
Ambiente e performance

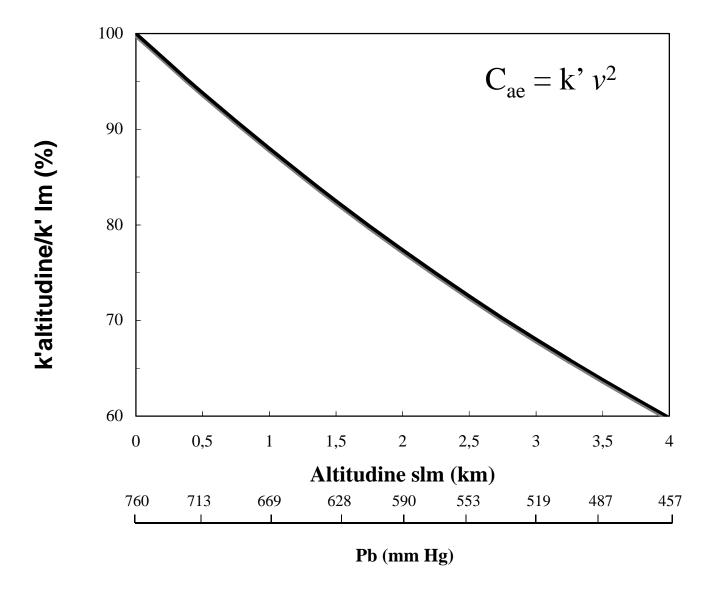
Fisiologia della prestazione sportiva

Università degli Studi di Verona Scienze Motorie aa 2012-1013

Fattori Ambientali e Prestazioni

1. La densità dell'aria dipende dalla pressione barometrica

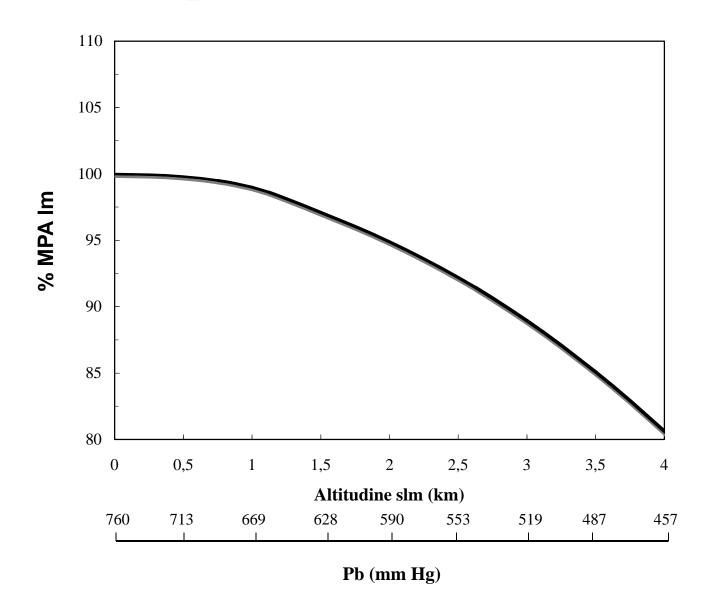
$$\rho_0 \bullet \left[\frac{PB}{760}\right] \bullet \left[\frac{273}{T}\right]$$


