds. O
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COROLLARY 8.6. If the problem is stable, (11, §) € X x Y’ is a saddle point for L if and only if i € X is
a minimizer of the primal problem, ¢ is a maximizer of the dual problem, both the values of the minimum
and maximum are finite, and the extremality relation

holds. Moreover, if the problem is stable, il € X is a minimizer of the primal problem if and only if there
exists ¢ € Y’ such that (i1, §) € X x Y' is a saddle point for L.

PROOE. Suppose that (i1, ) is a saddle point, then
—¢7(0.9) = inf {L(w, 9)} = L(#, ¢) = maxL(d, ¢) = ¢(4,0),
and so extremality relation follows. Conversely, assuming the extremality relation, since
—¢"(0,¢) = inf L(1, ¢) < L(2, §) < sup L(#, ¢) = ¢(,0),
by extremality relation equality holds and so (1, ¢) is a saddle point for L.
Since the problem is stable, there always exists a solution ¢ of the dual problem. Since #i € X is a
minimizer if and only if extremality relation between # and ¢ holds, and by the previous part of

the proof we have that (1, ) is a saddle point if and only if extremality relations holds, the proof
is completed. O

REMARK 8.7. We notice that extremality condition is just a necessary condition for the solution of
stable primal problem. Indeed, the existence of £ is assumed (the existence of §* follows from
stability itself).

To have a necessary and sufficient condition, we have to grant a solution of the primal problem,
by mean, for example, of Tonelli-Weierstrass Theorem.

COROLLARY 8.8. Assume that X is a reflexive Banach space, that the primal problem is stable, and

lim F(x) = +oo.

[l =00

Then the primal problem admits a solution (a minimizer), the dual problem admits a solution (a
maximizer), and the extremality relation holds.

PROOF. In reflexive space, the growth condition is equivalent to coercivity, so by
Tonelli-Weierstrass Theorem, the primal problem admits a solution. By stability, also the dual
problem has a solution. Thus extremality condition holds. O

9. Lecture of 30 october 2015: Special case of convex functionals

If the functional F has a particular form, the choice of the family of perturbations ¢ can be done
in a quite standard way.

PROPOSITION 9.1. Let X be a reflexive Banach space, Y be a normed space. Let f : X —] — oo, +0c0]
and g 1 Y —] — oo, 40| be proper, convex, Ls.c., let A : X — Y be a linear and continuous operator.
Assume that:

(1) lim  f(u)+ g(Au) = +oo;

|lu4]| x =00

(2) there exists uy € X such that f(ug) < +oo, g(Aug) < +oo and g is continuous at Auy.
Then if we set

F(u) := f(u) + g(Au), ¢(u,y) = f(u) + g(Au—y),
the primal problem and the dual problems admit solutions i € X and ¢ € Y', respectively, and
{f( J+HfAT9) = (A",
—8(An) —g"(=9) = (¢ A

7

ﬁ>X’ X
)y,
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ot, equivalently
—¢ € dg(A),
{A*@ e af(a),
where A* : Y' — X' is the adjoint operator of A.

PROOF. Under the above assumptions there are solutions both of the primal and of the dual
problem. We have (set p = Au —y)

" (0,¢9) = s1€1§<¢,y>w,y — f(u) —g(Au—y)
yeY
= sup(p, Au—p)y y — f(u) — g(p)

ueX
peY

= su§<fp, Au)yry — (@, p)yy — f(u) —g(p)
ue
peY

- Su}}z(/\*%wyw = fu) + (=9, p)yy —g(p)
ue
peY

= sup[(A*@,u)yry — f(u)] +sup[(—¢, p)yy — g(p)]
ueX pey

= (N'9)+8 (—9)
Extremality relation is
f(@) +g(Al) + fH(A79) +87 (=) =0,
thus,
f@)+ (A7) = —(87(—¢) + g(AR)).
According to Young's inequality, the right hand side is always greater or equal of (¢, A1)y y,

while the left hand side is always less or equal than (A*¢, 1) x» x = (@, Ail)ys y (recall the
definition of adjoint operator). So both the left and the right hand side must be equal to

(9, A)yry = (A" ¢, D) x.

Extremality condition may be also obtained directly by subdifferential calculus rules. Since g o A
is continuous at ug, we have 0F (u) = of (1) + 0(go A)(u) atall x € dom f Ndomgo A,
moreover, since g is continuous at Aug we have d(g o A)(u) = A*9g(Au). Thus 4l € Xisa
minimizer if and only if 0 € dF (1) = 9f (1) + A*9g(Au). In particular, there exists

—¢ € dg(Au) C Y’ such that A*¢ € of (7). O

EXERCISE 9.2. Let Q be a bounded open subset of R? and let r,q € L2(Q; R) be fixed. Define
F: H{(O;R) — R by setting

F(u) == %/ﬂ\|Vu(x)||2dx+%/0|r(x)—u(x)|2dx—/ g(x)u(x) dx.

Q
Study the problem of minimization of F on H}(Q).

SOLUTION. Set X = H} (3 R), X' = H }((;R), Y = L?(Q; R?), Y’ = Y. The operator
A =V : X — Yislinear and continuous. The functions f : X — R and g : Y — R defined as

Fu) = llr =l — (@0,

1
g(p) = EHPH%Z/
allow to write F in the form F(u) = f(u) + g(Au).

We verify now the requirements of the previous result:

(1) We prove strictly convexity of g. Indeed, by triangular inequality, for every A € [0, 1] we
have

[Ap1+ (1= A)p2lly < Allpally + (1 = A)|p2lly
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2

and since r — r“ is convex and strictly increasing on nonnegative reals

(A1 + (1= A)p2llv)® < Alpally + (1= Dlip2llv)® < My + (1= D)p2l13

and, by the strict increasing property, equality holds if and only if p; = p,. We notice
that dom g = Y and g is bounded from above in a neighborhood of every p € Y More
precisely, given p € Y we have that g is bounded from above in B(f, ) by
% 12113 + 8|p|ly + 6. Thus g is continuous, and locally Lipschitz, on the whole of Y.

(2) f is the sum between u — —(g,u);2, which is a linear continuous function in X, hence
convex Ls.c. and proper, and the composition between the map u — r — u and
S5 LIs|I? 12/ both of which are convex and continuous (see the proof of the convexity of
g), hence f is proper convex, and continuous.

(3) We prove that if ||u||x — oo then F(u) — +c0: indeed

1 1
F(u) > §||Vu||%z = llglle, - lull2 = QHVMH%z — llgllz, - llullx-

Since () is bounded, according to Poincaré’s inequality we have |[u]x < C||Vul|2
where C > 0 is a costant depending only on (), so

C .
F(u) 2 Clle (5 Il = gl ) = -+ooif i = s

(4) Itis trivial to prove that there exists 1y € X such that f(ug) < 400, g(Aup) < +o0and g
is continuous at Aug: we can take ug = 0.

We compute now the conjugate functions f* : X’ — [—co,+co]and g* : Y =Y — R.
We compute ¢* : Y =Y — R as follows

£ ) =sup { " phvy = 5 [ p(0) Pt}

peY
=y { [ oo - 910 )
_2?213{/ (I ) = p* (<) + 20" () p(x) — [p( >)dx}

=5 o eRar= gt { [ (190 - pP) )
=5 | @

thus the sup was attained for p = p*.

We recall that X C LZ(Q;]R) C X/, thus
* * * 1
fr(u?) = sup (W )y x — 5 |Ir —ull?2+ (q,u)2
ueX

= sup
ueX

1 1
=sup{ )+ (= g IR — g

1 2
(w* u)yxr x +(q,u)yxr x — 5 llr —ull7>
2

ueX

= sup

1 1
g gl - 3
ueX



7
We]l()tlce that lfu 6 L We]la\/e

1 1 1 1
Fu*) = sug {—2||u* FgrPat (W gt u) - 2||u||%2} — E||r\|'{2 + EH“* +q+r)%,
ue

1 1 1
= sup {3 " g r =l f = B+ e g+ 1
ueX

1 1
— I + gl + g+ 1l

since X is dense in L?, thus the sup is attained at u = u* + g + r. On the other hand, if
u* € H-'\ L?, we have that there exists a sequence {u, } w3 such that |ltn|l;2 — 0and

(u*, uy) — 400, hence f*(u*) + oo. Hence
1 1 .
—§||r||%2 + §||u* +q+ r||%2, ifu* € L%
frw) =

400, otherwise.

According to Green'’s formulas, for every u € X, v € Y’ sufficiently smooth it holds

(v, Au)yr y = / v(x) - Vu(x)dx = —/ divo(x) - u(x)dx,
(@) Q
and so A* : Y/ — X" is A* = —div, where the divergence must be taken in the distributional
sense.

According to the previous result, both the primal and the dual problems have solutions i € X
and ¢ € Y/, respectively. Moreover, since ¢ = g* is strictly continuous these solutions are
unique. We have the extremality condition

f@)+f1(N9) = (AP M)xx

—8(Al) =" (=) = (@, Ad)yry.
In our case, the first relation implies that f* must be finite at A* @, thus we have A*$ € L2
The second relation is

—8(Vi) =8"(=9) = (¢, Vit) 2,
which corresponds to
8 (=¢) = (=, Vi) — g(Vit),
so since the sup in the computation of g* was obtained for p = p*, we obtain —¢ = Vi in L?(Q).
We can arrive at the same result even directly: the second extremality relation amounts to say
17 1 '
—— Vﬁxzdx—f/ —Azdx:/Ax~Vﬁxdx,
5 [VaPax =3 [ = pPdx = [ ¢(x)- Vi(x)
thus
ST+ o +2p(x) - V() dx =0,
hence ¢ + Vil = 0in L?(Q).
In the first relation, we have that f*(A*¢) = (A*@,)x x — f(i1), and since the sup in the
computation of f* was obtained for u = u* + g+ r, we have il = A*$ + g + v, hence we obtain

{—A*(P +ha=q+r

—¢=Vu

Finally, we have that 7 solves (weakly in H'):
—Au+d=qg+r, in(y
{”wo =0

recalling that divVu = Au.
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REMARK 9.3. By following the same argument in the opposite sense, we can prove the following
result given an open bounded Q C R, for every r,q € L?(Q) the problem

{—Au+u—q+1’, in Q;
M|BQ:0‘

admits only one solution i € H}(Q)), which is characterized by being the minimizer on H} (Q) of
the following functional

2/ |Vu(x ||2dx+2/ |r(x )|2dx—'/0q(x)u(x)dx.

REMARK 9.4. We want to solve the same problem with subdifferential calculus. Recall that,

1
given an Hilbert space Z, v € Z, and defined w,(x) = 3 |x — v]|3;, we have dw,(x) = x — v. The

functional F defined as
1 1
F(u) := EIIAMH 2dx + 5[ = ul|7, — (q,u) 2,

where A = V, satisfies all the properties to apply subdifferential calculus, hence the minimizer
are characterized by

NAI+0—1r—q=0,
hence —Au+10 =qg+r.

10. Lecture of 6 november 2015: Complements to the first part (3 h)

10.1. Remarks on Sobolev spaces and tools for conjugate computation. Let [ be a
nonempty open interval of R. Assume that ¢ : [ — R is of class C!(I). Then, according to the
formula of integration by parts we have for every ¢ € C!(I) (i.e. ¢ € C(I) is zero outside a
compact subset of I):

[ o ) dx = lp(p LS = [/ w) dr == [ ¢ (x) ax

since lim ¢(x) = lim ¢(x) = 0. We notice that the last term require much less regularity on
x—inf [ x—sup I

i to be defined, since it does not require i to be C1(I), but just L] (I) (i.e. for every K compact
subset of I we have ¢ € L'(K).
This suggest the following;:

DEFINITION 10.1 (Weak derivative in IR). Let I be a nonempty open interval of R. Let f : I — R
be a function of L{. (I). We say that g € L1 (I) is the weak derivative or derivative in the weak sense

of f if for every ¢ € C}(I) we have

J s p(x)dx =~ [ f(x) ¢/ (x)dx

If a function g satisfies the above relation, then is unique and will be denoted by f’. For smooth
functions, the weak derivative and the classical one coicide.

The above definition can be easily extended to the several variable’s case:

DEFINITION 10.2 (Weak derivative). Let () be a nonempty open subset of R". Let f : (2 — R be
a function of L (Q2). We say that g; € Ll (I) is the i-th weak partial derivative or i-th partial
derivative in the weak sense of f if for every ¢ € C(I) we have

Jsitx) px)dx = = [ ) o, 91x) ax

If a function g; satisfies the above relation, then is unique and will be denoted by 9, f. For
smooth functions, the weak derivative and the classical one coincide.
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DEFINITION 10.3 (Sobolev space). Let () be a nonempty open subset of R”,1 < p < co, we
define the Sobolev space W* (Q):

WP (OQR) := {f € LF((GR) : Vf:= (Ox,f,...,0x,f) € LF(Q;R")}.
If p = 2 we set H'((; R) = W'2((Q;R). Sobolev spaces are Banach spaces when equipped with
the norm:

I llwir oy = Ifllr@mry + IV Fllrirn)-
In the case 1 < p < +00 we can use also the equivalent norm:

n 1/p
£ lwir um) == (IIfILp or) T+ 21 Iax,-fll’Zp(Q,.R)> :
1=

The space H 1 (C;R) is an Hilbert space with the scalar product:

(fi ) mar) = L2 ear) T (VA V) ar
The space W (Q); R) is separable for 1 < p < +co and reflexive for 1 < p < +o0.

THEOREM 10.4 (Approximation by smooth functions). Let () be an open subset of R",
u € WhP(Q) with 1 < p < +oo. Then for any open subset w compactly contained in Q) there exists a
sequence {uy }neN C CZ°(R") such that u, o — win LP(Q) and Vi, — Vu, in LP (w; R"). If
Q = R" or Q) has Lipschitz continuous boundary, there exists a sequence {uy }nen € CP(R") such that
Uy — win WP (Q).
THEOREM 10.5 (Characterization of Sobolev space). Let Q) be an open subset of R", u € LP((};R)
with1 < p < +ooand let p’ be such that 1/p + 1/p" = 1. The following are equivalent:

(1) u € WP (O; R);

(2) there exists C > 0 such that for every ¢ € CX(O;R) andi =1,...,n it holds:

‘/ x)dx| < Cllg/ oz
(3) There exists C > 0 such that for every open subset w compactly contained in Q) and h € R with
|| < inf,caq dist(y, w) it holds (tyu(x) = u(x +h))
[t — ]| Lr () < Clh|
Moreover, we can take C = ||Vul|1p(qrr)-

In the case p = 1, we have still that (2) and (3) are equivalent, and (1) implies both of them.
Function satisfying just (2) or (3) are called function of bounded variation and form the set BV (Q2).

COROLLARY 10.6. Ifu € W'P(Q) and Vu = 0 a.e., then u is constant on each connected component of
Q.

PROPOSITION 10.7 (product rule). Let Q) be an open subset of R". If u,v € L®(Q) N WLP(Q) with
1 < p < oo then uv € WYP(Q) N L®(Q) and 9y, (uv) = vdx,u + udy,v for everyi =1,...,n.

DEFINITION 10.8 (Higher order Sobolev spaces). Given () C IR” open and nonempty, and m > 1
we define by induction the following spaces:
W™P(O;R) := {u € LP(Q,R) : Vu € W LP(Q;R")}.

and set H"(Q;R) = W™2(R). We norm W"?(Q); R) by summing all the L” norm af all the
(mixed) derivatives of order from 0 up to m, obtaining also in this case a Banach space. In a
similar way, H™ is an Hilbert space.

THEOREM 10.9 (Sobolev embedding theorem). Let 1 < p < n, and set % =L — 1 Then for every

r
q¢ [pp’]
WLP(R";R) C LT(R";R)
with continuous injection, and there exists C = Cy,, > 0 such that

llul| 1 1 < Cl|VullLr(rn), for every u € WYP(R™;R).

LP 77 (RR)
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THEOREM 10.10 (Limit case p = n). For every q € [n,o0]
WI(R";R) C L1(R";R)
with continuous injection.
THEOREM 10.11 (Morrey). Let p > n, then
WIP(R";R) C L®(R";R)
with continuous injection, and there exists C = Cy,p > 0 such that for every WP (R"; R) we have
u(y) —u(x)| < Clx —y[*|[Vul|Lr,

with « = 1 — (n/p). This means that in this case every function of W'F (R";R) admits an Holder
continuous representative.

THEOREM 10.12. Assume that Q) is an open subset of R" with 9Q) bounded and of class C', or Q) is an
half space. Let 1 < p < oco. Then
WP (Q) c LV (Q), for p < 1;
Wi(Q) C L1(Q), for n < q < oo;
WY (Q) C L®(Q), for p > n;

where X = 1 — 1 and all the injections are continuous. Moreover, if p > n there exists C = Cnpa >0

p pn
such that for every WP (R"; R) we have
u(y) —u(x)] < Cla —y*[[ullwrr,
witha =1— (n/p).
THEOREM 10.13 (Rellich-Kondrachov). Assume that Q) is an open bounded subset of R" of class C'.
Let1 < p < cc. Then

*

WLP(Q) C LP' (Q), for p < n;

WI(Q) € L1(Q), forn < g < oo;
WP (Q) c C%(Q), for p > n;
where % = % — %, and all the injections are compact. In particular, for all p, N we have

WLP(Q) C LP(Q) with compact injection.

In many cases there may arise the problem of giving value 0 at the boundary of a set. This notion
must be handled with care, since the boundary of an open C! subset of R" is a set of null
measure in R".

We proceed in a different way:

DEFINITION 10.14 (Null trace at the boundary). We denote by Wé’p (Q) the closure of C!(Q)
with respect to the norm of W7 (Q). With this definition, we have that u € W7(Q) N C%(Q)

with 1 < p < +oco belongs to W&’p (Q)) if and only if u = 0 on (), thus recovering the classical
definition. We set H} (Q)) = W&’Z(Q). The space Wg’p (Q) inherits the norm of W?(Q) and is a
Banach space. The space H} (Q)) equipped with the scalar product of H!(Q) is an Hilbert space.

THEOREM 10.15 (Poincaré’s inequality). Assume 1 < p < oo and that ) is bounded. Then there
exists C = C(Q, p) > 0 such that

1,

In particular, | Vu||p» defines on Wol’p (Q)) an equivalent norm on Wé’p . In the case of H} (QY), the scalar
product (Nuy, Viuy) 2 is a scalar product that induces on H} (Q) a norm equivalent to the norm of
HL(Q).

0
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REMARK 10.16. Poincaré inequality holds also if () has finite measure or if it has bounded
projection to a straigth line.

DEFINITION 10.17 (Dual spaces). For1 < p < 400 we set WL = (W&’p)’, where % + % =1,

and by H1(Q) the dual of H}(Q2). We identify L2(Q)) with its dual, but we do not identify H}
with its dual. We have
Hy(Q) C L*(Q) c H (),

with continuous and dense injections.

PROPOSITION 10.18 (Characterization of the dual). Let F € W_l'p/(Q) with1l < p < +o0. Then
there exists fo, ... fo € LV (Q) such that

<Fvwlvw /fO dx+2/fl x)0y,0(x) dx, forallo € W,",

and ||F||,y -1, = maxi=1,.n || fill;,y. Moreover, if () is bounded, we can take fo = 0.

10.2. Useful tools to conjugate function computation. We will present now some tools and
arguments which turn useful in order to compute in practice the conjugate functions.

Let ¢ : R" — R be a C! function, and suppose to have to compute g*. According to the
definition, we have

g (y) =sup {¢-y—g()}-

ZeR?

So we must compute for fixed y the supremum of { — q(¢) := ¢ - y — g(&). Recalling basic
Calculus results, g € C!(R";R), and so to maximize it we must study the limits for ||¢|| — oo
and then study the critical points, i.e., the points x € R" where Vg(x) = 0.

If we assume moreover that g has superlinear growth, i.e.,

8(&)

1im = +00,
Il =+co [IS]]

we have also

_ o ) . SO _
o 9@) = | fim ”C”<|¢|| ||¢||)§|e;ﬂim+oo”€” ('y' |¢||) ’

so the supremum is actually a maximum attained at some critical points belonging to R" (we
recall that ¢ cannot take value —oo).

The critical point condition Vg(x) = 0 can be written as y = Vg(x). If ¢ is convex then g is
concave, thus Vg(x) = 0 if and only if x is a maximum, hence

§(y) +glx)=x-y,
for every y = Vg(x). Hence dg(x) = {Vg(x)}.
Assume now that the relation y = Vg(x) is invertible for every y, i.e., for every y the maximum

of q(+) is attained at a unique point x = [V¢] ! (y). This holds if and only if g is strictly concave
(i.e., g is strictly convex). In this case

g (y) = ;‘H@ {¢-y—2g(@)} =& -y—g() ifand only if y = Vg({).

Let us assume that also ¢* is of class C! with superlinear growth. Iterating the argument we have
8§ (x) = sup {y-x—g"(n)} =17y~ g (n)if and only if x = Vg" (7).
nER
By the regularity of ¢ we obtain ¢ = g**, thus

(Dﬁyzv%?mmgwﬁ:wy—ﬂﬂmmwfﬂﬂ:ﬁﬂ:xy—fWLmdm

x=Vg'(y);

(@) if x = Vg*(y) then g™ (x) = g(x) = x -y — &"(y), hence g*(y) = x -y — g(x), and so
y=Vg(y).
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So in this particular case we obtain
Ve (y) =x == Vg(x) =y,
which is a smooth versione of x € dg(y) <= y € dg(x).

Recalling that (Vg(x), —1) is the normal to epi g at (x, g(x)), and (Vg*(x), —1) is the normal to
epig* at (y,¢*(y)), from a geometric point of view the above relation yields a relation between
the normals to epi g and epi g*.

EXAMPLE 10.19. Consider thecasen =1,¢: R — R, g(x) = e*. We have

Jm S = A lim g(x) =0.
Set
8" (y) =sup{x-y—e'},
x€R
we have g*(0) = —inf{e* : x € R} = 0. Since
lim & = 400,
xtoo X

the supremum in the definition of g*(y) cannot be attended by the limit { — +oc. In the
1-dimensional case, V denotes the ordinary derivative, thus

Vg (y) =x < Vg(x) =y,

reads as

4
dy
In particular, % g(x) = y means e* = y, which can holds only if y > 0 and x = logy. So fory > 0

gy =x= %g(x) =V

we have %g* (y) = logy, hence

" Yy
g (y) =/0 logsds =ylogy — vy,

recalling that g*(0) = 0 (be careful: it is an improper integral). In the case y < 0 the map

&+ ¢y — e admits no critical point ¥ € R, since the equation y = ¢* has no solution. So the
supremum of & — & -y — € is attained either for & — +oo or for & — —oco. Since the case & — +o0
has already been excluded, we have immediately that the supremum is achieved for { — —oo
and it holds +co. Finally, we have ¢*(y) = +o0if y < 0, g*(0) = 0, and g*(y) = y(logy — 1) if

y > 0. We notice that since g was strictly increasing, we cannot have normals to epi g whose first
component is negative. This impossibility reflects on the fact that g* cannot be finite for y < 0.

In many concrete problems are involved integral functionals, thus it is common the need to
compute the convex conjugate F* : X’ — R of functionals

Fu) = | flxu(x) dx,

where O C R?and f : QO x R” — RU {+co} are measurable, and u € X (X is some normed
space contained in the set of measurable functions from () to R™). By definition,

F(u) = sup { e+ floute)) e

ueX

Assume for simplicity that the action (u*, u) x/ x can also be written in integral form (for
instance, this is true if X = LP(Q) hence X’ = L7(Q)) where 1 < p < 00,1 < g < +o0 and
1/p+1/g9 = 1, with the convention 1/ + c0 = 0)

(u*,u)x x = / u*(x)u(x) dx.
X
In this case we have to compute

F*(u*) = sgg Q[u"(x)u(x) — f(x,u(x))] dx.



10. COMPLEMENTS TO THE FIRST PART 45

On the other hand, we know that for every p € R™, x € Q it holds
u(x) - p—f(x,p) < fH(xu"(x)),
where we denote by
f(x,p) = sup p-q— f(x,9)
geRm™

the conjugate of f only with respect to the second variable, f* : QO x R" — RU {+co}. In
particular, we can take p = u(x), and so

u(x)u(x) = fx,u(x)) < f(x,u*(x)),

Integrating and taking the supremum on u € X, we have

F*(u*) S/Qf*(x,u*(x))dx.

It is clear the importance of providing sufficient conditions yielding

F(u):/Qf(x,u(x))dximpliesF*(u*):/Of*(x,u*(x))dx,

since in this case we can compute a conjugate function of the integral functional by computing
the finite-dimension conjugate of f : O x R™ — R, i.e., the problem is reduced to the
finite-dimensional case.

This amounts to switch the sup and the integral operator. However, in general, this operation may
be not allowed, since the selections

p(x) € arg sup {u*(x) - p— f(x,p)},
pERM

which can be built for every fixed x, could lead to a function x — p(x) not belonging to X, or not
integrabile, and even not measurable. Nevertheless, if the integrand function f is sufficiently
smooth, this case does not occurr.

DEFINITION 10.20. Let ) be an open subset of R"” and B C IR? be a Borel set. We say that a
function f : Q) X B — [—00, +00] is a normal integrand on Q) x B if

(1) fora.e. x € Q themap a — f(x,a)isls.c. on B

(2) there exists a Borel map f : Q x B — [—00, +-00] such that f(x, ) = f(x,) fora.e. x € Q.
If f, g, {fn}nen are normal integrand, then also A f + g is normal for all A > 0, and also inf{f, g},
sup,, fn are normal.
An important class of normal integrand (see Proposition VIIL.1.1 in [4]) is given by Carathéodory
functions, i.e., functions f : () X B — [—00, +-0o0] satisfying

(1) for a.e. x € Q) the map a — f(x,a) is continuous on B;

(2) fora.e. a € B the map x — f(x,4a) is measurable in Q).

