

Synchronization of processes

Adapted by Tiziano Villa from lecture notes by
Prof. John Kubiatowicz (UC Berkeley)

2 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Multiprocessing vs Multiprogramming

• Remember Definitions:
– Multiprocessing  Multiple CPUs
– Multiprogramming  Multiple Jobs or Processes
– Multithreading  Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A B C

B A A C B C B Multiprogramming

A
B
C

Multiprocessing

3 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Correctness for systems with concurrent threads

• If dispatcher can schedule threads in any way,
programs must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic  Input state determines results
– Reproducible  Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that
bugs can be intermittent
– Sometimes called “Heisenbugs”

4 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Interactions Complicate Debugging

• Is any program truly independent?
– Every process shares the file system, OS resources,
network, etc

– Extreme example: buggy device driver causes thread A to
crash “independent thread” B

• You probably don’t realize how much you depend on
reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

– Example: Debugging statements can overrun stack

• Non-deterministic errors are really difficult to find
– Example: Memory layout of kernel+user programs

» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

5 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives,
so computers must cooperate
– By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

6 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

 serverLoop() {

 con = AcceptCon();

 ProcessFork(ServiceWebPage(),con);

 }

• What are some disadvantages of this technique?

7 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Threaded Web Server

• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {

 connection = AcceptCon();

 ThreadFork(ServiceWebPage(),connection);

 }

• Looks almost the same, but has many advantages:
– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• Question: would a user-level (say one-to-many)
thread package make sense here?
– When one request blocks on disk, all block…

• What about Denial of Service attacks or digg /
Slash-dot effects?

8 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Thread Pools

• Problem with previous version: Unbounded Threads
– When web-site becomes too popular – throughput sinks

• Instead, allocate a bounded “pool” of worker threads,
representing the maximum level of multiprogramming

master() {

 allocThreads(worker,queue);

 while(TRUE) {

 con=AcceptCon();

 Enqueue(queue,con);

 wakeUp(queue);

 }

}

worker(queue) {

 while(TRUE) {

 con=Dequeue(queue);

 if (con==null)

 sleepOn(queue);

 else

 ServiceWebPage(con);

 }

}

Master
Thread

Thread Pool

que
ue

9 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

10 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

ATM bank server example

• Suppose we wanted to implement a server process to
handle requests from an ATM network:

 BankServer() {
 while (TRUE) {
 ReceiveRequest(&op, &acctId, &amount);
 ProcessRequest(op, acctId, amount);
 }
}

 ProcessRequest(op, acctId, amount) {
 if (op == deposit) Deposit(acctId, amount);
 else if …
}

 Deposit(acctId, amount) {
 acct = GetAccount(acctId); /* may use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
}

• How could we speed this up?
– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)

11 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Event Driven Version of ATM server

• Suppose we only had one CPU
– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-
driven style

• Example
 BankServer() {
 while(TRUE) {
 event = WaitForNextEvent();
 if (event == ATMRequest)
 StartOnRequest();
 else if (event == AcctAvail)
 ContinueRequest();
 else if (event == AcctStored)
 FinishRequest();
 }
 }

– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces
which could be blocking?

– This technique is used for graphical programming

12 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Can Threads Make This Easier?

• Threads yield overlapped I/O and computation without
“deconstructing” code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
 Deposit(acctId, amount) {
 acct = GetAccount(actId); /* May use disk I/O */

 acct->balance += amount;

 StoreAccount(acct); /* Involves disk I/O */

 }

• Unfortunately, shared state can get corrupted:
 Thread 1 Thread 2
 load r1, acct->balance
 load r1, acct->balance

 add r1, amount2

 store r1, acct->balance

 add r1, amount1

 store r1, acct->balance

13 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Review: Multiprocessing vs Multiprogramming

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

• Also recall: Hyperthreading
– Possible to interleave threads on a per-instruction basis
– Keep this in mind for our examples (like multiprocessing)

A B C

B A A C B C B Multiprogramming

A
B
C

Multiprocessing

14 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Problem is at the lowest level

• Most of the time, threads are working on separate
data, so scheduling doesn’t matter:

 Thread A Thread B
 x = 1; y = 2;

• However, What about (Initially, y = 12):
 Thread A Thread B
 x = 1; y = 2;
 x = y+1; y = y*2;

– What are the possible values of x?

