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Example: Idle speed control of an automotive engine
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p(t): intake manifold pressure m;(t): air loaded into cylinder in stroke i

6(t), n(t): crankshaft position and speed  T(t): torque generated by the engine
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Example: Idle speed control of an automotive engine
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Example: Idle speed control of an automotive engine

Find all the control strategies (if any) for the spark timing u; and throttle valve
position u.(t) = a(t) € [0, a™?*], which keep the crankshaft speed n(t) in a
given range [ny — An, ny + An], independently of the two disturbances given
by the clutch d; and the load torque d.(t) = T;(t) € [0, T;"**].
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Control design for safety specifications

The control objective is to maintain the crankshaft speed n(t) in a given
range [ny — An, ny + An|, whatever the disturbances happen to be.

* A safety property for a hybrid system is specified by means of a set of
Good configurations that do not violate the property.

Good = {Q X [ng — An,ny + An]}

* A configuration (g, x) € Good is said controllable safe — with respect
to the safety specification Good — if there exists a controller such that
all the trajectories of the closed-loop system, starting from (g, x),
remain forever within the set Good for any admissible disturbances.

 The maximal safe set for a hybrid system and a safety specification
Good, is the largest set of controllable safe configurations.



A game between control and disturbance

The control objective is to maintain the state (g, x) inside the set Good,
whatever the disturbances happen to be.

The disturbance objective is to drive the the state (g, x) outside the set
Good.

The two players (control and disturbance) affect both the continuous and
the discrete evolution of the system.
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A game between control and disturbance

One may think of the interaction between the players as a continuous

game with occasional discrete interruptions.




Hybrid system with control and disturbance I

A hybrid system H is a collection

H = ((Q,X),(U,X.), (D, £q), Init, (f, 5))

Q =1{q41,q3, ...} isthe set of discrete states

X = R ™ isthe set of continuous states

U C R™ isthe domain of continuous control variables

2. Isthe finite set of discrete control events

D C R P isthe domain of continuous disturbance variables

24 Iisthe finite set of discrete disturbance events

vV V¥V V ¥V VY

Init € Q X X isthe set of initial states
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> fO0xXXXUxXxD->R™"

is the vector field defining the continuous dynamics

D 50 XXX(ZUeE)X (ZgUe)— 204 /n

is the transition function defining the discrete dynamics

€ is the null event, i.e., no discrete event is given.

When no discrete input and disturbance control is given, that is
us =€andd,; =€

no transition takes place, i.e.,
5(q,x,€,€) ={(q,x)}

In this case, the location g remains fixed, and the continuous variables x(t)
evolve according to the continuous control u.(t) € U, the continuous
disturbance d.(t) € D, and the continuous dynamics specified by the function f.

11



1)
|,

DOOR

H EATWI:*U MP

k

¥t o4y W
~”¥“ KS.. A-\\»“\
NP A
,:},A-i /8 /

12



CONTINUOUS
HEATING CONTROL

= u(t) €[0,U]
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The thermal resistance decreases from R, to R,,
The temperature suddenly decreases (r < 1) 17

dy; = open
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The control objective is to maintain the temperature T}, ,,,(t) of the room
in a given range [Toin, Tmax |, Whatever the disturbances happen to be.




on,of f

DOOR

thermal
RO’ Rcl resistance

HEATING ”c(t;
CONDITIONER

ON/OFF 0, W

HEATER a

THERMAL
MODEL
of the
ROOM

<€

open, close

dc() [ ELECTRICAL

APPLIANCES

q,x

HYBRID MODEL

OF THE

ROOM

CONTROLLER

19



Thermal model of the room
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Thermal model of the room
Troom (t)

!
on/t
Uc (t) dc (t) W / —

off
*~—r

T,
T(t) = Troom (t) — Teny R, or R, env

u(t) +d.(t) + 0/W = %T(t) +C-T()

T(t) = —%T(t) + %uc(t) + %dc(t) + O/TW

The value of the thermic resistance R depends on whether the door is open or closed
21



Temperature reset when opening the door

(qr+1, %' (1)) € 8(qx, x(T), uy, open) T:=rT withr<1

drk+1

dk >

/\ -
x'(7) \/\

T t

v

To prevent the discrete disturbance from dropping the temperature by opening and
closing the door over and over again in a short period of time, a minimum interval of
time A is assumed between two consecutive transitions.
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A discrete game between control and disturbance

DISCRETE UNCONTROLLABLE PREDECESSORS (And the winner is ... disturbance)
DUPre(S) ={(q,x) € Q X X : Yug,3d, | (ug, dg) # (6,€) A8((q, %), (ug,dg)) € S}

is the set of configurations such that, for every controller discrete input, there exists a
discrete disturbance input that forces the configuration outside S in one step.