We state now the measurable selection theorem:

THEOREM 10.21. Let () be an open subset of R", B be a compact subset of R™, and g be a normal
integrand on Q) x B. Then there exists a measurable function 7 : Q) — B such that for every x € Q) we
have

g(x,i(x)) = ming(x,a).

acB
PROOF. Omitted. See Theorem VIII.1.2 in [4]. O

The following result formalizes the computation of the conjugate of integral functionals

PROPOSITION 10.22. Let Q) be an open bounded subset of R™. Let 1 < o < +o00,
f:QxR™ — [0, 400[ be a normal integrand where v — f(x,v) is convex for all x € Q). Define
F:L*(Q),R™) — [0, 00| by setting

F(u) = /Q F(x,u(x)) dx.
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Assume that there exists ug € L*(Q, R™) such that F(ug) < +o0. Then if o’ is the conjugate exponent
ofw,ie,1/a+1/a" =1, we have

Fu) = [ f G () dx,
(@)
forall u* € L* (O, R™),
PROOF. Fix u* € LY (Q), R™). Define

®(x) := sup [u"(x) - & = f(x,0)],

CERM

Dy (x) == grelﬂag[u*(x) ¢ — f(x, Q)]
2 <n

Clearly {®, },en is an increasing sequence of functions pointwise convergent to ® in Q).
Moreover, for every n > ||ug||~ we have

@y (x) = [ (x) - ug(x) — f(x,u0(x))] =: (x),

since |ug(x)| < |Jug]| 1, and the function ®(-) on the right hand side is integrable because
up € L®(;R™) C L*(; R™). According to the measurable selection theorem, for every n € N
there exists a measurable function i, : O — R™ such that ||i,||;~ < n and

iy (x) = u™(x) - i1 (x) = f(x, 0 (x))-

This implies that {®, },c is a (increasing) sequence of measurable functions pointwise
converging to ®, and then P is also measurable. According to Beppo Levi’s Monotone
Convergence Theorem (applied to the nonnegative increasing sequence of measurable functions
{®, — ®},en pointwise convergent to  — D), we have

O(x)dx = () dx.
/0 (x)dx :161]1}\)] 0 n(x) dx

Thus

/qu'(x) dx =sup | P,(x)dx

neN v
< sup w*(x) - u(x) — f(x,u(x))dx
ueLeCLr /Q
< e [ () ) = £ () de = F ()

Conversely, since

sup [u*(x) - ¢ — f(x,§)] = @(x),

ZER™M
forall u € L*(Q);R™) we have

' (x) - u(x) = fx,u(x)) < (x).

Integrating the above relation and taking the sup on u € L*(();IR™) we obtain

F*(u*) = sup )/Q[u*(x)~u(x)f(x,u(x))]dx</ ®(x) dx.

ueL (Q;R™ 0

So we have

F* (u*) :/ch(x)dx:/Qf*(x,u*(x))dx.
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REMARK 10.23 (Conjugate in H'). We will discuss now a frequent case occurring in the exercises.
Let Q be a bounded open subset of RY, and assume to have F : H'(Q) —] — co, +-c0] given by

F(u) ::/Qf(x,u(x))dx,

where f is a normal integrand, and v — f(x,v) is a convex function. Assume moreover that
there exists ug € L*(Q)) such that F(ug) < +oco. Under these assumption we would know how to
conjugate F if F was defined on L?: in fact, we would have F* : L?(Q)) —] — oo, +00] defined by

F*(u*) := / fr(x,u*(x))dx.
Q
However, since F is defined on H'(Q)), its conjugate is defined on F* : H~1(Q) — [—00, +00].
We recall that given u* € L2(Q)) € H~'(Q) and v € H'(Q) C L?(Q), the action of u* on v is
given by

(U, 0)g1 g1 = /Qu*(x)v(x) dx = (u*,v) 2.

For every u € H'(Q) and u* € H~! we have that
FH () + F(w) = (10", )1 1.
Assume that F is the restriction on H!(Q) of a continuous functional on L?(Q), still denoted by F
We distinguish now two cases:
(1) Forevery u* € H-1(Q) \ L2(Q) there exists a sequence {v, },eny € H'(Q) and
v € L*(Q) with v, — v in L?(Q) such that (u*,0,) -1 1 — 4-c0. In particular, we have
F*(u") + F(vn) > (u", 0n) g1 1,
and by taking the limit for # — +oco0 and recalling that F(v,) — F(v) < 400 we have we
obtain F*(u*) = +oo.
(2) For every u* € L?(Q) we have
F) = sup (w'u)yapm —F(u) = sup (u"u)z— F(u)
ucH(Q) ueH(Q)
Given v € L?(Q) and & > 0 there exists u € H'(Q) such that ||u — v||;2 < eand
|F(u) — F(v)| <¢, so
(W, 0) 12 = F(o) < (', u) + [[u” | 2[lu — 0l 2 = F(u) + [F(u) — F(0)|
< (u,u)y — F(u) +e(1+ [[u”||2)-
We obtain for every & > 0
(W', o) = F(o) < sup (u",u) — F(u) +e(1+ [[u"]12),
ueH(Q)
thus
(u*,v);2 —F(v) < sup (u*,u)—F(u),
ueHY(Q)
and
sup (u*,v);2—F(v) < sup (u*,u)—F(u),
veEL?(Q) ueH (Q)
since the opposite inequality trivially holds, we have equality, thus
') = sup (u',u)2 — F(u),
uel?(Q)
and so

F*(u*) = /Q F* (0 (x)) d.

We conclude that in this case if u* ¢ L? automatically F*(u*) = +oo otherwise we compute F* as
in the case of F : L2(Q) — L2(Q).
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EXERCISE 10.24. We consider the Mossolov’s problem. Let a, > 0, Q) C RY be open and
bounded, g € L?(Q). Define F : H}(€);R) —] — o0, +00] by setting

F(u) := %/Q|Vu(x)|2dx+ﬁ./(.2\Vu(x)|dxfi/(.2q(x)u(x)dx,
and study inf F(u).

u€H}
SOLUTION. Set X = H}((;R), X' = HY((ZR), Y =Y = [2(;RY),A=V: X - Yand
define f : X - Rand g: Y — Rby

f) = = [ geu(x)dx,
sp) =5 [ lp@)Rdx+p [ Ip(]ax

thus we have

Fu) = f(u) + g(Au).
It is easy to see that f and g are continuous and convex functions, that F is coercive and strictly
convex, and A* = —div: Y/ — X'. Moreover f*(u*) = 0 if and only if u* = —g, otherwise
FA(u) = +oo.
If g = 0 the the unique solution to the problem is 71 = 0. We assume q # 0.

To compute the conjugate of g, we notice that
_a 2 ' _ [
s(p) =5 [ IpPdx+p [ p)dx = [ r(x,p(x))dx,
where
&2
r(x,0) = r(a) = 5a> + Bla

for alla € B := R?. We notice that r(-) is a normal integrand on Q) x B, moreover r(-) > 0 and it
is convex and superlinear, then

() = [ ()

We will compute now the conjugate of r(-). We notice that 7*(0) = ian{ r = 0, thus we consider
ac

now a* # 0. In particular, we write a* = uy, where y = ||a*|| > 0 and ||y|| = 1.
o
r* () = sup {p(y,a) — 5la]> — Blal ;.
sup {0n.4) 3 j
Since (17,a) < |a| with equality if and only if 2 = |a|y, setting A = |a|, we have
* &2 Xy2
r*(un) = sup  (u—p)lal = Flal”y = sup (4 = pJA = ZA% ;.
{ 217} =sup { 2}

a€Rd
The graph of the map (A) := (y — p)A — %)\2 is a parabola passing through the origin with

downward concavity, thus this map is strictly increasing for A < V“;’B and strictly decreasing

for A > #.

In particular, if y — B < 0, the map ¥ is strictly decreasing on [0, +-o0], thus its supremum on
[0, 400 is achieved at 0 and its value is (0) = 0. If u — B > 0, the map ¢ achieves its unique

r=F r=F
« o
v (u—ﬁ) _(r=p?
« 20
Summarizing, we have:

(1) if ||a*|| < B, thenr*(a*) = 0 and r*(a*) = (a*,a) — r(a) if and only if 2 = 0.

maximum on R at > 0, its supremum on [0, +oo[ is achieved at and its value is
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|| _ 2
(2) if ||a*|| > B, then r*(a*) = Mizxﬁ) and r*(a*) = (a*,a) — r(a) if and only if

B S U
& [la*[|c
Thus
0, iffla* < p;
r*(a*) =
|| _ 2
U =87 gy 2 p.
So the dual problem is
sup —/ r*(p*(x)) dx.
p*el? JQ
div p*=q

The duality theorem holds, and we obtain the extremality relations

f(@) + f(A*9) = (¢, All)yry,

—8(Al) —g" (=) = (A", )y,
In our case, from the first relation, to have a finite value of f* (recalling that f* assumes only the
values 0 or +c0), necessarily A*$ = —¢, thus divj = 4. From the second we have,

—8(Vit) =¢"(=9) = (§, Vi) 12,
which becomes _
[ (V) 47" (=4(x)) + ¢ - Vit(x)) dx = 0
By Young’s inequality, the integrand is always nonnegative, thus for a.e. x € ():

r(=¢(x)) = (Vit(x), =¢) = r(Vir(x)).
In particular, this implies —@(x) = yVii(x), v € R, since both r and r* depends only by the
modulus of their arguments.
* —
Recalling that r*(a*) = a* - a — r(a) if and only if a = Aa* = Wﬂ* for ||a*|| > B,and a =0
for ||a*|| < B, we obtain

0, if [|p(x)[| < B

A=) = le(x)|| — B
—@(x TP = P if ||o(x .

where A* = —g, so div $ = g and ¢ is the solution of the dual problem.

10.3. Relaxation and convexification. It may occurr that we are dealing with a problem
infyex F(x) where

F(x) ::/Qf(x,u(x),Vu(x))dx

fails to be convex and lower semicontinuous. In this case, even in presence of coercivity of the
functional, the existence of a solution cannot be taken as granted, since Tonelli-Weierstrass
theorem cannot be applied, moreover, the lack of convexity prevents to use any of the necessary
condition we stated. Nevertheless, in many cases the problem is faced by introducing a new
problem, called relaxed problem which exhibits good regularity properties and whose solutions
are connected with the original problem.

We present first a generalization of Tonelli-Weierstrass to non-l.s.c. functionals.

PROPOSITION 10.25. Let X be a reflexive Banach space, and let F : X — R U {400} be coercive.
Consider the l.s.c. reqularization F of F then

(1) F: X — RU{+oo} is coercive and Ls.c., thus it admits point of minimum;
(2) every cluster point of a minimizing sequence of F is a minimum of F;
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(3) every minimum point of F is the limit of a minimizing sequence of F

PROOF.
(1) By coercivity of F in a reflexive space, for any M > 0 there exists N > 0 such that if

F(y)

llyllx > N then Tvix > M Thus, if we take x € X with ||x|| > 2N, we have
X

M < liminf L&) _ EW)
v=x lyllx  [lx]lx

yielding coercivity. By Tonelli-Weierstrass, we have that F has points of minimum.
(2) let {xy}nen € X be a minimizing sequence of F, and assume that x, — x. Thus,
(xn, F(xy)) is a sequence in epi F = epi F wich converges to (x,inf F). By closedness of
epi F, we have that (x,inf F) € epiF, thus F(x) < inf F On the other hand, suppose by
contradiction that there exists y € X such that F(y) < infF, and let F(y) < a < inf F. By
definition, we have a > F(y) = liminf, ,, F(y) > inf F > a, which is a contradiction,
hence F(y) > inf F forall y € X and thus F(x) = inf F, so x is a point of minimum for F.
(3) Since F < F, if x a minimum point of F we must have F(x) < F(y) forall y € X, thus
F(x) <inf F. On the other hand, we have already proved that F(y) > inf F for all
y € X, hence if x is a minimum point for F, then F(x) = inf F. Moreover, we have

F(x)=inf F = li%i?f F(y),

thus there exists a sequence x,, — x such that F(x,) — inf F.

We present here, without proof, a general result on relaxation of integral functionals.

THEOREM 10.26 (Relaxation). Let ® : [0, +oo[— [0, +oo[ be a nonnegative, increasing, convex and

@(t)

Ls.c. function such that lim
t—+o0

O(|¢]) < g(x, &) forall (x,&) € A x R™ Let1 < B < +oo,and f: QO x RY x R” — R be a normal
integrand satisfying
(1) if1 < B < +oo, there exists a;, a, € L' (Q), b > 0, ¢ > 1 such that

§(x,) +az(x) < f(x,5,8) < cg(x,8) +bls|P + a1 ().

(2) if B = oo, there exists a; € L' (Q) and, for all k > 0 there exists c > 1 and a; € L?(Q) such
that

= 4o00. Let g : (3 Xx R™ — R be a normal integrand satisfying

8(x,¢) +aa(x) < flx,5,¢) < cg(x,¢) +ar(x), for[s| <k.
(3) fora.e. x € Q, the restriction of f(x,-,-) to R" x dom g(x, -) is continuous.
Let 4 : L' — LP be a map such that if {py }new converges weakly to pin L' (Q; R™), and if
5161]1131 /Q ®(|pn(x)|) dx < +oo, then {Gpy }ne converges to 9 p in LP(Q; R™). We introduce the
n

following problems:

u=gp

(#2) S G )
u=9p

where
L2(Q) = {p: /Qcp(\p(xmdx < +oo}.
Then

(1) the problem (% 27) has a solution,
(2) the minimum of (#2) equals the infimum of (),
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(3) if (i1, p) with i1 = 4 p solves (%), then there exists a minimizing sequence { (n, Pn) }neN
for () such that u, = Gpy, uy — ain LP, and p, — p weakly in L1,

(4) if {(un, pn) tnen is a minimizing sequence for (), there exists (ii, p) with i = ¢ p which
solves (2 2), and a subsequence {(utn,, pn) }xen such that uy, — it in LP, and p, — p
weakly in L.

PROOF. See Theorem 4.1 in Chapter IX of [4] at p.287. O

We consider now a concept of convergence of functionals introduced by De Giorgi in the "70s.
Our problem is as follows: a sequence of functionals {Fj, } <N is given. Supposing that X, is a
minimum of F,;, we want to give conditions in order to have convergence of ¥, to a point x( that
is characterized as the minimum of a suitable limit functional F. The main reference for this part
is [2].

DEFINITION 10.27 (I'-limit). Let X be a separable Banach space endowed with a topology .7,
and let {Fj, : X — [—0c0, +0] },cn be a sequence of functionals. We say that the sequence F;,
I'-converges to F : X — [—00,+00] (or F =T — lim F) if
(1) For every x € X and every sequence {x, },cn C X converging to x for the topology .7
we have
F(x) < limianh(xh).
h—o00

(2) For every x € X there exists a sequence {x, },en € X converging to x for the topology
7 we have
F(x) > limsup F,(xy,).
h—00
In order to ensure convergence of the sequence of the minima of Fj,, the following definition is
quite natural.

DEFINITION 10.28 (Equicoercivity). Let X be a separable Banach space endowed with a
topology .7, and let {Fj, : X — [—00, 4]}y be a sequence of functionals. We say that

{Fy, }ne is equicoercive if for every t € R there exists a compact set K; in the topology .7 such
that {x € X :€ F,(x) <t} C K;forall h € N.

THEOREM 10.29 (I'-convergence). Let X be a separable Banach space endowed with a topology 7, and
let {F, : X — [—00,+00| }eN e a sequence of equicoercive functionals. Then
(1) if the T-limit of { F, } e exists, then it is unique and Ls.c.;
(2) there exists a subsequence {Fy, }peN and F such that F =T — lim Fy, ;
(3) if F=T —limF,, then F+ G =T — lim F, + G for all continuous G : X — [—00, +o0]; there
exists a subsequence { Fy, }pen and F such that F =T —lim Fj, ;
(4) let F =T — lim Fy, and assume that F admits xq as unique minimum point. Let {x, }pen € X
and {e, }nen |0, +oo[ be such that e, — 0" and |F,(x;,) — inf F,| < €. Then xj, — xq in
 and F,(xy,) — F(xo).

PROOF. Omitted, see [2]. O

PROPOSITION 10.30. Let X be a separable Banach space endowed with a topology 7, and let
{F, : X = [—00,+0] };,cv be a sequence of functionals, F : X — [—o00,+o0]. Then

(1) If {F, }nen converges to F uniformly, then Fy, T-converges to F;
(2) If {Fy}nen is a decreasing sequence converging to F pointwise, then Fy, T-converges to F.

PROOF. Omitted, see [2]. O






CHAPTER 2

Second part

1. Lecture of 17 november 2015: Differentiation in infinite dimensional spaces

It is well known that given a differentiable function g : (3 — R, where () is an open subset of R",
the point of minimum of f must be searched among the critical points, i.e., the points x € ()
satisfying df(x,y) = 0. If the function g € C?, it is possible to study the Hessian matrix of ¢ and
if it is positive definite at a critical point ¥, then ¥ is a minimizer of f. We will now extend the
notion from R” to possibly infinite-dimensional spaces.

DEFINITION 1.1 (Frechét differential). Let X, Y be normed spaces, () C X be open X. A function
f : Q) — Yis called Frechét differentiable at xg € () (shortly, F-differentiable at x) if there exists
A : X — Y linear and continuous such that
lim f(xo+h) — f(xg) — Ah
Il =0 I7l1x

=0.

In this case, the operator A is unique and called Frechét differential of f at x(, and is denoted by
A = f'(x0) = Df(xo).
REMARK 1.2. We recall the following facts:
(1) If the Frechét differential exists, then it is unique.
(2) Every function which is Frechét differentiable at a point, it is also continuous at the
same point.
(3) The differential is invariant if we change the norms on X and Y with equivalent norms.
(4) chain’s rule: if X, Y, Z are normed space, (2 is an open subset of X, xy € (), V is open
subsetof Y, f: O — V, g : V — Z, f differentiable at xy and g differentiable at f(xo),
then go f : () — Z is differentiable at xy and

(8 f)(x0) = g'(f(x0)) o f'(x0),
which is a linear and continuous operator from X to Z.
(5) if f is constant in Q) then f’(x) = 0 for all x € Q) (converse holds if () is connected)
(6) if f: X — Y is linear and continuous, then f’(x) = f forall x € X.
(7) if f : X x Y — Z is bilinear and continuous, then it is differentiable at every point and
f'(x,y)(h,k) = f(h,y)+ f(x,k) forall (h,k) € X x Y, indeed by definition
= lllx + [lklly

1 (9) + (10) — £ Gry) — Fy) = Fx R, IFR)x
h k
f(nhux' ||k||y)
< Cllklx = 0,

11flx + [IKlly = Pl + (1Kl
recalling that f maps bounded sets to bounded sets since it is bilinear and continuous.

1Bl x NIkl

Z

DEFINITION 1.3. Let X, Y be normed space, and () be an open subset of X. Let f : (3 — Y bea
function which is Frechét differentiable at all xy € Q). We can defineamap f': O — L(X,Y),
where £(X,Y) is the space of linear and continuous functions from X to Y, defined by

x — f'(x). We say that f € C!(Q;Y) if this map is continuous.

In the case that the dimension of X is greater than 1, the following concept of directional
derivative plays an important role. Given v € X, ||v||x # 0, we consider

xg + tv) — f(x0)

Y
; S

0f (x0) = lim
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and study the map v — 9, f(xo). If this function is linear and continuous from X to Y, it is
possible to define another concept of differential.

DEFINITION 1.4 (Gateaux differential). Let X, Y be normed space, and let ) be an open subset
of X. A function f : QO — Y is called Gateaux differentiable at xg € Q) (shortly, G-differentiable at
xp) if there exists a linear and continuous operator A : X — Y such that

lim fxo+tv) — f(xo) _ Ao,
t—0 t

In this case, the operator A is called the Gateaux differential of f at xg, and we will denote it by
A = f((x0). The map x — f[(x) will be called the Gateaux derivative of f.

REMARK 1.5. If a function admits Gateaux differential at a point, then it is unique. Even in finite
dimension it is possible to give examples of discontinuous G-differentiable functions (hence in
particular G-differentiable functions that are not F-differentiable). However, from the definition
it easy to see that if a function is F-differentiable then it is also G-differentiable and the two
concepts coincides.

EXAMPLE 1.6. The ground space is R?. Consider the following map f : R — R

3
X .

ﬁyyz' if (x/]/) #0,
floy) =

0, if (x,y) = (0,0).

We check the limit of f along the curve (t) = (t,t3). This curve tends to (0,0) when t — 0.

Lim f(y(t)) —limi _1 #0=£(0,0)
t—0 ¥ 150216 2 N e

So the function is not continuous at the origin, and so it cannot be F-differentiable at (0,0).
Along the axis, the function is identically zero, so the two partial derivatives vanishes at (0,0).
We compute the other directional derivatives along vectors v = (vy, vy) with v, # 0 and vy #0.
f((0,0) + t(vx, vy)) — £(0,0) flt(vx,oy)) 1 ol

0,1(0,0) = lim = lim =lim- —-2—
2f(0,0) =0 t t—0 t =0 t 1608 4 tzv§

3
5 toyvy _
t—0 t4v§ + vf

So directional derivatives along every vector exist at (0,0) and are all 0, so f(0,0) = 0, but f is
not F-differentiable at (0,0).

THEOREM 1.7 (Lagrange’s mean value theorem). Let X, Y be normed spaces, () open subset of X,
f: Q — Y a G-differentiable function in Q). Let x1, xp € Q) be such that Axy + (1 — A)xp € Q for all
A € [0,1]. Then

[f(x2) = f(x1)[ly < 51[110} I fe(Axa + (1= A)x1) |l gx vy - 12 = x1llx,
A€(0,1

where || - || £(x,y) is the norm of the space of linear and continuous functions from X to'Y.
PROOF. Fix ¢ € Y’ and consider the map F : [0,1] — R defined by
E(t) = (@, f(1 = )x1 + tx2) )y v-
This map is derivable, and we have

F'(t) = (@, (fc((1 = t)x1 + txa), (x2 — x1))).

According to classical Lagrange’s Mean Value Theorem, there exists 6 €]0, 1 such that
F(1) — F(0) = F'(8), and so

(9, f(x2))yry = (@, f(x1))yr,y = (@, (fG((1 = 0)x1 + 0x2), (x2 — x1)))
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so we have

{9, f(x2) = f(x1))yrv| < (llllv I f6 (1 = 0)x1 +0x2)l| £,y l1x2 = x1 1 x-
Since we can always choose ¢ € Y’ such that ||¢|ly» = 1 and
(@, f(x2) — f(x1))y'y = ||f(x2) — f(x1)||y, the proof is concluded. O

THEOREM 1.8 (Total differential). Let X,Y be normed spaces, Q) be an open subset of X, f : (2 — Y be
a G-differentiable function in Q. If f(. : QO — L(X,Y) is continuous at xo € Q) then f is F-differentiable

at xg € Qand f'(xg) = fE(xo).
PROOF. Consider the function w : X — Y defined by
w(h) == f(xo +h) — f(x0) = (fG(x0), 1)-
This map is G-differenziable in a neighbourhood of 0 and w; (h) = fL(x0 +h) — f((xo). Since
w(0) = 0, applying the Mean Value’s Theorem, we have

lw(m)lly < Sl[lp] 1f6(x0 + AR) = f&(x0) [l £(x,y) - 1l
A€l0,1

so by the continuity of f(,, by letting h — 0 we have

llw(h)lly
7l x
the thesis follows. g

— 0,

DEFINITION 1.9. Let X, Y be normed spaces, () open subset of X, f : (3 — Y a G-differentiable
function at xo € Q. If f-(xg) = 0 we say that xq is a critical point for f.

DEFINITION 1.10 (Higher order derivatives). Let X, Y be normed spaces, () be an open subset of
X, f : QO — Y be a F-differentiable function. If the Frechét derivative f' : QO — L£(X,Y) is
F-differentiable at xy € ), then the map [f’]'(xg) : X — L(X,Y) will be denoted by " (x() and
will be called second-order differential of f at xo. If " is F-differentiable in ), then

" Q — L(X,L(X,Y)) is the second order derivative of f. If it is also continuous, then we will say
that f € C2(Q;Y).

PROPOSITION 1.11. Let X, Y be normed spaces. Then the space L(X, L(X,Y)) is isometrically
isomorphic to the space L2(X x X,Y) of the bilinear and continuous function from X x X to Y endowed
with the norm

lollzz = sup [l k).
17| x <1
[Ikllx<1
PROOF. Given i € L(X,L(X,Y)) we set
¢(h k) = ((, 1), k),
obtaining ¢ € £2(X x X, Y).

Conversely, given ¢ € £L2(X x X,Y), for fixed h we have that the map k — ¢(h, k) is linear and
continuous, and so the map h +— ¢(h, -) is linear and continuous from X to £(X,Y).

