
Ordinary Least Squares and its applications

Dr. Mauro Zucchelli

University Of Verona

December 5, 2016

Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48



Contents

1 Introduction to Ordinary Least Squares

2 OLS examples: fitting of a straight line

3 OLS examples: fitting of Wavelet coefficients

4 Diffusion MRI

5 Diffusion Tensor Imaging

6 Real Spherical Harmonics

Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 2 / 48



Introduction to Ordinary Least Squares

Contents

1 Introduction to Ordinary Least Squares

2 OLS examples: fitting of a straight line

3 OLS examples: fitting of Wavelet coefficients

4 Diffusion MRI

5 Diffusion Tensor Imaging

6 Real Spherical Harmonics

Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 3 / 48



Introduction to Ordinary Least Squares

OLS and Wavelet transform

Every mother Wavelet ψ(t) generate a basis which can be used to
represent any function f (t)

ψj ,n(t) =
1√
2j
ψ(

r − 2jn

2j
) (1)

f =
∞∑

j=−∞

∞∑
n=−∞

cj ,nψj ,n (2)

cj ,n = 〈f , ψj ,n〉 =

∫ ∞
−∞

f (t)ψj ,n(t)dt (3)
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Introduction to Ordinary Least Squares

OLS and Wavelet transform

There are several ways to calculate the Wavelet coefficients cj ,n

Calculate the scalar product 〈f , ψj ,n〉
Utilizing the DWT

The coefficients can be also found using the Ordinary Least Squares (OLS)
method
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Introduction to Ordinary Least Squares

Ordinary Least Squares

Given a generic function y(x) and a basis B we can represent y as

y(xi ) =
∞∑

n=0

cnBn(xi ) (4)

For practical reason this summation is often truncated to the order N

y(xi ) =
N∑

n=0

cnBn(xi ) (5)

This problem has an equivalent matrix representation
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Introduction to Ordinary Least Squares

Ordinary Least Squares

y is a vector s × 1 where s is the number of samples

c is a vector N × 1

B is a matrix s × N

B =


B0(x0) B1(x0) . . . Bn(x0)
B0(x1) B1(x1) . . . Bn(x1)

...
...

. . .
...

B0(xs) B1(xs) . . . Bn(xs)

 (6)
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Introduction to Ordinary Least Squares

Ordinary Least Squares

The vector y can be calculated as

y = Bc (7)

The goal of OLS is finding the vector c that minimize

s∑
i=0

(y(xi )−
N∑

n=0

cnBn(xi ))2 (8)

or, using the matrix notation, as

arg min
c
‖y− Bc‖2 (9)
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Introduction to Ordinary Least Squares

Ordinary Least Squares

In order to find c it is necessary to perform some algebraic operations

‖y− Bc‖2 =

= (y− Bc)T (y− Bc) =

= (yT − cT BT )(y− Bc) =

= yT y− yT Bc− cT BT y + cT BT Bc =

= yT y− 2cT BT y + cT BT Bc

(10)

Note: This is equivalent to the second order equation

y2 − 2c(by) + c2b2 (11)
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Introduction to Ordinary Least Squares

Ordinary Least Squares

Since this equation is convex, it presents only one point in which the
derivative is zero and this point is a minimum

We can calculate the derivative by calculating the gradient ∇c

∇c(yT y− 2cT BT y + cT BT Bc) =

− 2BT y + 2BT Bc
(12)

And find the minimum

−2BT y + 2BT Bc = 0

BT Bc = BT y

c = (BT B)−1BT y

(13)
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Introduction to Ordinary Least Squares

Ordinary Least Squares

OLS guarantees to provide the minimum error ‖y− Bc‖2

This is true also when the observations y are corrupted with Gaussian
noise

ynoise = N (y, σ) (14)
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OLS examples: fitting of a straight line
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OLS examples: fitting of a straight line

Case one: straight line

Linear regression problem

The data consist of s
observations of y ∈ R, function
of the independent variable x

The goal is to find the straight
line y = rx + q that better
approximates the data

Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 13 / 48



OLS examples: fitting of a straight line

Case one: straight line

The problem can be also viewed as

y = Bc (15)

where c = [r , q]T and

B =

x0 1
...

...
xs 1

 (16)

resulting in y0
...
ys

 =

r · x0 + q
...

r · xs + q

 (17)
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OLS examples: fitting of a straight line

Case one: straight line

The problem can be solved using
OLS

c = (BT B)−1BT y (18)

The line coefficients r and q are
respectively c[0] and c[1]

yfit = c[0] ∗ x + c[1] (19)
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OLS examples: fitting of Wavelet coefficients
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OLS examples: fitting of Wavelet coefficients

Case two: wavelet coefficients

Given a function f (t) we want to
represent it using a family of
wavelets up to the orders J and N

f (t) =
J∑

j=−J

N∑
n=−N

cj ,nψj ,n(t) (20)

In this case the representations will
not be perfect, because of the
truncation of the infinite series
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OLS examples: fitting of Wavelet coefficients

Case two: wavelet coefficients

We can view the problem as
f = Ψc (21)

where c are the wavelet coefficients and

Ψ =

ψ−J,−N(t0) . . . ψJ,N(t0)
...

