

Progettazione di Sistemi Embedded embbedded systems design

Franco Fummi University of Verona

Department of Computer Science

Italy

Laurea Magistrale in Ingegneria e Scienze Informatiche Embedded Systems Design Course

Goals

- Techniques for the automatic design of embedded systems:
 - starting from their specification throughout:
 - validation / verification
 - automatic synthesis
 - testing
- This lecture is focused on:
 - most important design languages
 - most evolved tools for their manipulation

Embedded Systems: Where?

ES: Historical perspective

- From computer ('60-'80):
 - General purpose systems for solution of general problems
- To digital control systems ('80-'90):
 - Systems dedicated to control and automation
- To distributed systems ('90-'00):
 - General purpose systems and/or dedicated systems cooperating through the network
- To embedded systems ('00-):
 - Distributed systems integrated in nor video-Control computing objects and in the environment
- To cyber-physical systems ('10-):
 - embedded systems integrated with physical processes

Status LEDs

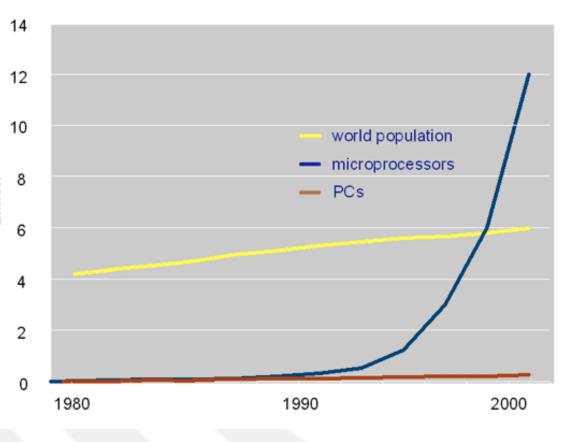
System IR Sens

lew Gear

Encoders

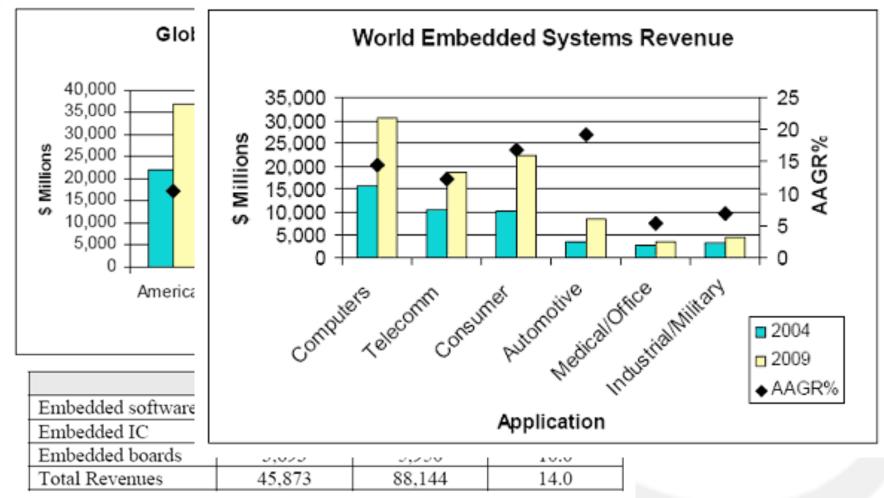
Start / Stop Buttor

Charging Connector


On/Off Switch

ES: History

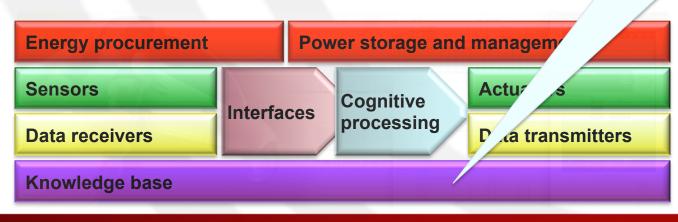
- First comp Systems:
 - not show to the pa compute
- The Apollc the world's
 - small siz devoted
- Mass prod


 1961 witl
- No stop...

