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Modeling dynamical phenomena |



Model:“something that represents another thing,
either as a physical object that is usually smaller
than the real object, or as a simple description”

a plastic model aircraft



Mathematical model: a representation
in mathematical terms of the behavior
of real devices and objects

Why do we do Mathematical Modeling?
* to predict

* to understand and explain

* to control

phenomena and behaviors
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Measurements Observations

Phenomena Models

Validation Predictions

4

The modeling part is concerned with analyzing and rationalizing the
above observations in order to construct:

models that allow to predict future behaviors;
models that describe the behavior or results observed;

models that explain why that behavior and results occurred as they
did.




Which kind of mathematical tools
can be used?

Time Series Analysis Ordinary differential equation (ODEs)

Difference equations or recurrence relations

Partial differential equations (PDEs)

Finite state machines (FSMs)

Automata
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Predictive model Additive time series decomposition:
ve =Ty + 5S¢ + noise

Atmosferic CO, (parts per million) at Mauna Loa Observatory
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Interpretative model

Thomas Malthus's table of population growth in England 1780-1810, from his
An Essay on the Principle of Population, 1826

P(1785) - P(1780)
P(1780)

Percentage  Predicted Prediction

Population in increase opulation  error
1780 7,721,000 / bob et

1785 7,998,000 0.036 7,998,000

1790 8,415,000 0.052 8,421,894 0.1%
1795 8,831,000 0.049 8,868,254 0.3 %
1800 9,287,000 0.052 9,338,272  0.1%
1805 9,837,000 0.059 9,833,200 0.6 %
1810 10,488,000 0.066 10,354,360 -1.2%

y

From 1785 to 1805, the five years percentage increase Pl1) — P(k) + 0,053 P(k)

1s constant and equal to about 0.053



Interpretative model

Establishing cause-and-effect relationship

Cause : The reason why something happened

Effect : What happened because of the cause

Cause : The excess of births above the deaths is constant (in percentage)
in each period of five years

Effect : The population is increasing as a geometric sequence

P(k+1) = 1,053 P(k)

15



Interpretative model

Establishing cause-and-effect relationship

Cause : The reason why something happened

Effect : What happened because of the cause

1) The effects happen always
after the cause ?

16
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® Correlation does not imply causation! ———Temperature

P . ] ] — ce Cream Sales
We cannot establish cause and effect relationships

® We cannot say that one variable causes an increase (or decrease)
in the other variable

® We can say that one variable is associated (linearly) with another variable

18



CORRELATION IS NOT CAUSATION!

B ICE CREAM SALES
B SHARK ATTACKS

Both ice cream sales and shark attacks increase when the weather is hot
and sunny, but they are not caused by each other (they are caused by
good weather, with lots of people at the beach, both eating ice cream
and having a swim in the sea)

JAN MAR MAY JUL SEP NOV

GOOD WEATHER

CORRELATION
ICE CREAM SALES <m————>  SHARK ATTACKS

19



Spurious correlations
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Modeling: the art of neglecting

u(t)

u(t) traction force
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Modeling: the art of neglecting

u(t)

CORRECT UNDER OVER

u( t) traction force INFLATION INFLATION INFLATION
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coefficient of friction between T o chatliegd oy led
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Modeling: the art of neglecting

w(t) wind drag
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Modeling: the art of neglecting

w(t) wind drag

Sedan
Wagon
Hatchback
Convertible
SuUv

Drag coefficient

0.32
0.30
0.31
0.40
0.40 - 0.50
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Modeling: the art of neglecting

£

G

Fuel consumption
with car atidle

Engine displacement
Engine speed at idle
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Modeling: the art of neglecting

Fuel consumption
with car atidle

N Engine displacement
/?/“\‘ Engine speed at idle

Ao
o 0O°
In a modern automobile, the A/C system uses around 4 horsepower

(3 kW) of the engine's power, thus increasing fuel consumption of the
vehicle

26



Modeling: the art of neglecting

De corporibus fluitantibus (on floating bodies)
Archimede

Indeed, in the first book Archimedes derives the fact that
the surface of the oceans is spherical.

In the second book, the surface of the liquid is implicitly
assumed to be flat from the start:

Archimedes does not spend a single word in justifying
this assumption as an approximation of the "true"
spherical shape.

Obviously we are dealing with two
different models, appropriate for
phenomena at different scales.

