
5/28/2016

1

Asynchronous Design Seminar at

University of Verona – Lecture Notes 2

Asynchronous Design Fundamentals

Bundled-Data Pipelines

Micropipelines and Mousetrap

5/28/2016Asynchronous Control Circuit Design - L22

5/28/2016

2

The C Element

 AND gate for events

 What is the OR gate

equivalent for

events?

a b c

0 0 0

0 1 c’

1 0 c’

1 1 1

5/28/20163 Asynchronous Control Circuit Design - L2

C-Element Implementations

Dynamic C-Element Static C-Element

5/28/20164 Asynchronous Control Circuit Design - L2

5/28/2016

3

C-Element Implementations

 Using Standard Cells

 2-input C-Element’s Logic Function is:
c = ab + c(a + b) = ab + bc + ac

 n-input C-Element is:
c = a1a2…an + c(a1 + a2 + … + an)

 Thus may be implemented using two level logic or using
an SR latch

SR

S

R

Q

Q’

a

b

a

b

5/28/20165 Asynchronous Control Circuit Design - L2

FSM PTnet

c’c’

C Gate Formal Models

c

a.ba’.b’

 Empty transitions  else stay in same state

5/28/20166 Asynchronous Control Circuit Design - L2

5/28/2016

4

Micropipeline Control Structure

 Req/Ack are handshaking pairs

 C[i] accepts 1/0 from C[i-1] only if C[i+1]=0/1

 Think of 1010101.. as waves: 10 10 10 1..

 The C-elements propagate waves precisely

 Timing depends on local delays, may vary along the pipe

 If RIGHT is quiet, pipe will fill and stall

 Same for 4-phase, 2-phase

5/28/20167 Asynchronous Control Circuit Design - L2

Micropipeline Analysis - PTnets

 Two-stage Micropipeline PTnet:

Rin

Ain

Rx

Ax

Rout

Aout

5/28/20168 Asynchronous Control Circuit Design - L2

5/28/2016

5

Micropipeline Analysis - PTnets

5/28/2016Asynchronous Control Circuit Design - L29

 Four-stage Micropipeline PTnet:

 Represents 4 C Elements and their environments

 Correct operation may be verified by possible signal
orders

Micropipeline Analysis - PTnets

5/28/2016Asynchronous Control Circuit Design - L210

 Four-stage Micropipeline Ptnet

 Reduction to Latch Control Signals

 Characteristic Pattern:

A+ B+

A- B-

5/28/2016

6

Micropipeline Analysis - MSFSMs

 Two-stage Micropipeline FSMs:

 What about LHS/RHS FSM Interfaces?

 What are the two environment FSMs Rin/Ain, Rout/Aout?

First stage FSM Second stage FSM

Rin.Rout’

Rin’.Rout

Rx.Aout’

Rx’.Aout

Rx’

Rx

Rout’

Rout

5/28/201611 Asynchronous Control Circuit Design - L2

 Static combinational logic (typically) and standard FFs or latches

 Channels use bundled-data protocol
 Data lines of the channel are "bundled" timing-wise to the REQ line, so:

 time(valid,REQ) > time(valid,data)

 Delay line matches worst-case delay of combinational logic

 Margin limits performance, particularly because adds to forward latency

 Controller CTRL drives local clock to bank of FFs (or latches)
 Designed using known templates or burst-mode controllers, signal-transition

graphs, or syntax directed translation

Bundled-Data Concept

FF

delay line

CTRL

Comb

Logic

Lreq

Lack

Ldata

Rreq

Rack

Rdata

5/28/201612 Asynchronous Control Circuit Design - L2

5/28/2016

7

Four-Phase Micropipeline

 Latches are active high

 Four-phase, so latches open on first ½ of h/s and

close on second ½

5/28/201613 Asynchronous Control Circuit Design - L2

Four-Phase Micropipeline Stage

Note: Latch is level-sensitive

Lreq

Lack

Rack

Rreq

RdataLdata LT

C

Lreq

RackX

X

5/28/201614 Asynchronous Control Circuit Design - L2

 Four-phase protocol on Lreq/Lack and Rreq/Rack

 Latch is simple level sensitive traditional latch

 This is a Half-Buffer!

5/28/2016

8

Four-Phase Micropipeline with C.L.

