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3-dec-2012 (2 hrs). The space L(FE, F) of bounded linear operators between two
Banach spaces E/, F'. Operator norm ||T|[z = sup{||T||r, ||v||z < 1}. Various notions
of convergence for a sequence of operators T,, € L(E,F) to T € L(E,F): uniform
(|7, — T||z — 0), strong (T,v — Tv in F Vv € F), weak (< ¢, T,v >—< ¢, Tv >
Vv € F, V¢ € F’). The Weierstrass criterion for uniform convergence of series of
operators. Neumann series: for 7' € L(E) and ||T||; < 1, ({ — T is invertible (and
hence (I —T)~' € L(E)). Moreover, (I —T)™' =37 7™ It follows that the subset
of invertible operators is open in L(F): if T is invertible then for any S € L(F) such
that ||S|| < ||T7!||, then T + S is invertible. Adjoint operator T* € L(F', E'). It
is defined by the identity < T*¢,v >=< ¢,Tv > for any v € F, ¢ € F’. It holds
|T*|| = |IT||, as a consequence of Hahn-Banach. In case F = F = H a Hilbert
space, from the identification H = H’ given by the Riesz representation theorem, one
considers T, T* € L(H). If T'=T* the operator is called self-adjoint or symmetric.

Elements of spectral theory for T € L(FE). Resolvent set p(T) C C: we have \ €
p(T)if (\[—T)~' € L(E). The resolvent set is open in C. Moreover, if |A| > ||T|| then
{IAeC, |Al>|T||} € p(T). Actually, denoting (T) = limsup,, (||7"||)"/™ < ||T|| the
spectral radius of T, we have {\ € C, |A| > r} C p(T).

5-dec-2012 (2hrs). Spectrum o(7T") = C\p(T) of T' € L(E): it is a closed set contained
in B(0,||T||) € C. Let A € o(T): If ker(T' — X) # 0 then A is an eigenvalue of T,
and belongs to the point spectrum. Otherwise, A belongs to the continuous spectrum
(ker(T'—AI) = 0 but (T'— \I) is not surjective). In particular, the map (7'—AI)~! may
be defined either in a dense or in a proper closed subspace of E. Examples: the right
shift 7. in ¢! (or £?), or the diagonal operator T, : {z,} — {a,x,} where 0 # a,, — 0.
In both cases 0 belongs to the continous spectrum. Moreover, {a,} C o(7,) is the
point spectrum of T,,, while the point spectrum of 7, is empty.

Resolvent operator Ry = (T'— X)™' of T € L(FE), with A € p(T). Resolvent
equation Ry — R, = (A—pu)R\R,: it yields % = R?, that is A — R, is a holomorphic
function, whose singularities are in o(7). In particular, the Cauchy integral formula
(and the calculus of residues) involving R, and a given holomorphic function f(z)



allows to consistently define f(7') (in particular, if f(z) = e*, we obtain a formula for
exp(T'), while if f(z) = 1 we derive some information on the Jordan blocks of T').

The space K(E, F) C L(E,F) of compact operators. Uniform limits of compact
operators in L(E, F) are compact, i.e. I(F,F) is closed in L(E,F). A compact
operator (right- or left-) composed with a bounded operator is compact. In particular,
K(FE)=K(E, E) is a bilateral ideal of L(F). The identity map is compact if and only
if F is finite dimensional. Operators whose range is finite dimensional are compact:
they are called finite rank operators. Limits of sequences of finite rank operators are
compact.

Finite rank approximation for T' € IC(E, H), with H a Hilbert space: given vy, ...,uy €
H a enet for T'(Bg), set Vy =span(vy, ...,vy) and Ty = Py - T, where Py is the or-
thogonal projection on V. We have that T has finite rank and ||Ty — T'||z(g,m) < 2e.

Examples: T : (a,), — (27"ay), is compact on ¢! as uniform limit of the finite
rank operators T : (an)n — (0,27"ay)n, where o, = 1 for n < N and o, = 0 for
n > N.