The other statements are trivial. O

PROPOSITION 1.12 (Taylor’s Formula). Let X,Y be normed spaces, Q) be an open subset of X,
f:Q — Yofclass C2(Q;Y). Let xg € Q, R > 0 such that Bx(xo, R) C Q. Then for every
h € Bx(0,R) we have

flxo+h) = f(xo) + (f'(x0), h) + %<<f"(xo)/h>/h> +1(h),
where 1 : Bx(0,R) — Y is a function satisfying

lim ||'7(h)2||y _ 0
Inlx—0 ||k]I%
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PROOF. Fixh € B(0,r), ¢ € Y' and define g;,(t) = (i, f(xo + th))y: y for t € [—1,1]. We have
that ¢, € C2(] — 1,1]) and

gn(t) = (@, f'(xo + th)h)yry
& (5) = (¢ {f" (xo+ ), 1))y
According to classical Taylor’s formula applied to g we have:

(§, f(xo+th) — f(x0))yr,y = (¢, f(x0 +th))yry — (§, f(x0))y,y = gn(1) — 8n(0) = g;,(0) + %glh/(éh)r
for a suitable ¢, €]0, 1[. This implies

(9, f(xo +th) — f(x0))yy = (¥, f (x0)h)yr y + %W’r (f" (xo + &ph)h, 1))y y
= {9, F ooy + 500, U (o) W)y + 3 (s (LF (30 + Gl — £ (x) )y
= <1P/f/(x0)h>y/,y + %(l/]/ <f//(XO)h,h>>Y/,y +1(h)

where 17(h) := 3(p, ([f" (x0 + &uh) — " (x0)]h, h))y y. By continuity of f”, we have
n(h)/|h||% — 0 for h — 0, moreover

o f (0 -+ th) = £(x0) = £/ (8o} = 3 (" (ko) B}y

Recalling the arbitrariness of ¢, we have

Flso-+ ) = Fs0) = £ o) = 3 "Gl | < @l

which concludes the proof. O

< [, ()] < 1¢llylln (m)[ly-

PROPOSITION 1.13. Let X be a normed space, Q) open subset of X, f : X — R be a G-differentiable
function.
(1) If xo € Q is a local maximum or minimum for f in Q) then f((xo) = 0.
() If f € C?and xq € Q is a relative maximum then {{f"(xo),v),v) < 0forallv € X.
(3) If f € C*and xy € Qis a relative minimum then ((f"(x0),v),v) > 0 forall v € X.
(@) If f € C?and xy € Q satisfies f'(x¢) = 0 and there exists ¢ > 0 such that
({(f"(x0),0),0) < —c||v||% forall v € X, then xq is a relative maximum.
(5) If f € C?and xy € Q satisfies f'(xo) = 0 and there exists ¢ > 0 such that
({f"(x0),),v) > c|[v||% for all v € X, then x is a relative minimum.

PROOF.
(1) Let xg be a maximum and v € X. By assumption, there exists § > 0 such that if
|lvllx < 6 then f(xg+ tv) — f(xg) < 0. Thus

lim sup flxo+ tvt) — f(x0) >0

t—0+

7

By the G-differentiabily assumption, the limit exists and is (f/(xo), v), so we have
(f&(x0),v) > 0forallv € Bx(0,6). Since v € Bx(0,0) if and only if —v € Bx(0,4), we
obtain (f{(x0), —v) > 0, thus (f(x0),v) = 0. By the arbitrariness of v, the proof is
conclude. Use a very similar argument when xj is a minimum.

(2) Let xqg be a relative maximum. Then there exists § > 0 such that for all v € X with
lv||x < é and for all £ € [0,1] we have

0> f(xo+10) ~ fxo) = (;((f"(xo),z]),w T o3 L) ) ,

X 2
[to]l%

where equality is given by Taylor’s formula. Dividing by #? and letting t — 0, we obtain
the thesis.
(3) Use the above argument on — f.
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(4) Assume that f'(xg) = 0 e ((f"(x0),v),v) < —c||o||% for all x € X and a suitable ¢ > 0
independent of v. By Taylor’s formula

Flr9) = f(x0) < U (), 0). ) +1(0) < 5 ol (1 o ) |

o 2
lvll%

Since 17(v)/ ||v]|% — 0as v — 0, there exists § > 0 such that for all ||v| x < J we have
f(xo+v) — f(x0) <0, thus x is a relative maximum.
(5) Use the above argument on — f.

2. Lecture of 20 november 2014: Implicit function in infinite-dimensional spaces.

THEOREM 2.1 (Dini’s implicit function theorem). Let X, Y, Z be Banach spaces, D be open subset of
X xY, f: D — Z bea continuous function, (xo,yo) € D be such that f(xo,yo) = 0. Assume that in a
neighborhood of (xg,yo) there exists dy f (x,y) (i.e., the Frechét derivative of y — f(x,y)) and is
continuous, and that dy f (xo, yo) is an isomorphism of Y to Z. Then there exist U C X and V C Y, which
are neighborhood of xq and y respectively, and an unique continuous function ¢ : U — V such that:

{(xy)eD: floy) =0NUXV)={(x¢x)): xeU},  ¢(x0) = yo-

We will say that ¢ locally explicits f with respect to the variable x in a neighborhood of xo. Moreover, if
f is F-differentiable at (xg, yo), we have

1
¢’ (x0) = — (an(xofy0)> odxf(xo0,Y0),

where dx f (xo, Yo) is the Frechét derivative of x — f(x,yo) at xo.

PROOEF. Set Q = dy f(x0,y0), by assumption Q : Y — Z is linear, continuous and bijective.
Define the map g : X x Y — Y by setting

g(xy) =y—Q f(x,y)),

and notice that, given x, we have that y is a fixed point of g(x,-) : Y — Y if and only if
f(x,y) = 0. Indeed, from y = y — Q' (f(x,y)) we have Q7' (f(x,y)) = 0. Since Q and Q! are
isomorphisms by assumption, this can be true if and only if f(x,y) = 0.

For every fixed x, we have that g(x,-) : Y — Y is Fréchet differentiable (thus also
G-differentiable), denoted by dyg(x,y) : Y — Y the differential of ¢(x, -), we have

dyg(x,y) =1dy — Q' odyf(x,y),
and so dyg(xp, o) = 0 by definition of Q.

By continuity of dy f(x,y), we have that dyg(x, y) is continuous at (xg, yo). Thus for every fixed
0 < a < 1 there exists a neighborhood B(xg, 1) x B(yo, 1) of (x,y0) contained in D such that
[oy8(x, )l £(v,y) < & for every (x,y) € B(xo,71) X B(yo,71). Choosen x € B(xo, 1) and

Y1,Y2 € B(yo, 1), by mean value theorem we have

lg(x,y1) — (%, y2)[ly < Sl[lp] [ovg(x, tyr + (1 = t)y2) [ (v ) llva — vally < aflyr —v2ll,
te|0,1

i.e., g is Lipschitz continuous in the second variable, uniformly w.r.t. the first variable. Moreover,
8(x0,y0) = Yo
Given u : B(xg, r1] — B(yo, 1] continuous, we set Tu(x) = g(x,u(x)). We have

g (x, u(x)) — g(x0,y0)lly
lg(x, u(x)) = g(x,y0)lly + lI§(x, y0) — &(x0,y0) Il
ary + [|g(x,yo) — g(xo0, ¥o) lly

Notice that by the continuity of g, there exist § > 0 such that if |x — xo| < J we have
lg(x,y0) — g(x0,0)|ly < (1 —a)ry. Hence, set E = C%(B(xo, 6], B(yo,r1]) we have for all u € E

[ Tu(x) — yolly

<
<
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that || Tu — yo|ly < r1, and so T maps E into E itself. Since E endowed with the norm of uniform
convergece is a Banach space, and
[Tu = Tolleo = [[g(x, u(x)) = g(x,0(x))[leo < a][tt = 0[|co,
with 0 < & < 1, we have that T is a contraction, thus it admits a unique fixed point ¢. In
particular, the graph of ¢ is the zero level set of f (possibly intersected with B(xo, 8] x B(yo, 1]
Suppose now that f is differentiable at (xg, ) and set P := dx f (xo, yo). Recalling that
f(x0,¥0) =0, we have
flxy) = P(x = x0) + QY — o) + o (x,y) - ([lx — xollx + [ly = yolly),

where (x, y) vanishes for (x,y) — (x0,0). Sety = ¢(x) we have f(x, ¢(x)) = 0 and
Yo = ¢(xo), so we obtain

0= P(x = x0) + Q(¢(x) = ¢(x0)) + o (x, ¢(x)) - (lx = x0llx + [ ¢(x) = ¢(x0)[I¥),
ie.,

9(x) = p(x0) = ~Q7'P(x — x0) = Q" (e (x, ¢(x)) - ([lx — x0llx + ll(x) — p(x0) ),
and dividing by ||x — x||x we obtain:
x) — ¢(xg) + Q 1P(x — x _ x)—@(x
(P( ) (P( 0) Q ( 0) =-Q 1(0.(x’¢(x)) . <1+ H(p( ) (P< 0)|Y> )
[l = xollx [l = xol|x

Since o (x, ¢(x)) vanishes for x — xp, and Q is an isomorphism, it is sufficient to prove that the
function

[9(x) = ¢(xo)lly
[l = xol|x
is bounded in a neighborhood of xy. We have:

lo(x) — @(xo)lly HQ_1P< X — X ) N
[[x — xollx - l[x = xollx / Ily
HIQ o gy - (1+ 12 =20l
< Q7 "Pllzexy) +1Q zzy) - lo(x, o(x))llz +

HIQ o gy - 12E =20y,

For x sufficiently near to xo, we can assume || Q! lzzy) - llo(x, @(x))]lz < 1/2. Soby
substituting the previous inequality and rearranging the terms we have

l(x) — ¢(xo)[ly -1
<2 P +1,
Hx_xOHX = HQ Hﬁ(X,Y)

the thesis follows. O

THEOREM 2.2 (Inverse Function’s Theorem). Let X, Y be Banach spaces. Let ) be an open subset of
X, x0 €Q, f: Q — Y beof class C'. If the differential of f at xg is an homeomorphism from X to Y, then
there exist a neighborhood U of xo and an unique map g : f(U) — U such that g(f(x)) = x for all

x € Uand f(g(y)) =y forally € f(U). Moreover, g is differentiable at f(xo) and

Dg(f(x0)) = (Df(x0))~".
PROOEF. Apply Dini’s Theorem to the map F(x,y) = f(x) —y. O

Implicit function theorem has the following consequence:

COROLLARY 2.3. Let X, Y be Banach spaces. Let Q) be an open subset of X, xo € Q, f : Q — Y bea C!
map. If the differential of Df (xg) : X — Y is an homeomorphism, then there exists an neighborhood U of
xo and a neighborhood V of yo = f(xo) such that for every y € V the equation y = f(x) admits a unique
solution x € U.

PROOF. We have x = ¢(y) where ¢ : V — U is the implicit function defined by F(x,y) = 0
with F(x,y) = f(x) — y by explicing the x-variable as a function of y-variable. O
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REMARK 2.4.
(1) The formula providing the differential of the implicit function can be formally derived
assuming the existence of a Frechét differentiable function ¢ implicitely defined by f in
a neighborhood of xy and writing the Taylor’s formula of the map x — f(x, ¢(x))
around xy, and then proceed as in the second part of the proof.

(2) The strategy of the first part of the proof can be interpreted as follows. We fix x
sufficiently near to xy and we try to solve the equation f(x,y) = 0 in y. We use Taylor’s
formula

f(xy) = f(x,y0) +9vf(x,y0) (v = yo) + w(ly — vol),
where w : [0, +00[— [0, +-00[ is a strictly increasing continuous function satisfying
w(0) = 0. On the other hands, continuity assumptions implies (by possibly changing
the modulus w)

f(xy) = f(x0,90) + 9y f (x0,y0) (¥ — yo) + w([x — x0| + |y — yol),
ie.
Q f(xy) =y —yo+Q 'w(|x —xo| + |y —wol),
and so (by possibly changing again the modulus w)

y=y—Q  fxy) =38(xy).
Thus for fixed x, g(x,y) can be viewed as an approximate solution to f(x,y) = 0. All the
other passages shows that indeed the fixed points y of g(x, -) are exactly the points for
which f(x,y) = 0, and that we can collect all these solutions for fixed x in a graph of a
continuous function of x.

We recall the following result in Functional Analysis.

THEOREM 2.5 (Open mapping theorem). Let X,Y be Banach spaces and A : X — Y linear and
continuous. The following are equivalent:
(1) A is surjective (i.e., A(X) = Y);
(2) A is open at every point, i.e., the image of open set is open;
(3) there exists a constant M > 0 such that for every y € Y there esists x € X withy = Ax and
llxl|x < Ml||y||y. In this case, we will define

reg A =inf{M > 0: forally €Y there exists x € X withy = Ax and ||x||x < M|y|ly}.
PROOF. Omitted. See Theorem IL5 p. 28 in [3]. O

REMARK 2.6. We can interpret reg A as follows. Given y € By(0,1) C Y, we consider the set
A~y of all x € X such that Ax = y. This set is nonempty by surjectivity, moreover it is closed by

continuity, and convex by linearity. Thenreg A := sup  inf |x||.
yeB(0,1) YEA ly

Next theorem will allow us to relax the assumption f € C! (we will follow the approach in [7]) in
the Inverse Function Theorem.

THEOREM 2.7 (Graves). Let X, Y be Banach spaces, xg € X,y € Y, e > 0, f € C°(Bx(x,¢€); Y) with
f(x0) = yo. Let A : X — Y be a linear, continuous and surjective operator, and let M > reg A.
Suppose that there exists 0 < 6 < 1/M such that

1f(x1) = f(x2) = A(x1 = x2)[ly < 6lx1 = x2lx,
forall x1,x € Bx(xo,¢€). Then the equation y = f(x) admits a solution x € B(x, €) for all
1
B h =— —J.
v € By (yo, ce) where c i
PROOF. without loss of generality, up to translation, we can assume xp = 0 and
yo = f(x9) = 0. Lety € By(yo, ce) where ¢, M, J, ¢ are as in the statement.

We define by induction a sequence as follows. Set xy = 0 and, by surjectivity, from open
mapping theorem there exists x; € X such that A(x;) =y and ||x1]|x < M|ly|ly <e.
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Assume to have defined x;,i = 1,...,n — 1, such that for every i = 1,...,n — 1 it holds

y—f(xic1) = A(x; — xi), [[x; — xiz1|x < M(EM) " Hly]ly.

In particular, we have x; € B(xg, €), since

i i
lxillx < ) Ml —xial| <M Z M) Hylly < MZ (M) ylly
j=1 j=1 j=1

M vy
- — <

Define x,, € X as follows. By surjectivity, there exists x,, such that
y— f(xn-1) = Alxn — xu—i),

since there exists ¢, such that A, =y — f(x,,_1), and then it is enough to set x, = &, + x,_1.
Moreover, we have also (recalling the inductive step)

18nllx = llxn = xnallx < Mlly = f(xa1)lly = M| A(xn-1) = Alxn—2) + f(xn—2) = f(xu1)lly
= M||f(xn—2) = f(xn—1) = Alxn-2 = xp1)ly < Md|lxp—2 — xpllx
< MaM(SM)" " lylly = M(5M)"[lylly,
thus we have as before x; € B(xp, €).

N Mlylly
Since ; lxi —xi1llx = 1_6M
converges to x € X and by passing to the limitin y — f(x,_1) = A(xy — x,_1), we have

y = f(x). 0

DEFINITION 2.8 (Strict differentiability). Let X, Y be Banach spaces, ¢ > 0, f € C°(Bx(xg,€);Y).
We say that f is strictly differentiable at x if there exists a linear continuous and surjective
operator A : X — Y such that

< 400, we have that {x, },en is a Cauchy sequence in X, thus

If (1) = Flx) = Alv =)y _ o

iﬁ;j;g lx1 — x2|x

A function satisfying the above relation is trivially differentiable at xp, and A = Df(xo) is its
differential at xg.

REMARK 2.9.
(1) Not every differentiable function is strictly differentiable: indeed, if in IR we consider
f(x) = x?sin(1/x) for x # 0 and £(0) = 0, we have that f is differentiable at 0 with
derivative equal to 0, however if we take the sequences x,, = [(n +1/2)7]~! and

f(xn) = fyn)

Yn = Xp4+1, we have that x,,, v, — 0, but has no limit for n — +o0.

|0 — Ynl

(2) Cl-regularity around x is a sufficient condition for strict differentiability at xo.
However it is not necessary. For example, consider the function f : [-1,1] — R whose
epigraph is

epif = ({(il/k,/%) : B>1/K, k€ N}YU{0} x [o,+oo[) .

Clearly, this map is not differentiable at 1/k for every k € IN, thus is not C! in any
neighborhood of the origin. Given x,y €] —1,1[ and ¢ > 0, there is § > 0 such that if
x,y € B(0,6) then

F) = F)l _
[x ~yl
o I . . . 1+ 2k
Indeed, it is easy to see that f is Lipschitz continuous with constant ] on

- 1+ 2k
B(0,1/k), thus for k sufficiently large kA0

< eand § = 1/k. This implies that f is
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FIGURE 1. Geometrical idea of the proof of Graves’ Theorem in IR: we consider
a linear operator A satisfying the assumptions, then we construct a sequence as
follows. The first point is the origin, then we look for the intersection of the
line y = Ax with y = ¥ to determine A;, and consider F; which is the point of
graph f with the same first component of A;. A; is defined as the intersection
of the line parallel to y = Ax and passing through F; with the line y = 7, and
F, is the point of graph f with the same first component of A;. We repeat the
construction: given A,_; and F,_1, we define A, as the intersection between the
line parallel to y = Ax and passing through F,,_1 and y = 7, then F,, will be the
point of graph f with the same first component of A,. The assumptions grant
that the sequence of the first components of A, converges to limit point ¥ which
will satisfy 7 = f(%).

strictly differentiable at 0 and Df(0) = 0 even if f is not C! in any neighborhood of the
origin.

(3) Graves’ Theorem requires a sort of uniform approximate differentiability of the map f.
Indeed, if we require that the condition in Graves’ Theorem must hold for every ¢ > 0
and 6 > 0 then we have that f must be strictly differentiable.

COROLLARY 2.10. Let X, Y be Banach spaces, xo € X and f : X — Y be strictly differentiable at x.
Suppose that Df(xg) : X — Y is surjective. Then there exist a neighborhood U of xo and a constant
¢ > 0 such that for all T > 0 with B(x, t) C U it holds

By(f(x),ct) C f(Bx(x, 1)), forall x € U.
In other words, f is locally uniformly open at every point in a neighborhood of xg.
PROOF. By strict differentiability, we can choose ¢ > 0 such that
1f(x1) = fx2) = A(x1 = x2)[ly < 6llx1 = x2lx,

is satisfied with 0 < 6 < 1/M and A = Df(xg) for all x1, x, € B(xp, €). According to Graves’
Theorem, y = f(x) admits a solution x € B(xg, ¢) forally € B(f(xg),ce), wherec =1/M — 4.
This means that

By (f(xo),ce) C f(Bx(xo,€)).
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Given ¥ € Bx(xo,¢) and T > 0 auch that Bx (%, T) C Bx(xo,¢), define f(x) = f(x + %) — f(%) for
all x € Bx(0, 7). We have that f is strictly differentiable at 0 and Df(0) is surjective. But then

By (f(x),c1) C f(Bx(%, 7)),
as desired. O

Now we can introduce a notion of tangent space to the zero-level set of amap f : X — Y. To have
a properly notion of tangent space to Z at xo with f(xp) = 0, we must have an affine space
containing xp and such that the distance between the points x of this affine space and Z if of
higher order with respect to ||x — xg].

THEOREM 2.11 (Lyusternik). Let X,Y be Banach spaces, () be an open subset of X, xg € () and
f : Q — Y be an F-differentiable function with f(xo) = 0. Assume that f' is continuous at xo and that
f'(x0) : X — Y is surjective with ker f'(xg) # {0}. Set

Z:={xeQ: f(x) =0},
then for all € > 0 there exists & > 0 such that B(xo, ) C Q) and
dist(x, Z) < ¢||x — xo||, forall x € (xo + ker f'(xq)) N B(xo,6).

PROOF. Since f’ is continuous at xy, we have that f is strictly differentiable at xo. Without
loss of generality, we may assume xo = 0 and f(xp) = 0. Let U be a neighborhood of xy = 0. For
every € > 0 there exists 6; > 0 such that B(x, ¢||x|[x) C U for all x € B(0, ;). Moreover, for all
x € ker f'(xg) N B(0, 1), recalling that xy = 0 and f(xg) = 0, we have

o e U fe0) - Fr)E x| 0 - @] @)
30 [l = ol X3 ] =50 x|
xeker f'(xg)
and so for all ¢ > 0 there exists 0 < d; < d; such that || f(x)]| < celx]|| for all
x € ker f'(xg) N B(0, ;). In particular, we can take 0 < § < 8, so small that the Corollary of
Graves’ Theorem applies with T = ¢||x||, so

By (f(x),ce||x||) C f(B(x,el|x||)), for every x € ker f'(xo) N B(0,),

thus, in particular, from

7

0 € By (f(x), cellx|[) < f(B(x,el[x]])),
we obtain the existence of ¥ € B(x, ¢[|x||) N Z hence
dist(x, Z) < || — x[| < el[x]| = ellx = xo,
as desired. O
REMARK 2.12. We can give a smooth, finite-dimensional version of the Lyusternik’s Theorem as

follows. Let X = R", () C X be open, Y = R, €, f:Q— R* be a C! function such that
f(x0) = 0. Assume that k < rank (Jac f(xg)) < nandset Z := {x € Q: f(x) = 0}. Then

dist(x,Z) 0

S lle = xoll
x—xp€kerJac f(xg)

LEMMA 2.13 (Orthogonality relations). Let X, Y be Banach spaces, A : X — Y be a linear, continuous
and surjective operator. Then A*(Y') = (ker A)*, where

(ker A)* :={n € X': (,x)x x = 0forall x € ker A}.
PROOEF. Letn € A*(Y'), in particular 7 = A*¢ for a suitable ¢ € Y'. Then
(mx)xx = (A", x)x x = (P, Ax)xr x =0, forall x € ker A,
thus 77 € (ker A)+, and so A*(Y’) C (ker A)* .

Conversely, let 7 € (ker A)L. Since (7, x) = 0 for all x € ker A, we must have kery 2 ker A.
Given y € Y, we prove that 7 is constant on A~!(y). Indeed, by surjectivity, there exists ¥ € X
such that A(%) =y and so A~!(y) = % + ker A. Since ker O ker A, we have that 17(x) = 7(%)
forallx € A~ (y).
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So it is well defined the map ¢ : Y — R, with ¢(y) = 5(x) forall x € A~1(y).
The map ¢ is linear: given y1,y2 € Y, « € R, by surjectivity there exist x1, x, € X withy; = Axy
and y, = Axp. Then yg + ay, = A(x1 + axy), thus
Yy +ay2) = n(x +axz) = () +an(x2) = 9y1) +ap(y2).
We prove now that ¢ is continuous. Let G be open in R. We have

v NG ={yeY:py)eGl={AxcY:xeX, nx) G} =A({x e X: 5(x) €G})
= A(p7'(G)).

By continuity, 77 !(G) is open in X, and by open mapping theorem, A is open, hence
¢$~1(G) = A(y71(G)) is open, and so ¥ is continuous. Finally, for every x € X we have
(Ax) = 57(x) hence 7 = A*p € A*(Y'),s0 A*(Y') D (ker A)*. O

The following theorem generalized the classical necessary condition for constrained minima
given by Lagrange multipliers rule to the infinite-dimensional case.

THEOREM 2.14 (Lagrange multipliers). Let X, Y be real Banach spaces, and let F : X — R,

® : X — Y be functions of class C'. Define Z = {x € X : ®(x) = 0}, fix xg € Z, and assume that
®'(x0) : X — Y has closed image in Y. If xq is a point of relative maximum or minimum for Fz, then
there exist (Ao, ) € R x Y, (Ao, @) # (0,0), such that in X' if holds

AoF' (x0) + (@ (x0))" ¢ = 0,
moreover, if ®'(xq) is surjective, we can choose Ay = —1.

PROOF. Set K = @' (x¢)X, i.e., the image of ®'(x(). By assumption, we have that K is closed.

(1) Assume K # Y, i.e., ®'(xp) is not surjective. In particular, there exists 7 € Y \ K, and by
Hahn-Banach we can separate {77} from Kby ¢ € Y/, ¢ # 0, thus ¢(i7) < ¢(y) for all
y € K. Since K is a vector space, we have ¢(7) < ¢(ky) = k¢(y) forally € K, k € R.
This implies ¢ x = 0. Thus we choose A9 = 0 and we obtain forall x € X

(AoF (x0), x) + ((®(x0))" 9, x) = (@, (P'(x0)x) = O,
as desired.
(2) Assume now K =Y, i.e., ®(xp) is surjective, and ker &' (xy) = {0}. Then

®'(xp) : X — Y is an isomorphism, and so (®'(xg))* : Y/ — X’ is isomorphism.
Choosing A\g = —1 and ¢ = [(®'(xp))*] 1F/(xp) yields the thesis in this case.

(3) Assume now K =Y, i.e., ®(xp) is surjective, but ker &' (xo) # {0}. We apply
Lyusternik’s Theorem to ®. Set Ty, = x + ker @' (xp), we have

i Z
i T =
veTxg v~ Yolix

Choose v = x + th, where t € R\ {0} and h € ker ®'(xp), ||h||x = 1. We have

i Z
lim dist (xg + th, Z) —0
t—0 |£]
For every t # 0 there exists x; € Z such that
l|x0 + th — x¢||x < dist (xq + th, Z) + 12,

thus, by setting r(t) = xo + th — x;, we have r(0) = 0 and

|7 (0)| x = lim r(t) —r(0) Shmww =0.
t—0 t x  t=0 |£]
Define now f(t) = F(x¢) = F(xo + th — r(t)). By assumption, f has a maximum or a

minimum at t = 0, thus f/(0) = 0, i.e., F/(x¢)h = 0. Since this holds for every
h € ker ®'(xg) N Bx(0,1), by linearity it holds for every I € ker ®'(x), i.e.,
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F'(x0) € (ker®'(x())*. By the orthogonality relations, we have that F/(xy) belongs to
(®'(x0))*Y’, thus we can choose A\g = —1 and ¢ € [(®'(xq))*] 1F'(x0) C Y.
g

We will introduce now a class of important infinite-dimensional operators. We recall that if V, W
are sets, then VW denotes the set of all mapsp: W — V.