ES Market

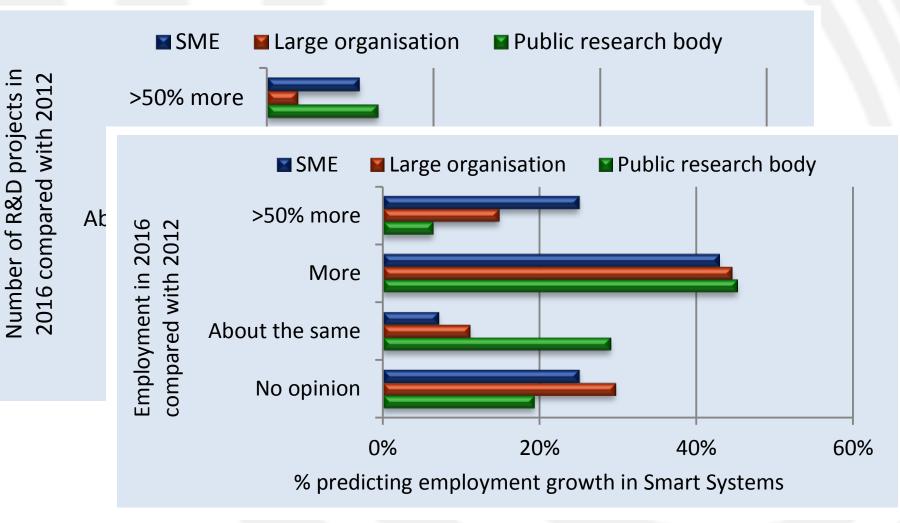
5 October '16

PSE

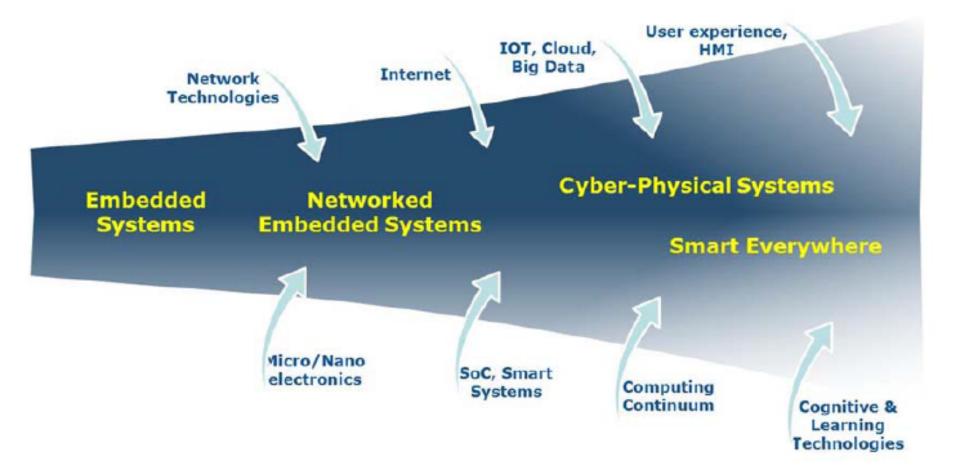


From ES to Smart Systems

- Miniaturized self-sufficient device that
 - Incorporates functions of sensing, actuation, and control
 - To describe and analyze a situation, and decisions based on the available data
 - In a predictive or adaptive manner (sm


Knowledge base separates smart systems from systems which, although they may be automated, remain purely reactive

Energy-autonomous and ubiquitously



Grow in smart system R&D

PSE

How Relevenat (I)

tannno)

000.000

October '16

10

How Relevant (II)

- & progetti europei completati e attivi: - Angel, Vertigo, Coconut, C4C, Complex, SMAC, Contrex
- 2 progetti europei in FP6
 - ANGEL (mobile gateway for sensors network)
 - VERTIGO (HW formal verification)
- 5 progetti europei in FP7
 - COCONUT (embedded systems design and verification)
 - best evaluation of the overall embedded systems track
 - C4C (control for coordination of distributed systems)
 - COMPLEX (platform-based design space exploration)

PSE

- SMAC (smart systems design)
- CONTREX (mixed-criticality systems)

VERTIGO

CONUT

CON4COORD

ES: How to design?