10-dec-2012 (1hr). Some properties of compact operators: any injective T € KC(FE)
doesn’t admit a bounded inverse. If E is reflexive (e.g. a Hilbert space), T is
compact if and only if for any v, — v weakly in E it holds Tv, — Twv strongly
in E. In particular, T(Bg) = T(Bg). If T € K(H) then T* € K(H) and con-
versely. Some examples of compact operators: integral (kernel-based) operator of
Fredholm-Volterra type on C°([a,b]). Operators based on Mercer kernels on a com-
pact metric measure space: they are used for statistical 1earn1ng purposes. Hilbert-
Schmidt operators: if K € L*([a,b] x [a,b]) then if (T'z)(s f K(s,t)z(t)dt we
have ||T||z < ||K||z2. Given a Hilbert basis (i.e. a complete orthonormal system)
{dn} of L*([a,b]), set Ynm(s,t) = dn(s)dm(t): the elements 1), are a Hilbert basis
of L*([a,b] x [a,b]). Expand K(s,t) = > 07 > | kpmW¥nm(s,t), and setting respec-
tively Kn(s,t) = S0 SN kpmt®nm(s, 1) and (Tyz)(s) = fab Kn(s,t)x(t) dt, we have
| Ty —T||z < ||Ky—K]||]2 — 0, hence T € K(L*([a, b])) as limit of finite rank operators.

11-dec-2012 (2 hrs). The compact embedding i : WP([a,b]) — C°([a,b]), p > 1;
given a family of maps u € W ([a, b]) with equibounded norm, i.e. |ull,+ |||, < M,
we show that this family is equibounded in C°([a, b]) and (uniformly) equicontinuous,

hence by Ascoli-Arzela it is relatively compact in C°([a,b]): decompose u = v + c,

where ¢ = ﬁ ff u(x) dz. We have, by Hélder inequality,

1 1 ¥
e < mIIUHp < mM, v(z)| < / /()] dt < [b—al"P|[||, < |b—a] V"M,
where zg € [a,b] is such that v(zy) = — f v(x)dxr = 0. We deduce the uniform
bound ||t < CM, where C' depends on 1 on [a, ] To prove equicontinuity, observe
that
v 1
u(z) — u(y)| < / W' ()] dt < |z —y[*[W/]l, < |z —y[*M,  where o =1— .



hence the maps u are equi-Holder continuous.

The Fredholm Alternative for operators of the type A =1—T, with T' € K(H), H
a Hilbert space: ker A is finite dimensional, the range R(A) is closed, hence there holds
the orthogonal direct sum decomposition H = R(A) @ ker A* = R(A*) @ ker A, where
A* =1 —T*. Moreover, ker A =0 < R(A) = H, and finally dim ker A =dim ker A* <
+00.

The Fredholm alternative gives a procedure to solve equation Au = u —Tu = f.
First of all, solve the associated adjoint homogeneous equation, i.e. the fixed point
equation v = T*v. If the solution is trivial, then Au = f admits a unique solution for
any datum f € H. Otherwise, call vy, ...v; a basis of ker A* (i.e. a maximal independent
set of fixed points of 7%); then there are solutions of Au = f provided f verifies the
orthogonality conditions < f,v; >= 0 for any i =1, ..., k.

The Fredholm Alternative holds more generally for operators of the type A =1—-T
with T € K(F), E a Banach space.

12-dec-2012 (2hrs). Spectrum of a compact operator: 0 € o(7T') and o(7T)\ {0}, if non
empty, is made of at most countably many eigenvalues \,, with A,, — 0 as n — 4o00.
The corresponding eigenspaces ker(\, I —T') # 0 are finite-dimensional. If the operator
is self-adjoint on a Hilbert space, then the eigenvalues are real, and max|\,| = ||T| .

Spectral theory for self-adjoint compact operators in Hilbert spaces: the eigenvalues
are real and there exists a Hilbert basis made of eigenvectors, which “diagonalizes”
the operator. In particular, for T € K(H), T* = T, and e, a orthonormal basis of
eigenvectors, i.e. Te, = A,e, (with A\, — 0), we have the diagonal representation
Tv =T(>, cnen) = D, ACnén, i.e. the operator can be identified with T € K(0?)
given by T(cn) = (AnCn).

