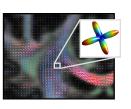
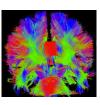
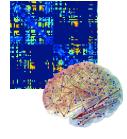

Diffusion MRI: quantifying structural connectivity


Connectivity mapping with diffusion MRI

(1/2)


Typical pipeline



Is tractography quantitative?

One frustrating thing about tractography is that it takes a quantitative acquisition method (diffusion MRI) and makes it less quantitative. That is, less quantitative from the point of view of connectivity. Of course, diffusion MR is a quantitative method: it allows us to calculate the—albeit apparent—diffusion coefficient with great accuracy. Hence we can use

[Jbabdi et al., 2011]

Local reconstruction

Diffusion features

- Diffusion Tensor Imaging (Basser et al, 1994)
- Diffusion Spectrum Imaging (Wedeen et al, 2000)
- Spherical Deconvolution (Tournier et al, 2004)
- Diffusion Orientation Transform (Ozarslan et al, 2006)
- Q-BALL in Constant Solid Angle (Agani et al, 2010)
- ...

Microstructure features

- Ball-and-stick (Behrens et al, 2003)
- CHARMED (Assaf et al, 2005)
- AxCaliber (Assaf et al, 2008)
- MMWMD (Alexander et al, 2010)
- NODDI (Zhang et al, 2012)
- ...

Tractography

Line-propagation

- FACT (Mori et al. 1999)
- RK4 (Basser et al, 2000)
- ...

Probabilistic

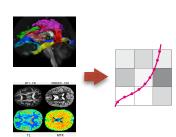
- PICo (Parker et al, 2003)
- ProbTrackX (Behrens et al, 2003)
- ...

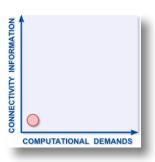
Front-evolution

- Fast marching tractography (Parker et al, 2002)
- Anisotropic geodesic tractography (Jbabdi et al, 2008)
- ...

Global energy-minimization

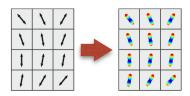
- GIBBS tracking (Kreher et al, 2008)
- Spin-glass tractography (Fillard et al, 2009)
- ...

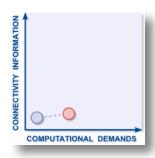

Connectivity mapping with diffusion MRI


(2/2)

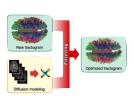
Line-propagation tracking

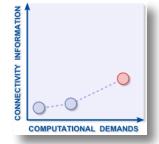
- ↑ ≃ few minutes/brain, but...
- ... "fiber count" is not quantitative
- ↑ Tractometry is (slightly) more quantitative, but...
- ...measures are indirect (superposition of effects)





Probabilistic variant

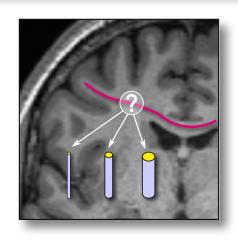

- ↑ Slightly more informative (confidence), but...
- ...no significant benefits for connectivity



Global inverse problem

- **† Higher quality** of reconstructions, but...
- ...complexity leaves many open-questions for connectivity
- ↑ Slightly more quantitative (fibers have contribution), but...
- ...forward-model based on orientation information only

(1/5)

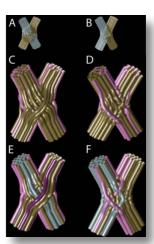

- MicroTrack algorithm: [Sherbondy et al., 2010]
 - ► Same filtering/top-down strategy of *BlueMatter*, but simultaneously estimates **fiber-specific features**, too i.e. axon density and mean diameter
 - ► Biophysical forward-model [Alexander et al., 2010]:

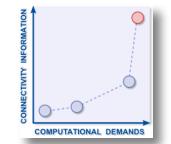
$$A(\mathbf{G},\Delta,\delta;\mathbf{n},r,f,d,d_p) = fA_r(\mathbf{G},\Delta,\delta;\mathbf{n},r,f,d) + (1-f)A_h(\mathbf{G},\Delta,\delta;\mathbf{n},d,d_p),$$

- $\overline{}$ f, $A_{
 m r}$: restricted water inside axons (cylinders)
- -(1-f), A_h : hindered water between axons
- G, δ, Δ : parameters of the acquisition sequence
- \boldsymbol{n} , \boldsymbol{r} , \boldsymbol{d} , \boldsymbol{d}_p : local parameters of a fiber tract
- ► Assumes **constant properties** along fibers

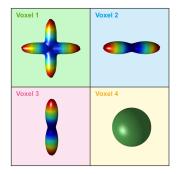
Notes:

