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What’s a graph? 

!  G = (V,E), where 

–  V represents the set of vertices (nodes) 

–  E represents the set of edges (links) 

–  Both vertices and edges may contain additional information 

!  Different types of graphs: 

–  Directed vs. undirected edges 

–  Presence or absence of cycles 

!  Graphs are everywhere: 

–  Hyperlink structure of the web 

–  Physical structure of computers on the Internet 

–  Interstate highway system 

–  Social networks 
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Some Graph Problems 

!  Finding shortest paths 

–  Routing Internet traffic and UPS trucks 

!  Finding minimum spanning trees 

–  Telco laying down fiber 

!  Finding Max Flow 

–  Airline scheduling 

!  Identify “special” nodes and communities 

–  Breaking up terrorist cells, spread of avian flu 

!  Bipartite matching 

–  Monster.com, Match.com 

!  And of course... PageRank 
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Graphs and MapReduce 

!  A large class of graph algorithms involve: 

–  Performing computations at each node: based on node features, edge features, 
and local link structure 

–  Propagating computations: “traversing” the graph 

!  Key questions: 

–  How do you represent graph data? 

•  Adjacency matrix 

•  Adjacency list 

–  How do you traverse a graph in MapReduce? 
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Adjacency Matrices 

!  Represent a graph as an n x n square matrix M 

–  n = |V| 

–  Mij = 1 means a link from node i to j 

!  Advantages: 

–  Amenable to mathematical manipulation 

–  Iteration over rows and columns corresponds to 
computations on outlinks and inlinks 

!  Disadvantages: 

–  Lots of zeros for sparse matrices 

–  Lots of wasted space 

1! 2! 3! 4!

1! 0! 1! 0! 1!

2! 1! 0! 1! 1!

3! 1! 0! 0! 0!

4! 1! 0! 1! 0!

1!

2!

3!

4!
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Adjacency Lists 

!  Take adjacency matrices… and throw away 
all the zeros 

!  Advantages: 

–  Much more compact representation 

–  Easy to compute over outlinks 

!  Disadvantages: 

–  Much more difficult to compute over inlinks 1: 2, 4!
2: 1, 3, 4!
3: 1!
4: 1, 3!

1 2 3 4 
1 0 1 0 1 
2 1 0 1 1 
3 1 0 0 0 
4 1 0 1 0 
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Agenda 

!  Graph algorithms in MapReduce 

–  Parallel breath-first search 

–  PageRank 

!  Graph Analysis Beyond Mapreduce 

–  Pregel 
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Parallel Breath-First Search 
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Single-Source Shortest Path (SSSP) 

!  Problem 

–  Find shortest path from a source node to all target nodes 

!  Solution on a single machine 

–  Dijkstra algorithm using a global priority queue 

•  Maintains a globally sorted list of nodes by current distance 
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Example: SSSP – Dijkstra’s Algorithm 
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SSSP on large instances 

!  How to solve this problem in parallel? 

–  “Brute-force” approach: breadth-first search (BFS) 

!  Parallel BFS: intuition 

–  Flooding 

–  Iterative algorithm in MapReduce 

–  Try to mimic message passing style algorithms 
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Parallel Breadth-First Search: Pseudo code 
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Parallel Breadth-First Search 

!  Assumptions 

–  Connected, directed graph 

–  Data structure: adjacency list 

–  Distance to each node is stored alongside the adjacency list of that node 

!  The pseudo-code 

–  We use n to denote the node id (an integer) 

–  We use N to denote the node adjacency list and current distance 

–  The algorithm works by mapping over all nodes 

–  Mappers emit a key-value pair for each neighbor on the node’s adjacency list 

•  The key: node id of the neighbor 

•  The value: the current distance to the node plus one 

•  If we can reach node n with a distance d, then we must be able to reach all the 
nodes connected to n with distance d + 1 



 15 

Parallel Breadth-First Search 

!  The pseudo-code (continued) 

–  After shuffle and sort, reducers receive keys corresponding to the destination 
node ids and distances corresponding to all paths leading to that node 

–  The reducer selects the shortest of these distances and update the distance in 
the node data structure 

!  Passing the graph along 

–  The mapper: emits the node adjacency list, with the node id as the key 

–  The reducer: must distinguish between the node data structure and the 
distance values 
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Parallel Breadth-First Search 

!  MapReduce iterations 

–  The first time we run the algorithm, we “discover” all nodes connected to the 
source 

–  The second iteration, we discover all nodes connected to those 

" Each iteration expands the “search frontier” by one hop 

–  How many iterations before convergence? 

!  This approach is suitable for small-world graphs 

–  The diameter of the network is small 
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Parallel Breadth-First Search 

!  Checking the termination of the algorithm 

–  Requires a “driver” program which submits a job, check termination condition 
and eventually iterates 

–  In practice: 

•  Hadoop counters 

•  Side-data to be passed to the job configuration 

!  Extensions 

–  Storing the actual shortest-path 

–  Weighted edges (as opposed to unit distance) 
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Summary 

!  The graph structure is stored in an adjacency lists 

–  This data structure can be augmented with additional information 

!  The MapReduce framework 

–  Maps over the node data structures involving only the node’s internal state and 
it’s local graph structure 

–  Map results are “passed” along outgoing edges 

–  The graph itself is passed from the mapper to the reducer 

•  This is a very costly operation for large graphs! 