DEFINITION 2.15 (Superposition operators). Let Q) be an open subset of R?, B a Borel subset of
R?, f : Q x B — R a Carathéodory function. Given u : QO — B, define a map ® : B — R® by
setting @ (u)(x) = f(x, u(x)). The map @ is called a superposition operator.

PROPOSITION 2.16 (First properties of superposition operators). Let Q) be an open subset of R“
such that £%(Q) < +oo, f : QO x RP — R be a Carathéodory function. Define ® : (RP)? — R by
setting ®(u)(x) = f(x,u(x)).

(1) Ifu: Q — RP is measurable, then ®(u) is measurable.

(2) If up — u in measure, then ®(u,) — P (u) in measure.

(3) If there exists p,q > 1 such that

|f(x,1)] < a(x) +blt""1,
where a € L1(Q; [0, +00[) and b > 0, then ® : LP(Q);R?) — L1((%;R) is continuous.

PROOF.
(1) We have that ®(u)(-) is the composition of the measurable maps x — (x,u(x)) and f,
thus it is measurable.
(2) By assumption, there is a set " C Q such that .24 (N) = 0 and for all x ¢ A the map
f(x,-) is continuous. We have to prove that for all fixed € > 0, we have

Tim 27 ({x € Q\N: @) (x) — () (x)] > e}) =0.
For any k € N\ {0} we define
O = {x € Q\N: f (x,Bu(x),1/K) ) < B(f(x,u(x)), )}
= {x € O\ |f(x0) ~ fxu(x))| < eforalla € B{u(x),1/k) }.

Using the continuity of f(x,-) forall x € O\ N, we have

Q= {x € Q\N : sup |f(x,a) — f(x,u(x))] < s},

heN

where {a, },ci\ is a countable set dense in B(u(x),1/k) (e.g. B(u(x),1/k) N QPF). Since
the map x — |f(x, ax) — f(x, u(x))], its pointwise supremum on k is also measurable,
and so () is measurable since it is sublevel of a measurable function.

We have () C Q1. Moreover, by continuity of f(x,-) on Q\ N, we have

U Qx = Q\ V. In particular, we have £?(Q \ () — 0T as k — +o0. Fix 7 > 0, then
k=1
there exists k > 0 such that for k > k we have £ (Q\ Q) < /2. Set

Ay = {x € Q: uy(x) € Blu(x), 1/7{)} and, since u,, converges to u in measure, there
exists 7 > 0 such that for all n > 7 we have Z4(Q\ A,) < /2.

If x € Ay N Qf we have u,(x) € B(u(x),1/k) and so | f(x, un(x)) — f(x,u(x))| <e¢,
on the other hand 2% (Q\ (A, N Q) = 29 (Q\ Ap) +29(Q\ Q) < 7.

Thus, for all # > 0 there exists 7i > 0 such that for all n > 7
L7 ({x € Q\N =+ [@(un) (x) = () ()] > }) < LUQ\ (AN Op)) <7,

which completes the proof.
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(3) Assume now that there exists p,q > 1,a € L7(Q; [0, +o0[), b > 0, such that
|f(x,t)| < a(x)+ b|t|P/9. Given u € LP(Q;RP) we have

|D(u)(x)| = |f (x,u(x))| < a(x) +blu(x)["9,
hence
1D () ||7 = [|la(:-)|[a + bllu()||F2" < +oo.
We have!

[0 (10) (x) = (1) ()7 < 207 (|0 (1) ()7 + (1) ()]
< 297 [ (@(x) + blun (x)|P/9)7 + (a(x) + blus(x) [P/9)1]
< 4171 (207 (x) + |y (x)|7 + 67 |u(x) ]

< 4771 [207(x) + 09| (1 (x) — 1(x)) + () P+ W) ]
< 491 {2a‘7(x) + b12P Huy (x) — u(x)|P + (2P + bq)|u(x)|p}

< ClaT(x) + |un(x) —u(x)|P + [u(x)|F],

where C > 0 is a suitable constant depending on p, q, b. Fix now &, > 0. Since ®(u,)

converges in measure to ®(u), there exists 71 > 0 such that set

Epi={x€Q: |[®(uy)(x) — ®(u)(x)| > 4},

we have #%(E,) < 1 for all n > 7i. Moreover, we can increase 7 in order to have also

[y — ul|p < eforall n > 72 We have

/Q |q>(un)(x) - Cb(u)(x)\q dx =

= [ 1®(un)(x) = () (x)[dx + /Q\En | D () (x) — P(u)(x) |7 dx

Ey

<C g [a9(x) + Jun(x) — u(x)|P + |u(x)|P] dx + en

< C/E (% (x) + |u(x)|?) dx + Cllutn — ul|?, + 1

< c/E [0 (x) + [u(x)|”] dx + (C +)e

Since a%(-) + |u(-)|P € L', and Z£*(E,) < 7, for 5 sufficiently small we have
[a9(x) + |u(x)|P] dx < ¢, thus for n sufficiently large we have

n

L 1900) () = @(u) ()11 dx < (2 + e,

hence we have convergence in L1.

65

O

We present now two results about the differentiability of the superposition operator. For further

details and the proofs, we refer the reader to [1].

PROPOSITION 2.17 (Differentiability of the superposition operator, case p > 2). Let () be open in

R, f: QO x R — R be a Carathéodory function. Suppose that there exists p > 2 such that:

1During all this computation, we use the following fact. Given v,w € R, w # 0, s > 1, we have

[o]

S
s 41
(o] + [w]) = (lw\ ) . By setting t = Il we have that

o e T () g

[w]

v —w|® (t+1)°
=2, < sup <
[co] [v]s + |w|? tefore0] 1

by taking derivatives.

[0 —wf*

[of* + [wl* —

<2571 as it can easily verified
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(1) the following estimate holds
f(x, D] < a(x) + bt

where a € LP/ (P~ (0); [0, +-00[) and b > 0;
(2) oif exists and it is a Carathéodory function;
(3) the following estimate holds

[0ef (x,1)] < alx) + BIEP2,
where o € LP/(P=2)(Q); [0, +c0[) and B > 0.
Then ® : LP(Q;R) — LP/(P=1)(Q); R) is F-differentiable at every point u of its domain and
(@' (u)v](x) = 9 f (x, u(x))o(x)
PROOF. Omitted, see [1]. O

PROPOSITION 2.18 (Differentiability of the superposition operator, case p = 2). Let () be open in
R, f : QO x R — R be a Carathéodory function. Assume that
(1) we have
[f(x )] < alx) +blt],

where a € L2(Q; [0, +o0]) and b > 0;
(2) O:f exists and it is a Carathéodory function;
(3) we have

|0tf(x, )] < M,
for a suitable M > 0.
Then ® : L2(Q; R) — L2(Q; R) is G-differentiable at every point u of its domain and
(@6 (1)v](x) = 9 f (x, u(x))o(x)-

In the same hypothesis, ® is F-differentiable at ug if and only if f(x,t) = h(x) + tk(x) where h € L*(Q)
and k € L®(Q) are suitable functions. In that case, ® is F-differentiable at every point of the domain.

PROOF. Omitted, see [1]. O

3. Lecture of 24 november 2015: Necessary conditions in Calculus of Variations.

We review now some results from functional Analysis, see [3] for further details.

DEFINITION 3.1 (Convolution). Let f € L'(RY), ¢ € CZ°(R?). Then the map f * ¢ : RY — R
defined by

frot) = [ FWel—y)dy,

is well-defined and is call the product of convolution between f and ¢. We have f x ¢ € C*. We
have the following properties for f € L' (R?), ¢, € C®(RY).

D) fro=9xf;
(2) 9i(f x ) = f*(0j9);
@) (wyp*xg)=(uxy,¢).

DEFINITION 3.2 (Mollifiers). A sequence of mollifiers on R? is a sequence of functions
{pn}nen € CX(RY; [0, 400[) such that supp p, C B(0,1/n) and / . pn(x)dx =1foralln € IN.
R

LEMMA 3.3 (Fundamental Lemma of Calculus of Variations). Let O C R be open, & € L}OC(Q).
Suppose that for all ¢ € CX(Q) it holds

dx = 0.
[ #(x)p(x) dx
Then « = 0 a.e. in Q).
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PROOF. Let () be an open bounded set such that O'CO. In particular, there exists 1 > 0
such that for n < 7 we have that O/ 4+ B(0,1/n) C Q. For all ¢ € C°(Q)’), we have that
pn * @ € CX(Q). We have for all n > 7 and all ¢ € C°(Q)') that

0= (,pn* @) = (axpu, @)
Assume by contradiction that there exists ¥ € () such that a * p, (¥) # 0. Without loss of
generality, we assume a * p, (%) > 0 (the other case can be trated similarly). Thus there exists
5 > Osuchthat U = B(%,8) C O, axpu(y) > 0forall y € U. If we take ¢(x) = px(x — X) with
k€N, k> 1/J, then supp ¢ C U, thus a * p,(x) > 0 on supp ¢. Moreover, there exists a set of
positive measure M C supp ¢ such that ¢ > 0 on M. Hence

(&% P, 9) =/Supp¢a*pn<x>qo(x>dxz | #xou()p(x)dx >0,

contradicting (a * pu, ¢) = 0. So &y * py = 0 on V. By letting n — o0, and recalling that & * o,
converges to a« in L' ()), and hence pointwise a.e., we have that « is a.e. equal to a constant in
(Y, thus by the arbitrariness of )/, the same holds on Q. O

COROLLARY 3.4. Let O C RY be open, a € LL (Q). Suppose that for all ¢ € C®(QY) and
jeA{1,...,d} it holds

/Q a(x)9;p(x) dx = 0.
Then there exists ¢ € R such that « = c a.e. in Q).

PROOF. Let () be an open bounded set such that O C Q. In particular, there exists 7 > 0
such that for n < 7 we have that O/ + B(0,1/n) C Q. For all ¢ € CZ((Q)'), we have that
pn* @ € CZ(Q) and so also 9; (o, * ) € C°(Q)). We have for n > 71 and every ¢ € CZ°(QY)

0= (&,9j(on * ¢)) = (a*pn, ;) = (9j(a*pu), ¢)
Hence, by the Fundamental Lemma of Calculus of Variations, we have that the smooth map
9;(a * pn) vanishes on (). By the arbitrariness of j and the smoothness of 9;(« * p,,), we have that

& * py is constant on Q)'. By letting n — oo, and recalling that a * p, converges to a in L!(Q)’), and
hence pointwise a.e., we have that « is a.e. equal to a constant in (Y, thus by the arbitrariness of
), the same holds on Q). O

COROLLARY 3.5 (Du Bois-Reymond Lemma). Let D = [a, b] be a compact interval in R,
w, B € LY(D;R?). Assume that for all ¢ € C*(D;R?) we have

[ #(x)0(x) + B)g' ()] dx = 0.
Then B € WYH(D;RY) e B/ = a.
PROOF. After integration by parts, we have for all ¢ € C*(D;R?)

[ e + by’ 0l = [ | [*a(s)ds] g/ dx-+ [ g ()
- /D {[S(x) —/axoc(s)ds} ¢ (x)dx.

B(x) — /:zx(s)ds =g,

Thus there exists ¢ € R such that

hence

B(x)=c+ /as a(s)ds.

REMARK 3.6.
(1) Since the functions of C®(R?), are dense for the uniform convergence in C?(Q2) and
Cl(Q)) and the functions, the above results is still true if we replace in the statement
C(Q) with C}(Q) or, just in the case of the Fundamental Lemma of Calculus of
Variations, even by C2(Q).
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(2) The vector-valued case, i.e. « € LllO (Q;R™) can be treated in the same way. For

example, let « € L] (Q). Suppose that for all ¢ € CZ°(Q) it holds

/th(x)(p(x) dx =0.

Since a(x) = (a1(x), ..., am(x)), and ¢(x) = (¢1(x),..., ¢m(x)), if we choose
je{l,...,m}and ¢; =0if i # jand ¢; € CZ(Q), we have that

0= (a,¢) = [ aj(x)g;(x)dx,

thus by the fundamental lemma in one dimension, we have a; = 0 a.e. By the
arbitrariness of j, we obtain « = 0 a.e.

For this part, we refer mainly to [8] and [9].

DEFINITION 3.7 (Basic problem of Calculus of Variations). Let I :=]a,b[C R be an interval of R,
L:1xR?xR?— R be a measurable function. We will denote the arguments of L by (¢, x,v),
wheret € [, x € RY, v € R?. Let X be a vector subspace of o0 (T; ]Rd), and assume that all the
maps of X are a.e. differentiable in I.

We consider the following problem (which will be called the basic problem of Calculus of
Variations):

inf J(x), J(x) = /IL(t,x(t),x(t)) dt.

x(-)eX

THEOREM 3.8 (Euler’s Equations). Consider the basic problem of C.0.V. with
X =CULRYNCA(LRY), L € C2 Ifx(-) € X is a solution, then satisfies Euler’s equations:

d oL . oL .

o x(1) (1) = 25 (6, x(0),%(0),

;t;’;(t,x(t),x(t)) _ ;’ij(t,x(t),x(t)), i=2.d—1,
s (0, 5(0) = 5 (63(0), ().

In general, we will call extremal every map solving Euler’s equation. Notice that an extremal is not
necessarily a maximum or a minimum of J(-).

PROOF. For every ¢ € CZ°(I;IRY) define g4(A) = J(x + Ag) with A € R. By assumption, g,
has a minimum at A = 0, moreover g, is differentiable at 0. Differentiating under the integral
(which is possible since all the data are smooth) yields

gh(A) = % /1 L(t, x(£) + A(E), %(£) + A (£)) dt

= /1 [VaL(t, x(8) +Aq(t), 2() + A () p(£) + VoL (£, x(t) + Ag(t), 2(£) + Ag(t)) ¢ (t)] dt,

where Vy = (9y,,...,0y,) and Vy = (g, ..., 0y, ). Evaluating at A = 0 and recalling that
8¢(0) = 0 we have forall ¢ € CZ(I)

0= /1 [VxL(t, x(t), x(t))@(t) + VoL(t, x(t), 2(t))@(t)] dt,
thus by Du Bois-Reymond Lemma

V.L(t x(t),%(t)) = %VUL(t,x(t),x(t))/

as desired. (]
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REMARK 3.9. Functions ¢(-) used in the above proof were classically called variations of the
solution x(-), this gave the names Calculus of Variations and, later, Variational Analysis.

The basic technique is to embed the infinite-dimensional problem in a one-dimensional problem
by considering smooth perturbations of x(-) parameterized by the one-dimensional parameter A
and such that for A = 0 we recover x(-). The perturbation x(-) — x(-) + A¢(+) for fixed

¢ € CX(I) is the simplest one. More generally, we can consider smooth perturbations

x(-) = x,(+), and the corresponding map A — L(t,x, (), x5 (f)).

This strategy has been implemented in the following theorem, that we present in a very
simplified version.

THEOREM 3.10 (Noether). Consider the basic problem of C.0.V. with X = CO(T; R?) N C?(I;RY),
L € C2. Assume that
(1) there exists a C* map S : R x R? — R¥ such that S(0,x) = x;

(2) L is invariant w.r.t. the action of S, i.e., L (t, S(A, x(t)), iS()L,x(t))) = L(t,x(¢),%(t)).

Then given a solution x(-) of the problem, there exists C € R such that forall t € I

VoL (t,x(0), 1(8)) - 1S, (0] = C.

PROOF. We will write x,(-) = S(A, x(+)). Straightforward computation yields:
LR OAO) = | VALt 00, 52(0) 502 (0) + Vol 320,50 (0) a0
= [ VLt 00 (0 520) 52 () + Vo xa(8) () g ()|

= VLL(x, (1), (1) - [;;xA(t)] b VoL(bxa (£), %1 (1)) - % mm(t)] ,

recalling that, by smoothness, the derivatives in A and in t can be switched.
Assume now that x(-) is a solution of Euler’s equations, and that the Lagrangian is invariant

with respect to the map A — x, (). This implies that % [L(t,x)(t),x)(t))] = 0, moreover

VoL(t,x(t),%(t)) = VoL(t, x5 (t), %, (t)) and VL(t, x(t), %(t)) = VxL(t, x,(t), %, (t)) by the
smoothness of L.

VoLt x(0),#(0)] - | 7052 (0)] + (VoL 6,20, 20 5 [ 5000

— % VoL(t, x(t),%(t)) - ;/\x)\(t)} .

Evaluating at A = 0, we obtain that there exists C € R such that forall t € I

VoL (b x(t),#(0)) A (D] = C.

If the Lagrangian is invariant w.r.t. translation in time, we have the following result.

PrROPOSITION 3.11 (Erdmann’s condition). Consider the basic problem of C.0.V. with
X =Y (I; le) N C2(I; ]Rd), L € C2. Assume that L is autonomous, namely 0;L = 0, i.e., L does not
depend explicitely on t. W Then if x(-) is an extremal, Erdmann’s condition holds:

L(x(t),x(t)) — %(t) - VoL(x(t),%(t)) = cost.
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PROOF. Deriving, we have

% [L(x(t),%(t)) — x(t) - VoL(x(t), %(t))] =
= VL (e(8), %(1)) - $(8) + VoL (e(8), %(8)) - ¥(8) — £(0)- VuL(x(t), 1(8)) — (1) - S TuLx(0), 1))
= wuﬂmamf%VMmem)wm:a
where we used Euler’s equation in the last step. 0

EXAMPLE 3.12 (Minimal surfaces). Consider the soap bubble problem. In IR®, with variables
denoted by (t,x,y), consider two rings in the planes t = a e t = b centeted on f-axis of radius A
and B, respectively. Assume that a soap bubble surface joins the two rings. According to
D’Alembert’s principle, the equilibrium position minimizes the potential energy, which, in our
case, amounts to minimize the area of the revolution surface joining the two rings. Assuming
that the surface is generated by the rotation of the graph of a smooth map t — x(t) around the
t-axis, we have to minimize

J(x) = 27r/bx(t) 1+ %2(t) dt.

a

The Lagrangian is L = L(x,v) = xV/1 4 92, thus by Erdmann’s condition,

x(D)y/1+ 2(t) - x(t)x1<2xx(;()t) e

Then
X()(1+2(1) ~ x(OL(0) _
1+ %2(t) ’
and so
x(t)

V1+%2(t)

Squaring and assuming C # 0 (otherwise we have the trivial solution x(¢) = 0, we have

x*(t)

o =1+,
thus
) x2(t
x(t) = C(Z) -1

This equation can be solved by separating the variables, and its solution is
x(t) = C cosh (HCK> ,

where K, C are constant to be choosen in order to match x(a) = A e x(b) = B (for some choiches
of A and B there may be no solutions). The curve x(-) is called catenary, and the surface of
revolution obtained in this way are called catenoids.

EXAMPLE 3.13 (Brachistocrone). Consider the vertical plane xz, where the x-axis is horizonthal
and the z-axis is vertical and oriented downwards. Consider the two points O = (0,0) and

P = (1,a) with a > 0. We look for a function z : [0,1] — R representing the trajectory along
which a point particle starting from O with null initial velocity will arrive in P minimizing the
travelling time (we assume there is no friction). In particular, it holds z(0) = 0 and z(1) = a.
Without loss of generality, by physical reasons, we may assume that z(+) is not decreasing (recall
that the axis z is pointing downwards). Assume moreover z € C>(]0,1[) N C°([0,1]).

The length of an infinitesimal arc of the trajectory is ds = /1 + z2(x) dx. Denoted by v(x) the
velocity of the point particle at (x,z(x)), the conservation of mechanical energy yields that
E = Imv?(x) — mgz(x) is costant along the motion. At x = 0 we have v = 0, since we have null
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initial velocity, and z(0) = 0, thus E = 0 for all 0 < x < 1. Thus v(x) = /2gz(x). The
infinitesimal time needed to travel along the infinitesimal arc is then

g B [1+2()
o\ 2gz(x) 7
and so the total time of travel is
1 .2
T(z) = L/ 1+2°(x) 5
V28 Jo z(x)

The integrand is the Lagrangian function

1 2
L(z,v) := —;v ,

which does not depend on ¢, hence we are in the autonomous case, so Erdmann’s condition
holds, yielding

1+22(0) . (%) _
O I Y eI ey e

Recalling that z(x) > 0, we have

1=Cy/z(x)(1+22(x)),

so C > 0 and we obtain the nonlinear ordinary differential equation
1 dz 2
o= z(x) <1+ <dx(x)> > .

dz _ /1-C%z(x)
dx Cyz(x)
This equation can be solved by separation of variables
/@ - [ax=x
V1—-C%z

We make the following substitutions: first w = /1 — C?z, C%2z =1—w? dz = —2wdw/C?,
second w = cos#, dw = —sinn dy.

CEl 2 [
x= [ 22 = = 1—w?dw
/\/1—C22 C?

Recalling that Z > 0, we have

:—é/\/l—wzdw:é/sinzqdiy:—ifwdnz—sm277+l+cost.

C? 2 2C2 C?

We have finally (6 = 27)

1 .
x(0) = ﬁ(ﬂ — sin6) + cost
1—w? 1
Z(9> ? = ﬁ(l — COSG)
Since we want x > 0 for > 0 and at 8 = 0 we want x = 0, we have
1 .
x(0) = @(9 —sin#),
1—w? 1
z(0) = o = ﬁ(l —cos®),

71
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i.e., a family of cycloids. The value of C is calculated by finding 0 such that x(6) = 1,z(0) = a,
and substituting this value of 6 in the equation for z(-). Clearly we have § # 0, since a4 # 0, and
x(6) > 0 forall & > 0. So we have z(0) /x(0) = a, and finally

e 1—cosf
"~ §—sind’
0 —sinf
C= 2

REMARK 3.14. The proof of Euler’s equation is based on the single-variabile map

g¢(A) := J(x + Ap) where ¢ is a fixed admissible variation, ¢ € C}(I), which must satisfy the
necessary condition ¢’(0) = 0 since x(-) is a minimum by assumption. However, since 0 is a
minimum for ¢, when g is twice differentiable, we must have also g”’(0) > 0 according to
Taylor’s formula, thus obtaining a second-order necessary condition.

PROPOSITION 3.15 (Legendre’s necessary condition). Comnsider the basic problem of C.0.V. with
X = CULRY) N CA(LRY) and L € C2. If x(-) is a solution, then P(t) := 02,L(t, x(t),%(t)) > 0 for
all t € [a,b)].

PROOF. Let x(-) be a solution. Consider an admissible variation ¢ € C!(RR?), set
x\(t) = x(t) + Ag(t), and let go(A) = J(x)). By Euler’s equations we have g;,(0) = 0. The
second derivative of g, is

8p(A) = %/l[axL(t/x/\(f)rxA(t))@(t)+BUL(t,x/\(t),xA(t))(p(t)] dt
= /1 (DL (6,20 (8), %0 (1) 9 (1) + oL (£, 32 (1), £ (1) @ (£) p () +
+ BoxL (£, 30 (£), 20 (1) (1) @(8) + L (1, 2 (1), 52 (1) (1) | at

= [ [ossL b0, 22 (0) (1) + duoL (1,310 (1), 21 ()29(Dg (1) + P()92(1)] at.

Since 2¢(t)p(x) = %[(pz(t)], integration by parts yields

£'(0) = [ Dk (0,(0), 2(0)g2(0) + BuoL (6 x(8), 3(0) (1) + POG() |
= [ Buekx(0), 5(0)g2(0) = ZALit (1), 20 + PO |

~ ) :<9xxL<ffx<f>/fc<t>> - jtaxvut,x(t»x(t))) P () + P(t)gbZ(t)] at

= [ |etg?®) + P()i?(1)| at

Since 0 is a minimum for g, we have ¢’/(0) > 0, so for every admissible variation

/[Q(t)ﬁoz(t)—kp(t)gbz(t)} it > 0.

I

Assume by contradiction that there exists T €]a, b[ such that P(7) < 0. By continuity, there exists
4 > 0 such that B(7,25) C I, P < 0 on B(7,20), and we set I; = B(7,J). Given ¢ > 0, take a map
he € Lip(I), he = 0in I\ I, |hL(t)| = x1,(t) fora.e t € I, and ||kl < &. An example of such map
can be constructed as follows: fix a set of N > 25/¢ points A; = {t1,...,tn} C Is such that

ax jinlﬁnN |t; — tj] < e and consider he(t) := dist(t, Ac U (I'\ I5)). By taking a sequence of
T
mollifiers p,, for n sufficiently large we have I; + B(0,1/n) C B(7,20). Then, for n sufficiently
large, we have

i=1

[ [e®e x pul () + PWe + puP ()] dt > 0.

I
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We have that k. * p, converges uniformly to e on I, thus for n sufficiently large
[ * pnlloo < 2||hel|eo = 2¢, and he * py — he = x1,1in L1. So for n sufficiently large

0< [ [QW)lhe *pu(t) + P() e pu(8)] at < 421 Qlls + [ P pu(B)]
By letting n — oo,
0<48Qlle + [ P(0),
and by arbitrariness of ¢ > 0
A P(t)dt >0,
contradicting the fact that P < 0 on I;. é O

4. Lecture of 27 november 2015: Conjugate points, sufficient conditions. (3 h)

REMARK 4.1. Under the assumptions of Legendre’s necessary condition, we have seen that if
x(+) is a solution, and set g(A) = J(x + A¢p) where ¢ € C?(]a, b|) is an admissible variation,

So(A) = J(x+ Ag),
P(t) := 02,L(t, x(t),%(t)),

QUE) = L0, (0) 1(1)) — L (L x(1), %(0)),

where ¢ € Cl(]a, b[) is any admissible variation, we obtain 85(0) = 0, which implies Euler’s
equations, and from the necessary condition gﬁp’(O) >0,i.e.,

850 = [ [Qg*() + P()g*(1)] at =,
we obtain the necessary condition P(t) > 0, t € [a,b].