- We cannot design embedded systems like general purpose systems
 - Different design constraints, different goals
 - Embedded design is about the system, not about the computer
- E.g.
 - In general purpose computing, design often focuses on building the fastest CPU
 - In embedded systems the CPU simply exists as a way to implement control algorithms communicating with sensors and actuators

ES: Design constraints

Size and weight

- Hand-held electronics
- Weight costs money in transportation
- Human body cannot eat desktops
- Power
 - Buttery power instead of AC
- Harsh environment
 - Power fluctuation, RF interferences, heat, vibration, water, …
- Safety critical and real time operations
- Low costs

ES: Designer knowledge

- HW architecture alternatives
 - for a correct HW/SW trade-off
- SW design skills
 - lots of languages continuously extending
- HW/SW interaction mechanisms
 O.S., MW, HdS for efficient SW development
- Network infrastructure
 - all ES are now networked embedded systems
- Computation effort estimation

- theory is important when used in practice

Join 3C: computation, control & communication

Course Structure

- 34 lectures:
 - 32 theory hours
 - 22 lectures
 - 24 practical hours
 - 12 lectures
- People:
 - Franco Fummi (theory)
 - Michele Lora (laboratory class)
 - … for practical elaborations

credits

Modalità di Esame (I)

Teoria + lab. + opzioni:

- teoria
 - scritto con votazione /30
- relazione laboratorio
 - +3 punti max
- on demand
 - elaborato 0 +∞
 - (orale) +3 -∞
- Regole generali:
 - relazione dura 1 anno accademico
 - consegna in date stabilite

Modalità di Esame (II)

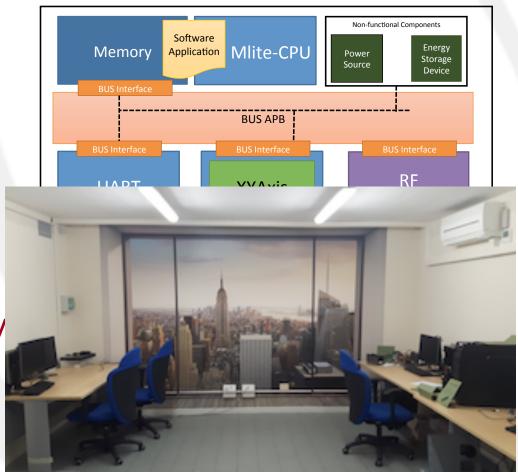
- Alternative:
 - Elaborato personale
 - stage aziendale
 - tesi
 - Teoria
 - no way :-)
- Design&Reuse:
 - tesi
 - stage pre-tesi

COMPUTER Science Park

Pre/post Condizioni

Precedenze Indispensabili:

- Architettura degli Elaboratori
- Programmazione
- Linguaggi …
- Sistemi (Metodi di specifica)


Fondamentale per

- Curriculum sistemi embedded (magistrale in Ingegneria)
 - Sistemi operativi avanzati, Architetture avanzate, Software per Sistemi Embedded, Sistemi Embedded Multimediali, Sistemi Embedded di Rete…

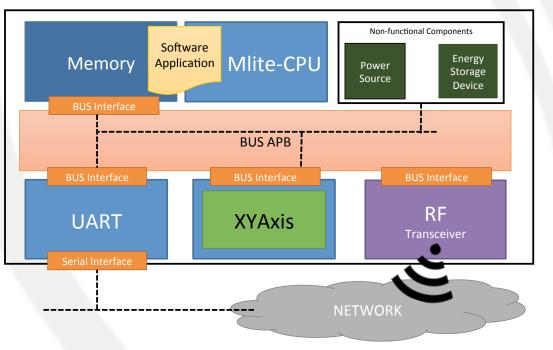
Benchmark and Labs.

- Smart devices:
 - The Open Source
 Test Case
 (SMAC project)
- Laboratorio Ciberfisico:
 - Secondo piano CV
- Lab. NES/Parco