. . .
...

ψ−J,−N(ts) . . . ψJ,N(ts)

 (22)
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OLS examples: fitting of Wavelet coefficients

Case two: wavelet coefficients

The problem can be solved using OLS as

c = (ΨT Ψ)−1ΨT f (23)

Depending on the number of samples and coefficients, the square matrix
ΨT Ψ could not be invertible
In this case it is necessary to introduce some regularization, conditioning
the diagonal of the matrix

c = (ΨT Ψ + λ1)−1ΨT f (24)

where 1 is the identity matrix of size nc × nc and λ is a small positive
number
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OLS examples: fitting of Wavelet coefficients

Case two: wavelet coefficients

Considering two families of wavelets

Haar wavelet

ψ(t) =


0, if t < 0 ∨ t ≥ 1

1, if 0 ≤ t < 1
2

−1, if 1
2 ≤ t < 1

(25)

Mexican hat

ψ(t, σ) =
2

√
2 ∗ σπ

1
4

(
1− t2

σ2

)
exp

(
− t2

2σ2

)
(26)
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OLS examples: fitting of Wavelet coefficients

Case two: wavelet coefficients
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Diffusion MRI
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Diffusion MRI

The neuron

The most fundamental component of the nervous system is the
neuron

The neuron can be subdivided in two parts: the cellular body (soma)
and the axon

The axons connect the different neurons in the brain
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Diffusion MRI

White Matter organization

The neuron bodies are mainly
clustered in the outer region of
the brain, the brain cortex or
Gray Matter

The cortex is subdivided in
functional regions (e.g. motor
cortex)

The axons are grouped in
bundles that which connect the
different region of the brain and
form the White Matter
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Diffusion MRI

Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is
one of the only non-invasive technique
which enables to characterize soft
tissues in-vivo

With traditional MRI techniques it is
possible to obtain clear images of the
principal brain tissues

However with standard MRI resolution
it is impossible to observe the white
matter fibers which diameter is in the
range of the micrometers
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Diffusion MRI

Diffusion Magnetic Resonance Imaging

The goal of Diffusion MRI is to
characterize the brain tissue
microstructure by observing the water
molecules diffusion profile

By studying the principal direction of
diffusion in each voxel it is possible to
estimate the local orientation of the
WM fibers

Propagating the local information for all
the voxels it is possible to reconstruct
streamlines that generally follows the
WM topography
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Diffusion MRI

Diffusion MRI: Pulse Gradient Spin Echo

90°
180°

δ δ
Δ

G

Applied
RF

Diffusion
Gradient

Received
RF

The diffusion signal is measured as a function of the b-value

b = (∆− δ/3)(γδG)2

We can define q = γδG
2π , the q-value

And the effective diffusion time τ = ∆− δ/3

b = 4π2τq2
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Diffusion MRI

Diffusion MRI

By changing the b-value and the direction of the pulse it is possible to
measure the diffusion dependent MR signal

In DMRI the signal is attenuated more in the direction where the
water molecules are more free to diffuse

Higher b-values corresponds to higher signal attenuation ⇒ more
signal from low diffusion areas
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Diffusion MRI

Diffusion MRI

b = 0s/mm2 b = 1000s/mm2 b = 2000s/mm2
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Diffusion MRI

Diffusion MRI

b = 1000s/mm2 b = 1000s/mm2 b = 1000s/mm2
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Diffusion MRI

Diffusion MRI: sampling schemes

Single Shell Two Shell Cartesian Grid

A higher number of points is generally better in order to characterize
the diffusion process

There are physical limitations (time, gradient strength, noise)

Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 31 / 48



Diffusion MRI

Diffusion Ensemble Average Propagator

The diffusion signal E (q) is linked to
the probability density function of the
water molecules displacement P(r)

P(r) =

∫
q∈R3

E (q)e−2πiq·rdq

This pdf is also called Ensemble
Average Propagator (EAP)

The EAP holds two important
properties

P(r) ≥ 0 ∀ r∫
r∈R3

P(r)dr = 1
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Diffusion MRI

EAP-derived indices: ODF

By averaging the radial part of the EAP
it is possible to obtain the diffusion
orientation profile of the water
molecules displacement

This is also known as Orientation
Distribution Function (ODF)

ODF (u) =

∫ ∞
0

P(ru)r2dr

Where u is a unit vector representing a
direction
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Diffusion MRI

