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Asynchronous Design Seminar at 

University of Verona – Lecture Notes 2

Asynchronous Design Fundamentals

Bundled-Data Pipelines

Micropipelines and Mousetrap
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The C Element

 AND gate for events

 What is the OR gate 

equivalent for 

events?

a b c

0 0 0

0 1 c’

1 0 c’

1 1 1
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C-Element Implementations

Dynamic C-Element Static C-Element
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C-Element Implementations

 Using Standard Cells

 2-input C-Element’s Logic Function is: 
c = ab + c(a + b) = ab + bc + ac

 n-input C-Element is: 
c = a1a2…an + c(a1 + a2 + … + an)

 Thus may be implemented using two level logic or using 
an SR latch

SR

S

R

Q

Q’

a

b

a

b
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FSM PTnet

c’c’

C Gate Formal Models

c

a.ba’.b’

 Empty transitions  else stay in same state
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Micropipeline Control Structure

 Req/Ack are handshaking pairs

 C[i] accepts 1/0 from C[i-1] only if C[i+1]=0/1

 Think of 1010101.. as waves: 10 10 10 1..

 The C-elements propagate waves precisely

 Timing depends on local delays, may vary along the pipe 

 If RIGHT is quiet, pipe will fill and stall

 Same for 4-phase, 2-phase
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Micropipeline Analysis - PTnets

 Two-stage Micropipeline PTnet:

Rin

Ain

Rx

Ax

Rout

Aout
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Micropipeline Analysis - PTnets

5/28/2016Asynchronous Control Circuit Design - L29

 Four-stage Micropipeline PTnet:

 Represents 4 C Elements and their environments

 Correct operation may be verified by possible signal 
orders

Micropipeline Analysis - PTnets

5/28/2016Asynchronous Control Circuit Design - L210

 Four-stage Micropipeline Ptnet

 Reduction to Latch Control Signals

 Characteristic Pattern:

A+ B+

A- B-
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Micropipeline Analysis - MSFSMs

 Two-stage Micropipeline FSMs:

 What  about LHS/RHS FSM Interfaces?

 What are the two environment FSMs Rin/Ain, Rout/Aout?

First stage FSM Second stage FSM

Rin.Rout’

Rin’.Rout

Rx.Aout’

Rx’.Aout

Rx’

Rx

Rout’

Rout
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 Static combinational logic (typically) and standard FFs or latches

 Channels use bundled-data protocol
 Data lines of the channel are "bundled" timing-wise to the REQ line, so:

 time(valid,REQ) > time(valid,data)

 Delay line matches worst-case delay of combinational logic

 Margin limits performance, particularly because adds to forward latency

 Controller CTRL drives local clock to bank of FFs (or latches)
 Designed using known templates or burst-mode controllers, signal-transition 

graphs, or syntax directed translation

Bundled-Data Concept

FF

delay line

CTRL

Comb

Logic

Lreq

Lack

Ldata

Rreq

Rack

Rdata
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Four-Phase Micropipeline

 Latches are active high

 Four-phase, so latches open on first ½ of h/s and 

close on second ½ 

5/28/201613 Asynchronous Control Circuit Design - L2

Four-Phase Micropipeline Stage

Note: Latch is level-sensitive

Lreq

Lack

Rack

Rreq

RdataLdata LT

C

Lreq

RackX

X
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 Four-phase protocol on Lreq/Lack and Rreq/Rack

 Latch is simple level sensitive traditional latch

 This is a Half-Buffer!
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Four-Phase Micropipeline with C.L.

 Delay elements mimic worst-case critical path of 

Combinational Logic Cloud, F, of each pipe stage

 Bundled-Data Design (bundling assumption on Req, Data)

5/28/201615 Asynchronous Control Circuit Design - L2

Micropipeline 4-Phase PTnet including 

Latch Enable

 L

 Active-

high in 

PTnet

 L-

 Closes

Latch

 L+

 Opens

Latch
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Two Phase Signaling

F(A)

Rreq

Rack

Rdata

A

Lreq

Lack

Ldata

 Every Toggle on request => new 

data

 Seems to be faster (NRZ)