$$CAE = k \ v^2$$

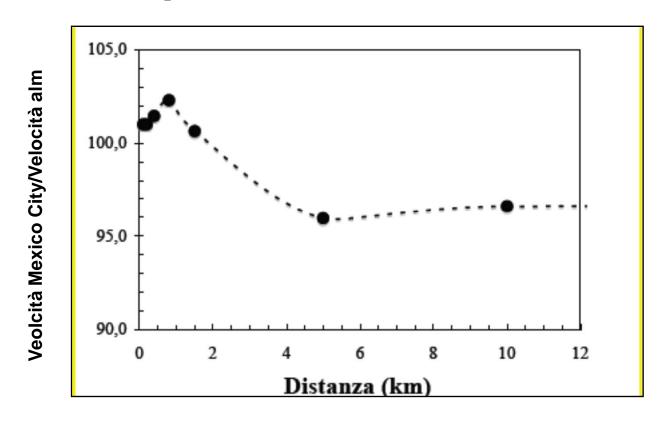
$$C_{AE} = k v^2$$

CAE =
$$C_d A \rho/2 v^2$$

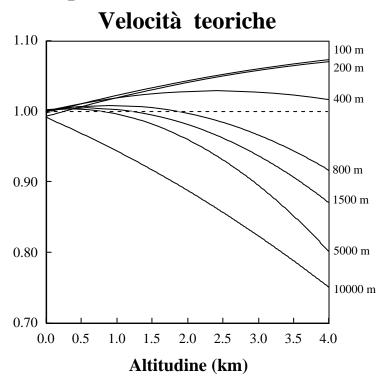
Quindi, l'energia spesa per unità di distanza contro la resistenza dell'aria diminuisce in funzione dell'altitudine

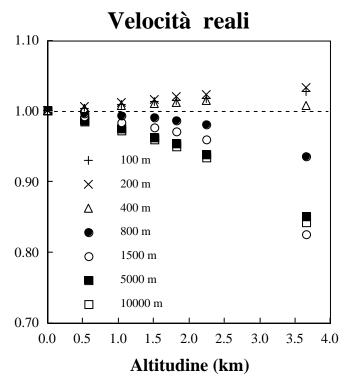

Resistenza aerodinamica ed altitudine

Massima potenza metabolica ed altitudine

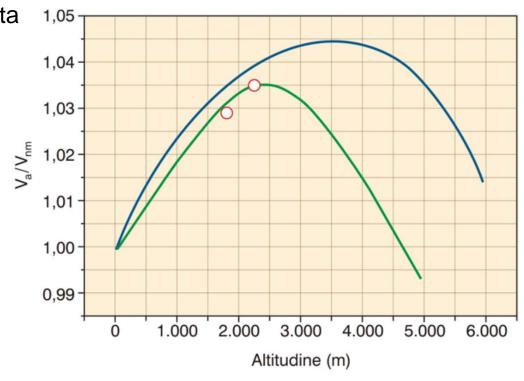

- 1. La massima potenza anaerobica è *praticamente* indipendente dall'altitudine
- 2. La pressione parziale di O_2 nell'aria inspirata (P_IO_2) diminuisce consensualmente con l'altitudine: $P_IO_2 = F_IO_2$ •PB
- 3. Ciò porta con sé la diminuzione del V'O_{2max} e, quindi, della **Massima Potenza Aerobica**
- 4. Il nostro organismo, però, mette in atto dei meccanismi di acclimatazione all'ipossia da altitudine che tentano di compensare la diminuzione di V'O_{2max}

Massima potenza aerobica ed altitudine

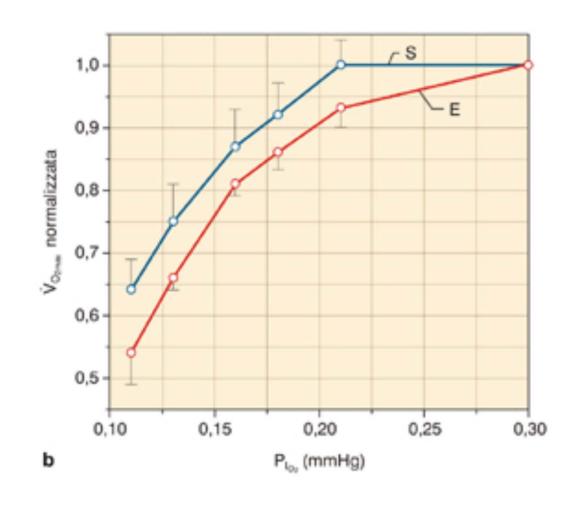

Conseguenze sulle Prestazioni in Altitudine


1. Nel caso in cui in cui la spesa energetica per unità di distanza contro le forze aerodinamiche sia trascurabile (corsa a piedi < 24 km hr-1), questo stato di fatto si traduce in uno svantaggio: le velocità record in altitudine saranno inferiori a quelle a livello del mare.