• Or, what are the possible values of x below?
 Thread A Thread B
 x = 1; x = 2;

– X could be 1 or 2 (non-deterministic!)
– Could even be 3 for serial processors:

» Thread A writes 0001, B writes 0010.
» Scheduling order ABABABBA yields 3!

15 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Atomic Operations

• To understand a concurrent program, we need to know
what the underlying indivisible operations are!

• Atomic Operation: an operation that always runs to
completion or not at all
– It is indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the middle

– Fundamental building block – if no atomic operations, then
have no way for threads to work together

• On most machines, memory references and assignments
(i.e. loads and stores) of words are atomic
– Consequently – weird example that produces “3” on
previous slide can’t happen

• Many instructions are not atomic
– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole
array

16 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

• Threaded programs must work for all interleavings of
thread instruction sequences
– Cooperating threads inherently non-deterministic and
non-reproducible

– Really hard to debug unless carefully designed!
• Example: Therac-25

– Machine for radiation therapy
» Software control of electron

accelerator and electron beam/
Xray production

» Software control of dosage
– Software errors caused the
death of several patients

» A series of race conditions on
shared variables and poor
software design

» “They determined that data entry speed during editing
was the key factor in producing the error condition: If
the prescription data was edited at a fast pace, the
overdose occurred.”

Correctness Requirements

17 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Space Shuttle Example

• Original Space Shuttle launch aborted 20 minutes
before scheduled launch

• Shuttle has five computers:
– Four run the “Primary Avionics
Software System” (PASS)

» Asynchronous and real-time
» Runs all of the control systems
» Results synchronized and compared every 3 to 4 ms

– The Fifth computer is the “Backup Flight System” (BFS)
» stays synchronized in case it is needed
» Written by completely different team than PASS

• Countdown aborted because BFS disagreed with PASS
– A 1/67 chance that PASS was out of sync one cycle
– Bug due to modifications in initialization code of PASS

» A delayed init request placed into timer queue
» As a result, timer queue not empty at expected time to

force use of hardware clock
– Bug not found during extensive simulation

PASS

BFS

18 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Another Concurrent Program Example

• Two threads, A and B, compete with each other
– One tries to increment a shared counter

– The other tries to decrement the counter

 Thread A Thread B

 i = 0; i = 0;
 while (i < 10) while (i > -10)
 i = i + 1; i = i – 1;
 printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

• Who wins? Could be either

• Is it guaranteed that someone wins? Why or why not?

• What it both threads have their own CPU running at
same speed? Is it guaranteed that it goes on
forever?

19 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Motivation: “Too much milk”

• Great thing about OS’s – analogy between
problems in OS and problems in real life
– Help you understand real life problems better

– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away 3:30

Buy milk 3:25

Arrive at store Arrive home, put milk away 3:20

Leave for store Buy milk 3:15

Leave for store 3:05

Look in Fridge. Out of milk 3:00

Look in Fridge. Out of milk Arrive at store 3:10

Person B Person A Time

20 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Definitions

• Synchronization: using atomic operations to ensure
cooperation between threads
– For now, only loads and stores are atomic

– We are going to show that its hard to build anything
useful with only reads and writes

• Mutual Exclusion: ensuring that only one thread does
a particular thing at a time
– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread
can execute at once. Only one thread at a time will
get into this section of code.
– Critical section is the result of mutual exclusion

– Critical section and mutual exclusion are two ways of
describing the same thing.

21 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

More Definitions

• Lock: prevents someone from doing something
– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data

– Wait if locked
» Important idea: all synchronization involves waiting

• For example: fix the milk problem by putting a key on
the refrigerator
– Lock it and take key if you are going to go buy milk

– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet

22 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Too Much Milk: Correctness Properties

• Need to be careful about correctness of
concurrent programs, since non-deterministic
– Always write down behavior first

– Impulse is to start coding first, then when it
doesn’t work, pull hair out

– Instead, think first, then code

• What are the correctness properties for the
“Too much milk” problem???
– Never more than one person buys

– Someone buys if needed

• Restrict ourselves to use only atomic load and
store operations as building blocks

23 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory
read/write are atomic):
 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

• Result?
– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and
note but before buying milk!

• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…
– Must work despite what the dispatcher does!

24 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Too Much Milk: Solution #1½

• Clearly the Note is not quite blocking enough
– Let’s try to fix this by placing note first

• Another try at previous solution:

 leave Note;

 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 }
 }

 remove note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

25 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Too Much Milk Solution #2

• How about labeled notes?
– Now we can leave note before checking

• Algorithm looks like this:
 Thread A Thread B
 leave note A; leave note B;
 if (noNote B) { if (noNoteA) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead
each to think that the other is going to buy

• Really insidious:
– Extremely unlikely that this would happen, but will at
worse possible time

– Probably something like this in UNIX

26 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk

• This kind of lockup is called “starvation!”

27 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Too Much Milk Solution #3

• Here is a possible two-note solution:
 Thread A Thread B
 leave note A; leave note B;
 while (note B) { //X if (noNote A) { //Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

28 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Solution #3 discussion

• Our solution protects a single “Critical-Section” piece
of code for each thread:

 if (noMilk) {
 buy milk;
 }

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works

– A’s code is different from B’s – what if lots of threads?
» Code would have to be slightly different for each thread

– While A is waiting, it is consuming CPU time
» This is called “busy-waiting”

• There’s a better way
– Have hardware provide better (higher-level) primitives
than atomic load and store

– Build even higher-level programming abstractions on this
new hardware support

29 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Too Much Milk: Solution #4

• Suppose we have some sort of implementation of a
lock (more in a moment).
– Lock.Acquire() – wait until lock is free, then grab
– Lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are
waiting for the lock and both see it’s free, only one
succeeds to grab the lock

• Then, our milk problem is easy:
 milklock.Acquire();

 if (nomilk)

 buy milk;

 milklock.Release();

• Once again, section of code between Acquire() and
Release() called a “Critical Section”

• Of course, you can make this even simpler: suppose
you are out of ice cream instead of milk
– Skip the test since you always need more ice cream.

30 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

High-Level Picture

• The abstraction of threads is good:
– Maintains sequential execution model

– Allows simple parallelism to overlap I/O and computation

• Unfortunately, still too complicated to access state
shared between threads
– Consider “too much milk” example

– Implementing a concurrent program with only loads and
stores would be tricky and error-prone

• As a solution, we’ll implement higher-level operations
on top of atomic operations provided by hardware
– Develop a “synchronization toolbox”

– Explore some common programming paradigms

31 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Where are we going with synchronization?

• We are going to implement various higher-level
synchronization primitives using atomic operations
– Everything is pretty painful if only atomic primitives are
load and store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

Higher-
level

API

Programs

32 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

How to implement Locks?

• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

• Atomic Load/Store: get solution like Milk #3

– Looked at this last lecture
– Pretty complex and error prone

• Hardware Lock instruction

– Is this a good idea?
– What about putting a task to sleep?

» How do you handle the interface between the hardware and
scheduler?

– Complexity?
» Done in the Intel 432
» Each feature makes hardware more complex and slow

33 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
 LockAcquire { disable Ints; }

 LockRelease { enable Ints; }

• Problems with this approach:
– Can’t let user do this! Consider following:

 LockAcquire();
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

34 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Better Implementation of Locks by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE;

Acquire() {

 disable interrupts;

 if (value == BUSY) {

 put thread on wait queue;

 Go to sleep();

 // Enable interrupts?

 } else {

 value = BUSY;

 }

 enable interrupts;

}

Release() {

 disable interrupts;

 if (anyone on wait queue) {

 take thread off wait queue

 Place on ready queue;

 } else {

 value = FREE;

 }

 enable interrupts;

}

35 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

New Lock Implementation: Discussion

• Why do we need to disable interrupts at all?
– Avoid interruption between checking and setting lock value
– Otherwise two threads could think that they both have lock

• Note: unlike previous solution, the critical section
(inside Acquire()) is very short
– User of lock can take as long as they like in their own
critical section: doesn’t impact global machine behavior

– Critical interrupts taken in time!