Since Taylor’s formula for function of one variable yields the sufficient condition g’(0) = 0 and
£"(0) > 0 for the function g to have a minimum at 0, in order to have a second-order necessary
condition, a natural conjecture, firstly proposed by Legendre himself, would be: assume that x(-)
solves Euler’s equations and that P(t) > 0, then x(+) is a local minimum in the C'-norm for J(-).
However, Legendre’s conjecture is false, as shown by the following counterexample.

EXAMPLE 4.2 (Conjugate points). In the plane (t,x),let A = (0,0) and B = (T,0), T > 0, two
points. We want to travel from A to B minimizing the functional
T
JO) = [0 =)

Euler’s equation yields 2%(t) = —2x(t), which has to be coupled with boundery conditions
x(0) = x(T) = 0, so the trajectory ¥(t) = 0 is an extremal, moreover

DP(t) = duoL(t, %(t),x(t)) =2 >0,
thus may we conclude that %(¢) = 0 solves the problem?

Assume T < 1. Holder’s inequality yields for every 0 <t < T

tJ'c(s)ds < t|x(s)|2ds-tl/z < TJ'CZ(s)ds
0 0 0

Thus, squaring and integrating in [0, T]

/Osz(t)dtS/OT (/()sz(s)ds> dt:T/Osz(S)dSS/OTXZ(t)dt.

Recalling that T < 1, we have

J(x) = /OT P2 (t) dt — /OT () dt > 0,

and since J(¥) = 0, we have proved that X is a minimum.

1/2
x(t)] <
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Assume now T > 4. We ask if also in this case it holds J(x) > J(x) = 0. Consider ¥(t) = t(T — t).
this trajectory is smooth and satisfies boundary condition. Moreover

](f):/OT(fz(t)—J?Z(t))dtz/OT(Tth)thZ(Tft)Zdt T;f% 0,

thus X is no longer a minimum, hence the conjecture fails.

REMARK 4.3. The (wrong) proof that Legendre proposed for that conjecture was as follows.
Given any differentiable map w(+), we must have for all ¢ € C!(I)

[ & g ar=o

Thus, assuming that P(f) > 0, we have
g )+ / @O0 = [ Qg0 + PR + (g0 d
- / £ POF) + 0 (1)92(0) + 209 (w()] at
= [pe [ *Q( 200 + 225 o)+ (0|

If we choose w(-) to be a solution of

we obtain
50 = [70) [ 2 gty gt0)]
S e N R '
so the sufficient condition g¢;(0) > 0. This argument fails in supposing the global existence on
[a,D] of a solution of

w'(t+Q _ <w(t))2/

P(t) P(t)
while in general this solution enjoys only local existence of solution.
Assuming L € C3, the change of variable w(t) = — u(;)(lj)(t) for u # 0 gives the Jacobi’s equation

—%(P(t)u(t)) +Q(Hu(t) =0,

the solution of this equation can be used to reconstruct w(-) if u(-) does not vanish in I.

EXAMPLE 4.4. In the previous example, we have P(t) = —Q(t) = 2 for every trajecetory, thus
according to Legendre’s argument, we have to solve

W () = w22(t) +2,

which yields w(t) = 2tan(t + ¢), ¢ € R, hence there is no possible choice of ¢ to have such
solution defined on the whole of [0, T] for T > 7, while for 0 < T < 1 we can globally define
w(-) and, indeed, making this argument working. In this case, the Jacobi’s equation is simply
ii(t) = u(t), whose solution is u(t) = Asin(t + ¢), A, ¢ € R, and, again, for every choice of A, ¢,
we have that u(#) vanishes in I =]0, T for T > 7.

DEFINITION 4.5 (Conjugate points). Consider the basic problem of C.o0.V. with
X =CYLRY)NC?(LRY) and L € C3, I =]a,b[, and let x(-) € X be an extremal. Define

P(t) := 95, L(t, x(t), %(t)),
Q(t) = 9, L(t, x(t), %(1)) — %aazcv (£ x(t), %(t)),
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We say that a < ¢ < bis a conjugate point to a along x(-) if there exists a nonconstant solution of
Jacobi’s equation

7%(P(t)u(t)) +Q(Hu(t) =0,

satisfying u(a) = u(c) = 0 (thus 1(a) # 0, otherwise we have the constant solution u = 0). Since
u = 0 is solution, all nontrivial solution of the Jacobi’s equations differs only for a multiplicative
constant.

PROPOSITION 4.6 (Jacobi’s necessay condition on conjugate points). Comnsider the basic problem of
C.o.V. with X = CO(I;RY) N C?(I;R?) and L € C3, I =]a, b|, and let x(-) € X be an extremal. Then
there are no conjugate points to a in |a, b|.

PROOF. Omitted. O

THEOREM 4.7 (Jacobi's sufficient condition). Comnsider the basic problem of C.0.V. with
X =CULRY)NCHLRY) and L € C3, I =]a, b|, and let x(-) € X be an extremal. Define

P(t) := 92,L(t, x(t),%(t)),
Q(t) := 0%, L(t,x(t), %(t)) — %83250 L(t, x(t),x(t)),

Suppose that there are no conjugate points to a in |a, b] and P(t) > 0 for all t € [a, b]. Then (-) is a local
minimum.

PROOF. By assumption, given a solution of the Jacobi’s equation # which never vanishes in

|a, b], we can use the change of variables w(t) = — u(;)(lj)(t) , finding a global solution of
W(H+Q _ (w(t))?
P(t)  \P(t))

Then Legendre’s argument applies. Set g,(A) = J(x + Ag) for all ¢ € C}(I) we have
0 =0+ [ = [ Jewew + rwee + G wge] a
:/ Q) 2<t> FPOF) + (097 (1) + 20(0)p(1)a()]

= [ro) |2 g0 22080 + 20|

N /zp(t) {ZIZ(:) (t) + G'D(t)}2 dt > 0.
0

Up to now, we have searched solutions in X = C°([a, b]) N C?(]a, b[). However it is easy to give
very simple examples showing that this choice is too restrictive.

EXAMPLE 4.8. Consider the functional
1
Jx) = [ RO 12,
-1
that we want to minimize with boundary condition x(—1) = 0 e x(1) = 1. Trivially, J(x) > 0.

Let x(-) € C°([-1,1]) N CY(] — 1, 1[) satisfying the boundary conditions. Then

1=x(1) - x(~1) = /1 i(t) dt.

-1
If x(t) > 1/2or x(t) < 1/2 for every t €] —1,1] this clearly cannot happen. So there exist
t1,tr €] —1,1] where x(t;) > 1/2 and x(t;) < 1/2. Since x(-) € C°(] — 1,1[), according to the
theorem of intermediate values, there exists T €] — 1,1[ with %(7) = 1/2. In particular, there
exists an open interval V C] — 1,1[ such that T € V and %(t) € [1/4,3/4] for all t € V. This
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implies that x(+) is strictly increasing in V, so it can vanish in V in at most one point. So in V we
have x(t) # 0 a.e., and this implies J(x) > 0.

Define now the Lipschitz map x(t) = 0if t € [-1,0] and x(t) = tif t € [0,1]. This map fulfills the
boundary conditions and its derivative exists a.e. in | —1,1[ and satisfies x(t) = x91((t) for a.e.

t € [—1,1], so it make sense to compute J(-) on it (indeed, x(-) € X := Lip([—1,1])), obtaining
J(x(+)) = 0. We conclude that this curves is a (nonsmooth) minimizer of ] in X := Lip([—1,1]). It
is easy to see that in X there are infinite minimizers.

DEFINITION 4.9. Given a compact interval [2,b] C R we define

there exists a finite set T CJa, b such that x € C'(]a, b[\T) }

- 0 . -
PWS([a, b]) := {x €C[@ b)) and there exist finite lim x(t) forallt € T
T

Lip([a,b]) := { x € C°([a,b]) : sup x(s) = x(D)] < 4003,
t,s€(a,b] ‘S B tl
t#s

there exists v € L'(]a, b[) such that }

AC([a,b]) := {x € C%([a, b)) : x(t) = x(a) + /tv(s)ds foralls € [a, b]

The element of PWS([a, b]) are called piecewise-smooth functions, the elements of Lip(][a, b]) are
called Lipschitz continuous function, the elements of AC([a,b]) are called absolutely continuous
functions. Rademacher’s Theorem, states that a Lipschitz continuous function defined on a
finite-dimensional space is differentiable a.e., moreover we have Lip([a,b]) = W"*([a, b]). We
have also W1 ([a,b]) = AC([a, b]) D Lip([a, b]).

REMARK 4.10. On PWS([a, b]), Lip([a, b]), and AC([a, b]), it make sense to write the functional of
C.0.V,, since all of them are space of continuous and a.e. differentiable functions on [a, b].
Performing the same computation of the derivation of Euler’s equations, we obtain

0= /1 (VL L(E x(8), £(£))(£) + VoL (£ x(£), 2(t)) (1)) dt,
_ /1 [_ (/ﬂthL(s,x(s),x(s))ds> gb(t)—l—VUL(t,x(t),x(t))(p(t)] i,
= /I {VUL(t,x(t),x(t)) —/ﬂt VXL(s,x(s),x(s))ds} ¢(t)dt,

so by Du Bois-Raymond Lemma we have that there exists ¢ € R such that for a.e. t € [a, ] the
following Euler’s Equation in integral form holds

t
VoLt x(t), %(t)) = c+/a ViL(s, x(s), %(s)) ds.

When x(-) and L are sufficiently smooth, we can derive in ¢, obtaining the classical Euler’s
equation. The curves x(-) satisfying Euler’s Equation in integral form are sometimes called weak
extremals or extremals in the weak sense. Notice that being a solution of Euler’s Equation in
integral form is stronger than being an a.e. solution of the classical Euler’s Equation.

EXAMPLE 4.11. Consider the minimization of the functional
1
J(x) = [ 20,
0

subject to x(0) = 0, x(1) = 1. According to Jensen’s Inequality, by convexity of r — r

(/le(t) dt)z < /01 X2(t) dt,

and, since if x(-) € AC([0,1]) the right hand side is (x(1) — x(0))?, we have J(x) > 1 for every

x € AC([0,1]).

Classical Euler’s equation is #(t) = 0, and so the only extremal in C°([0,1]) N C2(]0, 1[) satisfying
the boundary conditions is x(t) = t, and we have that this is a minimum according to Jensen’s
inequality.

2 we have
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In PSW([0,1]), Euler’s equation in the weak sense is 2%(t) = ¢, for a suitable constant ¢, hence
we obtain again as unique solution x(f) = t. Instead, we notice that if we consider the a.e.
solutions of the classical Euler’s requation, i.e., the piecewise smooth functions satisfying

%(t) = 0 a.e. and respecting boundary condition, we obtain that any piecewise linear map
satisfying the boundary condition is an a.e. solution of the classical Euler’s equation. In

particular, for 0 < e < 1 if we take x¢(t) = %X[l—l/e,l] (t)(x — 1+ ¢), we have that ¥, = 0 a.e., the
boundary condition are fulfilled, and J(x;) = 1/¢ > 1.

THEOREM 4.12. Consider the basic problem of C.0.V. with L € C. If (x,v) + L(t,x,v) is convex, then
every weak extremal is a global minimum. If moreover it is strictly convex, then the minimum is unigue.

PROOF. By smoothness assumptions on L, epi L admits a supporting hyperplane at each
point, moreover

L<t/ X2, 02) - L(t/ X1, Ul) Z <Vx,vL(tr X1, Ul)/ (xz —X1,02 — 01)>'
Let ¥ be a weak extremal and y any other admissible curve. We define the generalized moment

p(t) = VoL(t, %(t), x(t)),

thus Euler’s equation in the weak form gives (in the weak sense)

ViL(s,x(s),%(s)) = p(t).
Thus

EXAMPLE 4.13. Consider the minimization of the functional

1
Iy = [0+ @0 -1t

subject to x(0) = 0, x(1) = 0. Trivially, for every x(-) € AC([0,1]) we have J(x) > 0. We prove
that infimum on Lip([a, b]) is actually 0. A minimizing sequence is given by the triangular wave

xat) = /0 ' sign(sin(2n7rs)) ds,

s0 %y = La.e. in [0,1], and |40 = 2, 50 J(x4) < . The infimum is not achieved, and notice
that the Lagrangian is not convex in .

EXAMPLE 4.14. Consider the minimization of the functional
1
I = [0 +g@)at
where g(v) = v+ X|_co ] (v)v?, and subject to x(0) = 0, x(1) = 1. We have for all x(-) € AC

109 2 [ [0+ o (G2 0)] dt 2 (1)~ x(0) =1,

and to have equality we must have x(t) = 0, which is not an admissible curve. Thus J(x) > 1 for
all x(-) admissible. A minimizing sequence in Lip([0, 1]) such that J(x,) — 1 can be obtained by
taking

1 1
xn(t) = Xjoa-1/m) () (x -1+ n) :
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REMARK 4.15. When we take X = AC([a, b]), unless to what happens in Lip([a, b]), PSW([a, ]),
C?(Ja,b]) N C°([a, b]), the functional can be no longer G-differentiable. Thus we may have no
longer validity of Euler’s equation not even in the weak form. This implies that if may occurs
that minima in AC cannot be detected by using Euler’s equation.

DEFINITION 4.16. We say that the functional

) = [ L0, 1(0) at,

to be minimized with boundary conditions x(a) = x, and x(b) = x;, exhibits Lavrent’ev
phenomenon if
inf  J(x)< inf J(x).

x€AC([a,b]) xeLip([a,b])
x(a)=xq x(a)=x,
x(b):xb X(h):Xb

REMARK 4.17. In particular, if Lavrent’ev phenomenon occurs, the usual numerical methods of
minimization with finite elements (that are functions in W) will not be able to approximate
the minimum. Lavrent'ev phenomenon may occurs even for polynomial Lagrangians, thus is not
related to Lagrangian’s smoothness.

EXAMPLE 4.18. The following smooth functional exhibit Lavrent’ev phenomenon (proved in
1926):
(1) Mania, (1934): L(t,x,v) = (t — x3)?0%, x(0) = 0, x(1) = 1;
(2) Ball-Nizel, (1984): L(t,x,v) = rv® + (x2 — t3)%0!4, for r > 0, coupled with x(0) = 0,
x(1) = k admits as minimizer in AC([0,1]) x(t) = kt*/3 ¢ Lip([a, b]). But then
9xL(t,x(t),%(t)) ¢ L', thus not even the weak form of Euler’s equation holds.

PROPOSITION 4.19 (C! smoothness of minimizers). Consider the basic problem of C.0.V. with
X = Lip. Assume that che L(t, x, -) is strictly convex and Cl then every minimizer X is cl.

PROOF. By assumption we have

£(t) = 2(a) + /atf(s)ds,

where ¥ € L*. We want to construct a map & € C° such that
't

Define
S:={t € [a,b] : %(t) exists and weak Euler’s equation holds}.
We have meas(S) = b — a, and so S is dense in [g, b]. Consider now the limit

lim %(t).
0
TES

If this limit exists at every ¢, we can define
o(t) = im %(t),

T—t

TES
noticing that #(t) = %(t) for every t € S and @ € C°(]a, b[), as desired.
By contradiction, let t €]a, b[ be such that the above limit does not exists. Since X is bounded in S
(by Lipschitz continuity of %(-)), there are sequences {t; };cy and {s; };en in S such that t; — t,
s; — t but

v1(t) := lim %(¢;) # lim %(s;) =: vs.
1—00 1—00

At t;,s; weak Euler’s equation holds, thus
ti _
duL(t;, x(t;),%(t;)) =C +/ 0xL(s, x(s),%(s)) ds,
a

dyL(s;,x(s;), %(s;)) = C+ /:i dxL(s, x(s), x(s)) ds,



4. LECTURE OF 27 NOVEMBER 2015: CONJUGATE POINTS, SUFFICIENT CONDITIONS. (3 H) 79
by passing to the limit for i — co and recalling the continuity of d,L, we have
duL(t, x(t),v1) = 9,L(t, x(t),v2). Since L(t, x, -) is strictly convex, we have
L(t,%(t),v1) — L(t, %(t),v2) > (duL(t, %(t),v2),v1 — v2) = (I L(t, %(t),v1),v1 — v2)
—[(9uL(t, %(t),v1),v2 — v1)] > —[L(t, %(t),v2) — L(t, %(t), v1)]
= L(t,x(t),v1) — L(t, %(t),v2),
which leads to a contradiction. O

THEOREM 4.20 (Hilbert-Weierstrass, 1890). Consider the basic problem of C.0.V. with X = Lip.
Assume that L € C?, and 32,1 > 0 globally. Then every minimizer is C>. if L € C', r > 2 then the
minimizer is C'.

PROOF. Applying the previous result, we have that ¥ € Cl. So

p(t) i= BoL(t, %(), £(£)) = C + /at 3:L(s, (s), %(s)) ds

is of class C!. Since 9,y L > 0 Dini’s Implicit Function Theorem applies, thus we obtain () as a
C! of the other variables, so ¥ € C2. The remaining part of the statement can be proved by
induction. 0

THEOREM 4.21 (Tonelli’s Existence Theorem). Consider the basic problem of C.0.V. with
X = AC([a, b)), L continuous, v — L(t, x,v) convex and such that there exista >0, B € R, p > 1
with L(t,x,v) > a|v|P + B. Then the minimization problem admits a solution %(-) € AC([a,b]).

PROOF. Let p’ be such that1/p +1/p’ = 1. To avoid triviality, we assume in}f( J(x) < +o0.
xe

Let {x;};cn be a minimizing sequence. Since for i sufficiently large

b b
0< [Cafx(Fdt+po—a) < [ Lt (0,1 (1) = J(x) <2 inf J(x) < +eo,

we have that {%;};cn is bounded in the reflexive space L? (here we use p > 1), thus we may
assume up to passing a subsequence that there exists & € L? such that x; — @ weakly in L. Since
xi(a) = x4, x;(b) = x foralli € N and

b
xi(t) = xa +/0 X(0,(5) %i(s) ds = xa + (X[o,1, %i) 1 1

by passing to the limit and using weak convergence, we have

t
lim x;(t) = x5 + <X[0,t]rv>Ln’,Lp =X, +/0 v(s)ds,

i—00
t
t) = xu—i—/ v(s)ds
0

and we have that X(-) € AC(][a, b]) and satisfies the boundary conditions.

thus x;(-) converges pointwise to

Givena < s <t < b, we have by Holder inequality

()~ x(6)1 < [ bt < [ @it do < Jt - 57 Ll
<2 inf J(x )) |t — 5|17
xeX

We obtain that the sequence {x;};cn is equibounded and equicontinuous (since it is equi-Holder
continuous), thus it converges uniformly to its pointwise limit %(-).

We prove now that %(-) is a solution. Given M > 0, define
={teab]: |x(t) < M},
and introduce the convex conjugate of L w.r.t. v, i.e. the Hamiltonian function defined by

H(t,x,p) = sup (p,v) — L(t, x,0).

veR"
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Since L was continuous, by Fenchel-Moreau we have also Recalling that the integrand is normal,
and that we have weak convergence

J, L w0, 2(@)de= [ sup [ 2(0))  H(t,x(1), p)]di

SM peR?

= sup [ [(p(t), £(8)) — H(t, x(t), p(t))] dt
pEL® + Sm

= sup lim [(p(t),)?i(t»dt—/ lim H(t, x;(t), p(t)) dt

PGLOO i—00 SM SM i—00

= sup lim [<p(t),3?i(t)>dt—limsup/s H(t, x;(t), p(t)) dt (Lemma di Fatou)

PELOO 1—00 SM i—y00

= sup liminf | [(p(t), %;(t)) — H(t, x;(t), p(t))] dt

peL® i—00 Sm

< liminf sup [ [(p(t), %i(t)) — H(t, x;(t), p(t))] dt

1—00 peLoo SM

= liminf [ L(t,x;(t), %:(8))] dt

1—00 SM
= liminf ] (x;) - /W\SM L(t, xi(8), %:(1)) dt

< liminfJ(x;) — Cmeas([a,b] \ Sum)

recalling that L(¢, x,v) > C. By letting M — +c0, we have

b
/ L(t, %(t), #(£)) dt < liminf ] (x;),
a
which concludes the proof. O

THEOREM 4.22 (Clarke - Vinter, 1985). Consider the basic problem of C.0.V. with X = AC([a, b]), L
continuous, v — L(t,x,v) convex and such that there exist x > 0, p € R, p > 1 with

L(t,x,v) > a|v|P + B. If L does not depend on t, then every solution is Lipschitz continuous (and so the
Lavrent’ev phenomenon does not occurr).

PROOF. Omitted. O

REMARK 4.23. We point out the following particular case of Lagrange’s multiplier theorem
applied to constrained optimization problem. Suppose that we want to minimize

b b
/ L(t,x(t), %(t)) dt subject to the integral constraint / f(t,x(t),%(t))dt = 0 Thenif x(-) isa

a

a
solution, it is an extremal w.r.t. the new Lagrangian AgL + A f where (Ag,A) # (0,0) and
Ag € {0,1}.

EXAMPLE 4.24 (Dido’s problem). The legend say that Dido was the first-born daugther of Belus,
king of Tyre, and married Acerbas (called also Sychaeus), who was a priest of Heracles, the
wealthier of all the Phoenicians. Dido’s brother, Pygmalion, blinded by greed, caught by
surprise Sychaeus in the temple, during a sacrifice, and murdered him in front of the altar. For
much time he kept hidden his murder, letting his sister to hope for the return of her husband.
But Sychaeus’ ghost, dead without an honorable burial, came in a Dido’s dream showing her the
altar where was murdered, and advicing her to flee away keeping with her the treasure that he
had hidden in a secret place. Dido left Tyre with many followers and start a long journey,
passing also by Cyprus and Malta.

The goddess Juno had promised them a new land where to establish a new city. Arrived on
Lybic coasts, Dido obtained from Berber king Iarbas the permit to settle down, occupying as
much land “as could be encompassed by an oxhide”; indeed the ancient name of Chartage was
“Byrsa”, that in greek means “oxhide” and in phoenician “fortified place”.
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Dido chose a peninsula, cut the oxhide in many fine strips, and in this way was able to
encompass a large portion of land that will be the first settlement of the powerful town of
Carthage. She encompassed an area of about 22 stadion (a stadion is about 185,27 m?).

Dido’s problem (or isoperimetric problem) ask the shape that Dido had to choose in order to
encompass the largest area possible, i.e., among all curves of fixed length with the extremals on a
line, which is the one encompassing the largest area?

Dido’s problem can be reformulated as problem of C.0.V. as follows: minimize

where x(a) = x(b) = 0, x(t) > 0 with the constraint

b
/'M1+xmdu:£>bfm

We consider the extremals of the Lagrangian

L(t,x,0) := —Agx + AV 1+ 02,

If £ > b — a then Ay # 0, thus we can choose Ay = 1. Euler’s equation gives

dpx}_q
dt [ 1+ 42 '

A%

thus

— =—t+C.
V1422
Squaring, we have
) c—t
¥ =
A2 —(c—t)?

so x(t) = \/A? — (c — t)2 + K and finally
(x —K)?+ (t—c)? = A2,
This implies that the solution is the half circle joining x(a) a x(b).

So among all the curves of the same length, the one encompassing the largest area is the circle.

THEOREM 4.25 (Karush-Kuhn-Tucker). Let f: R" = R, g;: R" = R, h; : R" — R be ct
functions,i=1,...,m,j=1,...,1. Let  be a local minimum for f constrained to

C:={xeR": gi(x) <0, hj(x) =0, perognii=1,...,m, j=1,...,1}.

Suppose that one of these condition holds (constraint qualification):

(1) f convex, g; convex, h; affine (Slater’s condition);
(2) for every subset of constraints, the rank of the matrix built by the active inequality constraints
and equality constraints has constant rank.

Define L : R" x R"*! — Ras

m !
L(x,A) = f(x) + ) Aigi(x) + 21 Ajhj(x),
j=

i=1
then there exists A € R™*! such that:
(1) VL(x,A) = 0 stationarity;
(2) x € C admissibility;
G A>0i=1,...,m
(4) /_\lg,(f) =0,i=1,...,m.

PROOF. Omitted. 0
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THEOREM 4.26 (Fritz John). Let X be a Banach space, f : X = R, g;: X = R, hj : X — R be ct
functions,i=1,...,m,j=1,...,1 Let X be a local minimum for f constrained to

C:={xeX:gix) <0, h]-(x) =0, perognii=1,...,m,j=1,...,1}.
Then there exist Ag € {0,1}, A € R"™*! con (Ao, A) # 0 such that if we define

m

I
L(x,A) = Aof(x) + X;Aigi(x) + X:l)\jhj(x)r
= j=

it holds
(1) VL(x,A) = 0 stationarity;
(2) x € C admissibility;
B A>0i=1,...,m
(4) 7\1'8:‘(3?) =0,i=1,...,m.

PROOF. Omitted.



CHAPTER 3

Third part

1. Lecture of 1 december 2015: Generalized gradients

REMARK 1.1. Up to now we considered cases where L is assumed to be smooth. But the
situation dramatically change if the differentiability of L is dropped. A basic example of this
situation can be given by adding to the problem a constraint such as x(t) € V for a.e. t € [a,b],
where V is given. In this case we can define a new Lagrangian L(t,x,v) = L(t,x,v) + Iy (v),
which does not fulfills the smoothness assumptions required up to now. This motivates the need
for other differential tools.