 Delay elements mimic worst-case critical path of

Combinational Logic Cloud, F, of each pipe stage

 Bundled-Data Design (bundling assumption on Req, Data)

5/28/201615 Asynchronous Control Circuit Design - L2

Micropipeline 4-Phase PTnet including

Latch Enable

 L

 Active-

high in

PTnet

 L-

 Closes

Latch

 L+

 Opens

Latch

5/28/201616 Asynchronous Control Circuit Design - L2

5/28/2016

9

Two Phase Signaling

F(A)

Rreq

Rack

Rdata

A

Lreq

Lack

Ldata

 Every Toggle on request => new

data

 Seems to be faster (NRZ)

 Not in general

 Seems to be low power

 Not usually the case

 More complex Control

 Data Validity coded in phase difference

of Req & AckComb

Delay

Delay

Line

FF

delay line

CTRL

Comb

Logic

Lreq

Lack

Ldata

Rreq

Rack

Rdata

5/28/201617 Asynchronous Control Circuit Design - L2

Two-Phase Micropipeline

 Simple version without Cd (C done), Pd (P done)

 Little difference anyway in generating fake done signals (using

delay elements)

5/28/201618 Asynchronous Control Circuit Design - L2

5/28/2016

10

Capture-Pass Data Latch

 Two-phase data-latch

 Becomes transparent when a

Pass “P” event occurs

 Becomes opaque when a

Capture “C” event occurs

 Store data alternatively in top

and bottom inverter loops

 (C == P)  open

 (C != P)  closed

 Transition signalling

A

weak

CC P P

weak

outin

A B

C

P

in

C=0 P=0

C=1 P=1

B

T O T O

Too many

Transistors

5/28/201619 Asynchronous Control Circuit Design - L2

Micropipeline 2-Phase PTnet including

Latch Enable

 Multiple instantiations of L signal (L/1, 2)

5/28/201620 Asynchronous Control Circuit Design - L2

5/28/2016

11

Micropipeline 2-Phase PTnet including

Latch Enable and Single Latch Signal

 Note the AC Return from Choice/Choice Needed

5/28/201621 Asynchronous Control Circuit Design - L2

Micropipeline Rings

 So far focused on Linear Pipelines

 A Latch Controller Ring is a very useful structure

 Data tokens go around the ring

 Represents basic iterative computation

 May include entry/exit points

 How do I build a ring?

 Connect Rout/Aout of RHS controller to Rin/Ain of a LHS

controller

 Does it always work with micropipelines?

5/28/2016Asynchronous Control Circuit Design - L222

5/28/2016

12

Micropipeline 2-Stage Ring

 PTnet Cycles with

no tokens 

Deadlock!!!

 Commoner’s

Theorem:

 Deadlocked

systems include

an unmarked

cycle

 Can I find a valid

marking to make it

live?

5/28/2016Asynchronous Control Circuit Design - L223

Micropipeline Analysis - MSFSMs

 Two-stage Micropipeline FSMs:

 Ring  Rin = Rout, Ain = Aout

 Never LIVE!!!

First stage FSM Second stage FSM

Rout.Rout’

Rout’.Rout

Rx.Aout’

Rx’.Aout

Rx’

Rx

Rout’

Rout

5/28/2016Asynchronous Control Circuit Design - L224

5/28/2016

13

Micropipeline 3-Stage Ring

 Deadlocked at initial (original) marking

5/28/2016Asynchronous Control Circuit Design - L225

Micropipeline Analysis - MSFSMs

 Three-stage Micropipeline Ring FSMs:

 Now: Rin = Rout, Ain = Aout

 Live when? Rout’, Ry’, Rx initial states

First stage FSM Second stage FSM Third Stage FSM

Rout.Ry’

Rout’.Ry

Rx.Aout’

Rx’.Aout

Rx’

Rx

Ry’

Ry

Ry.Aout’

Ry’.Aout

Rout’

Rout

5/28/2016Asynchronous Control Circuit Design - L226

5/28/2016

14

Live Micropipeline 3-Stage Ring with

Alternate Marking

 Live Marking Shown: Rin+, Rx+, Ry-

5/28/2016Asynchronous Control Circuit Design - L227

Another interesting example of

FSM-based Formal Analysis

Edge-Triggered FF, Morris Mano Book

5/28/2016

15

D-type FF from Mano’s Book
 consists of 3 set-reset latches

 RHS latch produces Q, Q’

 Verbal functional explanation quite
complex and non-intuitive

 when input D is high, lower LHS
latch is set whenever the clock is low

 thus, the set input of the upper LHS
latch is triggered, which sets the
output latch (RHS) whenever the
clock is high

 when input is D low, lower LHS
latch is reset, thus resetting the
output latch (RHS), whenever the
clock is high

 As a result, Q may only change
state when clock makes a
lowhigh transition

29 CE-653 - MSFSM Intuitive Example

D-type FF from Mano’s Book

30 CE-653 - MSFSM Intuitive Example

 How can we formally

verify that output latch’s

inputs can never cause

race?

 are never 00,

OR

 can never transition

from 0011

5/28/2016

16

Active-Low SR latch

31 CE-653 - MSFSM Intuitive Example

 QUESTION:

How do we model the

sequential SR latch behaviour?