Proof of the spectral theorem: we consider a (iterated) contrained optimization
problem on the unit closed ball B = {||v|| < 1} of H for the quadratic form Q(v) =
(T'w,v) associated to T' € K(H). Notice first that Q(v) is weakly continuous, since
v, — v implies Tv,, — Tvy, and moreover |v,|| < M (weakly convergent sequences
are bounded), whence

| (Tvn, vn) — (Two, vo) | < | T — Two| - |vn| + | {Two, v — vo) | — 0.

By Weierstrass Theorem, |Q(v)| reaches its maximum on the unit closed ball B,
which is weakly compact. Let e; be a maximum point. We have necessarily ||e;|| = 1
because Q(Av) = N2Q(v) for A € R. Moreover, for any e € H such that [le] = 1
and (e,e;) = 0, one has (e,Te;) = 0, since by the Lagrange multipliers theorem e;
is a critical point of the function Q(v) + A|[v[|* = ¥(«, 3,A\), where v = ae; + Bey
belongs to the 2-dimensional space spanned by e; and e. In particular, one deduces
Te; = (Tey,e1)-e1 = Aeq, i.e. ep is an eigenvector of T"and |Q(e1)| = [(Ter, e1)| = | M1,
i.e. the eigenvalue \; has maximum modulus among the eigenvalues of T' (actually we
have [M] = [|T|z).



[terating this procedure, one obtains, for n > 1, an eigenvector e,, of T, with ||e,| =
1, and such that < e,,e,, >= 0 for any m < n, corresponding to the maximum point
of |Q(v)| on (span{ey, ...,e,_1})* N B, with A\, = Q(e,) the corresponding eigenvalue.
Moreover, it holds |A,_1| > |\,

If for some ny € N one has \,, = Q(en,) = 0, then (span{ey, ..., e,,_1})t = ker T'.
Indeed, Q(w) = 0 for any w € (spanfey, ..., en,_1})T, and if {(w,e;) = 0 Vi < ng, then
(Tw, e;) = (v, Te;) = 0, i.e. also Tw € (spanfey, ..., eny_1})>. The polarization identity
4Tv,u) = Q(u+v) — Q(u — v) hence implies that 4(Tw, Tw) = Q(w + Tw) — Q(w —
Tw) = 0 for any w € (span{ey, ..., €p,_1})*, i.e. Tw = 0.

We deduce in this case that the set {ey,...,e,,}, completed with a (complete) or-
thonormal system of ker T" yields a Hilbert basis of eigenvectors of T'.

Otherwise, we are left with a orthonormal sequence {e,},, so that in particular
e, — 0 by Bessel inequality (for any w € H, Y (e, w)? < [|w]]* = (e,,w) — 0
as n — —+00), and hence |\, = |Q(e,)| \, 0 by weak continuity of Q). Let N =
span{el,...,en,...}L. For any w € N one necessarily has |Q(w)| < |Q(e,)| for any
n € N, hence Q(w) =0 and N = kerT.

In this case, the set {e,}nen, completed with a (complete) orthonormal system of
ker T yields a Hilbert basis of eigenvectors of T n

13-dec-12 (2hrs). Application of the spectral theorem to the representation of the
(unique) solution of the homogeneous Dirichlet problem Au = f in Q@ C R", v =0 on
09, where f € C°(Q).

Denoting by T : C°(2) — C?*(Q) the solution operator f +— u (T corresponds,
roughly speaking, to A™!) one may extend it to an operator T € L(L?(Q2)) which
happens to be compact and self-adjoint.

If {es(z)}1 is a Hilbert basis of L%(Q) of eigenvectors of T with eigenvalues u; € R
with g — 0, then Ae, = Aper with ex(z) = 0 on 99 and A\, = 1/ (in particular
|\u| = +00). If Q has a particularly simple shape (e.g. a circle or a rectangle in R?, a
ball or a parallelopiped in R™), one may find ej(x) and the corresponding Ay using the
technique of separation of variables, that consists in seeking a solution e(¢y, ..., &,) of
A¢e = e of the form e(¢y, ..., &,) = I | E;(&;), where &1, ..., &, is a “natural” coordinate
system for the domain €). The partial differential equation solved by e translates in a
ordinary differential equation for =y, ..., Z,, and determines at once ex(z) and \.

