Continuous Time Signal Analysis: the
Fourier Transform

Lathi Chapter 4




Topics

- Aperiodic signal representation by the Fourier integral (CTFT)
- Continuous-time Fourier transform

- Transforms of some useful functions

- Properties of the Fourier Transform

- Filtering
- Modulation
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Aperiodic signal representation by the Fourier Integral

- What happens if the signal is NOT periodic? How can we
represent it over the whole temporal axis?




Towards the CTFT

- Starting from Fourier series, we will derive the CTFT by a
“trick”

- First, we will build a periodic signal starting from time-limited f(t)

- Then, we will represent a NON periodic signal as a limit case of a
periodic signal when the period goes to infinity

- Finally, we will derive the CTFT and analyze the link with FS




Towards CTFT: steps 1 and 2

Jt)
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0 ;=
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Fig. 4.1 Construction of a periodic signal by periodic extension of f(t).

Tgi_f.noo fr,(t) = f(t)
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Towards CTFT
- Since f7,(t) is periodic, we can represent it by the exponential
FS
frot) = i D el ™! (4.1)

where | [Tor |

Dp=— f1(t)e ™m0t dt (4.2a)

To Jo1y)2

and 27
- But: To /2

[, = [ o
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Towards CTFT

- Thus
1 [t
=g S @t

- Let’s then define the continuous function F(w)

The Fourier series coefficients D, are (1/T) times the coefficients of
F(w) uniformly distributed over the frequency axis with spacing w,
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Fig. 4.2 Change in the Fourier spectrum when the period 7; in Fig. 4.1 is doubled.

CTFT is the envelop of the coefficients of the FS or,
alternatively, the FS can be seen as a sampled version of the CTFT
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Approaching the limit
- When TO goes to infinity

- we recover the non-period signal f(t)
- the DS samples get progressively closer to each other
- The relative shape of the spectrum with respect to F(w) stays

unchanged
- However
- Each single spectral component has an amplitude that decreases to
zero
To — o0
wo — 0
D, — 0

We have nothing of everything, yet we have something
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Solving the paradox

- Even though each individual component has vanishing
amplitude, we can group components across intervals of
infinitesimal width and make them working in team

+00
F(nwgy)
froty= Y Epen) et

wo — 0 different notation — Aw

27T 27
A — — Ty =
v TO 0 Aw

 JnAwt
S, (¢)
n=-—o0o

Weight of the component of
frequency




Getting to the CTFT

- When T, goes to infinity, the sum can be replaced by an
integral leading to the CTFT

1

= ] = lim — F(nAw)ed™ A
/() TognoofTO() A0 27 Z (nAw)e “
n=——oo
F(m) e™®'
area = F(nAm)e ™' Aw
0 e

Fig. 4.3 The Fourier series becomes the Fourier integral in the limit as Tg — oc.
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CTFT qui

- Fourier integral

1 [T .
f(t) = 2—/ F(w)e?“" dw Analysis formula
ﬂ- — 00
+00 .
F(w) = / f(t)e 79t Synthesis formula

Fourier domain

/\/
AVAV
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Amplitude and Phase spectra

F(w) = |F(w)le! ¢
For real signals
[F(~w)| = |F(w)]

—o)= [ pe)etd
Pl-o)= [ fleta LF(-w) = —LP(w)

f()
]

e u(t)

(a)

Fig. 4.4 e “*u(t) and its Fourier spectra.
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Existence of the FT

- Dirichlet conditions (sufficient)

/ ) |f{t)ldt < o0 (4.13)

— 00

Because |e~7“t| = 1, from Eq. (4.8a), we obtain

Fw)] < / T A de

- Not necessary

- There exist functions not satisfying condition (4.13) still having a
Fourier transform, like the sinc(t)

- The CTFT always exists for real (measured) signals




Linearity of the CTFT

The Fourier transform is linear; that is, if

f1(t) &= Fy(w) and fa(t) <= Fa(w)
then

ayf1(t) + azf2(t) &= a1 F 1 (w) + a2F2(w) (4.14)

The proof is trivial and follows directly from Eq. (4.8a). This result can be extended
to any finite number of terms.