Single (Active-Low) SR latch FSM Model

CE-653 - MSFSM Intuitive Example32

 Choice between 2 states or 3 states
 2 states model hides possibility of SR = 00

 0011 transition result is uncertain, thus the fourth state QQ’ = 11 does
not have deterministic next states

 We assume initial state to be 11
 May be different, e.g. 01

 Transitions correspond to SR inputs

qq’=

01
qq’=

11

qq’=

10

qq’=

00

00

01

10
01

00

10

5/28/2016

17

D-Type FF – inferring MSFSM model

 We split the D-type FF
circuit into 3 separate sub-
circuits (SR latches)

 Infer an FSM of each sub-
circuit

 Signals and states will
transition asynchronously

 Goal:
 Signals xb, y may

never assume 00,
OR

 may never transition
from 0011

33 CE-653 - MSFSM Intuitive Example

FSM #1 - x, x_b signal generation

x=1

x_b=

0

Erro

r

stat

e
x=0

x_b=

1

y_b’ . clk’ y_b . clk’

y_b . clk’

y_b’ . clk’

x=1

x_b=

1

S1

S2S0

34 CE-653 - MSFSM Intuitive Example

5/28/2016

18

FSM #2 - y, y_b signal generation

y=1

y_b=

0

y=0

y_b=

1

d’ . (x_b . clk)
d’ . (x_b’ + clk’)

d’ . (x_b’ + clk’)

Erro

r

stat

e

d’ . (x_b . clk)
y=1

y_b=1

R0 R2

R1

35 CE-653 - MSFSM Intuitive Example

FSM Q – RHS latch output Q

Q = 1

Q = 0

x_b’ . y x_b . y’

Z0

Z1

36 CE-653 - MSFSM Intuitive Example

5/28/2016

19

Simulating operation using MSFSMs

x=1

x_b

=0

Erro

r

stat

e

x=0

x_b

=1

y_b . clk’

y_b . clk’

y_b’ . clk’

x=

1

x_

b=

1

S1

S0
S2

y=1

y_b

=0

y=0

y_b

=1

d’ . (x_b’ + clk’)

Erro

r

stat

e

d’ . (x_b . clk)y=1

y_b

=1

R0 R2

R1

Q = 1

Q

= 0

x_b’ . y x_b . y’

Z0

Z1

clk 0

d 0

y R0

x S0

Q Z1

0

1

R1

S0

Z1

1

1

R1

S1

Z0

0

1

R1

S0

Z0

1

0

R2

S0

Z1

1

1

R2

S0

Z1

1

0

R2

S0

Z1

0

1

R1

S0

Z1

0

0

R0

S2

Z1

1

0

R2

S2

Z1

…

…

…

…

…37

Conclusions

 The traditional way of verifying a model demands

multiplication of FSMs, which leads to bigger state

spaces

 Using interactive FSMs and based on an asynchronous

change of signals, we escape the boundaries of a

monolithic FSM and avoid state explosion.

 The state space of the formal analysis in our example

was reduced by almost 55%

38 CE-653 - MSFSM Intuitive Example

5/28/2016

20

Mousetrap

5/28/2016Asynchronous Control Circuit Design - L239

 Mousetrap is one of the
simplest and fastest latch
controller implementations

 Consists of
 XOR gate producing the

Latch EN signal

 Latch for Storing Ri state

 Latch is open (transparent)
when
 Ro == Ao

 Closes (opaque) when
 Ro changes (1)

 Opens again when
 Ao changes a second time (1)

Mousetrap Pipeline

5/28/2016Asynchronous Control Circuit Design - L240

 Caveat

 Does not support feedback dependencies in the Datapath

5/28/2016

21

 Symmetric (rise/fall ~same)

 Designed with an even # of inverters that model worst-case path
delay through combinational logic

 Asymmetric (rise slow/fall fast or the opposite)

 Faster reset implemented by replacing some INVs with NANDs

 Other

 May also use re-create path of gates along critical path
to better match delay (delay distribution)

Delay Line Design
FF

delay line

CTRL

Comb

Logic

Lreq

Lack

Ldata

Rreq

Rack

Rdata

Lreq Lreq_delayed

Lreq_delayedLreq

5/28/201641 Asynchronous Control Circuit Design - L2

N. Mahapatra et al., “Comparison and Analysis of

Delay Elements,” in MWSCAS, 2002, pp. 473–476.