 Not in general

 Seems to be low power

 Not usually the case

 More complex Control

 Data Validity coded in phase difference 

of Req & AckComb

Delay

Delay

Line

FF

delay line

CTRL

Comb

Logic

Lreq

Lack

Ldata

Rreq

Rack

Rdata
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Two-Phase Micropipeline

 Simple version without Cd (C done), Pd (P done)

 Little difference anyway in generating fake done signals (using 

delay elements)

5/28/201618 Asynchronous Control Circuit Design - L2
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Capture-Pass Data Latch

 Two-phase data-latch

 Becomes transparent when a 

Pass “P” event occurs

 Becomes opaque when a 

Capture “C” event occurs

 Store data alternatively in top 

and bottom inverter loops

 (C == P)  open

 (C != P)  closed

 Transition signalling

A

weak

CC P P

weak

outin

A B

C

P

in

C=0 P=0

C=1 P=1

B

T O T O

Too many

Transistors
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Micropipeline 2-Phase PTnet including 

Latch Enable

 Multiple instantiations of L signal (L/1, 2)

5/28/201620 Asynchronous Control Circuit Design - L2
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Micropipeline 2-Phase PTnet including 

Latch Enable and Single Latch Signal

 Note the AC Return from Choice/Choice Needed

5/28/201621 Asynchronous Control Circuit Design - L2

Micropipeline Rings

 So far focused on Linear Pipelines

 A Latch Controller Ring is a very useful structure

 Data tokens go around the ring

 Represents basic iterative computation

 May include entry/exit points

 How do I build a ring?

 Connect Rout/Aout of RHS controller to Rin/Ain of a LHS 

controller

 Does it always work with micropipelines?
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Micropipeline 2-Stage Ring

 PTnet Cycles with 

no tokens 

Deadlock!!! 

 Commoner’s 

Theorem:

 Deadlocked 

systems include 

an unmarked 

cycle

 Can I find a valid 

marking to make it 

live?

5/28/2016Asynchronous Control Circuit Design - L223

Micropipeline Analysis - MSFSMs

 Two-stage Micropipeline FSMs:

 Ring  Rin = Rout, Ain = Aout

 Never LIVE!!!

First stage FSM Second stage FSM

Rout.Rout’

Rout’.Rout

Rx.Aout’

Rx’.Aout

Rx’

Rx

Rout’

Rout
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Micropipeline 3-Stage Ring

 Deadlocked at initial (original) marking

5/28/2016Asynchronous Control Circuit Design - L225

Micropipeline Analysis - MSFSMs

 Three-stage Micropipeline Ring FSMs:

 Now: Rin = Rout, Ain = Aout

 Live when? Rout’, Ry’, Rx initial states

First stage FSM Second stage FSM Third Stage FSM

Rout.Ry’

Rout’.Ry

Rx.Aout’

Rx’.Aout

Rx’

Rx

Ry’

Ry

Ry.Aout’

Ry’.Aout

Rout’

Rout
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Live Micropipeline 3-Stage Ring with 

Alternate Marking

 Live Marking Shown:  Rin+, Rx+, Ry-

5/28/2016Asynchronous Control Circuit Design - L227

Another interesting example of 

FSM-based Formal Analysis

Edge-Triggered FF, Morris Mano Book
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D-type FF from Mano’s Book
 consists of 3 set-reset latches

 RHS latch produces Q, Q’

 Verbal functional explanation quite 
complex and non-intuitive

 when input D is high, lower LHS 
latch is set whenever the clock is low

 thus, the set input of the upper LHS 
latch is triggered, which sets the 
output latch (RHS) whenever the 
clock is high

 when input is D low,  lower LHS 
latch is reset, thus resetting the 
output latch (RHS), whenever the 
clock is high

 As a result, Q may only change 
state when clock makes a 
lowhigh transition

29 CE-653 - MSFSM Intuitive Example

D-type FF from Mano’s Book

30 CE-653 - MSFSM Intuitive Example

 How can we formally 

verify that output latch’s 

inputs can never cause 

race?

 are never 00, 

OR

 can never transition 

from 0011
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Active-Low SR latch

31 CE-653 - MSFSM Intuitive Example

 QUESTION:

How do we model the 

sequential SR latch behaviour?