- ↑ Can <u>estimate directly</u> both:
 - Topology of the network, i.e. fibers geometry and arrangement
 - Morphology of the connections, e.g. their average axon diameter
- ↑ Results showed that <u>common ambiguities can be solved</u> adding more information to tractography (**not only orientation!**)
- **↓** ≃ 21 days/brain

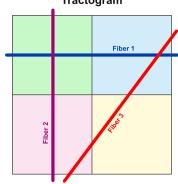



topology

morphology

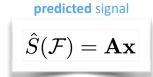


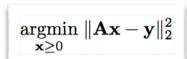
CSF in



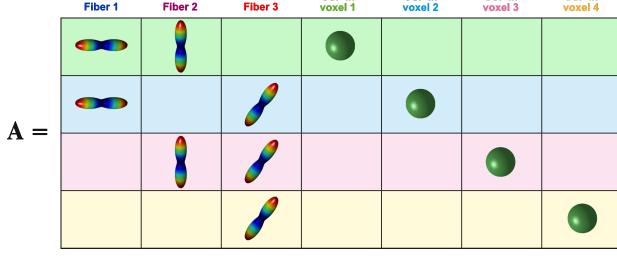
COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography [Daducci et al., 2013;2014]

Acquired DWI image





measured signal



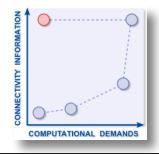
CSF in

CSF in

CSF in

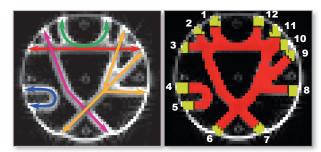
X X $\mathbf{x} =$

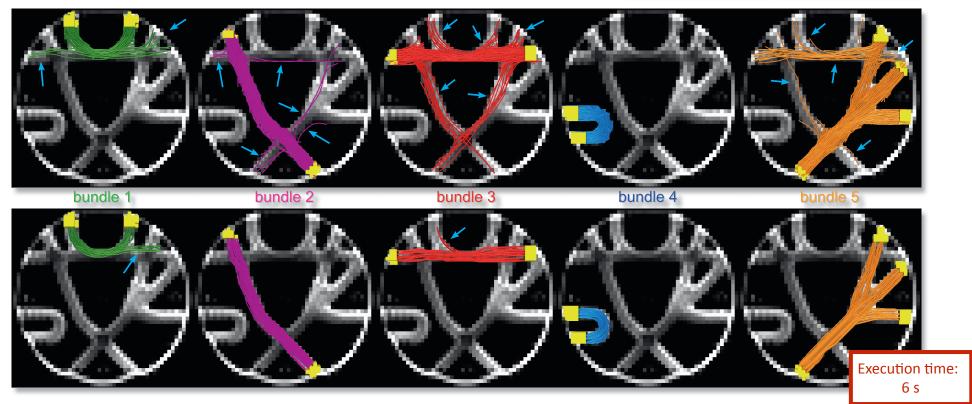
Forward model



(for the rest)

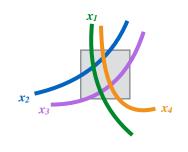
NOTES

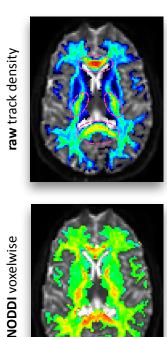

- Any forward-model can be used
- Not restricted to diffusion MRI, e.g. myelin, T1, T2 etc



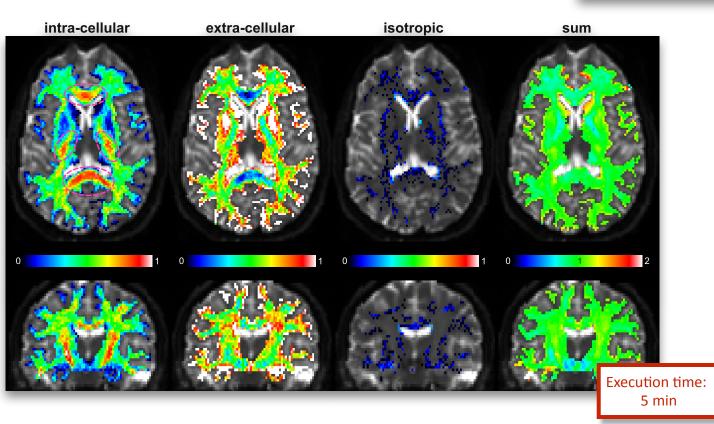
(3/5)

EXAMPLE 1: false positives identification

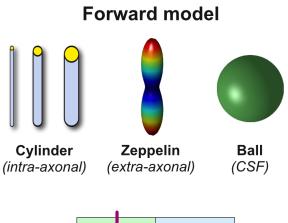

- ► False positives are a major problem in tractography:
 - Sensitivity vs specificity trade-off [Thomas et al., 2014; Descoteaux et al., 2016]
 - False positives are <u>critical for connectivity</u> [Zalesky et al., 2016]
- Experimental setup:
 - FiberCup dataset: 64@b=1500 s/mm², 3x3x3 mm
 - Stick-Ball model