Having constructed the Hilbert basis {ex(x)} of L?(Q) which diagonalizes T, and
expanding f(z) =Y ;- fuex(x), we obtain the following representation for the solution
of Au= fin Q, u =0 on 00

w(z)=Tf(x)=T (Z fkek(x)> = Z {—iek(x).

The Lax-Milgram Lemma: given a bilinear form a(u,v), continuous (a(u,v) <
M ||ull]]v]]) and coercive (0 < aflul]* < a(u,u) ¥V u # 0) on a Hilbert space H, for any



bounded linear form ¢ € H* there exists a unique v € H such that a(u,v) = ¢(v) for
any v € H. In particular, [ju]| < a™!||¢]|..

If moreover a is symmetric (i.e. a(u,v) = a(v,u)), we have the characterization
u = argmin{3a(v,v) — ¢(v), v € H}.

Proof: by Riesz representation theorem, the equation to be solved can be rewritten
as (Au,v) = (f,v) for any v € H, i.e. Au= f, where A € L(H) verifies the estimates
0 < allull < ||Aull < M|lul[ ¥ u #0.

From a||lu|| < ||Aul| (which is called an a priori estimate) it follows that ker A = 0.
Moreover, a|u, — un|| < ||Au, — Au,,|| implies that if y, = Au, — y in H, i.e. Au,
is a Cauchy sequence in H, then also u,, is a Cauchy sequence, hence u,, — u in H by
completeness, thus yielding y = Au. One concludes that A has a closed range R(A) in
H. Finally, if vLR(A), then (v, Au) = 0V u € H. In particular, choosing u = v, we
have 0 = (v, Av) > al|v||?, thus v = 0 and R(A) = H. We just proved that A is both
injective and surjective, and the conclusion of the Lemma follows.

In case of a symmetric a, since o||ul* < a(u,u) < M|ul?, the scalar product
((u,v)) := a(u,v) is equivalent to (-, -), hence by Riesz representation theorem applied
to H endowed with ((-,-)), one has ¢(v) = a(g,v) for a certain g € H, whence u
verifies a(u — g,v) = 0V v € H, i.e. u is the orthogonal projection (with respect to
the scalar product induced by a) of g on H, in other words u minimizes the (squared)
distance (induced by a) a(v—g,v—g), or, equivalently, the quadratic functional F'(v) =
La(v,v) — ¢(v), for v € H, whose Euler-Lagrange equation 9, F(u) = (F'(u),v) = 0 for
any direction v € H is precisely given by a(u,v) = ¢(v) for any v € H.

[

The Galerkin approximation method: if Vj, C H, dim V), < +o00, one considers the
solution wuy, of the system a(u,v) = ¢(v) V v € V}. The Lemma of Céa guarantees
that |lu — u,|| < 2dist (u, V) (in other words, w, is comparable to the orthogonal
projection of u on V4): indeed, a(u —up, u —up) = a(u—up, u —v) for any v € V}, since
a(u,v —up) = alup, v —up) = ¢(v — uy), whence al|u — uy||? < M||u — upl||Ju — v]| for
any v € V} and the conclusion follows.

Hence, considering a sequence of finite-dimensional spaces V;, C Vj.1 such that
H = UV}, one has the convergence u, — u in H as h — +o0.

Remark that the approximating finite-dimensional problem is a linear system with a
positive definite coefficients matrix, called stiffness matriz, which is given by [a(f;, f;)].
with {f;} a basis for V.

The choice of the sequence Vj, invading H and of a basis {f;} for V}, is aimed to
efficiently solve the approximating linear system, and also to have the best possible
convergence rate for the error estimate ||lu, — ul||. Here are some examples in case
H=1*Q), QCR"

1) if @ is represented by a compact self-adjoint operator, then considering a Hilbert
basis {e, }nen of L2(2) made of eigenvectors, and setting Vj, =span< ey, ..., e, >, the
corresponding system is diagonal.

2) considering a basis { f;} of V}, made of finite elements (piecewise linear or polyno-



mial function insisting on a fixed triangulation of the domain) yields a sparse stiffness
matrix. Finite elements are used in numerical fluid dynamics, material science, elas-
ticity,...