Single (Active-Low) SR latch FSM Model

CE-653 - MSFSM Intuitive Example32

 Choice between 2 states or 3 states
 2 states model hides possibility of SR = 00

 0011 transition result is uncertain, thus the fourth state QQ’ = 11 does 
not have deterministic next states

 We assume initial state to be 11
 May be different, e.g. 01

 Transitions correspond to SR inputs

qq’=

01
qq’=

11

qq’=

10

qq’=

00

00

01

10
01

00

10
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D-Type FF – inferring MSFSM model

 We split the D-type FF 
circuit into 3 separate sub-
circuits (SR latches)

 Infer an FSM of each sub-
circuit

 Signals and states  will 
transition asynchronously

 Goal: 
 Signals xb, y may 

never assume 00, 
OR

 may never transition 
from 0011

33 CE-653 - MSFSM Intuitive Example

FSM #1 - x, x_b signal generation

x=1

x_b=

0

Erro

r

stat

e
x=0

x_b=

1

y_b’ . clk’ y_b . clk’

y_b . clk’

y_b’ . clk’

x=1

x_b=

1

S1

S2S0

34 CE-653 - MSFSM Intuitive Example
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FSM #2 - y, y_b signal generation

y=1

y_b=

0

y=0

y_b=

1

d’ . (x_b . clk)
d’ . (x_b’ + clk’)

d’ . (x_b’ + clk’)

Erro

r

stat

e

d’ . (x_b . clk)
y=1

y_b=1

R0 R2

R1

35 CE-653 - MSFSM Intuitive Example

FSM Q – RHS latch output Q

Q = 1

Q = 0

x_b’ . y x_b . y’

Z0

Z1

36 CE-653 - MSFSM Intuitive Example
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Simulating operation using MSFSMs

x=1

x_b

=0

Erro

r

stat

e

x=0

x_b

=1

y_b . clk’

y_b . clk’

y_b’ . clk’

x=

1

x_

b=

1

S1

S0
S2

y=1

y_b

=0

y=0

y_b

=1

d’ . (x_b’ + clk’)

Erro

r

stat

e

d’ . (x_b . clk)y=1

y_b

=1

R0 R2

R1

Q = 1

Q 

= 0

x_b’ . y x_b . y’

Z0

Z1

clk 0

d 0

y R0

x S0

Q Z1

0

1

R1

S0

Z1

1

1

R1

S1

Z0

0

1

R1

S0

Z0

1

0

R2

S0

Z1

1

1

R2

S0

Z1

1

0

R2

S0

Z1

0

1

R1

S0

Z1

0

0

R0

S2

Z1

1

0

R2

S2

Z1

…

…

…

…

…37

Conclusions

 The traditional way of verifying a model demands

multiplication of FSMs, which leads to bigger state

spaces

 Using interactive FSMs and based on an asynchronous

change of signals, we escape the boundaries of a

monolithic FSM and avoid state explosion.

 The state space of the formal analysis in our example

was reduced by almost 55%

38 CE-653 - MSFSM Intuitive Example



5/28/2016

20

Mousetrap

5/28/2016Asynchronous Control Circuit Design - L239

 Mousetrap is one of the 
simplest and fastest latch 
controller implementations

 Consists of
 XOR gate producing the 

Latch EN signal

 Latch for Storing Ri state

 Latch is open (transparent) 
when
 Ro == Ao

 Closes (opaque) when 
 Ro changes (1)

 Opens again when 
 Ao changes a second time (1)

Mousetrap Pipeline

5/28/2016Asynchronous Control Circuit Design - L240

 Caveat

 Does not support feedback dependencies in the Datapath
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 Symmetric (rise/fall ~same)

 Designed with an even # of inverters that model worst-case path 
delay through combinational logic

 Asymmetric (rise slow/fall fast or the opposite)

 Faster reset implemented by replacing some INVs with NANDs

 Other

 May also use re-create path of gates along critical path 
to better match delay (delay distribution)

Delay Line Design
FF

delay line

CTRL

Comb

Logic

Lreq

Lack

Ldata

Rreq

Rack

Rdata

Lreq Lreq_delayed

Lreq_delayedLreq

5/28/201641 Asynchronous Control Circuit Design - L2

N. Mahapatra et al., “Comparison and Analysis of 

Delay Elements,” in MWSCAS, 2002, pp. 473–476.