Detailed Program

week	data	day	lecture	lab.	topic	
1	5-Oct	Wed.	2		Course introduction; Embedded systems modeling	
1	7-Oct	Fri.	3		Embedded systems modeling II; SystemC-based design	
2	712-Oct	Wed.	2		SystemC-based design II; SystemC-based design III	
2	14-Oct	Fri.	3		Platform-based design; Transactional-based design; TLM 2.0 standard	
3	719-Oct	Wed.		2	SystemC compilation/execution/debugging	
3	21-Oct	Fri.	3		TLM 2.0 standard II; SystemC/AMS support	
4	26-Oct	Wed.		2	SystemC modeling at RTL	
4	28-Oct	Fri.		2	SystemC modeling at TLM	
5	2-Nov	Wed.		2	SystemC timing evolution	
5	4-Nov	Fri.		2	SystemC/AMS	
6	9-Nov	Wed.		2	Mixed RTL/TLM/AMS SystemC	
6	11-Nov	Fri.	3		High-level synthesis (HLS): scheduling; High-level synthesis: allocation	
7	16-Nov	Wed.		2	Platform, testbench and device driver (OSTC)	
7	18-Nov	Fri.	3		Software embedded synthesis; Model-based design (MBD) of embedded software; IoT and Cloud	
8	23-Nov	Wed.			Cyber-physical systems: models of computations	
8	25-Nov	Fri.			intermediate exam	
9	30-Nov	Wed.		2	Model-based design: Matlab/Simulink/FMI	
9	2-Dec	Fri.	3		VHDL introduction; VHDL syntax	
1 0	7-Dec	Wed.		2	Embedded software design	
10	9-Dec	Fri.	3		VHDL modeling; VHDL timing simulation	
7 11	14-Dec	Wed.		2	VHDL modeling at RTL	
11	16-Dec	Fri.	2		VHDL timing simulation II; VHDL synthesis	
1 2	21-Dec	Wed.		2	VHDL timing simulation	
12	23-Dec	Fri.	3		Networked embedded systems (NES); Smart systems	
7 13	11-Jan	Wed.		2	Automatic synthesis from TLM and RTL	
13	13-Jan	Fri.	2		Introduction to embedded systems verification; Introduction to embedded systems testing	
1 4	718-Jan	Wed.			final report preparation	
14	20-Jan	Fri.			IoT and Cloud architectures; GPGPU: design problems and opportunities	
1 5	25-Jan	Wed.			final report preparation	
15	27-Jan	Fri.			final exam	
	hours	56	32	24		
	credits	6,0	4,0	2,0		

Topics (theory)


- Specification:
 - Embedded systems modeling
 - SystemC-based design
 - TLM design introduction
 - AMS modeling
 - VHDL modeling, syntax
 - Networked ES (NES)
 - Smart systems
- HW synthesis:
 - Introduction to TLM design
 - High-level synthesis
 - Automatic VHDL synthesis

- SW synthesis:
 - Embedded software generation
 - Automatic device driver generation
 - Model-based design
 - IoT and Cloud
- Verification & testing:
 - Introduction to verification
 - Introduction to testing
 - VHDL timing simulation
 - FMI/FMU simulink

Topics (lab.)

- Specification:
 - Compiling / executing /debugging SystemC
 - Modeling SystemC TLM
 - Modeling SystemC RTL
 - Timing evolution in SystemC
 - Analog modeling in SystemC/AMS
 - Platforms and IP-Xact
 - Mixed modeling RTL/TLM/AMS
 - Timing modeling in VHDL
- Hardware synthesis:
 - Automatic synthesis from TLM
 - VHDL modeling at RT
 - Automatic synthesis from RTL VHDL
- Software synthesis:
 - Testbench and device driver
 - Embedded software design
 - FMI/FMU cosimulation

Teaching supports (I)

- Course web page
 - Detailed program
 - Complete program
- E-learning web page
 - Slides
 - Laboratory instructions
 - Questions/answers
- Book
 - Ongoing
- Seminars
 - Indications during the course

Teaching supports (II)

- Theory slides:
 - 0.CourseIntroduction
 - 1.EmbeddedSystemsModeling
 - 2.SystemCBasedDesignFlow
 - 3.PlatformBasedDesign
 - 4.TLMBasedDesign
 - 5. SystemC/AMS
 - 6.HighLevelSynthesis
 - 7.EmbeddedSoftware
 - 8.ModelBasedDesign

- Theory slides:
 - 9.VHDLDesignIntroduction
 - 10.VHDLSyntax
 - 11.VHDLSpecification
 - 12.VHDLSimulation
 - 13.VHDLSynthesis
 - 14.NESDesign
 - 15.SmartSystems
 - 16.VerificationAndTesting

More information http://www.di.univr.it/~fummi

DIPARTIMENTO DI Informatica

AZIONI GENERALI RICERCA DIDATTICA PERSONE SEMINARI PRIMO PIANO DIDATTICA PRIMO PIANO AVVISI STRUTTURE

> Didattica > Corsi di laurea magistrale > Laurea magistrale in Ingegneria e scienze informatiche > Insegnamenti