DEFINITION 1.2 (Bouligand tangent cone). Let X be a normed space, E C X be aset, x € E. We
define the Bouligand tangent cone to E at x by setting

Froy . ) L Yn — X
Tr (x) := {Aw €eX:A>0and Hynlnen CE yn — x, w = ngrfw Tyn =T }

The set TE (x) is a cone, i.e., given A > 0, w € TE(x) we have Aw € TE(x). However it is not
necessarily convex. Another characterization can be given as follows: w € TE (x) if and only if

lim inf =0.

dg(x + tw)
t—0 t
DEFINITION 1.3 (Polar cone). Given a (possibly nonconvex) cone C C X, the polar cone of C is
C°:={x" e X": (x*,x)x x <0Oforallx € C}.
We have always that C° is w*-closed and convex.
REMARK 1.4. If C is convex then [T£(x)]° = Nc¢(x).

We recall here some differentiability properties of convex functions.

PROPOSITION 1.5. Let X be a real normed space, f : X — R be a convex function which is
G-differenziable at xo. Then of (xo) = {f;(xo)}. Conversely, if f is convex and continuous at xo and
of (x0) = {@o}, then f is G-differentiable at xo and fj(xo) = @o.

PROOF. Omitted. 0

THEOREM 1.6 (Mazur’s differentiability theorem). Let X be a separable Banach space, D C X be a
nonempty open convex subset of X, and f : D — R be a convex continuous function. Then f is
G-differentiable on Dy C D, where Dy is dense in D and it is a countable union of open dense sets.

PROOF. Omitted. O

PROPOSITION 1.7. Let X be a normed real space, K C X be a nonempty conves set, and f : K — R be a
G-differentiable function. The following are equivalent:

(1) f is convex;

@ £(@) > F(x) + fL(x)(E — x) forall &, x € K;

(3) the G-differential f’G : K — X' is a monotone operator, i.e., for all u,v € K we have

[fe(u) = f(v)](u—v) > 0.
PROOEF. Omitted. 0
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One of the most important aims of any extension of differentiability theory beyond the smooth,
or the convex case, is to adapt to the nonsmooth case the usual necessary condition for the
minimizers F'(%) = 0 in something like 0 € 9F (). Moving from convex analysis, in the past 30
years a new field of Analysis, called Nonsmooth Analysis or Variational Analysis, has been
developed, in order to face optimization problems by mean of generalized differentiation tools.
In the case of nonsmooth and nonconvex problems, others generalized gradients have been
introduced, in many cases deeply related to the structure of the functional spaces in which the
problem is stated.

Curiosity: Alexander Davidovich Ioffe, one of the worldwide most important experts of
Nonsmooth Analysis, during a conference in Rome in 2009 said that up to his knowledge there
were about 60 non-equivalent definitions of “generalized gradients”. We will not dare to aim at
it, and modestly will give an insight only on the most application-oriented used definitions. The
recent treatise by Boris Mordukhovich, “Variational Analysis”, 2006, Springer-Verlag, in two
handy volumes, of 595 and 627 pages, respectively, is an attempt of systematic exposition of the
topic (references amounts to 1379 items between articles, books and various publications).

Following Ioffe’s approach, we start listing some “desiderable” properies that a “reasonable”
subdifferential d should enjoy. For simplicity we restrict ourselves to Banach spaces.

DEFINITION 1.8 (Subdifferential axioms). Let X, Y be Banach spaces, f, g : X —] — o0, +00],
h:Y —] — o0, +00] be functions. Then d must satisfy:
(S0) substantiality: of (x) = @D if x ¢ dom f.
(S1) localizability: of (x) = 0g(x) if f = g in a neighborhood of x.
(S3a) contiguity I: if f is convex, then

of(x) = {x* € X': f(x+h)— f(x) > (x*,h) forevery h € X}.

(S3b) contiguity 11: if f is C"! in a neighborhood of x then af (x) = {f'(x)}.
(S4) optimality: if x is a minimum for f, then 0 € of(x).
(Sba) calculability I:if g(x) = Ah(Ax +b) + (¢, x) + a, where A > 0, A : X — Y is linear and
surjective, b € Y, € X', a € R, then 9g(x) = AA*9h(Ax + b) + .
(S5b) calculability II: if p : X X Y —] — 00, +00] is a function such that p(x,y) = f(x) + h(y),
then op(x,y) C of (x) x oh(y).
(S6) boundedness: if f is Lipschitz continuous in a neighborhood of x with Lipschitz constant
K, then ||x*||xs < K for all x* € of (x).

These axioms are shared by a broad class of subdifferential of common use, and by all the
subdifferential that we subject of our study. Finer classifications can be done, but they will be not
matter of this course. We will introduce some subdifferential commonly used, by startinf from
some possible more or less natural generalization of the subdifferential (or equivalentely of the
normal cone) in the senso of convex analysis, and we will restrict ourselves to the Hilbert space
case.

REMARK 1.9. Let X be an Hilbert space, C # @ a closed convex set. Given x € X there exists a
unique y € C such that ||x — y|| = dc(x) := min{||x — z|| : z € C}. Such a y is the projection of x
on C and it will be denoted by 77 (x). This geometrical concept can be expressed also as follows:
the ball centered at

X — mc(x)
[l = 7rc ()|

e di raggio ry = dc(x) intersects C in a unique point y = ¢ (x), i.e. B(x,dc(x)) N C = {mc(x)}.
Givenv € X\ {0}, and r > 0 such that rv/||v|| = x — 7tc(x), we know that ”—ZH € Ne(me(x))

and so, by cone property, v € N¢ (¢ (x)). We can also say that the ball centered at
v . v\ . . . . .
y+dc (y + r|v|) of radius v = d¢ (y + r”U|> intersects C in the unique point y, i.e.

x = 7ic(x) +dc(x)

B <y+rv,r) NnC={y}.

il
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This implies that the distance of the points z € C from the center of the sphere is larger than r,

Z—<y+rv> o 2
o]

and equality holds only at y: >t = and so
2
rvH > 0, hence
o]

‘2
0
0< (z—y,z—y—2r0/o]]) = —zr<|v”,z—y> ST

that for r > 0 can be rewritten as

v
o]l

z—y— P2
o]l

1
(v.2=y) < oIl - llz— |2

forall z € C. We set 0, = 1/(2r). In the convex case, this construction holds for all

v . . .
X = THTH + 1y, so it holds for every r > 0, and so passing to the limit for ¥ — +oco we recover the

formula

(v,2—y) <0
for every z € C, v € N¢(y). In the nonconvex case, the above relation may no longer hold true
forallr > 0.

DEFINITION 1.10 (Proximal normal cone). Let X be an Hilbert space, K be a nonempty closed
set. Given y € K we say that v is a proximal normal to K at y if there exists 0y, > 0 such that

(0,2~ y) < oyolloll - [z =yl

for all z € C. The set of all proximal normal to K at ¥ will be called the proximal normal cone to
K at y and will be denoted by N¥(y). It is a convex cone in X’ = X. We notice that the points
y + rv such that r < 1/(20;,,) have unique projection on K and such projection is exactly y.

Exactly as in the convex case, we define:

DEFINITION 1.11 (Proximal subdifferential). Let X be an Hilbert space, f : X —] — co, +-o0] be a
Ls.c. function. We say that ¢, € X' = X is a proximal subdifferential of f at x and we will write

Cx €0pf(x)if (&x,—1) € Néjpif(x,f(x)), i.e. if there exist § > 0 and ¢ > 0 such that

B—f(x) = @Exy—x) =y —x[P+ I8~ F()I?),
forally € dom f N B(x,4), B > f(y). In particular

f) = () = @uy—x) —ollly =l + f () = F)IP),
forall y € dom f N B(x, 9).
PROPOSITION 1.12 (Localization of proximal subdifferential). Let X be an Hilbert space,

f: X =] — 0o, 400] isaLs.c. function. We have that &, € dpf(x) if there exist 6 > 0 and o > 0 such
that

Fy) = f(x) = @xy —x) —lly — x|,
forally € dom f N B(x,J).
PROOF. Omitted, see [6]. O

THEOREM 1.13 (Clarke’s Density Thereom). Let X be an Hilbert space, f : X —| — 00, +o0] be a
Ls.c. function. There exists a set D which is dense in dom f such that 9f (x) # @ for all x € D.

PROOF. Omitted, see [6]. O

THEOREM 1.14 (Fuzzy sum rule). Let X be an Hilbert space, f1, fo : X —] — 00, +00] be two Ls.c.
function, x € dom f; Ndom f, { € I(f + g)(x). Always we have of (x) + 9dg(x) C I(f + g)(x). If
we suppose that at least one of these conditions holds

(1) f1, f2 are weakly l.s.c.;

(2) f1is Lipschitz continuous in a neighborhood of x,
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then for every € > 0 there exist 6 > 0, x1,x2 € B(x,8) with |f(x;) — f(x)| <€, i = 1,2 satisfying
g € 9dpfi(x1) +9pfa(x2) +€B(0,1).
PROOEF. Omitted, see [6]. O
REMARK 1.15. Under suitable assumptions it is also possible to prove a fuzzy chain rule, see [6].

REMARK 1.16. The proximal normal cone is an intresting and significative geometrical object,
however:

(1) itis strictly related to the Hilbertian scalar product (inducing a norm which is smooth
in X\ {0});

(2) without extra assuptions, the normal cone at a point is convex, but it may be not closed.
Moreover limits of normals may fail to be normals (i.e. the proximal normal cone has
not closed graph);

3) f(x) = —|x[*/?is a function in f € C1(R) \ CV!(R), however dpf(0) = @;

(4) fuzzy sum and chain rules are not intuitive and difficult to use: in general we are not
allowed to pass to the limit as ¢ — 07 since df;(x) and 9f2(x) may be even empty!

To circumvent (some of) these difficulties, the following definition is quite natural.

DEFINITION 1.17 (Limiting normal cone). Let X be an Hilbert space, C be closed and nonempty,
x € C. The limiting (or Mordukhovich) normal cone to C at x is defined by

NE(x) = {¢: existx; = x, {; =, with{; € NE(x;)}.
In the same way as before, it is possible to define the limiting subgradient: we say that
&y € X' = X is a limiting subdifferential to f : X — R U {4o0} at x € dom f and we will write
reopf(x)if (&x,—1) € NeLpif(x,f(x)). Calculus rules have been developed for this
subdifferential, among which we recall the following: given a l.s.c. function f and a Lipschitz
function g it holds d(f + g)(x) C 9f(x) + 9g(x) (exact sum rule). Of course we have
NE(x) c NL(x). When C is convex all these cones reduces to the normal cone in the sense of
convex analysis.

Nowadays this cone is the most used in particular in a special class of Banach spaces called
(Asplund space), whose tractation is outside the matters of this course. To have a subdifferential
working in a general Banach space it is necessary to introduce another object. The definition of
this object is quite complicated, thus we will give a simplified definition in the Hilbert space case.

DEFINITION 1.18 (Clarke’s normal cone). Let X be an Hilbert space, C be closed and nonempty,
x € C. We define the Clarke’s normal cone N& (x) = @NE(x). Given f : X — RU {+oo} and
x € dom f, we say that {y € X' = X is a Clarke’s generalized gradient and write ¢, € df(x) if

(& —1) € NS, 1 (x, f ().

THEOREM 1.19 (Clarke’s generalized gradient in finite dimension). Let X = R”,
f:R" =] — oo, 40| be a locally Lipschitz continuous function in a neighborhood of x € R". Then

df(x) =co{v € R": y; € dom(Vf(x)), .11111 Vf(y;) = v}
1—-too
PROOF. Omitted, see [6] O

The advantages of Clarke’s cone are its closedness and convexity, moreover it is possible to give
simple and intuitive calculus rules. Moreover, for Lipschitz continuous functions it captures all
the relevant information. The main drawback is that it can be very large, becoming useless for
practical purpouses.

THEOREM 1.20 (Nonsmooth Euler’s equations). Let £ : R" — R be a locally Lipschitz continuous
function, L : R" x R" — R be a globally Lipschitz continuous function. Consider the problem of
minimizing the functional
b
() + [ Lex(e), 21,
a
on functions x € AC([a, b]) with x(a) = x,. Then if x(-) solves the problem, there exists p € AC([a,b])
satisfying for a.e t €]a, b[ (p(t), p(t)) € ocL(x(t), x(t)) and —p(b) € opL(x(b)).



2. LECTURE OF 4 DECEMBER 2014: INTRODUCTION TO CONTROL THEORY (3H) 87

PROOF. Omitted, see [5] or [6]. O

2. Lecture of 4 december 2014: Introduction to Control Theory (3h)

EXAMPLE 2.1. Assume to have a trolley cart of mass m = 1 which is free to slide along a straight
line truck without friction. Suppose that at the time fy = 0 the trolley is at the position xy with
speed vg.

If no external forces are acting on the system, the equation of the motion is ¥ = 0, and so

x(t) = xo + vpt. Suppose now that there is an external agent (controller), who is able to pull or
push the cart with a time-depending force u(t) € [—1,1]. The motion equation becomes ¥ = u,
which can be reduced to a firs-order system of differential equations by setting x; = x, X, = u.
If the force u changes, the time law x, () (and possibly also the trajectory) of the trolley will
change. We may consider the problem to minimize a certain functional of the trajectory

J = J(xu(+)) by acting on the control u.

EXAMPLE 2.2. Consider a fish population in a lake. A model describing the variation in time of
the number of fishes in the lake is given by logistic equation ¥ = x(a — x), where « is the
maximum number of fishes that can be supported by lake resources

Suppose to manage a fishery, and be intentioned to send a certain number of fishers (in number
u) to catch some fishes. The evolution of the systemcan be described to ¥ = x(a — x) — kxu,
where k > 0 is a parameter measuring the efficiency of fishers. We can have the goal to maximize
the amount of fish catched in a fixed period (in this case, maybe, to catch everything
immediately is not an optimal strategy) or similar goals.

EXAMPLE 2.3. Assume to have to park a car in a free parking space on the side of a road. We can
act on steer and on the spped, however the steer angle is bounded. Common experience tells us
that we can solve the problem by multiple manouvers. But can we mathematically prove that it is
always possible to park the car if the size of the park space is enough?

Control theory related problems arise in many fields of human activities: engineering,
economics, logistics and transportation, biology and even social sciences. A control system is a
system subjected to an external influence possibly varying in time. The input variables are
elaborated to produce the output variables, and the external agent acts in the elaboration
influencing output in order to achieve some goals (for example, maximization or minimization
of functionals depending on output variables).

We will treat the case in which the system is ruled by an ordinary differential equation

x(t) = f(t,x(t), u(t)) where u(t) € U is the variable controlled by the external agent. The aim
will be to find an optimal strategy (or optimal control) u* minimizing a certain cost related to the
trajectory of the ODE starting from a suitable initial condition.

In the real-world systems, frequently arise situation in which the measurements are affected by
errors (in time or on the position), thus a natural question is how much the optimal strategy is
robust, i.e. sensitive to errors.

We will recall some basic results from ODE theory.

THEOREM 2.4 (Parametric contraction lemma). Let X, T be complete metric spaces, 0 < a < 1,
¢ : T x X — X be continuous and such that

dx(¢(t,x1),¢(t, x2)) < adx(x1,x2),

forall x1,xy € X, t € T. Then for every t there exists a unique x = x(t) such that x(t) = ¢(t, x(t)). The
map t — x(t) is continuous, and

dx(,x()) < 7 dx (w9l ).
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PROOF. Fixt € T,and let xg € X. Set x; = ¢(t, x9) and x, = ¢(t,x,_1) for n > 1. We prove
that the sequence {x, },en is a Cauchy sequence in the complete space X: givenm,n € N, m > n

dx (Xn11,%n) = dx (@(t, Xn), §(t, xp-1)) < adx (xn, Xy-1) < a’dx(x1,%0)

m—1 m—1 00 n
' ' w
dx (xm, xn) < Y dx(xj1,%)) < Y addx(xq,x0) < dx(x1,%0) ) of = dx (x1,%0) 7
j=n j=n j=n

thus for n, m — oo we have dx (X, x4) — 0. So {x, }nen converges in X to an element denoted
by x = x(t). Recalling the continuity of ¢, we have

$(t,x(0)) = p(t, lim x,) = fim gt 3) = lim 3,41 = ().
Uniqueness: given x1 (), xa(t) satisfying x;(t) = ¢(t,x;(t)), i = 1,2 we have
dx (x1(t), x2(t)) = dx (¢(t, x1(1)), (£, x2(8))) < adx (x1(8), x2(t)),

and so dx(x1(t), x2(t)) = 0 because a > 0.

Choose now y = x( and construct the sequence x; = ¢(t, xo) and x, = ¢(t,x,_1) for n > 1. Then

n—1 0o
dx(xn,y) < ) ddx(x,x) < ) oJdx(y,¢(ty))
j=0 j=0

Since x, — x(t) as n — +00, by passing to the limit in the above equation we obtain the thesis.

We prove now that t — x(t) is continuous. Let t, — t. The above relation becomes

dx(y, x(\)) < T dx(y, (A y)).
Choose y = x(t) and A = t,. We have
dx (x(t), x(tn)) < 11adx(x(f),4>(me(f)))-

Since t, — t and ¢ is continuous, we have ¢(t,, x(t)) — ¢(t,x(t)) = x(t), and so for n — oo the
right hand side tends to 0, thus x(t,) — x(t). O

THEOREM 2.5 (Brouwer’s fixed point theorem). Let B C R" be homeomorphic to the unit ball in R",
and f : B — B continua. Then there exists X € B such that f (%) = *.

LEMMA 2.6 (Gronwall). Let I = [a,b] be an interval of R with a < b < +o0. Suppose that there are
givenu € C°(;R), a, B € LY(I;R), B(t) > 0 for a.e. t € I, satisfying

u(t) < a(t) + /tﬁ(s)u(s)ds, viel

t) <a(t)+ /atzx(s)ﬁ(s) exp ((/Stﬁ(r) dr) ds, tel

PROOF. Define the followinf absolutely continuous function

—exp( //3 dr>/[3 sel

Deriving, and recalling the sign of 8, we have fora.e.s € I

o(9) = (u(s) — [ puar) porexp (- [ pr)dr) <apis)enp (- [ pear).

Since v(a) = 0, integrating we obtain

</ exp( /as/%(r) dr) ds.

Then
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We notice that
t t
/ B(s)u(s)ds = exp (/ B(r) dr) v(t)
a a
t t s
< / a(s)B(s) exp / B(r)dr — / B(r)dr | ds,
a a a
= fst B(r)dr
and so the thesis follows recalling the inequality given in the assumptions. O

THEOREM 2.7 (Existence of solutions). Let Q) be an open subset of R x R", (ty, x0) € Q,
g : Q) — R" a function such that

(E1) forall x the map t — g(t,x) defined on Qy := {t € R: (t,x) € Q} is measurable;

(E2) for a.e. t the map x — g(t,x) defined on ) := {x € R" : (t,x) € Q} is continuous;

(E3) for every compact set K C Q) there exist Ck, Lx such that ||g(t,x)|| < Ckg,

18(t,x1) = 8(t, x2)|| < Lillxy — x2| forall (t,x), (£, x1), (£, x2) € K.

Then there exists € > 0 such that the Cauchy problem % = g(t,x), x(to) = xo admits a solution x(-)
defined for t € [to, to + €.
If moreover () = R x R" and there exist constants C, L such that ||g(t, x)|| < C,
llg(t,x1) — g(t, x2)|| < L||x —y|| forall (t,x), (t,x1), (£, x2) € R x R", then the above Cauchy
problems admits a unique solution x(-) defined on [ty, +oo[. Moreover, the solution depends countinously
on the initial data x.

PROOEF. Omitted. O

COROLLARY 2.8 (Uniqueness). Same assumptions of the previous result. If x1(-) and x,(-) are
solutions of the Cauchy problem x = g(t,x), x(ty) = x defined on [to, t1[ and [to, to[ respectively, then
X1 (t) = xz(t) forallt € [to, min{tl, i’z}].

PROOF. Omitted. 0

3. Lecture of 9 december 2015: Differential inclusions

DEFINITION 3.1 (Hausdorff distance). Let X be a Banach space, A, A’ C X be compact,
nonempty sets. The Hausdorff distance between A and A’ is given by

dy(A, A") = max{dist(x, A"), dist(x’, A) : x € A, x' € A}
= ing{p : ACB(A',p)e A CB(A,p)},
0>

where B(K, r) := {y € X : dist(y, K) < r}. The Hausdorff distance is a metric on the sets of
nonempty compact subsets of X.

DEFINITION 3.2 (Set-valued maps). Let X, Y be Banach spaces. A multifunction or set-valued
function F from X to Y is a map associating to every x € X aset F(x) C Y,i.e.amap F: X — 2Y.
We will write also F : X = Y. We say that F

(1) is compact valued if F(x) is compact and nonempty for every x;
(2) is bounded if there exists a bounded set B C Y such that F(x) C Bforall x € X;
(3) has closed graph if

graphF := {(x,y): x € X, y € F(x)}

isclosedin X x Y;

(4) is upper semicontinuous (u.s.c) at xg € X if for every open set A containing F(xy) there
exists a neighborhood Q of x such that F(x) C A forall x € ();

(5) is lower semicontinuous (1.s.c) at xg € X if for all yg € F(x() and for every neighborhood
M of y there exists a neighborhood Q of xg such that F(x) "M # @ forall x € ();
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(6) is continuous if it is both u.s.c. and l.s.c. If F is compact valued, this is equivalent to say
that

lim dys(F(y), F(x)) = 0,

i.e., F is continuous w.r.t. the topology induced by Hausdorff metric;
(7) is Lipschitz continuous if there exists K > 0 such that
F(x1) € F(x2) 4+ K||x; — x2]|Bx(0,1) for all x1,x, € X.

DEFINITION 3.3 (Measurability of set-valued maps). Let F : R" = R" be a set-valued map. We
say that F is measurable if for every C C R" closed, the set

{xeR": F(x)NC # @}
is measurable.

DEFINITION 3.4 (Selections). Let F : R™ = IR” be a set-valued map. A selection of F is a map
f :R™ — R" such that f(x) € F(x) forall x € X.

LEMMA 3.5. Let U be a compact subset of R™ and f : R" x U — IR" be a continuous function. Then
F :R" = R" defined by F(x) := {f(x,u) : u € U} is continuous.
PROOF. Let x € R" and € > 0 be fixed. For all u € U we notice that the map

(y,0) = f(y,0) = f(x,u)

is continuous and vanishes when (y,v) = (x, u). Thus there exists d,, > 0 such that

f,0) = fxu)] < 5

for every |y — x| < 6,. By continuity, there exists p,, > 0 such that |f(y,v) — f(x,u)| < ¢ for
ly — x| < 6y, |[v—u| < py. By compactness, U can be covered by finitely many balls B(u;, oy, ),
i=1,...,N.Setd =min{dy,,...,0uy} >0, wehavedy(F(y),F(x)) <eforall |y — x| < 4.
Hence F is continuous at x and, by arbitrariness of x, the proof is concluded. ]
THEOREM 3.6 (Carathéodory). Let A C R" be closed. Then for every x € co A there exist

n+1
Ai = Ai(x) € [0,1], and x; = x;(x) € A,i=1,..,n+ Lsuch that ) _ Ajx; = x.

i=1

PROOF. Omitted. O
THEOREM 3.7 (Ekeland’s Variational Principle). Let X be a complete metric space,
P : X —] — o0, +0c0| be a Ls.c. function not identially equal to +oo and bounded from below (i.e. there

exists m € R such that p(x) > m for every x € X). Then forall ¢ > 0, xg € X there exists Xoo € X such
that

(1) d(xg, %) < P P0),
(2) P(x00) < P(x) +ed(x, xc0) forall x € X\ {Xeo }-
PROOF. For every x € X we set
$(x) == {y € X: ¢(y) < p(x) —ed(x,y)}.
Since x € S(x) for every x € X, such sets are nonempty. They are also closed, indeed given a
sequence {yn }neNn C S(x) converging to y € X then we can pass to the liminf in

P(yn) < P(x) —ed(x,yn),
and, recalling that ¥ is l.s.c., we have
P(y) < Hminfp(y,) < p(x) - ed(x,y),
andsoy € S(x).

If there exists X« € X such that S(xe) = {¥e} the theorem is proved, since we have that for all
Y # Xeo itholds y ¢ S(x) and so

P(y) > P(xe0) — ed(xeo, y)-
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Let x( be arbitrary, we construct a sequence by recurrence. Given x;, we define x,,; as follows:
We choose x,,11 € S(x,,) such that

Plonn) < inf 9(x) + o
The existence of such an element comes from the definition of inf.
Letnow y € S(x,,+1). Recalling that x,, 11 € S(x,), we have
P(y) < P(xns1) —ed(xnp1,y) = P(xn) + P(xng1) — P(xn) — ed(xn11,y)
< P(xn) — e(d(xpy1,Xn) + d(xXn11,y)) < P(xn) — ed(xn,y),
and soy € S(xy,), thus S(x,) 2 S(x,41) for every n € IN.
Given y € S(xy), and recalling that y, x, € S(x,,_1), we have

$(y) < ¢(xn) —ed(y, xn)
1

1
< =1 < T
gl < dnf (o) + 5y <)+ g

hence 1
Py) < —ed(y,xn) + () + 55—
so for every y € S(x,) we have d(y, x,) < 1/¢-1/2""1, thus the diameter of S(x,) tends to zero.

This 1mp11es that {x, }nen is @ Cauchy sequence, thus it converges to an element x with

{xe} = ﬂ S(xy) (notice thatif y € ﬂ S(x,), then passing to the limit in d(y, x,,) < 1/2"+ we

n=1 n=1
have y = xw). O

REMARK 3.8. Ekeland’s Variational Principle’s statement in IR* may be also expressed as
follows: given a point A of the graph of ¢ and an angle 0 < & < 71/2, let C be the cone of vertex
A, half-wideness «, axis parallel to y axis, and having A as point of maximum for the
y-coordinate. Then there exists A’ € graph i N C such that the graph of i, without the point A’,
is entirely contained in the complementar of the cone C "'=C+ A’ — A, i.e., the translated of C
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along the vector 7 = A’ — A. For a comparison with the statement of the theorem, in this case we
have tana = 1/e.