 Most popular programmable DE

 Delay controlled by number of buffers in the signal path

 Binary codewords

Programmable Delay Elements: MUX-DE

5/28/2016Asynchronous Control Circuit Design - L242
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Speculative Completion Sensing –

Variable Latency

 Enables data-dependent component delays in 
bundled-data environment

5/28/201643 Asynchronous Control Circuit Design - L2

M
U

X

D1

D2

D3

Operand-based,

Delay Selection

donestart
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D. Hand, M. Moreira, H. Huang, D. Chen, F. Butzke, Z. Li, M. Gibiluka, 

M. Breuer, N. Calazans and Peter Beerel, “Blade - A Timing Violation 

Resilient Asynchronous Template,” in ASYNC 2015, pp. 21–28.

Resilient Bundled Data

 Two delay elements

 Average case performance
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 Timing errors delay handshaking by the resiliency window Δ

EDL
Combinational

Logic

δ 

Error Detection Logic

Controller
B

Δ 

Error Detection Logic

Controller
A

Δ 

EDL

Resilient Bundled Data

5/28/2016Asynchronous Control Circuit Design - L245

C
L

K Err

S
a
m

p
le

C
L

K Err

S
a
m

p
le

Err = 1

Asynchronous 

Controller

Error Detecting 

Latch
Single Rail Datapath

Reconfigurable Delay Lines

[Hand et al, ASYNC 2015]

C Element Extensions and 

Generalizations
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Boolean Function with Feedback

5/28/2016Asynchronous Control Circuit Design - L247

 Define:

 SET, KEEP and RESET functions which are feedback free

 RESET = U – SET (OFF-set of SET), or

 RESET ∩ SET = Ø

 KEEP = RESET’

 Sole feedback of f is on the f line (feeds back to input)

 Form 1 (Set and Keep):
 f = (SET function) + f (KEEP function)

 Form 2 (Set and Reset):

 f = (SET function) + f (RESET function)’

 Example

 Asymmetric C Element:

 f = bc (SET) + f (ab’)’ (RESET)’

Composing C Elements

5/28/2016Asynchronous Control Circuit Design - L248

 Based on the C-Element Boolean Equation:
 2-input C-Element’s Logic Function is: 
c = ab + c(a + b) = ab + bc + ac

 n-input C-Element is: 
c = a1a2…an + c(a1 + a2 + … + an)

 It can be shown that C gates are composable using their set, keep functions:
 c3_set = a1a2a3, c3_keep = a1 + a2 + a3

 c2_set = a1a2, c2_keep = a1 + a2

 o_set = a1a2, o2_keep = a1 + a2

 output_set = (o_set . a3), output_keep = (o_keep + a3)

 Thus:

 o_set = c3_set, output_keep = c3_keep

C

C

C

a1

a2

a3
a3

a1

a2

o
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Asymmetric C Elements

5/28/2016Asynchronous Control Circuit Design - L249

 In certain cases, the Set and Reset logic of a C element is 

not identical

 Obvious from PTnet specification of a controller

 Asymmetric C elements are an extension of the basic C

 Equivalent to SR Latch or Boolean feedback circuit as well

Taxonomy of Latch Controllers
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Taxonomy of Latch Controllers - Signals

5/28/2016Asynchronous Control Circuit Design - L251

M+ S+

M- S-
De-synchronisation

M+ S+

M- S-

Fully-decoupled 

(Furber, Day)

Semi-Decoupled

(Furber, Day)

M+ S+

M- S-

GasP, IPCMOS

M+ S+

M- S-

4-phase 

Micropipeline

M+ S+

M- S-

Non-Overlapping

M+ S+

M- S-

Taxonomy of Latch Controllers - Timing

5/28/2016Asynchronous Control Circuit Design - L252

A

B

A

B

A

B

A

B

A

B

A

B

De-synchronisation

Fully-decoupled 

(Furber, Day)
GasP, IPCMOS

Semi-Decoupled

(Furber, Day)