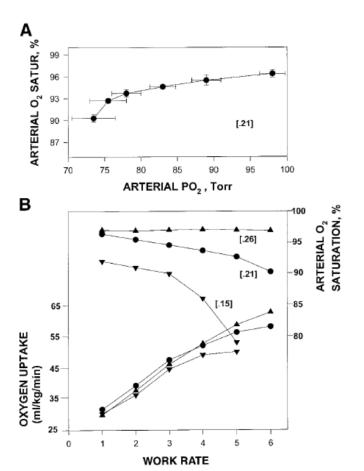
Conseguenze sulle Prestazioni in Altitudine


- 2. Nel caso in cui la spesa energetica per unità di distanza contro le forze aerodinamiche <u>sia significativa</u> (corsa a piedi sulle brevi distanze, cliclismo), in altitudine si raggiungerà una velocità più alta rispetto al livello del mare.
- 3. La quota ideale sarà tanto più alta quanto maggiore è la velocità (componente aerodinamica)

Record dell'ora in bicicletta in atitudine

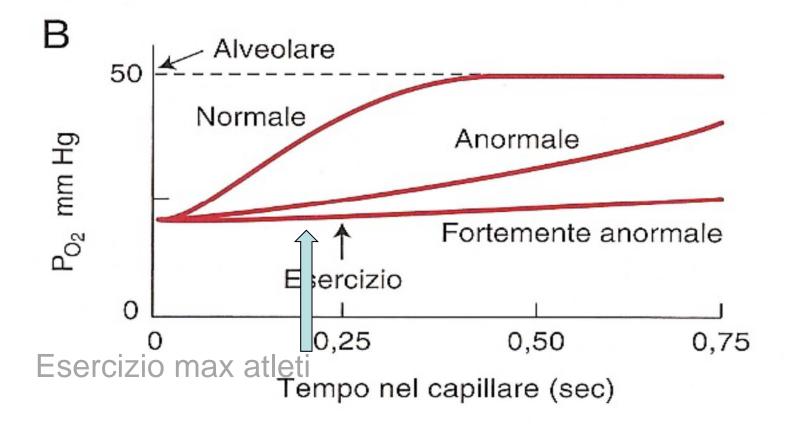

- 4. Anche in questo caso si avrà un'altitudine ottimale a cui l'equilibrio tra diminuzione di ρ e diminuzione di MPA è il più favorevole
- Curva blu: previsione eseguita sulla base della diminuzione del V'O_{2max} in funzione dell'altitudine descritta da Cerretelli
- Curva verde: predizione effettuata tenendo conto del fatto che atleti con il massimo consumo di ossigeno elevato subiscono una maggiore diminuzione dello stesso in alta quota

Effetto Dempsey e V'O2max in altura


Gli atleti di endurance con alto $V'O_{2max}$ presentano una maggiore diminuzione percentuale di $V'O_{2max}$ rispetto a i sedentari in altura

- Curva blu:
 Sedentari
- Curva verde:
 Atleti di endurance

Effetto Dempsey o EIAH


EIAH: Exercise-induced arterial hypoxemia. La PaO2 diminuisce ad esercizio massimale. L'effetto è esacerbato da ipossia ed è più marcato negli atleti con alto V'O_{2max}

- A: %SatO₂ durante esercizio in soggetti maschi durante esercizio di diversa intensità. E' dovuta a diminuzione di P_aO₂ e a spostamento verso destra della curva di dissociazione dell'emoglobina (acidosi)
- B: V'O₂ e %SatO₂ durante esercizio in normo, iper e ipossia