3) Haar basis, wavelets, radial basis functions: these Hilbert basis of L?*(f2) are
used in signal and image processing and statistical analysis, being not computation-
ally expensive, and also since they are able to take into account localized oscillation
phenomena at any scale in physical and in frequency space.

3) if the original problem admits a smooth solution (for example, u € C*°() as for
Laplace equation), it may be convenient to use spectral methods for its approximation,
i.e. to consider a Hilbert basis of L?(2) made of orthogonal polynomials (e.g. the
trigonometric system, the Legendre polynomials, the Hermite polynomials): since the
Lemma of Céa states that the error estimate ||u—uy|| is comparable to the distance of u
to its orthogonal projection on V}, hence the convergence rate will be better according
to the regularity of u (for instance, the more regular u, the more rapidly its Fourier
coefficients decay to 0).

16-dec-2012 (2 hrs). Integration by parts formula in R™ and notion of weak (partial)
derivatives. Example: the function |z|, for x € R, has the Heaviside function as
weak derivative. Sobolev spaces W1P(R™), W'P(I), I C R an interval, and WhP().
Definition of W1P(R") as the completion of C>°(R™) w.r.t. the W norm |jul|y1» =
|ullr + ||Vul|ze. Definition of WP(Q) as the space of those u € LP(Q) admitting
weak derivatives in LP(2). Continuity properties of Sobolev functions in I C R. Some
properties of W1P(Q): completeness, reflexivity, separability, according to the exponent

p-

18-dec-2012 (2 hrs). Density of smooth functions in W'(Q): extension of a function
u € WHP(Q) to a function u € WP(R™) and regularization by convolution. Leibniz’
rule and chain rule for Sobolev maps. The Hilbert space H' = W2, Characterization
of maps in W?(Q): uniformly bounded differential quotients w.r.t the L” norm, weak
derivative as a bounded linear functional on L”’: in case p = 1 these properties char-
acterize the space BV () of functions of bounded variation, i.e. the functions whose
weak partial derivatives are represented by Radon measures. Example: the Heavi-
side function has the Dirac mass d, as weak derivative. The space VVO1 P(Q), Poincaré
inequality.

19-dec-2012 (2 hrs). First written test.

14-jan-2013 (2 hrs). Weak / variational formulation of elliptic boundary value prob-
lems in dimension 1. Classical vs weak solutions. Homogeneous Dirichlet problem:
weak formulation in H{, existence, uniqueness, a priori estimates, H?-regularity and
higher regularity of the weak solution of the Variational characterization of the weak
solution as the minimizer of the Dirichlet energy. Analysis of the (homogeneous)
Sturm-Liouville problem, spectral decomposition of Sturm-Liouville operators, spec-
tral approximation methods. Homogeneous Neumann problem: weak formulation in



H*', existence, uniqueness, a priori estimates, variational characterization of the weak
solution, higher regularity.

16-jan-2013 (2 hrs). Non homogeneous Dirichlet and Neumann problems, Stampac-
chia theorem. Examples with mixed / periodic boundary conditions, and with non
symmetric associated bilinear form. Maximum principle for the Dirichlet problem,
Stampacchia’s truncation method. Corollaries: comparison principles, stability in L>
for the solution with respect to the data.

21-jan-2013 (2 hrs). Sobolev spaces W1P(R™), W1?(Q) with Q C R" open bounded
of class C!. Critical exponent p*. Sobolev embedding theorems in the subcritical, crit-
ical (Sobolev-Gagliardo-Nirenberg) and supercritical (Sobolev-Morrey) case. Sobolev
embedding in the case p = 1 and isoperimetric inequality in R™.

Rellich-Kondrachov compact embedding for W?(Q2), 2 C R"™ open bounded of
class C*. The space I/VOl P(Q2) with Q C R™ open bounded, Poincaré inequality.

Weak and variational formulation of elliptic boundary value problems in 2 C R™:
formulation in H} of the homogeneous Dirichlet problem with datum f € L?, existence,
uniqueness, a priori estimates for the weak solution via Lax-Milgram. Variational
characterization as the minimizer of the energy E(v) = |[Vv|3 + ||[v — f]|3 on H}(Q).
Elliptic problems in divergence form.