–  Reducers aggregate over “same destination” nodes 

!  Graph algorithms are generally iterative 

–  Require a driver program to check for termination 
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PageRank 
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Graph algorithm: PageRank 

!  What is PageRank 

–  It’s a measure of the relevance of a Web page, based on the structure of the 
hyperlink graph 

–  Based on the concept of random Web surfer 

!  Formally we have: 

   

 

–  |G| is the number of nodes in the graph 

–  α is a random jump factor 

–  L(n) is the set of out-going links from page n 

–  C(m) is the out-degree of node m 

P(n) =α 1
G

!

"
##

$

%
&&+ (1−α)

P(m)
C(m)m∈L(n)

∑



 21 

PageRank in Details 

!  PageRank is defined recursively, hence we need an iterative algorithm 

–  A node receives “contributions” from all pages that link to it 

!  Consider the set of nodes L(n) 

–  A random surfer at m arrives at n with probability 1/C(m) 

–  Since the PageRank value of m is the probability that the random surfer is at m, 
the probability of arriving at n from m is P(m)/C(m) 

!  To compute the PageRank of n we need: 

–  Sum the contributions from all pages that link to n 

–  Take into account the random jump, which is uniform over all nodes in the 
graph 
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PageRank: Example 
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PageRank: pseudo-code 
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PageRank: Example 
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PageRank in MapReduce 

!  Sketch of the MapReduce algorithm 

–  The algorithm maps over the nodes 

–  For each node computes the PageRank mass the needs to be distributed to 
neighbors 

–  Each fraction of the PageRank mass is emitted as the value, keyed by the node 
ids of the neighbors 

–  In the shuffle and sort, values are grouped by node id 

•  Also, we pass the graph structure from mappers to reducers (for subsequent 
iterations to take place over the updated graph) 

–  The reducer updates the value of the PageRank of every single node 

 26 

PageRank in MapReduce 

!  Implementation details 

–  Loss of PageRank mass for sink nodes 

–  Auxiliary state information 

–  One iteration of the algorithm 

•  Two MapReduce jobs: one to distribute the PageRank mass, the other for dangling 
nodes and random jumps 

–  Checking for convergence 

•  Requires a driver program 

•  When updates of PageRank are “stable” the algorithm stops 
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Graph Analysis Beyond MapReduce 
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Pregel: A System for Large-Scale Graph Processing 

!  What is it? 

–  Model for fault-tolerant parallel processing of graphs 

–  C++ API allowing users  to apply this model 

!  Why use it?  

–  Problems solvable with graph algorithms are common 

–  The alternatives aren’t very good 

•  Develop distributed architecture for individual algorithms 

•  Existing distributed platform (e.g., MapReduce) 

–  May not be very good at graph algorithms (multiple stages " lots of overhead) 
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The Pregel model (1/2) 

!  Master/Worker model 

–  Each worker assigned a subset of a directed graph’s vertices 

!  Vertex-centric model.  Each vertex has: 

–  An arbitrary “value” that can be get/set. 

–  List of messages sent to it 

–  List of outgoing edges (edges have a value too) 

–  A binary state (active/inactive) 
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The Pregel model (2/2) 

!  Bulk Synchronous Parallel model 

–  Synchronous iterations of asynchronous computation 

–  Master initiates each iteration (called a “superstep”) 

–  At every superstep 

•  Workers asynchronously execute a user function on all of its vertices 

•  Vertices can receive messages sent to it in the last superstep 

•  Vertices can send messages to other vertices to be received in the next superstep 

•  Vertices can modify their value, modify values of edges, change the topology of the 
graph (add/remove vertices or edges) 

•  Vertices can “vote to halt” 

–  Execution stops when all vertices have voted to halt and no vertices have 
messages.   

–  Vote to halt trumped by non-empty message queue 
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Illustration: vertex partitions 

http://stochastix.files.wordpress.com/ 

Worker 1 

Worker 2 

Worker 3 
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Loading the graph input 

!  Master assigns section of input to each worker 

!  Vertex “ownership” determined by hash(v) mod N 

–  N - number of partitions 

–  Recall each worker is assigned one or more partitions 

–  User can modify this to exploit data locality 

!  Worker reads its section of input: 

–  Stores vertices belonging to it 

–  Sends other vertices to the appropriate worker 

!  Input stored on something like GFS 

–  Section assignments determined by data locality 
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Simple example: find max  

i_val := val 
for each message m 

  if m > val then val := m 
if i_val == val then 

  vote_to_halt 
else 

  for each neighbor v 
    send_message(v, val) 
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Combiners 

!  Sometimes vertices only care about a summary value for the messages it is 
sent (e.g., previous example) 

!  Combiners allow for this (examples: min, max, sum, avg) 

!  Messages combined locally and remotely 

!  Reduces bandwidth overhead  

!  User-defined, not enabled by default 
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Fault Tolerance (1/2) 

!  At start of superstep, master tells workers to save their state: 

–  Vertex values, edge values, incoming messages 

–  Saved to persistent storage  

!  Master saves aggregator values (if any) 

!  This isn’t necessarily done at every superstep 

–  That could be very costly 

–  Authors determine checkpoint frequency using mean time to failure model 
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Fault Tolerance (2/2) 

!  When master detects one or more worker failures: 

–  All workers revert to last checkpoint 

–  Continue from there 

–  That’s a lot of repeated work!  

–  At least it’s better than redoing the whole thing. 
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Example: PageRank 

http://wikipedia.org 
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Alternatives to Pregel 

!  Pregel is a Google project 

!  Alternative open source project similar in spirit 

–  GPS: A Graph Processing System 

•  Developed at Stanford Univ. 

–  Giraph 

•  An Apache project 

!  Other alternatives, tailored to the specific problem 

–  E.g. “Filtering: A Method for Solving Graph Problems in MapReduce” 