DEFINITION 3.9. Let () be an open subset of R x IR”, U be a compact subset of R™,
f: Q x R™ — R" be continuous, The set of admissible controls is

U:={u:R — U: umeasurable}.

We say that an absolutely continuous function x : [a,b] — R" is an admissible trajectory for the
control system

x = f(t,x,u), u(-) e,
if {(t,x(t)) : t € [a,b]} C O and there exists u(-) € U such that x(t) = f(t,x(t),u(t)) for a.e.
t € [a,b].
To the control system we associate the differential inclusion x € F(t,x) where F : ) = R" is
defined by
F(t,x):={f(t,x,v): veU}.

We recall the following result.

THEOREM 3.10 (Lusin). Let h € L'([a, b]). Then
(1) for every e > O there exists a compact set K C [a,b] and ¢ € C°(K) such that h = g on K and
meas([a,b] \ K) < ¢
(2) there exists a sequence of pairwise disjoint compacts {Ky, } e such that ¢ € C°(Ky,) for all
h € N, g = h on every Ky, and

meas ([a,b]\ U Kh> =0.

helN

The link between admissible trajectories for the control system and trajectories of the differential
inclusions is clarified in the following result.

THEOREM 3.11 (Filippov’s Lemma on Implicit Functions). Let () be an open subset of R x R", U be
a compact subset of R™, f : Q) x R™ — R" be continuous. A curve x € AC([a, b]; R") satisfies

%(t) € F(t,x(t)) fora.e. t € [a,b] if and only if there exists u(-) € U such that x(t) = f(t,x(t), u(t))
forae. t € [a,b].

PROOE. Clearly, if there exists u(-) € U such that x(t) = f(t,x(t),u(t)) for a.e. t € [a,b], then
%(t) = F(t,x(t)) for a.e. t € [a,b]. We prove the converse implication. Let @ € U be fixed and
define the set-valued map

{wel: x(t) = f(t,x(t),w)}, ifx(t) € F(t,x),
W(t) := K
{w}, otherwise.
Notice that the sets W(t) are compact. Indeed, in the case X ¢ F(t, x) this is trivial, otherwise

since W(t) = [x(t) — f(t,x(t),-)]~*(0) with f continuous, they are closed. Moreover, W(t) C U
so they are also bounded, thus compact. Define the following map ¢ : L!([a, b]; R™) — R:

¥(o) = /abd(v(t),W(t))dt.

We prove that this is a well-posed definition, i.e., t — d(v(t), W(t)) is an element of

LY([a, b];R™). After having proved this, it will be enough to prove that there exists

Voo € L1([a,b]; R™) with )(vs) = 0. Indeed, in this case v (t) € W(t) for a.e. t € [a,b], thus
proving the theorem.

Step 1: There exists a sequence of compact sets { Ky } neN with Ky N K; = @ and

meas ([a, v\ U Km> = 0 such that x|, v|x,, € CO(Ky,) for every m € IN.
melN
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Proof of Step 1: Since x(+) € AC([a, b]), we have that  and v belong to L!([a, b]). According to
Lusin’s Theorem, there exist { I, } ,cy and {Ji }renw sequence of compact sets contained in [a, b]
such that ¥ € C°(I;,), v € C°(J,) and

meas ([a, v\ U Ih> = meas ([a,b]\ U Ik) =0.

helN keN
In particular, there exist Ny, N; C [a, b] with meas(N;) = meas(N;) = 0 such that
[a,b]:N1UUIh:N2UU]k.
helN keN

By taking the intersection, we have

[a,b] = <N1u U Ih> N (Nzu U ]k>

helN kelN

— <Nlm U ]k>u<N2ﬁ U Ih>u(NmN2)u(U I,n Ik>

kelN heN helN kelN
CNUNU | Iy
hkeN
CNUNU U I,N .
hkelN
LNk #2
For every m = (h,k) € IN? set K, = I;, N J. If Ky, is nonempty, then it is compact and
X|Kypr U)Ky € CO(Ky) for every m € IN. After having expunged by the list all the indexes m for
which K;; = @, Step 1 is proved. o

Step 2: There exists L > 0 such that d(v(t), W(t)) < ||v(t)|| + L for every t € K;,, m € IN.

Proof of Step 2: If t € K,;, then v(t) is continuous. Since W(t) C U and U is compact, there exists
L > 0 such that

sup{||lw|| :w € W(t)} <sup{||w| :we U} <L,

and so

d(v(t), W(t)) = inf t) — < inf t)—0 0— = t inf = t L.
(0(0), WD) = inf flo(t) ] < _int [fo(t) =0l +0—wl = o(e)| +inf 1wl = o(e)| +
This ends the proof of Step 2. o

Step 3: The map t — d(v(t), W(t)) is measurable.

Proof of Step 3: To prove the measurability of t — d(v(t), W(t)), it is enough to prove that its
restriction to every set K, is measurable. To this aim, we will prove that d(v(-), W(+)) is Ls.c. on
K. Let to € Ky and {#, },en be a sequence in Ky, such that

liminf d(o(-), W(-)) = lim d(o(tn), W(t).
teKn
For every n, let w, € W(t,) be such that d(v(t,), W(t,)) = ||v(tn) — wy||. Such an element exists
since the map h(p) := ||v(t,) — p|| is continuous (notice that here v(t,) is fixed) and W(t,) is
compact. The sequence {wy, },eN is contained in the compact set U, thus, up to possibly taking a
subsequence, we have w, — We. Moreover, for every n € IN we have x(t,) = f(tn, x(tn), wn).
Recalling that the map %(-) is continuous in Ky, by passing to the limit # — co we have
%(teo) = f(too, ¥(teo), Weo), and s0 wWeo € W(too). But then
liminfd(v(t), W(t)) = lim d(o(tn), W(tn)) = [[0(teo) = weo| = d(v(te), W(teo)),
—teo n—oo
teKm

which proves Ls.c. at t. o

Step 4: The map ¢ : L'([a, b]) — R satisfies Ekeland’s Variational Principle’s assumptions.
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Proof of Step 4: Clearly 1 is bounded from below, moreover

b b
9(0) = [ (), W(E)dt < [ (lo(®)] +L)dt < Jolls +L(b — a) < +oo.
a a
We prove that ¢ is 1.s.c. Let {v, } ;e an arbitrary sequence in L! with v, — v. By Fatou’s
Lemma, since d(vy,(-), W(-)) is measurable and nonnegative, we have

b b
/a h}?l}glfd(vn(t),W(t)) dt < hrllgg}f d(va(t), W(t))dt = llrllgglfll)(l)n).

a
Fixe > 0. For a.e. t € [a,b] we have v, (t) — v(t) and there exists w, € W(t) such that
d(v,(t), W(t)) > ||va(t) — wyl|| — e. By compactness, up to possibly taking a subsequence,
Wy — Weo € W(t), and so

liminfd(v,(t), W(t)) > |[o(t) — wel|| — & > d(v(t), W(t)) —&.

n—oo

By the arbitrariness of ¢ > 0 we have liminf,, . d(v, (), W(t)) > d(v(t), W(t)), and so

b b
¥(o) = / d(o(t), W(t)) dt < / liminfd (v, (), W(t)) dt < liminf (vy,).
a a n—oo n—o0
Since this holds true for every subsequence, we have
$(0) < liminfp(0,),
andso P els.c. ©

Step 5: There exists vo € L!([a,b]; R™) with (veo) = 0, and this concludes the proof of the
theorem.

According to Ekeland’s Variational Principle, there exists v € L! such that
(Vo) < P(v) + 3|0 — voo| 1 for all v € L. Assume by contradiction that 1(vs) > 0. Then
there exists m such that

/ d(veo(t), W(t))dt > 0.

Let {g;}jen be a sequence dense in R™, and set
Aji={t € Ky: d(veo(t),q;) <2/3-d(ves(t), W(t)) ed(q;, W(t)) <2/3-d(veo(t), W(t))}.

Clearly, | J Aj = {t € Ky : vo(t) ¢ W(t)}. The sets A; are measurable, since

jEN
d(veo(t),q;) = |veo(t) — gj| and d(veo (t), W(t)) are measurable functions (see Step 3). We will
construct now a map v(t) contradicting Ekeland’s Variational Principle. Since §(vs) > 0, there
is at least a j € IN with Aj; of strictly positive measure. Set v(t) = veo(t) if t ¢ A;and v(t) = g if
t € A;. We have that v(t) is measurable, we will prove that this contradicts Ekeland’s Variational
Principle. We have

Jo—ewlis = [, la=va(®ldt < 3 [, dlon ), W)

Thus we obtain

P(0) — P(ve0) = /ﬂb (d(o(t), W(t)) —d(ve(t), W(t))) dt = /A? (d(g7, W(t)) —d(ve(t), W(t))) dt
< A_%d(voo,w(t))dt—/A_d(voo(t),W(t))dt
1

1
=2 [ dveo(t), W(t))dt < —=||v — Veo|;1.
3 [, 20, W) dt < 5o —oaly

However, according to Ekeland’s Variational Principle, we have
¥(0) — P(ve0) > =3[0 — Vo1 O
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4. Lecture of 11 december 2015: Closure of the set of admissible trajectories (3h)

REMARK 4.1. We are going to treat now the problem of the closure of the set of admissible
trajectories, i.e., providing sufficient conditions ensuring that the uniform limit of a sequence of
admissible trajectories will be an admissible trajectory. In general this property fails.

EXAMPLE 4.2. Consider x(t) = u(t) for a.e. t € [0,1] where u(t) € {—1,1}. Itis easy to construct
a sequence of admissible trajectories {x, },en such that ||x,| — 0, however x«(t) = 0is not an
admissible trajectory.

THEOREM 4.3 (Closedness of the set of admissible trajectories). Assume that the set-valued map
F:[a,b] x R" = R" associated to the system is continuous with compact and convex values. Then the
set of trajectories x(-) € AC([a,b];R") such that x(t) € F(t,x(t)) for a.e. t € [a,b] is closed in

x € C%([a, b]; R™).

PROOEF. Let {x,(-)}nen C AC([a,b];R") be a sequence of AC curves satisfying
%n(t) € F(t,x,(t)) for a.e. t € [a,b] and uniformly convergent to x(-) € C°([a, b];R"). In
particular, for n sufficiently large there exists a compact set K C [a,b] x R" such that
(t,x4(t)) € K per ogni t € [a,b]. Thus we have equiboundedness of the trajectories. By
continuity of F, this implies boundedness of F on [a,b] x K, so equi-Lipschitz continuity of x,(-).
This implies that x(-) is Lipschitz continuous, and so a.e. differentiable in [a, b].

To end the proof, is thus enough to show that for all T €]a, b[, where %(7) exists, we have

%(t) € F(7,x(7)). By contradiction, let T €]a, b| be such that this property is not true. We strictly
separate the compact and convex sets F(7,x(7)) and {%(7)} by an affine hyperplane, thus there
existse > 0, p € R”, ||p|| = 1 such that

(py) < (p,x)—4e,

forall y € F(7,x(7)). By continuity of F, there exists § > 0 such that if | — 7| < § and
|x" — x(T)| < & then

(py) < (p,X) =3¢,
forally € F(t,x').

Recalling that the map t — x(t) is differentiable at T, we can choose T’ € [T, T + [ such that

x(t) —x(r) (1)

; <e
T -7
Moreover, by uniform convergence, we can choose n sufficiently large such that

(') —x(7) _ xa(T) — xa(7)

e S <
This implies
(p, 2O =50y 2y fp, =5 iy
> (p,2(0) — [ =00y
B e e =
> (p,3(n)) - [T =20 X0 2x@) |30 MO g
> (p,2(x) - 2

However, recalling that (p,y) < (p, %) — 3eforall y € F(t,x’), we have also

!

T = S [ < it -3

-1

and so (p, %(7)) —2e < (p, (7)) — 3¢, which is a contradiction. O
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REMARK 4.4. Notice that the statement requires the convexity of F (t, x), not the convexity of U.
These two facts in general are not equivalent.

THEOREM 4.5 (Continuity of Input-Output Map). Let U be a compact subset of R™,
f:RxR" x U — R" be a continuous function such that x — f(t,x,u) is of class C1. Assume also
that there exist C,L > O such that |f(t,x,u)| < Cand ||0xf(t, x,u)|| < L for all
(t,x,u) € R x R" x U. Fix ¥ € R". The input-output map is the function associating to every control
u(-) € LY([0, T]; U) the unique solution x,(-) € C°([0, T|;R"™) of x(t) = f(t, x(t), u(t)) with
x(0) = x. In the above assumptions, the input-output map is continuous.

PROOF. In the above assumption we have existence and uniqueness for the solution of the
Cauchy problem for every T > 0. Set A = L'([0, T]; U) and X = C°([0, T];IR"), define
®: A x X — X by setting

®(u,w) () = £+ '/Otf(s,w(s),u(s)) ds.

The theorem is proved if we show that ® satisfies the assumptions of the parametric contraction
lemma, in this case x,(+) is the fixed point of w — ®(u, w). We endow X with the equivalent
norn ||w||x = max{e~2M|w(t)|: t € [0, T]}.

We prove that u — ®(u, w) is continuous. Let {uy } e be a sequence in A converging to u € A.
We have

| D (ug, w) () — (u,w)(¢)] < /OT [f(s,w(s), ui(s)) = f(t,w(s), u(s))| ds.

From every subsequence {u } of {u}ren is possible to extract a subsequence {uy } a.e.
pointwise converging to 1, and by the boundedness of f is possible to use the Dominated
Convergence Theorem

Jim [, 0)(8) @) (0] < [ Tim |f(s,w0(5) g (5)) — £(5,(6),u(s)] dt =0,

By arbitrariness of {uy }, we conclude that

lim || ®(ug, w) — (1, w)|lo = 0.
k—o0

Suppose now that w,w’ € X and set ||w — w’||x = &. Then |w(s) — w'(s)| < Je*L* for every
0 < s < T. We thus have

e 2H @ (u,w) (1) — D(u,w') (1)] < e /Ot |f(s,w(s), u(s)) — f(s,w'(s),u(s))| ds

t t P
< 672“/ Llw(s) —w'(s)| ds < 672“/ Lée*ls ds < 5
0 0

1
So ||®(u,w) — P(u,w')||x < 3 |w — w'||x. The thesis follows by parametric contraction
lemma. O

REMARK 4.6. In the above assumptions, the input-output map is continuous, but not Lipschitz
continuous. It becomes Lipschitz contininuous if we endow A with the metric of the convergence
in measure, i.e. for every uy, uy € A we define d(uq,up) = meas{t € [0, T| : uy(t) # uz(t)}.

We recall now some results about ordinary differential equations.
DEFINITION 4.7 (Adjoint system). Consider the system
{xm = A(Hx (1),
x(0) = x,
where A(t) € Matyx,(R). The adjoint system is p(t) = —p(t)A(t). We will call fundamental matrix
associated to the system the matrix M(t,s) € Maty,x,(R) defined as the solution of
{atM(t,s) = A(HM(t,s),
M(s, s) = IdR»,
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PROPOSITION 4.8. In the previous notation, we have:
(1) Suppose ||A(t)|| < L. then the solutions of the system satisfy |x(t)| < e(=10)|xg|.
(2) We have M(t,s)M(s, t) = IdRn.
(3) Given the system

x(t) =xq,

{x(t) = A(H)x(t) + h(t),

its solution is
x(t) = M(t, T)x¢ +/

(@) If A(t) = Ais constant, then M(t,s) = eA(t=
(5) The i-th column of M(t, T) solves

(6) Themap A(-) — M(+,T) is continuous from L' ([a, b]; Mat,«n(R)) to C°([a, b]; Maty xn (R)).
PROOF. Omitted. O

We will study now further regularity properties of the input-output map. In particular, we will
study the differentiability w.r.t. the initial point and w.r.t. the controls. In the first case, we will

set g(t,x) == f(t, x,u(t)).

THEOREM 4.9 (Differentiability w.r.t. initial state). Consider the equation %(t) = g(t, x(t)) with
x(tg) = xo and denote with x(t, xq) its solution. Let ¢ € CO(R x R™) be of class C! in the x-variable
and such that |g| < M, [0xg| < L. Let vy € R" be fixed, with |vg| = 1. Let vy, (t) be the solution of
0(t) = 9xg(t, x(t,x0))v(t) with initial condition v(ty) = vy. Then x(t, xo) is differentiable at xo and the
directional derivatives satisfy

. x(t,xo+€0) — x(t,x0)
Ox (1) = ll—% €

with uniform convergence in [to, T).

PROOF. For sufficiently small ¢ > 0, define x¢(t,vy) = x(t, xg + €vp) and
Ve(t,v0) = x(t,x0) + €vy, (t). To prove the theorem, it is enough to show that

lim xe(t,vp) ;ye(t/UO) -0

€

Notice that x¢(-,vg) is a fix point of w — ®(xg + €vy, w) defined by
t
D(xg + €vp, w) = x9 + €vg + /t g(s,w(s))ds,
0

which is a contraction (¢ = 1/2) w.r.t. to the previously defined norm || - ||x. According to
parametric contraction lemma

1 2
ngs —Vellx < E”CD(M +eAu, ye) — Vel x
Thus it is enough to prove that

1 t
lim sup —|xg+€vp +/ Q(s,ye(t,v9)) ds — ye(t,v9)| =0
e=0 te(to,T] to
Notice that
g(s,ye(s,v0)) = g(s,x(s,x0) + vy, (s)) = g(s,x(s, x0) —|—/ 8(s,x(s,x0) + e0vyy(s))) do

= g(s,x(s,x0)) —|—/0 0x8(s,x(s,x0) + €00y, (5))evy, (s) do,

030 (8) = 02, (0) = | D5, (530) o 5) s
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Thus

t
Xo + €vg + /t g(s,ye(t,v9)) ds — ye(t, vo)
0

t t o1
= |x + €vgy + /t <(s, x(s,x0))ds + / /0 0x8(s,x(s,x0) + €00y, (5) )€vy, (s) do ds+
0 to

—x(t, XO) — vao(t)l

t
= |xg + /to g(s,x(s,xq)) ds — x(t,vp) + €(vo — vy, (t))+

t o1
+/ / 0x8(s, x(s,x0) + eov(s))evy,(s) dods
tg /0

t t ol
=¢|— t 0xg(s,x(s,%0))Vx, (5) ds—l—/t /0 0x8(s,x(s,x0) + €00y, () )vx, (s) do ds
s 10 0

NSt t rl
=¢ —./to ./0 axg(s,x(s,xo))vxo(s)dads+/to ‘/0 0x8(s,x(s,x0) + €00x, (5))vx, (s) do ds

t o1
=¢ /to/() [0x8 (s, x(s, x0) + €00y, (5)) — 9xg(s, x(s,x0))] vx, () do ds

Consedered a compact neighborhood of the trajectory x(t, xo), we can pass to the limit
(uniformly) under the integral sign by the regularity of g applying the Dominated Convergence
Theorem, the statement on the directional derivatives thus follows.

To prove the differentiability, is is sufficient to apply the Total Differential Theorem proving that
the directional derivatives are continuous st xg. Consider a sequence {¢ } ,en with &, — xo. We
prove that vg, (t) — vy, (t). By parametric contraction lemma, we already know that x(-, ;)
uniformly converges to x(-, xg) in [to, T]. Set A, (t) = 0xg(t, x(t,&n)) and A(t) = 9xg(t, x(t, x0)).
For n sufficiently large, we have ||A,(t) — A(t)|] < K and so, by dominated convergence

T T
S | A — Al = lim, [ An() — AWt = [ Jim [1An(1) = A(®) dt =0,
By the properties of fundamental matrix, M, (¢, T) uniformly converges to M(t, T) where M,, and
M are the fundamental matrices of the systems solved by vz, and vy, respectively (i.e., ruled by
g(t,x(t,¢n)) and g(t, x(t, x)) respectively). Therefore, vg, (-) uniformly converges to vy, (-). [

REMARK 4.10. In the same way as above, it can be proved that the input-output map is
differentiable also w.r.t. the initial time t;

5. Lecture of 14 december 2015: Dependence w.r.t. controls. Density.

PROPOSITION 5.1. Assume the hypothesis on f to grant local existence and uniqueness, consider
x(t) = f(t, x(t),u(t)), x(0) = xo, and denote by x(t, u) its solution evaluated at time t. Suppose that
(x,u) — f(t,x,u) is of class C' and that there exists L > 0 such that |0y f||co + ||01f|lec < L. Let

Au € L. Then there exists
(t,u+eAu) —x(t,u) 0

X f
lli]% . = gx(t,u—i—sAu)k:O :/0 M(t,5)0uf(s,x(s,u),u(s))Au(s)ds

where M(t,s) is the fundamental matrix of 0(t) = dxf (¢, x(t,u), u(t))v(t).

PROOF. Let z(t) be the solution of

Z(t) = A(t)z(t) + 9uf (t, x(t, u), u(t))Au(t),
z(0) =0,

where A(t) := dxf(t, x(t,u), u(t)). We have

2(t) = /OtM(t,s)auf(s,x(s,u),u(s))Au(s) ds.
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Thus it is enough to prove that

d
a—gx(t,u + eAu)je—g = z(t)
uniformly in [0, T], i.e.,
lim x(t, u+ eAu) — x(t,u) — ez(t) _0.
e—=0 €

99

Set x¢(t) = x(t,u + eAu) and y.(t) = x(t,u) + ez(t), we estimate |x¢(t) — y¢(¢)|. The map x,(-) is

a fixed point of

w— P(w, u+eAu) = xo + /Otf(s,w(s),u(s) + eAu(s))ds.

and @ is a contraction (v = 1/2) w.r.t. the norm || - || x previously defined. By parametric
contraction lemma

1 2

EHxs —Vellx < g”‘b(xo + €00, ¥e) — Vel x-
So it is sufficient to prove that

lim sup —
e04ejo,1] €

x0+/ f(s,ye(t,v0), u(s )+Au(s))dsy5(t)’ =0.

We have

¢ 5o [ 7o, ye(s) u(s) + emuts)) ds ()| =

xo + /Otf(s,yg(s),u(s) +eAu(s))ds — x(t,u) — sz(t)‘

t t
xo—i—/of(s,x(s,u)+£z(s),u(s)+Au(s))ds—xo—/0 f(s,x(s,u),u(s))ds—sz(t)‘

/t[f(s,x(s,u) +ez(s), u(s) +eAu(s)) — f(s,x(s,u),u(s))] ds — ez(t)’

/ / f(s,x(s,u) + oez(s), u(s) + oeAu(s))] ds — sz(t)’

M= M= =) ;=) o,

/ / Oxf (s, x(s,u) + cez(s), u(s) + oeAu(s))]ez(s) ds+

+/ / duf (s, x(s,u) + oez(s), u(s) + oeAu(s))]eAu(s) ds+
_/0 A(s)ez(s) 4+ duf (s, x(s,u), u(s))eAu(s) ds
t o1
= /0 ./0 |0xf (s, x(s,u) + oez(s), u(s) + ceAu(s)) — A(s)| - |z(s)| ds+
+ /Of /01 |0, f (s, x(s,u) + oez(s), u(s) + oeAu(s)) — duf (s, x(s,u),u(s))| - |Au(s)| ds

By Dominated Convergence Theorem, the limit is 0. The assumption of boundedness of the
derivatives of f can be relaxed, requiring only their continuity.

We will consider now the following problem: given a control system with admissible control
value set U, is it possible to construct another system approximatively equivalent to the give one
with smaller control value set U’ C U?

THEOREM 5.2 (Density of the trajectories). Assume the hypothesis on f to grant local existence and
uniqueness, let x(t) = f(t,x(t), u(t)), where u(t) € U and U C R™ is compact.

(1) The set of solutions generated by piecewise constant controls is dense (w.r.t. uniform
convergence) in the set of solutions.

O



100 3. THIRD PART

(2) Let U’ C U be closed and such that for every t, x we have
co{f(t,x,u): ue U'} D{f(t,x,u): ue Uk

Then every trajectory of the original system generated by a measurable control u(-) satisfying
u(t) € U a.e. can be approximated in the uniform convergence norm by a trajectory generated
by a measurable control u'(-) satisfying u'(t) € U'.

PROOEF. Let L > 0be such that |f(t,x1,u) — f(t,x2,u)| < L|x; — x2/.

The first assertion follows from the result about continuous dependence of the input-output map
on controls: indeed, the piecewise constant functions are dense in Ll according to the Ll-norm,
thus given a control u(-), generating the trajectory x,(-), it is possible to construct a sequenceof
piecewise constant controls {u, },cN converging in L! to u. The corresponding solutions x;, )
are uniformly convergent to x,(-).

Suppose now to have a trajectory x, of the original system, generated by a control u(-) € %, and
let us prove that we can uniformly approximate it by trajectories generated by controls taking
values in U’

Define the function 1(t) := e** — 1 and for every e > 0 we define the tubular neighborhood of
the trajectory x,(-) by setting

Te:={(t,x): t€[0,T], |x—x(t)| <ep(t)}.
Consider the set

F :={u':]0,7] — U measurable : (tx,(t)) € I, forallt € [0,7]}.

On F we define the following partial order: 1} < u} if dom(u}) € dom(u}) and u/2|d0m(u’1) =uj.
Given a totally ordered chain {u] : i € I}, set dom(uf,) = | Juj and if t € dom(ul,), set
iel

u'(t) = ul(t) where i satisfies t € dom(u}). Such uy, is an upper bound of the chain, so by Zorn’s
lemma there are maximal elements.