Acquire() {

 disable interrupts;

 if (value == BUSY) {

 put thread on wait queue;

 Go to sleep();

 // Enable interrupts?

 } else {

 value = BUSY;

 }

 enable interrupts;

}

Critical
Section

36 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Interrupt re-enable in going to sleep

• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the
thread still thinks it needs to go to sleep

– Misses wakeup and still holds lock (deadlock!)

• Want to put it after sleep(). But – how?

Acquire() {

 disable interrupts;

 if (value == BUSY) {

 put thread on wait queue;

 Go to sleep();

 } else {

 value = BUSY;

 }

 enable interrupts;

}

Enable Position
Enable Position
Enable Position

37 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

How to Re-enable After Sleep()?

• In Nachos, since ints are disabled when you call sleep:
– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

 Thread A Thread B
 .
 .
 disable ints
 sleep

 sleep return
 enable ints

 .
 .
 .

 disable int
 sleep

 sleep return
 enable ints
 .
 .

38 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Interrupt disable and enable across context switches

• An important point about structuring code:
– In Nachos code you will see lots of comments about
assumptions made concerning when interrupts disabled

– This is an example of where modifications to and
assumptions about program state can’t be localized
within a small body of code

– In these cases it is possible for your program to
eventually “acquire” bugs as people modify code

• Other cases where this will be a concern?
– What about exceptions that occur after lock is
acquired? Who releases the lock?

 mylock.acquire();

 a = b / 0;

 mylock.release()

39 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Atomic Read-Modify-Write instructions

• Problems with previous solution:
– Can’t give lock implementation to users

– Doesn’t work well on multiprocessor
» Disabling interrupts on all processors requires messages

and would be very time consuming

• Alternative: atomic instruction sequences
– These instructions read a value from memory and write
a new value atomically

– Hardware is responsible for implementing this correctly
» on both uniprocessors (not too hard)

» and multiprocessors (requires help from cache coherence
protocol)

– Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors

40 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */

 result = M[address];
 M[address] = 1;
 return result;
}

• swap (&address, register) { /* x86 */
 temp = M[address];
 M[address] = register;
 register = temp;
}

• compare&swap (&address, reg1, reg2) { /* 68000 */
 if (reg1 == M[address]) {
 M[address] = reg2;
 return success;
 } else {
 return failure;
 }
}

• load-linked&store conditional(&address) {
 /* R4000, alpha */
 loop:
 ll r1, M[address];
 movi r2, 1; /* Can do arbitrary comp */
 sc r2, M[address];
 beqz r2, loop;
}

41 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Implementing Locks with test&set

• Another flawed, but simple solution:

 int value = 0; // Free

 Acquire() {

 while (test&set(value)); // while busy

 }

 Release() {

 value = 0;

 }

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so
lock is now busy. It returns 0 so while exits.

– If lock is busy, test&set reads 1 and sets value=1 (no
change). It returns 1, so while loop continues

– When we set value = 0, someone else can get lock

• Busy-Waiting: thread consumes cycles while waiting

42 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

• compare&swap (&address, reg1, reg2) { /* 68000 */
 if (reg1 == M[address]) {
 M[address] = reg2;
 return success;
 } else {
 return failure;
 }
}

Here is an atomic add to linked-list function:
 addToQueue(&object) {
 do { // repeat until no conflict
 ld r1, M[root] // Get ptr to current head
 st r1, M[object] // Save link in new object
 } until (compare&swap(&root,r1,object));
}

Using of Compare&Swap for queues

root next next

next

New
Object

43 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Problem: Busy-Waiting for Lock

• Positives for this solution
– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient because the busy-waiting
thread will consume cycles waiting

– Waiting thread may take cycles away from thread
holding lock (no one wins!)

– Priority Inversion: If busy-waiting thread has higher
priority than thread holding lock  no progress!

• Priority Inversion problem with original Martian rover
• For semaphores and monitors, waiting thread may

wait for an arbitrary length of time!
– Thus even if busy-waiting was OK for locks, definitely
not ok for other primitives

– Homework/exam solutions should not have busy-waiting!