22-jan-2013 (2 hrs). Solvability of a general second-order elliptic boundary value prob-
lem in divergence form through the Fredholm Alternative. Nonhomogeneous Dirichlet
problem. Homogeneous Neumann problem. Maximum principle for elliptic equations.
Spectral theory of the Laplacian: existence of a Hilbert basis of L?(2) made by eigen-
functions of the Laplacian in H}(Q2). The heat equation and the wave equation: meth-
ods of resolution through discretization in time (Euler-type schemes) or through finite-
dimensional approximation of the Laplacian (Galerkin method, corresponding to the
technique of separation of variables). Gradient flow aspects of the heat equation. Dis-
cretized gradient flow of the Dirichlet energy as an example of Tychonoff regularization
in machine learning theory.

23-jan-2013 (2hrs). Identification of M(£2), the space of Radon measures on 2 C R”
with the dual space C?(2)’ via Riesz representation theorem. Weak-* convergence on
a dual space and Banach-Alaloglu compactness theorem. Application to the existence
of solutions to minimum norm problems in dual spaces via direct methods (i.e. weak-*
compactness of minimizing sequences plus lower semicontinuity of the norm).

Definition and characterization of the space BV (Q2) (function of bounded variation):
uw € BV(Q) if u € L'(Q) and the (distributional) gradient Du = (Diu, ..., D,u) is a
(vector) Radon measure, which satisfies the integration by part formula (Gauss-Green)

/udiv&z—/dj-dl?u for any ¢ € [CO(Q)]".
Q Q



Total variation of a vector Radon measure: for g = (p1,..., ptn) with g, € M(Q) =
(CY(£2))" we have the decomposition fi = |i|, where |/i| is a positive measure (called
the total variation measure) and |/(z)| = 1 for |fi| a.e. x € Q. The total variation of
i1 is defined as

1]l = sup{/ﬂdg-dﬁZ /Qa;- v, ¢e[CHV Nl < 1} = [#]($2).

Example: the characteristic function 1z of an open bounded set £ C R" with 0F N )
of class C! belongs to BV (Q), since by Gauss-Green formula

-,

D1E(¢):—/div¢3’dx=— ; ¢-fdo,
E E

where 77 is Ehe unit outer normal to JF and do is the surface measure on OF, so
that [D1g(¢)| < [|¢]|c - Area(OF N Q), i.e. D1g is a vector Radon measure, and in
particular D1y = v|D1g|, where /(z) = —7i(z) is the inner unit normal to 0F N and

|D1g| = do. By a suitable choice of the test function ¢ in such a way that |¢(x)] <1
and ¢ = —1 on OE N one gets |D1g|(Q2) = Area(0F N Q).

Definition of finite perimeter (or Caccioppoli) sets in €2: they are Lebesgue measur-
able sets E C € such that Po(FE) = |D1g|() < 400, i.e. 1 € BV(Q). Isoperimetric

and isovolumetric problem in R”. Weak formulation of the isovolumetric problem in
the class of finite perimeter sets: fix R > 1 (sufficiently large) and set

P {E C Ba(0), £(E) = / 1pdC" =1, 15 € BV(Bar(0)) } ,

i.e. P contains sets £ C Bg(0) having unit volume and finite perimeter ||[D1g| =
|D1g|(B2r(0)) in Bygr(0): observe that since E C Bg(0), the perimeter of E in Byg(0)
coincides with the whole perimeter of £ in R", i.e. with |D1g|(R"). Consider the
isovolumetric problem

min | D1g|| .
EeP

If £, € P is a minimizing sequence, i.e. ||D1g,| — infpep || D1p||, we have
5, |v(B2r0) = 1+ [[D1g, || < C

so that, up to a subsequence, 1z, — 1g in L'(Byr(0)) by the compact embedding of
BV (Byg(0)) in L'(B2x(0)) (Rellich Theorem). We deduce E C Bg(0) and L"(E) = 1.
Moreover, passing to the limit in the integration by part formula, we have D1g_ (¢) —

D1g(¢) for any ¢ € [CO(R™)]" and

n—+00 FeP

by lower semicontinuity of the total variation norm. Hence F has minimum perimeter
in the class P.



The regularity theory (based for example on Steiner symmetrization) allows to
conclude that the optimal set £ is the unit volume round ball in R".
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