Let il be a maximal in F. If dom(i1) = [0, T] the proof is finished. Otherwise, suppose by
contradiction that intdom(#) =]0, T[ with T < T, for all ¢ €]0, T[ holds |x,(t) — xz(t)| < e(t)
Xy (T) — x7(7)

with equality att = 7. Setw = f(7,x,(7),u(7)), v = Teu(7) = xa(0)]

We prove that we can

choose u; € U’ such that

Indeed, by convexity assumption, w = Y _ a; f (T, x,(7),v;) witha; € [0,1], 0, € U, i =0,...,n
i=0

n
and ) _«; = 1. If by contradiction for every i = 0,...,n we had
i=0

(f (T xu(T),01),0) < (w,0),
by multiplying for «; and summing up

n

(w,v) = éai<f(r,xu(r),vi),v> < Zai<w,v> = (w,v),

i=0
which leads to a contradiction. So the choiche of u is always possible.

We prove now that there exists 6 > 0 such that if we set 7i(t) = u; in [T, T + ], the solution x; is
contained in I'e. This will conclude the proof contradicting the maximality of i, indeed it will be
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a proper extension of i to [0, T + J[. To this aim, we estimate the right derivative at T of
|xy (t) — x(t)| — op(t): it will be enough to show that such a derivative is negative. Indeed,

%“xa( t) — xu(t)| —ep(t)],_ .+ = (w — f(T,xa(T), ur), ) _eLelT

= (w— f(t,2u(7), 1), 0) + (f (T, 2u(7), ux) = f(7, xa(7),0) — eLe'*

eL
< & (T xu(t)uc) = f(T,xa(7)| —¢eLe™™
< % + L|x,(t) — x2(7)] —¢eLel™
< %-F&LIIJ(T) —eLel™
= %—i—eL( —1) —eLel®

el

< —-——<
S5 0.

REMARK 5.3. The assumtpions of the previous theorem require
co{f(t,x,u): ue U} D {f(tx,u): uel}

In general it is not true that this is granted by taking U’ C U such that co(U’) = co(U). In other
words, to convexify the set of admissible velocities is not enough to convexify the set of
admissible control values.

However if the system is affine w.r.t. u, ie., f(t,x,u) = A(t,x) + B(t, x)u then this is enough:
given U’ C U such that co(U’") = co(U) we have

co{f(t,x,u): ue '} ={f(t,x,u): uccolU)}={f(t,x,u): ucco(l)} D{f(tx,u): uecl}.

DEFINITION 5.4. Consider the control system x(t) = f(t,x(t),u(t)), x(0) = %, where
u(-) € % := {u : [0, +oo[— U measurable} Define the reachable set from % at time #:

Rz(t) = {x(t) : x(-) is solution of the system }.
In general, Rx(t) is not compact, not even if U is compact.

PROPOSITION 5.5 (Compactness of the reachable set). Assume the hypothesis on f to grant local
existence and uniqueness. Consider the control system x(t) = f(t,x(t),u(t)), x(0) = %, with

u(-) € % :={u:[0,+oo[— U measurable} and set F(t,x) := {f(t,x(t),u(t)) : u € % }. Suppose
that F(t, x) is compact and convex, and that the graphs of the solutions are all contained up to time t in a
common compact K. Then Rx(t) is compact.

PROOF. Since Rg(t) C K, such a set is bounded. We prove its closedness. Suppose to have a
sequence {{, }nenN in Re(t). Then &; = xy,(t) where x,,(-) is the solution generated by the
control u; € % . Since all the trajectories are contained in a common compact set, the set of their
velocities must be bounded, by smoothness of f. So these trajectories are equibounded and
equiLipschitz continuous by continuity of F and compactness of F(t, x). Thus up to a
subsequence they uniformly converges to X« (-), and in particular §; — o = Yoo (). By
convexity, we have that x«(+) is a solution, and so e € Rg(t). O

DEFINITION 5.6 (Chattering controls). Assume the hypothesis on f to grant local existence and
uniqueness. Consider the control system x(t) = f(t, x(t), u(t)), x(0) = &, with
u(-) € % :={u : [0, +oo[— U measurable} and set F(t,x) := {f(t,x(t),u(t)) : u € %}. Let
Fi(t,x) := co(F(t, x)). Consider a new set of controls

Ut = {u* = (6o,...,0,uq,...,uy) €[0,1]"1 x U1},

and set for every u? € U*

txu i txu
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By Carathéodory’s Theorem, we have

Fﬁ(t,x) = {fﬁ(t,x(t),uﬁ(t)) cule %ﬁ},

where %% := {uf : [0, +0o[— U’ measurable} is called the set of chattering controls.

COROLLARY 5.7. Assume the hypothesis on f to grant local existence and uniqueness. Consider the
control system x(t) = f(t,x(t),u(t)), x(0) = x, where u(-) € % := {u : [0, +o00[— U measurable}.
Suppose that U is compact and that the graphs of solutions up to time t are all contained in a common
compact K. Then R,ﬁz(t) = Rx(t), where Rg-((t) is the reachable set for x(t) = fi(t, x(t),ul(t)),

x(0) = %, where u*(-) € %"

PROOF. We can identify U with a subset of U!, since the map u — (1,0,...,0,u,u,...,u)is
bijective. This implies that we can identify % with a subset of % and Rx(t) with a subset of
Rg(t). We will always made this identification in the following of the proof. Trivially U C U,
and so Rg(t) C Rﬁ (t). According to the previous result, we have that Rg(t) is closed, so
Re(t) C Ri(t). Moreover, we have co(F(t, x)) D Fi(t,x), so the trajectories generated by % are

dense in the set of the trajectories of the system generated by % f, thus Rg(t) D Rff (t), the thesis
follows. 0

COROLLARY 5.8 (Teorema Bang-bang). In the above assumptions, suppose
x(t) = A(t)x(t) + h(t, u(t)). If A(-) and h are continuous and U is compact then RE(t) = Ry(t).

PROOF. Omitted. O

REMARK 5.9. In the three previous results, the assumtpions requiring that the graphs of the
considered trajectories must be contained in a common compact can be replaced by the
following condition of uniform growth: there exists C > 0 such that | f(¢,x,u)| < C(1 + |x|) for all
(t,x,u). Indeed, in this case we have |¥| < C(l + |x|), so if x(t) # 0 we have

d

T < |2
Thus if x(t) # 0 we have |x(t)| < r(¢) where #(t) = C(1+r(t)), (0)
equation, we have that if |x(t)| # 0 we have |x(t)| < e“f(|%| +1) — 1
Thus x(t) € B(0, R), which is compact.

|x |‘<C1+|x|)

= |x(0)|. Solving this
<eT(|x|+1)—1:=R.

6. Lecture of 15 december 2015: Pontryagin’s Maximum Principle (1h).

DEFINITION 6.1 (Mayer and Bolza problems). Suppose to have a control system
x(t) = f(t,x(t),u(t)), x(0) = * with % := {u : [0, T] — U measurable }, a cost function
p: R xR" — R,and aset S C R"*! called target set.

The Mayer’s problem is to determine a control (called optimal control) realizing
inf (T, x(T
inf §(T,x(T))

among all the admissible trajectories of the system satisfying (T, x(T)) € S.

In many cases, we have S = R x S, where S C IR" is a given closed set. In this case the endpoint
constraint (T,x(T)) € S simply becomes x(T) € S. With a slightly abuse of terminology, in this
case we will called also S the target set.

The Bolza’s problem is to determine a control realizing

inf [ L(t,x(t), u(t)) dt + (T, x(T),

uev Jo
where L : R x R" x R" — R is a function called current cost among all the admissible
trajectories of the system satisfying (T, x(T)) € S.

Bolza’s problem can be reformulated as Mayer’s problem by considering the new auxiliary
variable xp, and adding to the system the equation %o(t) = L(t, x(t), u(t)) with x9(0) = 0.
Defined a new cost ¥ (xq, x) = xo + ¢(x), and a new target set S = R x S, the problem set up in
R"*2 is a Mayer’s problem.
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The existence of optimal controls in many cases can be proved easily through standard
arguments of l.s.c. and compactness.

THEOREM 6.2 (Existence of optimal controls). Consider a Mayer’s problem with closed target
S Ce R and Ls.c. cost function y(-). Assume one of the following conditions
(1) Rg(T) is compact and ({T} x Rz(T)) NS # @;
(2) the dynamics f is continuous, satisfying |f (t, x,u)| < C(1 + |x|) for a certain C > 0, and the
associated set-valued map has convex values.
(3) Rx(T) is closed, ({T} x Rx(T)) NS # @, and y(-) is coercive;

Then there exists an optimal control.

PROOF.

(1) By compactness of Rz(T) and closedness of S, we have that {T} x Rz(T) NS is
compact. Since §(+) is L.s.c., it admits a minimum (T, x7) € {T} x R¢(T) N S. Recalling
that xp € R(T), this implies that there exists a control u*(-) generating an admissible
trajectory whose endpoint is xt.

(2) Consider a minimizing sequence u, : [0, T] — U of admissible controls, generating the
corresponding sequence of trajectories x,(+), i.e., such that
LHB Y(T,x,(T)) = in;/lP(T, x,(T)) and (T,x,(T)) € S. The growth condition on f
n 0 UEU

ensures that there exists a compact set K such that x,,(t) € Kforallt € [0,T], n € N,
thus by the smoothness of f, we have that x,(-) are equiLipschitz continuous and
equibounded, thus, up to a not relabeled subsequence, we may assume that {x,(-) },eN
uniformly converges to X (). The growth condition implies the compactness of F(t, x),
and by assumption we have that F(t, x) is convex, thus ¥« () is an admissible trajectory,
and so it is generated by an admissible control u«(+). Thus, recalling L.s.c. of ¥,

inf §(T,2,(T)) = lim_$(T,%(T)) = $(T,x(T)) > inf $(T, x,(T)),
UEw n—r+00 uew

we conclude that x«(+) is an optimal trajectory and i« (+) is an optimal control.

(3) Same as in item 1., recalling that a lower semicontinuous coercive function admits a
minimum on every closed sets.

O
LEMMA 6.3 (Lebesgue points). Let ¢ € L1([0, T];R). Then for a.e. T € [0, T| we have
1 1 T+e d O
im — t) — t=0.
Jim o [ g0~ 5(o)
The points T where the above limit exists and vanishes are called Lebesgue’s point of g.
PROOF. Omitted. 0

We will now state in a simplified form the following result, yielding necessary conditions enjoyed
by an optimal control.

THEOREM 6.4 (Pontryagin’ Maximum Principle). Consider a Mayer’s problem with

¢(x(T)) = —(x(T)). Suppose f € C°, ¢ differetiable, and x — f(t,x,u) of class C'. Let

u* € L®([0, T]; R™) an optimal control generating the optimal trajectory x*(-). Let p*(-) be the solution
of the adjoint system
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PROOF. Since t — g(t) := f(t,x*(t),u*(t)) is in L!, it is enough to prove the statement for all
Lebesgue points of . Let T € [0, T] be a Lebesgue’s point of g. We will prove the result for t = 7.
Given e > 0, set ug(t) = u™(t)(1 — X[r—e,e[) + WXJr—er) Where w € U is arbitrary. Let x(-) be the
trajectory generated by u,. Recalling that x.(7 —€) = x*(7 — ¢), we have

we(®) =x(r—e)+ [ fltx(t),w)d,

SO =0+ [ @)
Bl D (o)) - £(0 0,0 6] a
= [ 1t @) — fo (@) ()] der
F 1 7 [ @0 (@) = Flea 0,0 (1) a

By definition of Lebesgue’s point, for ¢ — 07 the second term in the right hand side vanishes. By
Dominated Convergence Theorem,

hm xE(T) — x*(T)
e—0T €

= f(r,x"(7),w) = f(7,x"(7),u" (7)) =: {.

In the time interval [, T], we have that x,(-) satisfy the same differential equation of x(-), but
with a different inital data x.(7) # x*(7). By the theorem about the differentiability of the
input-output map w.r.t. initial data, denoted by y.(-) the trajectory generated by u* starting from
x*(T) + €€ at time T, we have that for t > 7 it holds

tim YL )

where 0(t) = 9, f (£, x*(t), u*(t))v(t) and v(7) = ¢. If x*(+) is optimal, then ¢(y(T)) < ¢(x*(7))
for all € > 0. Since ¢ is differentiable, we have

d
02 2-¢(ye(T)) = (Vo(ye(T)), v(t)).
Moreover, we notice that

%<P(t)/v(f)> = —(p(B)axf(t, x* (), u™(£)),0(t)) + (p(t), ox f (£, x7(£), u (¢))o(£)) = 0.

(1)) = ( (T),Z)E:L(' ). By definition,

thus (p(t),v(t)) is costantatall t € [t,T] e (p(t),
T f(t,x*(7),u*(t)). Thus

v
p(T) = V(x*(T)) and v(7) = ¢ = f(7,x" (1), w)
(p(1),¢) = (p(1), f(T,x"(7), w) — f(T,x" (1), u" (1)) = (Vo(x*(T)),0o(T)) <0
so for all w € U we have
(p(), f(T,x*(7),w)) < (p(7), f(T,x"(7),u" (7)),
the thesis follows. O

REMARK 6.5. In many applications and exercise, we will try to construct an optimal control
candidate by solving the adjoint system and defining

W (£) = argmax(p” (1), (1, 5" (1) w)).

The Pontryagin’s Maximum Principle yields only necessary conditions, not sufficient ones.
However in many cases it leads to isolate good candidates.
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7. Lecture of 16 december 2015: Dynamic Programming Principle

DEFINITION 7.1. Suppose that a Mayer’s problem with target S C R"*! and terminal constraint
(T,x(T)) € Sis given. Consider the admissible trajectories x5, (-) such that x5, (s) = y and
(T, x5y(T)) € S. We define the value function V(s,y) = inf,cq (T, x5, (T)).

THEOREM 7.2 (Dynamic Programming Principle). In the hypothesis granting existence and
uniqueness of the trajectories, suppose that S is closed. Then the value function V is nondecreasing along
the admissible trajectories, and it is constant along the optimal trajectories.

PROOF. Let x(-) be an admissible trajectory generated by the control u(-), to < t1, x(t1) = x3
e x(tyg) = xg. Suppose by contradiction that there exists ¢ > 0 such that V(t1,x1) = V(t, x9) —¢.
Thus by definition there exists an admissible control v(-) such that, for the trajectory x,(-)
generated by v and satisfying x,(t1) = x1, we will have (T, x,(T)) < V(t1,x1) + ¢/2. Butin
this case we can define a new control () = u(t) fortg <t < t; and i(t) = v(t) forty <t < T,
and let £(-) be its associated trajectory satisfying %(ty) = x¢. Since £(t1) = x1, we have

o € €
$(T,2(T)) < V(h,x1) + 5 = V(to, x0) — 5,

contradicting the definition of V (¢, xg).
If u* is an optimal control and x* is an optimal trajectory satisfying x*(tp) = xo, then necessarily
V(tg, x0) = (T, x*(T)). Since V is nondecreasing along the admissible trajectories, we have
V(T,x*(T)) > V(t,x*(t)) > V(to, xo) for every ty < t < T, but since the first and the last terms
of this inequality are equal, we have equality. 0

THEOREM 7.3. In the assumptions of the previous theorem, let Q C R™! be an open set such that
QNS #@. IfV € CY(Q) then, defined the Hamiltonian function

H(t,x,p) :=min(p, f(t,x,u)),
uel
the Hamilton-Jacobi-Bellman equation holds:

o:V(t,x)+ H(t,x,0,V) =0,

V(T,x) = p(x).

PROOF. By assumption, along the admissible trajectories we have

SV (Y1) 20

ie., (0xV(t,y(t)), f(t,y(t),u(t))) > 0so the left hand side in the Hamilton-Jacobi-Bellman
equation is nonnegative. By contradiction, assume that it is strictly positive, i.e., there exists
0 > 0 such that for all w € U, ty, xg it holds

9:V (to, x0) + (9xV (to, x0), f (to, X0, w) > 6.
By continuity, for every (t, x) in a neighborhood W of (ty, xp) we have
9tV (t,x)+ (0xV(tx), f(t, x,w) > 6.

Let u € % be an admissible control, and let x,(-) be its corresponding trajectory such that
xy(tp) = xo. There exists 6 > 0 sufficiently small such that (¢, x,(t)) € W for all u € % . Thus for
all u € % we have

to+6 4

V(t+6,xu(t+6)) — V(to, x0) :/to SVt x(h) dt

= tOH[atV(t, Xy (8)) + (0xV (8, x4 (), f (£, xu(t), u(t))] dt > 66.

to
By taking the infimum on u, we have

inf V(t+6,xu(t+08)) > V(ty, x0) + 6.
UEwU
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However, the infimum w.r.t. u of the left hand side is attained on optimal trajectories, and its
value is V(#y, x9) by the dynamic programming principle, and this leads to a contradiction. [

REMARK 7.4. If we have a Bolza problem with running cost L(t, x, u), the Hamiltonian function
becomes

H(t,x,p) = %%Kp'f(t' x,u)) + L(t,x,u)].

The minimum time problem corresponds to the case =0, L(t,x,u) = 1.

REMARK 7.5. The dynamic programming principle provides additional conditions to be used in
addition to Pontryagin Maximum Principle in particular in the cases where disambiguation is
needed (for instance, when p(t) = 0). It can be proved that the value function is characterized to
be the solution of this equation, i.e., if the cost found by using a control u(-) coincides with the
value of the solution of the HAmilton-Jacobi equation, then u is optimal.

REMARK 7.6. In almost all the case of interest, the value function is not C!, thus a classic solution
of Hamilton-Jacobi may not exists. Nonsmooth analysis allows to interpret such an equation by
mean of generalized gradients, thus defining solutions (enjoying also uniqueness property) of
such an equation, which are called viscosity solutions.

8. Lecture of 18 december 2015: Linear Quadratic Regulator

Linear Quadratic Regulator (LQR) is control system widely used in modeling, and it can be
considered as a prototype of many problems.

DEFINITION 8.1 (LQR - finite time horizon). Let Q, M € Mat, x,(R) be positive semidefinite
symmetric matrices, R € Maty,xm(R) be a positive definite symmetric matrix, A € Mat,x»(R),
B € Mat;,x,; matrices, tg, T € R, ty) < T. Consider the control system in R"

x(t) = Ax(t) + Bu(t),
x(tg) = xp € R",
with u € R™.
Our aim is to minimize the following cost (also called performance index):
T
Jr(u(-)) = /to ((Qx(#), x(£)) + (Ru(t), u(t))) di + (Mx(T), x(T)).

The matricex Q, M, R are called respectively the current state cost, the final state cost, and the input
cost matrix.

In order to solve the problem, we use the dynamic programming principle. Indeed, for
to <t < T we define

T
i) = inf { [ ((Qx(6),x(9) + (Ra(9)u(s)) ds + (Mx(T), (7))},
subject to X(s) = Ax(s) + Bu(s) and x(t) = x. We have in particular that Vr(x) = (Mx, x) for all
x € R".

We notice the following facts: given A € R, we have V;(Ax) = A2V(x), x +— V;(x) is continuous,
and

Vi(x1) + Vi(x2) = 5 [Vi(x1 + x2) + Ve(x1 — x2)].

NI~

Indeed, since the system is linear, if x(-) is a solution associated to some control u(-) and starting
from x, then also Ax(+) is a solution associated to the control Au(-) and starting from Ax. Thus

T
Vi(Ax) = l1lr(11; {/t ((QAx(s), Ax(s)) + (RAu(s), Au(s))) ds + <M/\x(T),/\x(T))},

subject to ¥(s) = Ax(s) + Bu(s) and x(t) = x, hence V;(Ax) = A?V;(x). The other property can
be verified similarly. Finally, the continuity w.r.t. x is given by the linearity of the system.
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In general, a continuous map W(-) : R? — R satisfying W(Ax) = A2W(x) and

W(xt) + W) = 2 [W(x +x0) + Wi - x)],

satisfies also W(x) = (Px, x), where P = (p;;); j—1,..4 € Matg,4(R) is the symmetric matrix
. R 1
defined by p;; = W(¢;) and p;; = pji = Z[W(xi +x;) — W(x; — x;)].

In this way we obtain that V;(x) = (P(t)x, x) where t — P(t) is a continuous map and P(t) is a

symmetric matrix for every t € [tg, T]. In particular, we have also 9;V;(x) = (P(t)x, x) and
0xVi(x) = 2P(t)x.

Our problem is a special case of Bolza problem where L(t,x, u) = (Qx, x) + (Ru,u), and so
H(t,x,p) = min [{(p, Ax + Bu) + (Qx, x) + (Ru, u)] = (p, Ax) + (Qx, x) + min [(p, Bu) + (Ru, u)]
The function to be minimized is strictly convex, smooth and coercive in u, thus the minimum is
characterized bu putting the differential equal to zero, i.e. BT p +2Ru = 0, and so

U= —%R’lBTp. The Hamilton-Jacobi equation is given by 0;V;(x) + H(t, x,9:Vi(x)) = 0, i.e.

(P(H)x,x) + (2P(t)x, Ax) 4+ (Qx,x) — (2P(t)x, BR"'BTP(t)x) + (BTP(t)x, R"'BTP(t)x) =0,
i.e. recalling that P(t) = PT(t)
(P(t)x, x)+(ATPT (£)x, x) + (P(t) Ax, x)+
+(Qx, x) — (2P(t)BR'BTP(t)x, x) + (P(t)BR'BTP(t)x,x) =0,
holding for every x, hence we obtain the matrix Riccati equation
P(t) + ATP(t) + P(t)A+Q — P(t)BR'BTP(t) = 0,
coupled with terminal condition P(T) = M. Moreover, the optimal control is linear and is given
by u(t) = —R7'BTP(t)x(t).
All the previous consideraton easily extends to smooth time-depending matrices A = A(t),
B =B(t), R = R(t), Q= Q(t)-

Now we will discuss the case of infinite time horizon, i.e., T — —+oco.

DEFINITION 8.2 (LQR - infinite time horizon). Let Q, M € Mat,«,(R) be positive semidefinite
symmetric matrices, R € Mat,«(R) be a positive definite symmetric matrix, A € Mat,,x,(R),
B € Maty, ,; matrices, ty, T € R, ty < T. Consider the control system in IR"

x(t) = Ax(t) + Bu(t),
x(to) =xp € R",
with u € R™.
Our aim is to minimize the following cost:
—+o00

Jeo(u()) = [ {(Qx(8),x(6) + (Ru(t) u())) a.
0

It is clear in this case, since the integral is over an half line, that it may happen that

J(u(-)) = +oo, thus the minimization problems has no meaningful sense.

To tackle this difficulty, we make the following strong assumption (complete controllability): for
every T > 0, x € R" there exists a control steering x to 0 in time 7. It can be proved (Kalman rank
controllability condition) that this is equivalent to ask

rank[B|AB|A2B|...|A"'B] = n.
If Ty < T; we have

[ (@x0),2(00) + (Ru(t) u(e) dt < [ (Qx(0),x(0)) + (Ru(t) u(e)) d,

to
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thus it make sense to approximate the infinite horizon problem with a sequence of finite-horizon
problems: the map T + J7(u(+)) is monotone increasing, thus J (1(+)) can be written as limit
for T — +oo of Jp(u(-)) (it can be +00).

We thus consider the matrix solution P(t, T) of
P(t)+ ATP(t) + P(t)A+ Q— P(+)BR™IBTP(t) = 0,

P(T) =0
and we notice that if we set
T
Vit 1) = inf { [ (1Qr(s), x(9) + (Ru(s)u(e))) ds |
u(-
we obtain Vi(x, T) = (P(t, T)x, x) and the map T — V;(x, T) is monotone increasing. Thus we

have existence of the limit
P(t)= lim P(tT).
T—+o0
By using standard flow properties for ODE, it can be proved that P(t) solves
P(t) + ATP(t) + P(t)A+Q — P(t)BR™'BTP(t) =0, t > tg,
moreover V;(x,00) = (P(t)x, x).
Given a control i defined on [t, f 4+ 7] and steering x(t) to 0 in time 7 (the existence of such a
control is due to complete controllability assumption), we can extend ii(-) to all [t, +-o0[ by
setting i(s) = 0 for s > t + T, thus we have that Jo(ii(t)) < +oo. This ensures that the infimum
of Joo(+) is finite. Set now ii(t) = —R~'BTP(t)x(t). We want to prove that it is optimal. Assume

that there exists i1(-) such that Jo (1(+)) < Joo(i7). It turns out that there exists T such that we
have for the restrictions

Jr(a()) < Jr(a)

but this is impossible, since 7(-) achieves the minimum of Jr(-).



Bibliography

[1] Jurgen Appell and Petr P. Zabrejko, Nonlinear superposition operators, Cambridge Tracts in Mathematics, vol. 95,
Cambridge University Press, Cambridge, 1990. MR1066204 (91k:47168)

[2] Andrea Braides, Gamma-Convergence for Beginners, Oxford University Press, 2002.

[3] Haim Brezis, Analisi funzionale. Teoria e applicazioni, Liguori, 1986.

[4] Ivar Ekeland and Roger Témam, Convex analysis and variational problems, Corrected reprint of the 1976 English
edition, Classics in Applied Mathematics, vol. 28, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1999. Translated from the French. MR1727362 (2000j:49001)

[5] E H. Clarke, Optimization and nonsmooth analysis, 2nd ed., Classics in Applied Mathematics, vol. 5, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. MR1058436 (91e:49001)

[6] E H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth analysis and control theory, Graduate Texts in
Mathematics, vol. 178, Springer-Verlag, New York, 1998. MR1488695 (99a:49001)

[7] Asen L. Dontchev, The Graves theorem revisited, ]. Convex Anal. 3 (1996), no. 1, 45-53. MR1422750 (97g:46055)

[8] Mariano Giaquinta and Stefan Hildebrandt, Calculus of variations. I, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 310, Springer-Verlag, Berlin, 1996. The
Lagrangian formalism. MR1368401 (98b:49002a)

, Calculus of variations. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of

Mathematical Sciences], vol. 311, Springer-Verlag, Berlin, 1996. The Hamiltonian formalism. MR1385926 (98b:49002b)

9]

109