44 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Better Locks using test&set

• Can we build test&set locks without busy-waiting?
– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {

 // Short busy-wait time

 while (test&set(guard));

 if anyone on wait queue {

 take thread off wait queue

 Place on ready queue;

 } else {

 value = FREE;

 }

 guard = 0;

int guard = 0;

int value = FREE;

Acquire() {

 // Short busy-wait time

 while (test&set(guard));

 if (value == BUSY) {

 put thread on wait queue;

 go to sleep() & guard = 0;

 } else {

 value = BUSY;

 guard = 0;

 }

}

45 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Higher-level Primitives than Locks

• Goal of last couple of lectures:
– What is the right abstraction for synchronizing threads
that share memory?

– Want as high a level primitive as possible

• Good primitives and practices important!
– Since execution is not entirely sequential, really hard to
find bugs, since they happen rarely

– UNIX is pretty stable now, but up until about mid-80s
(10 years after started), systems running UNIX would
crash every week or so – concurrency bugs

• Synchronization is a way of coordinating multiple
concurrent activities that are using shared state
– This lecture and the next presents a couple of ways of
structuring the sharing

46 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Semaphores

• Semaphores are a kind of generalized lock
– First defined by Dijkstra in late 60s

– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:
– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation

– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V()
stands for “verhogen” (to increment) in Dutch

47 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Value=2 Value=1 Value=0

Semaphores Like Integers Except

• Semaphores are like integers, except
– No negative values

– Only operations allowed are P and V – can’t read or write
value, except to set it initially

– Operations must be atomic
» Two P’s together can’t decrement value below zero

» Similarly, thread going to sleep in P won’t miss wakeup
from V – even if they both happen at same time

• Semaphore from railway analogy
– Here is a semaphore initialized to 2 for resource control:

Value=1 Value=0 Value=2

48 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Two Uses of Semaphores

• Mutual Exclusion (initial value = 1)
– Also called “Binary Semaphore”.
– Can be used for mutual exclusion:

 semaphore.P();
 // Critical section goes here
 semaphore.V();

• Scheduling Constraints (initial value = 0)
– Locks are fine for mutual exclusion, but what if you
want a thread to wait for something?

– Example: suppose you had to implement ThreadJoin
which must wait for thread to terminiate:

 Initial value of semaphore = 0

 ThreadJoin {
 semaphore.P();
 }

 ThreadFinish {
 semaphore.V();
 }

49 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them
– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of cokes in machine
– Consumer can’t take cokes out if machine is empty

Producer Consumer Buffer

50 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Correctness constraints for solution

• Correctness Constraints:
– Consumer must wait for producer to fill buffers, if none
full (scheduling constraint)

– Producer must wait for consumer to empty buffers, if all
full (scheduling constraint)

– Only one thread can manipulate buffer queue at a time
(mutual exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the
machine and somebody comes up and tries to stick their
money into the machine

• General rule of thumb:
Use a separate semaphore for each constraint
– Semaphore fullBuffers; // consumer’s constraint

– Semaphore emptyBuffers;// producer’s constraint

– Semaphore mutex; // mutual exclusion

51 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Full Solution to Bounded Buffer

 Semaphore fullBuffer = 0; // Initially, no coke

 Semaphore emptyBuffers = numBuffers;
 // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptyBuffers.P(); // Wait until space
 mutex.P(); // Wait until buffer free
 Enqueue(item);
 mutex.V();
 fullBuffers.V(); // Tell consumers there is
 // more coke
}

 Consumer() {
 fullBuffers.P(); // Check if there’s a coke
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptyBuffers.V(); // tell producer need more
 return item;
}

52 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()

– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?
– Do we need to change anything?

53 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock:

 Producer(item) {
 mutex.P(); // Wait until buffer free

 emptyBuffers.P(); // Could wait forever!
 Enqueue(item);
 mutex.V();
 fullBuffers.V(); // Tell consumers more coke
 }

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?
– Do we need to change anything?

54 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Motivation for Monitors and Condition Variables

• Semaphores are a huge step up; just think of trying
to do the bounded buffer with only loads and stores
– Problem is that semaphores are dual purpose:

» They are used for both mutex and scheduling constraints

» Example: the fact that flipping of P’s in bounded buffer
gives deadlock is not immediately obvious. How do you
prove correctness to someone?

• Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more
condition variables for managing concurrent access to
shared data
– Some languages like Java provide this natively

– Most others use actual locks and condition variables

55 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

 Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: make it possible to go to sleep inside critical
section by atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

56 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Simple Monitor Example (version 1)

• Here is an (infinite) synchronized queue
 Lock lock;
 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Lock shared data
 queue.enqueue(item); // Add item
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {
 lock.Acquire(); // Lock shared data
 item = queue.dequeue();// Get next item or null
 lock.Release(); // Release Lock
 return(item); // Might return null
 }

• Not very interesting use of “Monitor”
– It only uses a lock with no condition variables
– Cannot put consumer to sleep if no work!

57 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Condition Variables

• How do we change the RemoveFromQueue() routine to
wait until something is on the queue?
– Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!
– In Birrell paper, he says can perform signal() outside of
lock – IGNORE HIM (this is only an optimization)

58 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Complete Monitor Example (with condition variable)

• Here is an (infinite) synchronized queue
 Lock lock;
 Condition dataready;
 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Get Lock
 queue.enqueue(item); // Add item
 dataready.signal(); // Signal any waiters
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {
 lock.Acquire(); // Get Lock
 while (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item
 lock.Release(); // Release Lock
 return(item);
 }

59 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal

and wait. Consider a piece of our dequeue code:
 while (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

– Why didn’t we do this?
 if (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it

exits critical section or if it waits again
– Mesa-style (Nachos, most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

60 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database

» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time

» Only one writer at a time

R
R

R

W

61 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Basic Readers/Writers Solution

• Correctness Constraints:
– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()
 Wait until no writers
 Access data base
 Check out – wake up a waiting writer

– Writer()
 Wait until no active readers or writers
 Access database
 Check out – wake up waiting readers or writer

– State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Conditioin okToWrite = NIL

62 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Code for a Reader

 Reader() {

 // First check self into system

 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?

 WR++; // No. Writers exist

 okToRead.wait(&lock); // Sleep on cond var

 WR--; // No longer waiting

 }

 AR++; // Now we are active!

 lock.release();

 // Perform actual read-only access

 AccessDatabase(ReadOnly);

 // Now, check out of system

 lock.Acquire();

 AR--; // No longer active

 if (AR == 0 && WW > 0) // No other active readers

 okToWrite.signal(); // Wake up one writer

 lock.Release();

}

Why Release the
Lock here?

63 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

 Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.Acquire();
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }
 lock.Release();
}

Why Give priority
to writers?

Code for a Writer

Why broadcast()
here instead of

signal()?

64 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Simulation of Readers/Writers solution

• Consider the following sequence of operators:
– R1, R2, W1, R3

• On entry, each reader checks the following:
 while ((AW + WW) > 0) { // Is it safe to read?

 WR++; // No. Writers exist

 okToRead.wait(&lock); // Sleep on cond var

 WR--; // No longer waiting

 }

 AR++; // Now we are active!

• First, R1 comes along:
 AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along:
 AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers make take a while to access database
– Situation: Locks released

– Only AR is non-zero

65 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Simulation(2)

• Next, W1 comes along:
 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;

• Can’t start because of readers, so go to sleep:
 AR = 2, WR = 0, AW = 0, WW = 1
• Finally, R3 comes along:

 AR = 2, WR = 1, AW = 0, WW = 1
• Now, say that R2 finishes before R1:

 AR = 1, WR = 1, AW = 0, WW = 1
• Finally, last of first two readers (R1) finishes and

wakes up writer:
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

66 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Simulation(3)

• When writer wakes up, get:
 AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
 if (WW > 0){ // Give priority to writers

 okToWrite.signal(); // Wake up one writer

 } else if (WR > 0) { // Otherwise, wake reader

 okToRead.broadcast(); // Wake all readers

 }

– Writer wakes up reader, so get:

 AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished

67 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Questions

• Can readers starve? Consider Reader() entry code:
 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
 AR--; // No longer active

 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

• Further, what if we turn the signal() into broadcast()
 AR--; // No longer active
 okToWrite.broadcast(); // Wake up one writer

• Finally, what if we use only one condition variable (call
it “okToContinue”) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