Effetto Dempsey o EIAH

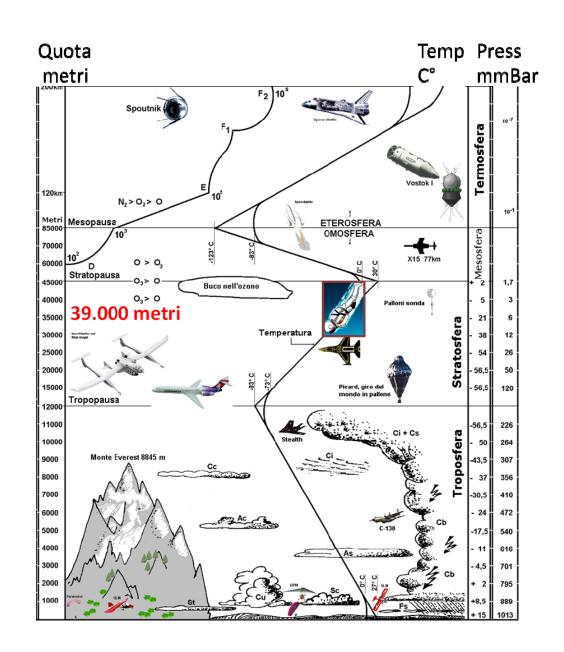
- EIAH: Durante esercizio massimale, il sangue esce dal capillare non in equilibrio con l'aria alveolare.
- Ciò è dovuto all'eccessivo accorciamento del tempo di transito del sangue nel capillare polmonare causato dall'elevatissima gettata cardiaca e, quindi, dall'altrettanto elevato flusso polmonare

Bibliografia

- Péronnet F, Thibault G, Cousineau DL. A theoretical analysis of the effect of altitude on running performance. JAppl Physiol 70: 399-404, 1991
- Ferretti G e Capelli C. **Dagli Abissi allo Spazio**, edi-ermes, Milano, 2009, Cap.1.

Seconda parte

Volo in caduta libera, prestazioni e ambiente


....a velocità supersonica

Introduzione

MISSIONE

Il14 Ottobre 2012
Felix Baumgartner si è
lanciato da 39.045 metri a
Roswell nel New Mexico,
diventando il primo uomo
a superare il muro del
suono in caduta libera.

Joe Kittinger 1960 Record tempo in caduta libera

Variabili da considerare

TEMPERATURA

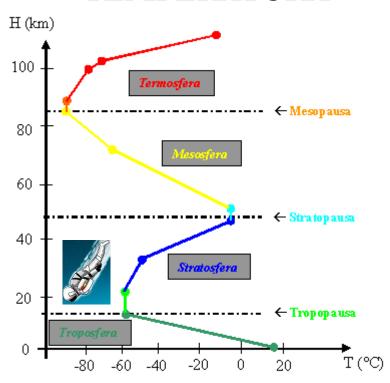


Figura 1 - Andamento della temperatura T in funzione dell'altezza geopo tenziale H per l'atmosfera standard

PRESSIONE

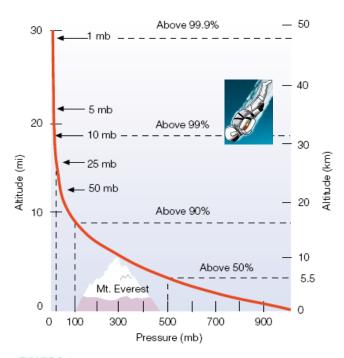


FIGURE 1.6

Atmospheric pressure decreases rapidly with height. Climbing to an altitude of only 5.5 km, where the pressure is 500 mb, would put you above one-half of the atmosphere's molecules.

Meccanismo di Espansione dei gas e Barotraumi

I gas contenuti nelle cavità corporee saturi di vapor d'acqua, alla temperatura corporea di 37° esercita una pressione parziale di 47mmHg, la loro espansione relativa (V_i/V_f)

$$\frac{V_f}{V_i} = \frac{(P_i - 47)}{(P_f - 47)}$$

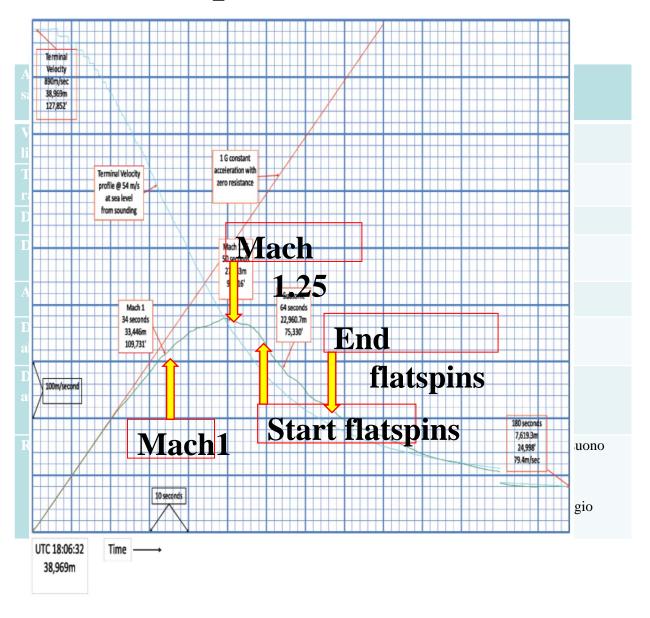
 V_i = volume o pressione iniziale (prima dell'espansione) V_f =volume o pressione finale (dopo l'espansione)