DISCRETE CONTROLLABLE PREDECESSORS (And the winner is ... control)

DCPre(S) = {(q, X) €EQXX:3uy|Vdy (ug,dy) # (€,€) A 6((q, x), (ug, dg)) S S}

is the set of configurations that can be forced to remain into S in one step,
whatever is the disturbance discrete input.
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CONTINUOUS FLOW
CONTINUOUS UNCONTROLLABLE PREDECESSORS

CUPre(B,E) ={(q,x) €EQ XX :Vu,(t),3d.(t) and I t*> 0]
for the corresponding trajectory x(t)
vte[0,t*),(qgx(t) emvn EA(qx(t)) € B}
B is the set of configurations

the disturbance
is trying to reach

<

<_
E
«— | escapeset = -

E is the set of
configurations that must be avoided 55



A continuous game between control and disturbance

Given aset W,

CUPre(DUPre(W) U W,DCPre(W))
is the set of states that, whatever the continuous control is, can be
steered to the set DUPre(W) or outside the set W while avoiding
entering the set DCPre(W).




A continuous game between control and disturbance

The «losing» states of the set W are those that belong to the set
DUPre(W)

or to the set

CUPre(DUPre(W) U W,DCPre(W))




W9 := Good
[=—1
repeat{
i=i+1
Wt == Wi\[DUPre(W') u CUPre(DUPre(W) U Wi, DCPre(W?)) |
Yuntil (WL = wh)
Safe = W?!

s




U=0,5
D = 0,01
W =0,2
r = 0,95
C=1

R, =500

Result
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COMPUTATION OF DISCRETE PREDECESSORS

* No transitions may take place fort < 0
* Guard conditions do not depend on the value of T

The discrete predecessors are sets of the form

T € [TZOW' Thigh]» T 2= 0

Thigh -
Tlow

v
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WO = Good

WO := Good

WO = Good

WO := Good
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COMPUTATION OF CONTINUOUS PREDECESSORS

Can be calculated one location g at a time
Can be viewed as a game between the continuous control and the

continuous disturbance

The boundaries of CUPre(Wi)|qhare obtained by solving a min-max

problem
T(t) = T(t) + ue() + W/ + de(t) w0 ey
Ry C C C C d.(t) € [0,D]
T : u(t)=U T min7(¢t) for te(0) i 0
(®) 4 max T (t) for ) 4 u.(t),d,(t) dc(t)=0
4 (6, de () dc(t) =D u.(t) € (0,U)
N\ W (6) € (0.0) () € O.0)
/<3 <= d.(t) € (0,D)
' Tft) for ve(t) =0 ’r\naxT(t) for u(t)=U
w40 de(t) =0 (D4 d.(t) =D

>
Integration forward in time

>
Integration backward in time



COMPUTATION OF CONTINUOUS PREDECESSORS

The states that can be steered to DUPre(W?°) [while avoiding DCPre(W°)]
can be computed by integration backward in time from points A and B

A

A

r

“bad” states DUPre(WY)|,,

B

Which evolution of u(t) € [0,U] and d(t) € [0, D] should be considered
while integrating?



COMPUTATION OF CONTINUOUS PREDECESSORS

States that can be steered to DUPre(W?°) [while avoiding DCPre(W°)]
can be computed by integration backward in time

A T
u(t)=0 L u.(t) =0
4 =0 | T 4 VAP RORY
- | u.(t) € (0,0)
| d.e©D) o /
' DUPre(W"Y)|,, ™
/‘{(OLO/E max T(¢t) for e (0) i v
dc(t)=D i . uc(t),d.(t) R dtc(t) =D
—4 0 Integration backward in time

The continuous disturbance would like to maximize the yellow area while
the continuous control would like to minimize it.



COMPUTATION OF CONTINUOUS PREDECESSORS

The states that can be steered to DCPre(W?°) [while avoiding DUPre(W )]
can be computed by integration backward in time from points A and B

A

A

r

“good” states | DCPre(Wh)|,,

B

Which evolution of u(t) € [0,U] and d(t) € [0, D] should be considered
while integrating?



COMPUTATION OF CONTINUOUS PREDECESSORS

States that can be steered to DCPre(W?) [while avoiding DUPre(W°)]
can be computed by integration backward in time

A T
=0 o u(t)=0
ro-p | @ O For ) o
W=D u.(t) € (0,U)
| d.e©D) o /
. DCPre(W"Y)|,, ™
m max T(t) for u.(t)y=U
| ue(8), do () de(t) =D
=0 ; > T C i > L
—A 0 Integration backward in time

The continuous control would like to maximize the yellow area while the
continuous disturbance would like to minimize it.
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States that can be steered ouside W°
while avoiding DCPre(W?)

States that can be steered ouside W°
while avoiding DCPre(W?)
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Maximal Safe Set _
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Maximal Controller design
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