EAP reconstruction models

In order to calculate the EAP from the diffusion signal it is necessary
to calculate its Fourier transform

If the signal is sampled in a Cartesian grid it is possible to use the
Fast Fourier Transform (FFT)

More generally, since the signal is generally sampled in a non-uniform
manner, it is necessary to fit a mathematical model to the signal

The mathematical models used in DMRI are called reconstruction
models
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Diffusion Tensor Imaging
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Diffusion Tensor Imaging

Diffusion Tensor Imaging

The most widely used reconstruction
model is the Diffusion Tensor Imaging
(DTI)

DTI models the diffusion signal as a
multivariate Gaussian function

E (q) = exp(−4π2τqT Dq)

Where D is a 3× 3 symmetric matrix

The DTI EAP can be calculated as

P(r) =
1√

(4πτ)3|D|
exp
−rT D−1r

4τ
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Diffusion Tensor Imaging

DTI fitting using OLS

In order to model the diffusion signal using DTI it is necessary to fit the
diffusion tensor D

D =

Dx ,x Dx ,y Dx ,z

Dx ,y Dy ,y Dy ,z

Dx ,z Dy ,z Dz,z

 (27)

The signal equation can be rewritten as

E (b) = exp(−buT Du)

− ln(E (b))

b
= uT Du

(28)
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Diffusion Tensor Imaging

DTI fitting using OLS

− ln(E (b))

b
=
[
ux uy uz

] Dx ,x Dx ,y Dx ,z

Dx ,y Dy ,y Dy ,z

Dx ,z Dy ,z Dz,z

ux

uy

uz


= u2

xDx ,x + 2uxuyDx ,y + 2uxuzDx ,z +

+ 2uyuzDy ,z + u2
yDy ,y + u2

zDz,z

(29)
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Diffusion Tensor Imaging

DTI fitting using OLS
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Diffusion Tensor Imaging

DTI fitting using OLS

We can recast the problem using OLS where the observations are
− ln(E(bi ))

bi
and the coefficients vector and the matrix basis are

c =



Dx ,x

Dx ,y

Dx ,z

Dy ,z

Dy ,y

Dz,z

 (30)

M =


u0

2
x 2u0xu0y 2u0xu0z 2u0yu0z u0

2
y u0

2
z

u1
2
x 2u1xu1y 2u1xu1z 2u1yu1z u1

2
y u1

2
z

...
. . .

...
us

2
x 2us xus y 2us xus z 2us yus z us

2
y us

2
z

 (31)
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Diffusion Tensor Imaging

DTI fitting using OLS

The coefficients can be retrieved using OLS as

c = (MT M)−1MT

(
− ln(E (b))

b

)
(32)

In theory only 6 samples are necessary to fit DTI coefficients

In general, because of the noise, at least 30 samples are used in
clincal practice

OLS can be used for fitting the diffusion tensor only when all the
sample are acquired using a single b-value
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Diffusion Tensor Imaging

DTI limitations

Fiber configuration DTI ellipsoid

Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 41 / 48



Real Spherical Harmonics
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Real Spherical Harmonics

Spherical Harmonics

The diffusion signal at a given b-value and the ODF are symmetric
function on the sphere

Spherical Harmonics (SH) are a useful basis for representing spherical
functions

SH can be viewed as the equivalent of the complex exponential e−iφ

on the sphere
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Real Spherical Harmonics

Real Spherical Harmonics

Y m
l =


√

2 · Re(Ŷ m
l ), if -l ≤ m < 0

Ŷ 0
l , if m=0√
2 · Img(Ŷ m

l ), if 0 < m ≤ l

(33)

where Ŷ m
l is the normalized SH basis, written as

Ŷ m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l + m)!
Pm

l (cos θ)e imφ (34)

with θ, φ the polar representation of u, and Pm
l the associated Legendre

Polynomial
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Real Spherical Harmonics

Real Spherical Harmonics
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Real Spherical Harmonics

Real Spherical Harmonics

We can fit the diffusion signal at a given b-value and in a given direction u
as

E (b,u) =
N∑

l=0, even

l∑
m=−l

cl ,mYl ,m(u) (35)

where the coefficients cl ,m are obtained as

c = (YT Y)−1YTE (b,u) (36)

with Y defined as

Y =


Y0,0(u0) Y2,−2(u0) . . . YN,N(u0)
Y0,0(u1) Y2,−2(u1) . . . YN,N(u1)

...
...

. . .
...

Y0,0(us) Y2,−2(us) . . . YN,N(us)

 (37)

Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 46 / 48



Real Spherical Harmonics

Spherical Harmonics as interpolation basis

We can recover the diffusion signal in u as

E (b,u) = Yc (38)

The coefficients c described the signal in the full S2 space and not only in
the set of points u used for the fitting

E (b, û) = Ŷc (39)
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Real Spherical Harmonics

Fin

The End
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