 Most popular programmable DE

 Delay controlled by number of buffers in the signal path

 Binary codewords

Programmable Delay Elements: MUX-DE

5/28/2016Asynchronous Control Circuit Design - L242

5/28/2016

22

Speculative Completion Sensing –

Variable Latency

 Enables data-dependent component delays in
bundled-data environment

5/28/201643 Asynchronous Control Circuit Design - L2

M
U

X

D1

D2

D3

Operand-based,

Delay Selection

donestart

5/28/2016Asynchronous Control Circuit Design - L244

D. Hand, M. Moreira, H. Huang, D. Chen, F. Butzke, Z. Li, M. Gibiluka,

M. Breuer, N. Calazans and Peter Beerel, “Blade - A Timing Violation

Resilient Asynchronous Template,” in ASYNC 2015, pp. 21–28.

Resilient Bundled Data

 Two delay elements

 Average case performance

5/28/2016

23

 Timing errors delay handshaking by the resiliency window Δ

EDL
Combinational

Logic

δ

Error Detection Logic

Controller
B

Δ

Error Detection Logic

Controller
A

Δ

EDL

Resilient Bundled Data

5/28/2016Asynchronous Control Circuit Design - L245

C
L

K Err

S
a
m

p
le

C
L

K Err

S
a
m

p
le

Err = 1

Asynchronous

Controller

Error Detecting

Latch
Single Rail Datapath

Reconfigurable Delay Lines

[Hand et al, ASYNC 2015]

C Element Extensions and

Generalizations

5/28/2016

24

Boolean Function with Feedback

5/28/2016Asynchronous Control Circuit Design - L247

 Define:

 SET, KEEP and RESET functions which are feedback free

 RESET = U – SET (OFF-set of SET), or

 RESET ∩ SET = Ø

 KEEP = RESET’

 Sole feedback of f is on the f line (feeds back to input)

 Form 1 (Set and Keep):
 f = (SET function) + f (KEEP function)

 Form 2 (Set and Reset):

 f = (SET function) + f (RESET function)’

 Example

 Asymmetric C Element:

 f = bc (SET) + f (ab’)’ (RESET)’

Composing C Elements

5/28/2016Asynchronous Control Circuit Design - L248

 Based on the C-Element Boolean Equation:
 2-input C-Element’s Logic Function is:
c = ab + c(a + b) = ab + bc + ac

 n-input C-Element is:
c = a1a2…an + c(a1 + a2 + … + an)

 It can be shown that C gates are composable using their set, keep functions:
 c3_set = a1a2a3, c3_keep = a1 + a2 + a3

 c2_set = a1a2, c2_keep = a1 + a2

 o_set = a1a2, o2_keep = a1 + a2

 output_set = (o_set . a3), output_keep = (o_keep + a3)

 Thus:

 o_set = c3_set, output_keep = c3_keep

C

C

C

a1

a2

a3
a3

a1

a2

o

5/28/2016

25

Asymmetric C Elements

5/28/2016Asynchronous Control Circuit Design - L249

 In certain cases, the Set and Reset logic of a C element is

not identical

 Obvious from PTnet specification of a controller

 Asymmetric C elements are an extension of the basic C

 Equivalent to SR Latch or Boolean feedback circuit as well

Taxonomy of Latch Controllers

5/28/2016

26

Taxonomy of Latch Controllers - Signals

5/28/2016Asynchronous Control Circuit Design - L251

M+ S+

M- S-
De-synchronisation

M+ S+

M- S-

Fully-decoupled

(Furber, Day)

Semi-Decoupled

(Furber, Day)

M+ S+

M- S-

GasP, IPCMOS

M+ S+

M- S-

4-phase

Micropipeline

M+ S+

M- S-

Non-Overlapping

M+ S+

M- S-

Taxonomy of Latch Controllers - Timing

5/28/2016Asynchronous Control Circuit Design - L252

A

B

A

B

A

B

A

B

A

B

A

B

De-synchronisation

Fully-decoupled

(Furber, Day)
GasP, IPCMOS

Semi-Decoupled

(Furber, Day)