La variazione di volume di gas diventa teoricamente infinita salendo a quote superiori a 19.000 m, dove la pressione finale è inferiore o uguale a 47mmHg

Ambiente e risposte fisiologiche

POSSIBILI COMPLICAZIONI DURANTE LA MISSIONE:

- Ipossia Ipobarica
- Espansione dei gas cavità corporee
- Barotraumi in Ipobarica
- Effetti delle Vibrazioni


INDICATORI DI RISPOSTA FISIOLOGICA:

- Frequenza Cardiaca
- Frequenza Respiratoria

Missione

- 14 Ottobre 2012 a Roswell (New Messico)
- 39.045 metri
- Tuta pressurizzata e casco/chest pack/ CYPRES 2
- Pallone aerostatico di 850.000 metri cubi di elio
- Capsula sistemi di trasmissione e di monitoraggio
- 2 ore di salita 9 minuti di discesa totale

Principali fasi Records

Risposte fisiologiche

- Frequenza cardiaca
- Frequenza respiratoria

	Heart Rate	Respiratory Rate
	(beats per minute)	(breaths per minute)
O2 prebreathe	40-100	10-16
Launch	120	17
Ascent	60-100	20-30
Egress from capsule	155-185	20-30
Jump	176	30
Weightless (initial fall)	169	30
Mach 1.25	169	32
Overall freefall	155-175	30-43
Parachute descent	155-180	26-34
Landing	163	33
Recovery flight	100	18

Addestramento / Allenamento

Le operazioni di addestramento svolte sono state:

- Allenamento e sviluppo delle procedure di uscita dalla capsula
- Tunnel di vento verticale indossando la tuta pressurizzata
- Salti con il bungee jumping per perfezionare il salto fuori dalla capsula
- Paracadutismo con tuta de-pressurizzata per abituarsi alla tuta
- Paracadutismo pressurizzato per un addestramento più intenso

Tecnologia

- TUTA
- CHEST PACK
- CYPRES 2

Conclusioni

- Baumgartner è stato il primo uomo che senza scafi ed in relativa sicurezza, supera la barriera del suono, si butta dall'altezza più alta fino ad oggi raggiunta e copre la più lunga distanza di volo in verticale.
- La sua impresa ha provato anche che i piloti potrebbero, in caso di emergenza, uscire dai velivoli in alta quota e mettersi in salvo paracadutandosi al suolo.
- Fornire prove su come approcciarsi in situazioni di emergenza in ambienti estremi, in particolare l'estrema l'ipossia, le vibrazioni, la bassa pressione e l'alta differenza di temperatura.

Bibliografia

- Findings of the Red Bull Stratos Scientific Summit. California Science Center, Los Angeles, California, USA, http://www.redbullstratos.com; 23 January 2013.
- D. H. Murray, A. A. Pilmanis, R. S. Blue, J. M. Pattarini, J. Law, C. Gresham Bayne, M. W. Turney, and J. B. Clark. *Pathophysiology, Prevention, and Treatment of Ebullism*. Aviation, Space, and Environmental Medicine Vol. 84, No. 2 February 2013.
- C.R. Doarn and S. R. Mohler. *Physician Training in Aerospace Medicine An Historical Review in the United States*. Aviation, Space, and Environmental Medicine Vol. 84, No. 2 February 2013.
- Ernsting, Nicholson, Rainford, "Aviation medicine", third edition, 1999.