68 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }

 Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have
history:

» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment
» What if thread later does P? Decrement and continue

69 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() {
 if semaphore queue is not empty
 semaphore.V();
}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock
release and before waiter executes semaphore.P()

• It is actually possible to do this correctly
– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

70 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Monitor Conclusion

• Monitors represent the logic of the program
– Wait if necessary
– Signal when change something so any waiting threads
can proceed

• Basic structure of monitor-based program:
 lock
while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

71 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a
critical section

 int Rtn() {
 lock.acquire();
 …
 if (exception) {
 lock.release();
 return errReturnCode;
 }
 …
 lock.release();
 return OK;
}

– Watch out for setjmp/longjmp!
» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack

back to procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
lock.acquire

Proc D

Proc E
Calls longjmp

S
ta

ck
 grow

th

72 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

C++ Language Support for Synchronization

• Languages with exceptions like C++
– Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

– Consider:
 void Rtn() {

 lock.acquire();

 …

 DoFoo();

 …

 lock.release();

 }

 void DoFoo() {

 …

 if (exception) throw errException;

 …

 }

– Notice that an exception in DoFoo() will exit without
releasing the lock

73 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

C++ Language Support for Synchronization (con’t)

• Must catch all exceptions in critical sections
– Catch exceptions, release lock, and re-throw exception:
 void Rtn() {
 lock.acquire();
 try {
 …
 DoFoo();
 …
 } catch (…) { // catch exception
 lock.release(); // release lock
 throw; // re-throw the exception
 }
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

– Even Better: auto_ptr<T> facility. See C++ Spec.
» Can deallocate/free lock regardless of exit method

74 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example:
 class Account {
 private int balance;
 // object constructor
 public Account (int initialBalance) {
 balance = initialBalance;
 }
 public synchronized int getBalance() {
 return balance;
 }
 public synchronized void deposit(int amount) {
 balance += amount;
 }
 }

– Every object has an associated lock which gets
automatically acquired and released on entry and exit
from a synchronized method.

75 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:

 synchronized (object) {

 …

 }

– Since every Java object has an associated lock, this
type of statement acquires and releases the object’s
lock on entry and exit of the body

– Works properly even with exceptions:

 synchronized (object) {

 …

 DoFoo();

 …

 }

 void DoFoo() {

 throw errException;

 }

76 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Java Language Support for Synchronization (con’t 2)

• In addition to a lock, every object has a single
condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout

» void wait(long timeout, int nanoseconds); //variant

» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter

» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of
time. This is useful for handling exception cases:

 t1 = time.now();
 while (!ATMRequest()) {
 wait (CHECKPERIOD);
 t2 = time.new();
 if (t2 – t1 > LONG_TIME) checkMachine();
 }

– Not all Java VMs equivalent!
» Different scheduling policies, not necessarily preemptive!

77 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Summary

• Concurrent threads are a very useful abstraction
– Allow transparent overlapping of computation and I/O

– Allow use of parallel processing when available

• Concurrent threads introduce problems when accessing
shared data
– Programs must be insensitive to arbitrary interleavings

– Without careful design, shared variables can become
completely inconsistent

• Important concept: Atomic Operations
– An operation that runs to completion or not at all

– These are the primitives on which to construct various
synchronization primitives

• Showed how to protect a critical section with only
atomic load and store  pretty complex!

78 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Summary

• Important concept: Atomic Operations
– An operation that runs to completion or not at all
– These are the primitives on which to construct various
synchronization primitives

• Talked about hardware atomicity primitives:
– Disabling of Interrupts, test&set, swap, comp&swap,
load-linked/store conditional

• Showed several constructions of Locks
– Must be very careful not to waste/tie up machine
resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware
mechanisms to protect modifications of that variable

• Talked about Semaphores, Monitors, and Condition
Variables
– Higher level constructs that are harder to “screw up”

79 A.A.2019-20 Elementi di Sistemi Operativi - Sincronizzazione

Summary

• Semaphores: Like integers with restricted interface
– Two operations:

» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()

• Readers/Writers
– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Language support for synchronization:
– Java provides synchronized keyword and one condition-
variable per object (with wait() and notify())