LTIC systems response using the CTFT

- Back to the response to the everlasting exponential

eIt = H(w)e’"

Therefore
ej(nAw)t — H(nAw)ej("Au)t

27 27
Using the linearity property

oo 0o
lim E [F(nAw)Aw] e(jnbw)l —s [F(nAw)H(nAw)Aw] ej(nAw)t
Dw=—0 2 Aw—D 2

[F(nAw)Aw]e(jnaw), . [F(nAw)H(nAw)Au} J(nbw)t

n=—o0 n==00

input f(t) output y(t)




LTIC systems response using the CTFT

The left-hand side is the input f(¢) [see Egs. (4.6a) and (4 6b)], and the right-hand
side is the response y(t). Thus

y(t) = i hm z F(nAw)H (nAw)edMAlt Ay

n-"m
1 *® :
- — Jwt
- /_ P @) do
1 [ :
=5 Y (w)e?™t dw (4.18)

where Y (w), the Fourier transform of y(t), is given by{

Y{w) = F(w)H(w)
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Time vs Frequency domain

1 For the time-domain case

6(t) = h(t)  the impulse response of the system is h(t)
F(t) = ] ” f(2)6(t —z)dz  expresses f(t) as a sum of impulse components
and -
y(t) = /m f(z)}h(t — x)dzx expresses y(t) as a sum of responses to impulse components
-0

2 For the frequency-domain case

eIt =3 H(w)elt the system response to e/“* is H(w)e“!

00
f (t) = ZL / F (w)ej“'t dw shows f(t) as a sum of everlasting exponential components
T J-x

and

y(t) = -2-1; F(w)H (w)e?™ dw  y(t) is a sum of responses to exponential components

-00

B
di_ VERONA
e Tl e
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CTFT of some useful functions

- Rectangular function

| reet (x) 1 rect (%)

(a) (b)
Fig. 4.7 A gate pulse.

Bandwidth
| . wT
) Fid) 'y S’LnC(T)
(a) (L)
%+ 0 %= AN AZE [0 2¥'< 755_ c"o_.
| F(w)| N

(c) ZF (@) (d)
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CTFT of some useful functions

n Example 4.2
Find the Fourier transform of f(t) = rect (£) (Fig. 4.10a).

F{w) =/ rect (é) e Tt

— o0

Since rect (£) = 1 for |t| < Z, and since it is zero for |t| > I,

/2 )
Flw)= / e ¥ dt

~7/2
_ __}_(c-jw/a eIy = 2sin (57)
jw w
sin (&2 , (w‘r)
T = o
= 7 sinc (=<

Therefore

rect (-) <=» T sinc (T) (4.23)
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Example: rect(t/7)

. () Flw) t
I O BIE T RTE
T
| F (@) ©) ZF(®) (d
"R
B oa o
_ 0 -
o R e 2 2= [
-n

v
di_ VERONA
e i
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CTFT of some useful functions

- Impulse

B Example 4.3
Find the Fourier transform of the unit impulse §(t).
Using the sampling property of the impulse [Eq. (1.24)], we obtain

Flé(t) = / - 6(t)e 7t dt = 1 (4.24a)
or -
8(t) <=1 (4.24b)

Figure 4.11 shows &(t) and its spectrum. W

L ft)=38(t) Flo)=1
(a) (b)

0 —~ 0 pam

Fig. 4.11 Unit impulse and its Fourier spectrum.

v
di_ VERONA
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CTFT of some useful functions

- Constant function
- Derived as the inverse CTFT of the delta in Fourier domain

Find the inverse Fourier transform of &(w).
On the basis of Eq. (4.8b) and the sampling property of the impulse function,

1

FH6(w)] = El; / §{w)e’™ dw = 5

Therefore

% = b(w) (4.254)

or

1 <=+ 216(w) (4.25b)
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CTFT of some useful functions

| Example 4.5
Find the inverse Fourier transform of §(w — wg).
Using the sampling property of the impulse function, we obtain

f'—l - =i = _ wt - 1 t
[6{w — wo)) = [Wé(w wo)e’ dw_%em

Therefore

or

70t =y 2w (w — w (4.26a)

This result shows that the spectrum of an everlasting exponential /0t is a single impulse
at w = wp. We reach the same conclusion by qualitative reasoning. To represent the
everlasting exponential e’“**, we need a single everlasting exponential ¢’*! with w = wo.
Therefore, the spectrum consists of a single component at frequency w = wo.