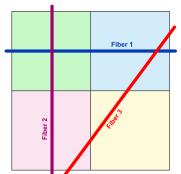


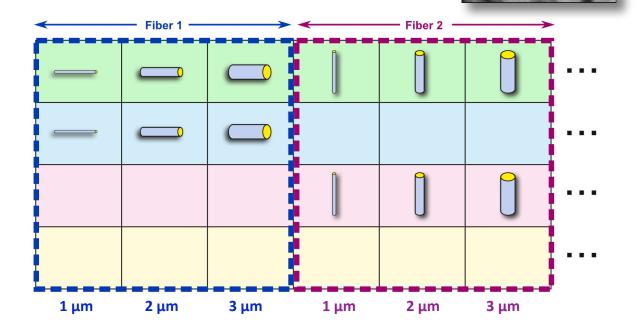
EXAMPLE 2: biological plausibility


► Project weights *x* of fibers to each voxel and compare to previous studies

- ► Experimental setup:
 - Clinical dataset: 24@b=700 s/mm² and 48@2000 s/mm², G=40 mT/m
 - **Stick-Zeppelin-Ball** model

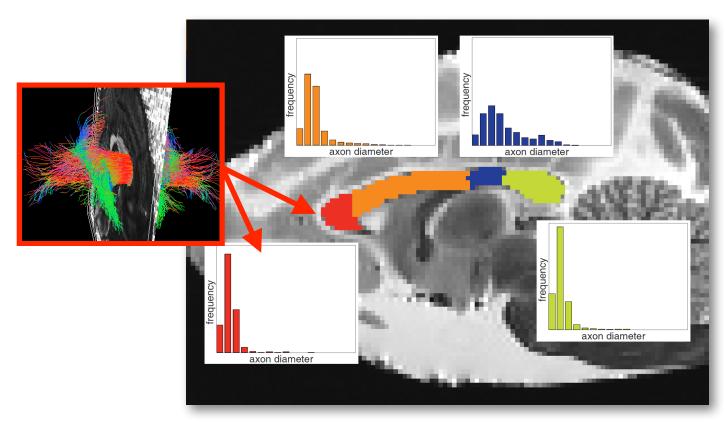


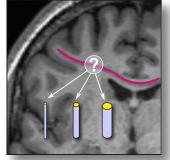




EXAMPLE 3: towards quantitative connectivity mapping

- ► Microstructure imaging only possible **voxel-wise** [Assaf et al., 2008; Alexander et al., 2010; ...] and our aim was to <u>estimate properties specific to the tracts</u>
- ► Experimental setup:
 - Ex-vivo monkey dataset : G={300,220,300} mT/m, Δ ={12,20,17} ms, δ ={6,7,10} ms
 - Cylinder-Zeppelin-Ball model

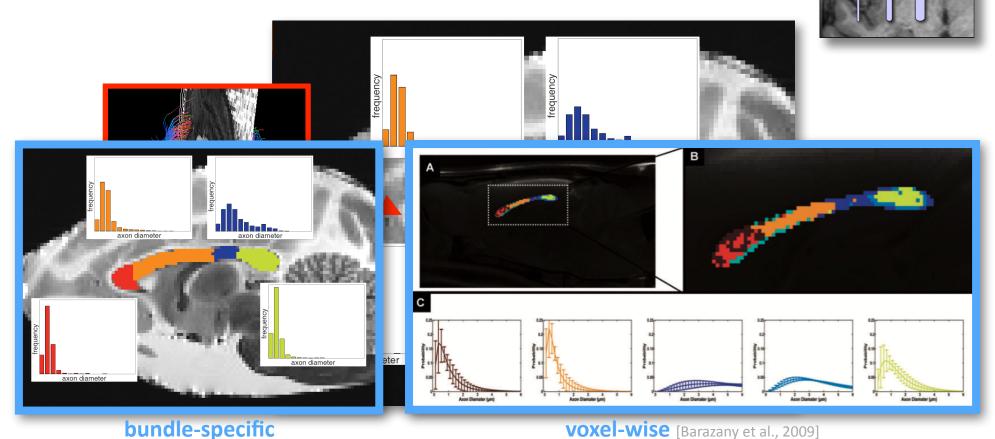



(5/5)

EXAMPLE 3: towards quantitative connectivity mapping

► Microstructure imaging only possible **voxel-wise** [Assaf et al., 2008; Alexander et al., 2010; ...] and our aim was to <u>estimate properties specific to the tracts</u>