4-phase

Micropipeline Non-Overlapping

5/28/2016

27

Semi-Decoupled Latch Controller

Semi-Decoupled Latch Controller – STG and

SG

5/28/2016Asynchronous Control Circuit Design - L254

 A is redundant – ignore

 pre-buffered Lt

 Lt is for active-low latch,

5/28/2016

28

Semi-Decoupled Latch Controller PTnet

5/28/2016Asynchronous Control Circuit Design - L255

 Latch Control

 L

 L-, L+ in PTnet

Semi-Decoupled Latch Controller Circuit

5/28/2016Asynchronous Control Circuit Design - L256

 C-gate Set, Reset functions may be inferred from

STG/PTnet specification of the controller

5/28/2016

29

Semi-Decoupled – PTnet for 3 Stages

Notice how critical cycle contains two “P”s

(i.e., processing steps involving delay lines)

Lreq+

Lack+

Lreq-

Lack-

A+

Lt+

A-

Lt-

Rreq+

Rack+

Rreq-

Rout-

Lreq+

Lack+

Lreq-

Lack-

A+

Lt+

A-

Lt-

Rreq+

Rack+

Rreq-

Rout-

Lreq+

Lack+

Lreq-

Lack-

A+

Lt+

A-

Lt-

Rreq+

Rack+

Rreq-

Rout-

Stage 1 Stage 2 Stage 3

P P

RR

 Is this an issue? Why?

5/28/2016Asynchronous Control Circuit Design - L257

Fully-Decoupled Latch Controller

5/28/2016

30

Fully-Decoupled Latch Controller – STG and

SG

5/28/2016Asynchronous Control Circuit Design - L259

 A again is redundant

 Lt is for active-low latch,

 B is internal signal
 Needed for implementation

Fully-Decoupled Latch Controller PTnet

5/28/2016Asynchronous Control Circuit Design - L260

 Latch Control

 L

 L-, L+ in PTnet

 Signal INT,

 Transitions
INT+/INT-

 Internal

 For implementation

purposes only

5/28/2016

31

Fully-Decoupled Latch Controller Circuit

5/28/2016Asynchronous Control Circuit Design - L261

 Note Tradeoff between Concurrency and Circuit Complexity

 PTnet concurrency is not confluent with circuit

2 C-Element De-synchronisation

Controller

5/28/2016

32

2 C-Element De-Synchronisation Controller

5/28/2016Asynchronous Control Circuit Design - L263

 Master Latch Enable: M = (Ain != Rout) [XOR gate]

 Slave Latch Enable: S = (Rout == Aout) [XNOR gate]

Rin

C C

Rout

Ain
Aout

XOR XNOR

M SDatapath

Low-skew

buffer

trees

2 C-Element De-Synchronisation Controller

– Handshake Signals PTnet

5/28/2016Asynchronous Control Circuit Design - L264

 C elements obvious from PTnet Signal dependencies

5/28/2016

33

2 C-Element De-Synchronisation Controller

5/28/2016Asynchronous Control Circuit Design - L265

 Need multiple instantiations of M, S signals

 Per control signal transition

2 C-Element De-Synchronisation Controller

– How to Merge M, S Signals using Choice

5/28/2016Asynchronous Control Circuit Design - L266

 Note: PTnet is now AC

5/28/2016

34

2 C-Element De-Synchronisation Controller

Analysis - PTnets

5/28/2016Asynchronous Control Circuit Design - L267

 Reduction to Latch Control Signals (Verify)

 Characteristic Pattern:

M+ S+

S- S-

M

S

De-Synchronisation Maximum

Concurrency Controller

5/28/2016

35

De-Synchronisation Maximum Concurrency

Controller

5/28/2016Asynchronous Control Circuit Design - L269

Bundled-Data Design: Summary

5/28/2016Asynchronous Control Circuit Design - L270

 Similar area to synchronous circuit

 Enables the use of

 standard-cell cell libraries, conventional EDA tools

 Performance improvements due to

 PVT variation tracking, with post-silicon tuning of delay lines

 Pipeline stages can achieve average-case delay, using

 multiplexed delay lines (operand-based delay), and/or

 error detecting latches

 Power benefits

 Dynamic voltage scaling

 Conditional communication

 Workhorse of several Asynchronous start-ups

 Nanochronous, Elastix, and REM