From Eq. (4.26a) it follows that

e 74t e 276(w + wo) (4.26b)
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CTFT of some useful functions

- Everlasting sinusoid

1, i -
o8 wot =A§/(eJ ot te ’Qi) Eulero’s formula

21 (w — wp) 276 (w + wo

2 2m(8(w -+ o) + (e — w0)) = 1 {8 + o) + 6w — )

f(t) cosw, F(®) ' n

! f -, 0 Wy ®—

Fig. 4.13 A cosine signal and its Fourier spectrum.
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Symmetry of the CTFT

I fie’™ at

\

f@) Time-frequency duality F(o)

[ /
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Symmetry properties

f(t = to) &= Flw)e™ 7" f(t)e?°" <= F(w — wp)

Time-shift -> phase change Frequency shift (modulation) ->
in frequency domain phase change in time domain

Delaying a signal by t, seconds
does not change the amplitude
spectrum but changes the
phase spectrum by —wt,




Physical explanation of the time—shifting property

Fig. 4.20 Physical explanation of the time-shifting property.

To keep the signal spectrum unchanged after time-shifting, higher
frequencies must go through larger phase shift. More precisely, the phase
shift must be linear
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Symmetry properties
4.3-2 Symmetry Property

This property states that if

f(t) <= F(w)
then

F(t) <= 27 f(—w)
Proof: According to Eq. (4.8b)

(4.

)= /_ " F(a)el® da

Hence

oo

omf(—t) = f Flz)e~* dg

-0

Changing t to w yields Eq. (4.31).




Symmetry properties

B Example 4.8
In this example we apply the symmetry property (Eq. (4.31)] to the pair in Fig. 4.17a.
From Eq. (4.23) we have

T

rect (1) <= Tsinc (%) (4.32)
L —
f(t) F(w)

Also, F(t) is the same as F{w) with w replaced by t, and f(~w) is the same as f(t) with
t replaced by —w. Therefore, the symmetry property (4.31) vields

rsinc (-’-2-‘-) = 2rrect (“—T“’) = 27 rect (g) (4.33)

F(t) 2x f(~w)

. rect (—z) = rect (z)




Neuroimaging Lab. - Dept. of Computer Science

Symmetry properties

flr)

)
T
g
\)[_4\/‘
EAS R R =

(b)
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Scaling

f[f(a.t)] = /°° f(at)e-j“'tdt —

Q|

[ s = e (2)

The time shrinking of a
signal results in a
spectral expansion and,

P viceversa,
1 R a spectral shirking
T /“\ results in a temporal
=0 & - TEE— |  a—& o— expansion
2 2 T T T T
f) F(o) '
1 2t
-— Reciprocity of signal
= T = 2 z— duration and bandwidth

Fig. 4.18 Scaling property of the Fourier transform.
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Convolution
f1(t) * f2(t) == Fy(w)F2(w)

A1) = 5=Fiw) * Fa(w)

zm Function to be transformed
Proof: By definition

FIR@nol= [ N

oo

Hence Fy(w)e=eT.

Flfa(t)«f2(t)] = /-°° f1(r)e T Py(w)dr = Fa(w) f_ - fi(r)e™Tdr = Fy(w)Fa(w)
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LTIC response

f(t) =4(t) y(t) = h(?)
Impulse Time domain
P y(t) = F(t) % h(t)
F(w) = et = H(w)
Transfer ggerg:iincy

function F(w)
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Fourier transform operations

Operation f(t) F(w)
Addition fi(t) + fa(t) Fi(w) + Fa(w)
Scalar multiplication kf(t) kF(w)
Symmetry F(t) 2rf(—w)
. 1 w
Scaling (a real) flat) F (;)
Time shift f(t—to) F(w)eIwto
Frequency shift (wg real) f(t)edwot F(w — wo)
Time convolution fi(t) = f2(t) Fy(w)Fa(w)
Frequency convolution H(t) fa(t) %Fl (w) * Fo(w)
: . _y d"f .
Time differentiation Y (jw)"F(w)
t
Time integration / f(z)dz %:) + 7 F(0)6(w)
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Signal transmission through LTIC systems

M

Radio Carrier
Amplitude
Modulated
Signal

A (wynspﬁccell

7 )

Synaptic
Myelin sheath terminals

|

i B [
;{q_:(,lﬁrl_“ )
S Il
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Distortionless transmission: linear phase

- Warning: transmission systems do not perform any filtering operations

- For the transmission to be distortionless, the output signal must be equal
to the input signal except for a time-shift

y(t) = kf(t — ta)

The Fourier transform of this equation yields

Y (w) = kF(w)e 7«te
But
w)H (w)

Therefore

This is the transfer function required for distortionless transmission. From this
equation it follows that