- ► Experimental setup:
 - Ex-vivo monkey dataset : G={300,220,300} mT/m, Δ ={12,20,17} ms, δ ={6,7,10} ms
 - Cylinder-Zeppelin-Ball model



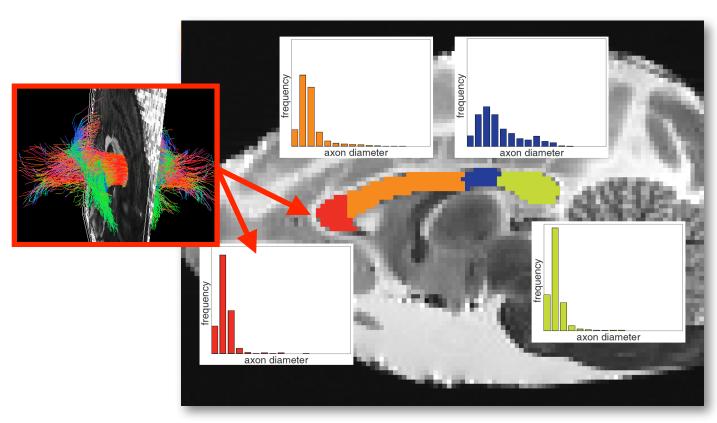
(5/5)

EXAMPLE 3: towards quantitative connectivity mapping

► Microstructure imaging only possible **voxel-wise** [Assaf et al., 2008; Alexander et al., 2010; ...] and our aim was to <u>estimate properties specific to the tracts</u>

- ► Experimental setup:
 - Ex-vivo monkey dataset : G={300,220,300} mT/m, Δ ={12,20,17} ms, δ ={6,7,10} ms
 - Cylinder-Zeppelin-Ball model

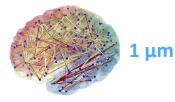
Biomedical Image Processing

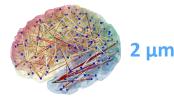

Alessandro Daducci

(5/5)


EXAMPLE 3: towards quantitative connectivity mapping

► Microstructure imaging only possible **voxel-wise** [Assaf et al., 2008; Alexander et al., 2010; ...] and our aim was to <u>estimate properties specific to the tracts</u>


- ► Experimental setup:
 - Ex-vivo monkey dataset : G={300,220,300} mT/m, Δ ={12,20,17} ms, δ ={6,7,10} ms
 - Cylinder-Zeppelin-Ball model



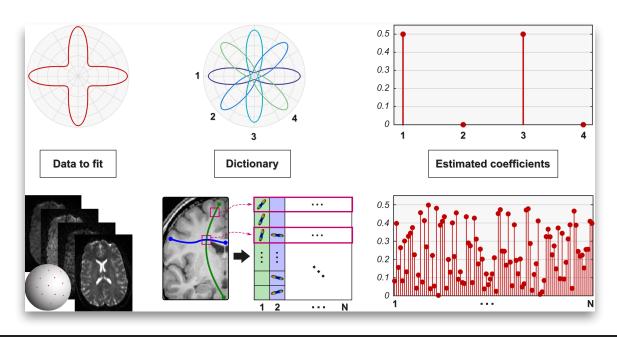
Multi-scale connectivity analysis

Biomedical Image Processing

Critical issue: interpretation of outcomes

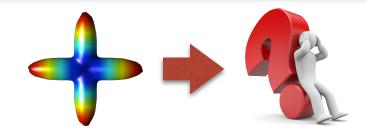
- Interpretation is challenging:
 - ► Tractography reconstructions are *huge*
 - These global techniques are new and very complex

COMMIT provides a convenient analogy to easily highlight potential dangers in connectivity mapping


e.g. [Tournier et al., 2007]

$$\mathbf{f}_{i+1} = \operatorname{arg\ min}\{\left\|\mathbf{A}\mathbf{f}_i - \mathbf{b}\right\|^2 + \lambda^2 \|\mathbf{L}\mathbf{f}_i\|^2\}$$

Global reconstruction


e.g. [Daducci et al., 2014]

$$\operatorname*{argmin}_{\mathbf{x} \geq 0} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

Summary

- Tractography alone is **not quantitative**
 - Orientation information only is not enough

- Microstructure informed tractography seems a promising avenue to improve connectivity quantification...
 - Flexible: allows combining tractography with any microstructure model
 - Tractable: fast and efficient
- ...but there's **still work to do!**
 - ► *Interpretation* of outcomes is non-trivial
 - Many open questions still remain
 - Many *issues* still need to be solved

Microstructure Informed Tractography: Pitfalls and Open Challenges

n Neuroscience published: 06 June 2016 doi: 10.3389/fnins.2016.00247

Alessandro Daducci 1,2,3*, Alessandro Dal Palú 1, Maxime Descoteaux 3 and

To give it a try or contribute: https://github.com/daducci/COMMIT