Laurea magistrale in Ingegneria e scienze informatiche

DIDATTICA

Corsi di laurea

ць. I

Corsi di laurea magistrale Laurea magistrale in → Ingegneria e scienze informatiche

Modalità iscrizioni

Calendario didattico

Orario lezioni Piani didattici

Calendario esami
 Avvisi del corso di stut
 e degli insegnamenti
 Proposte tesi e stage
 Organi collegiali e di
 governo
 Docenti
 Laurea magistrale in
Mathematice

8	Progettazione di sistemi embedded (2016/2017)

PAGINE COLLEGATE

Avvisi relativi al corso

HOME DIPARTIMENTO

HOME ATENEO

CODICE INSEGNAMENTO 4502911 DOCENTE Franco Fummi CREDITI 6 SETTORE DISCIPLINARE ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI LINGUA DI EROGAZIONE Italiano PERIODO I sem. dal 3-ott-2016 al 31-gen-2017.

affrontare questo progetto e i più avanzati strumenti automatici per la loro manipolazione.

Orario lezioni

tudio i	I SEM.										
e	GIORNO	ORA	TIPO	LUOGO	NOTE						
	mercoledì	13.30 - 15.30	laboratorio	Laboratorio didattico Laboratorio Ciberfisico	dal 10-ott-2016 al 31-gen-2017						
	venerdì	8.30 - 11.30	lezione	Aula I							

Tecniche per la progettazione automatica di sistemi embedded a partire dalla loro specifica per passare attraverso la verifica, la sintesi automatica e il collaudo. Il corso presenta i principali linguaggi per

Obiettivi formativi

Programma

 Laurea Magistrale in Medical bioinformatics

Percorsi Abilitanti Speciali Tirocini Formativi Attivi

Corsi di laurea magistrale / specialistica (a esaurimento / disattivati)

Dottorati di ricerca

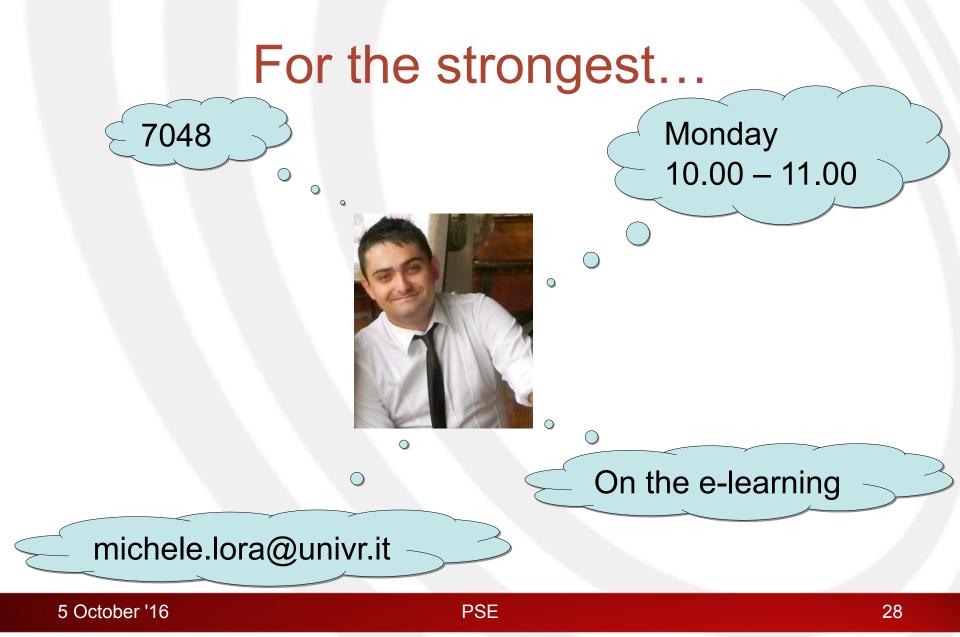
Master

Dottorati di Ricerca


Scuole di Dottorato collegate

Introduzione ai sistemi embedded: definizione dei campi di applicazione, caratteristiche generali, caratteriste comuni.

Modellazione di sistemi embedded: problematiche generali della modellazione dei sistemi embedded. linguaggi per la descrizione dei sistemi embedded



5 October '16

PSE