{H(w)| =k (4.58a)
LH(w) = —wty (4.58b)

This result shows that for distortionless transmission, the amplitude response |H {w )|
must be a constant, and the phase response ZH (w) must be a linear function of w

with slope —t4, where t; is the delay of the output with respect to input (Fig. 4.26). I
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Linear phase systems

|H(w)| =k The amplitude of the spectrum is constant

LH(w) = —wtqg The phase is proportional to frequency

ta(w) = —%éﬁ(w) The time-delay is the slope of the phase spectrum
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|deal filters

- Ideal filters are distortionless transmission systems for certain
frequencies and suppress the remaining ones

- |deal low-pass filter

|H ()] hit)

S

'\~ m—~
e _W\
v IS VARV
n
w

(a) (b)
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|deal filters

- Ideal high-pass and band-pass filters

) ZH(w)
~~~~~~~~~ |H ()]
(@)
Ol ) >
/ LZH(®)
| H ()
._~‘ l I
(b)

-
See
-
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|deal filters

- Ideal filters are physically not realizable

. t,=0 Non causal, infinite length tails
VRY. '
- To make it realizable we have to cut the tails, which implies
- A time-delay

- A smoothing of the response in the frequency domain
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|deal low pass filter

=0 4 t=T,; Smaller delay
Larger filter
“distortion”
— A : A A X
VLRV VoV
1
A 1:d=T2
Larger delay
Smaller filter
“distortion”
/\ N\ . The filter impulse

\/ \/ response is set to zero
Ty out of the window




Implications of windowing in time-domain

Time domain

Il
X

/\//\:/\ ANER :
\VELEAVAEY VALV t

Frequency domain
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Implications of windowing in time domain
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Implications of windowing in time domain

Time domain
1 — f(t)

L} T T Ll
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Effect of changing window length: example

RF pulse

‘5 periods’

‘3 periods’

‘2 periods’

‘1 penod’

FT

Slice profile

%

+1 Frequency
(kHz)

Vel

[
[
/N
S\

.
L=
+1
=
+1
\JA
+1
\
+1

= o
.
_/
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Window functions

- Windows of different shapes can be used
1
f‘w(t) = f(t)w(t) and Fy(w) = EF(“’) * W(w)

Spectral spreading
Windowing in time domain
Spectral leakage

- Spreading (or smearing): the spectrum gets larger

- Leakage: the spectrum “leaks” towards frequency ranges where it is
supposed to be zero

Windowing in frequency domain mmmms)  Temporal spreading
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The effect of windowing

AAANADL - T
FATIv s S S

! W ()




Neuroimaging Lab. - Dept. of Computer Science

Windowing: how can we remedy?

- Spectral spreading depends on window width — increase
window width

- Spectral rate of decay depends on the regularity of the signal:

t
t

ne higher the number of contiunuos derivatives, the fastest
ne decay — choose a smooth window

"here is a trade-off between the two

- The rectangular window has the smallest spread but the /largest
leakage. This can be mitigated by choosing large windows

- Take home message: to minimize the effect of windowing
choose smooth wide windows
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Signal energy
- By definition
Br= [ 150k

Er=[ 1 O (0 di= [ fie

—00

L f " Pt du
27 J_ oo

- Interchanging the order of integration

Ef = 2; F‘(w) [ / f(t)e 7+ dt] duw
1 Parseval’s theorem
== F(w)F"(w)dw

o0 _ = 2 _i g
L [T Rora Br= [ 1ora= o [ F@Pw

27 J.
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Signal energy and energy spectral density

| Ftw)?
—_ Energy of the spectral

component in the band Aw

1
AEs = Ell"(w)l2 Aw

Fig. 4.30 Interpretation of Energy spectral density of a signal.

|[F(w)|*  Spectral energy density (energy per unit bandwidth in Hz)
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Autocorrelation function and energy spectral density

- Autocorrelation function

Ue(r) = /+oo f(r)f(r —t)dr Relatic|>r1.to
—oo convolution
'

./+OO t—TdT:f(t)*g(t):

The autocorrelation

=}<—t> 0= 0)» 1) €Ryli]) — functon s ever
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Autocorrelation function and power spectral density

- For real signals

—I—oo
F{f(—t)} = / Del“tdt = F(—w) = F*(w)

- Thus
F{f(t)* f(—t)} = F(w)F*(w) = |F(w)|?
- Hence

The power spectral density is

o (t) — |F(w) |2 the F-transform of the
autocorrelation function