4-phase 

Micropipeline Non-Overlapping



5/28/2016

27

Semi-Decoupled Latch Controller

Semi-Decoupled Latch Controller – STG and 

SG

5/28/2016Asynchronous Control Circuit Design - L254

 A is redundant – ignore

 pre-buffered Lt

 Lt is for active-low latch, 
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Semi-Decoupled Latch Controller PTnet

5/28/2016Asynchronous Control Circuit Design - L255

 Latch Control

 L

 L-, L+ in PTnet

Semi-Decoupled Latch Controller Circuit

5/28/2016Asynchronous Control Circuit Design - L256

 C-gate Set, Reset functions may be inferred from 

STG/PTnet specification of the controller
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Semi-Decoupled – PTnet for 3 Stages

Notice how critical cycle contains two “P”s 

(i.e., processing steps involving delay lines)

Lreq+

Lack+

Lreq-

Lack-

A+

Lt+

A-

Lt-

Rreq+

Rack+

Rreq-

Rout-

Lreq+

Lack+

Lreq-

Lack-

A+

Lt+

A-

Lt-

Rreq+

Rack+

Rreq-

Rout-

Lreq+

Lack+

Lreq-

Lack-

A+

Lt+

A-

Lt-

Rreq+

Rack+

Rreq-

Rout-

Stage 1 Stage 2 Stage 3

P P

RR

 Is this an issue? Why?

5/28/2016Asynchronous Control Circuit Design - L257

Fully-Decoupled Latch Controller
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Fully-Decoupled Latch Controller – STG and 

SG

5/28/2016Asynchronous Control Circuit Design - L259

 A again is redundant

 Lt is for active-low latch, 

 B is internal signal
 Needed for implementation

Fully-Decoupled Latch Controller PTnet

5/28/2016Asynchronous Control Circuit Design - L260

 Latch Control

 L

 L-, L+ in PTnet

 Signal INT,

 Transitions 
INT+/INT-

 Internal 

 For implementation 

purposes only
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Fully-Decoupled Latch Controller Circuit

5/28/2016Asynchronous Control Circuit Design - L261

 Note Tradeoff between Concurrency and Circuit Complexity

 PTnet concurrency is not confluent with circuit

2 C-Element De-synchronisation

Controller
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2 C-Element De-Synchronisation Controller

5/28/2016Asynchronous Control Circuit Design - L263

 Master Latch Enable: M = (Ain != Rout) [XOR gate]

 Slave Latch Enable: S = (Rout == Aout) [XNOR gate]

Rin

C C

Rout

Ain
Aout

XOR XNOR

M SDatapath

Low-skew 

buffer 

trees

2 C-Element De-Synchronisation Controller 

– Handshake Signals PTnet

5/28/2016Asynchronous Control Circuit Design - L264

 C elements obvious from PTnet Signal dependencies
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2 C-Element De-Synchronisation Controller

5/28/2016Asynchronous Control Circuit Design - L265

 Need multiple instantiations of M, S signals

 Per control signal transition

2 C-Element De-Synchronisation Controller 

– How to Merge M, S Signals using Choice 

5/28/2016Asynchronous Control Circuit Design - L266

 Note: PTnet is now AC
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2 C-Element De-Synchronisation Controller 

Analysis - PTnets

5/28/2016Asynchronous Control Circuit Design - L267

 Reduction to Latch Control Signals (Verify)

 Characteristic Pattern:

M+ S+

S- S-

M

S

De-Synchronisation Maximum 

Concurrency Controller
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De-Synchronisation Maximum Concurrency 

Controller

5/28/2016Asynchronous Control Circuit Design - L269

Bundled-Data Design: Summary

5/28/2016Asynchronous Control Circuit Design - L270

 Similar area to synchronous circuit

 Enables the use of

 standard-cell cell libraries, conventional EDA tools

 Performance improvements due to

 PVT variation tracking, with post-silicon tuning of delay lines

 Pipeline stages can achieve average-case delay, using

 multiplexed delay lines (operand-based delay), and/or 

 error detecting latches

 Power benefits

 Dynamic voltage scaling

 Conditional communication

 Workhorse of several Asynchronous start-ups

 Nanochronous, Elastix, and REM