27
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... In that Empire, the Art of Cartography attained such 5
Perfection that the map of a single Province occupied the =
entirety of a City, and the map of the Empire, the E
entirety of a Province. 5
In time, those Unconscionable Maps no longer satisfied,
and the Cartographers Guilds struck a Map of the Emp.ire‘\\-f
whose size was that of the Empire, and which coincided
point for point with it.

The following generations, who were not so fond of the
Study of Cartography as their forebears had been, saw
that that vast map was Useless, and not without some
pitilessness was it, that they delivered it up to the
inclemencies of Sun and winters. In the Deserts of the
West, still today, there are Tattered Ruins of that Map,
inhabited by animals and beggars; in all the Land thereis
no other relic of the disciplines of Geography.

 Suarez Miranda, Viajes de varones prudentes L|brer|\f, 2\
Cap. XLV, Lerida, 1658




“All models are wrong
but some are usefu

|/I

G. Box, Robustness in the strategy of
scientific model building, 1979

29



A classification of dynamical models |
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Time-Driven and Event-Driven systems

Time-driven systems change state in response to a uniformly progressing
physical time

31



Time-Driven and Event-Driven systems

Time-driven systems change state in response to a uniformly progressing
physical time

+ 2(t)  Continuous-time

L~

> 1




Time-Driven and Event-Driven systems

Time-driven systems change state in response to a uniformly progressing
physical time
Discrete-time systems,

+ (t)  Continuous-time (k) _ _
i.e. driven by regular clock ticks
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—
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Time-Driven and Event-Driven systems

Time-driven systems change state in response to a uniformly progressing

phy

y

sical time

 2(t)  Continuous-time

L~

> 1

Event-driven systems change
state in response to the
occurrence of asynchronous
discrete events that result in
instantaneous state transitions

x(k) D

iscrete-time systemes,
i.e. driven by regular clock ticks
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Time-Driven and Event-Driven systems

Time-driven systems change state in response to a uniformly progressing
physical time
:C(k Discrete-time systems,
i.e. driven by regular clock ticks

i iTNN

> 1 .

+ 2(t)  Continuous-time

LN

Event-driven systems change I z(k)
state in responsetothe ¢
occurrence of asynchronous |
discrete events that result in I

instantaneous state transitions J TI g’

Continuous-state and discrete-state systems

Continuous-state system: the state variables are real

Discrete-state system: the state variables takes values in a discrete (finite/infinite) set

35



Discrete-time
continuous-state systems

1) Mortgage repaying

x(k) residual mortgage after k months

x(0) principal amount borrowed
u(k) regular monthly payment

r monthly interest rate
v(k+1)=ak)+rek) —ulk) =1 +7r)xe(k) — ulk)
The residual mortgage changes only at the end of every month

36



Discrete-time
continuous-state systems

S
. ( P
2) Population growth )
by
x(k) population size after k years ‘1
b birth (births/population) rate v . & ‘ " 7
' s - ¥

<
m  mortality (deaths/population) rate

r=0—m  population growth rate

v(k+ 1) =z(k)+ bx(k) —mx(k) = (1+r)x(k)

37



residual mortgage
.—

®

| —

The size of the population changes continuously
but it is observed at regular intervals of time
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Continuous-time

continuous-state systems |

Capacitor charging

voltage across
(t) = ve(t) the capacitor

u(t) =F DC source of voltage

R
l MA N
\ i(t) C
ot (t) + pu(t)
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Event-driven
discrete-state systems

Population of Customers

Queueing system
with FIFO service

Arrival Cutput

Service
Queue

x(k) Number of customers in the queue
after the k-th event

The state of the system remains unchanged except at the following events

* e, :arrival times t of customers: v(k+1)=x(k)+1

* e,:departure times t of customers:  z(k+1) =x(k) — 1

State transitions are asynchronous, NOT synchronized by a clock
40
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€ € €

€,

Untimed models (logical behavior)
The event sequence
{e, e, €y ...}
(without information about the occurrence
times), determines the sequence of states
3,2,1, ..}

41



€ € €
€ € €

€,

Untimed models (logical behavior)
The event sequence

{e, e, €y ...}
(without information about the occurrence

times), determines the sequence of states
L {3,2,1, ..}
A el
: k
l e le \ Timed models (quantitative behavior)

The timed event sequence

{(eZI tl)) {(eZI tz)/ ’ }
determines the entire state path over time.

t, t, t, te

42



Event-driven
finite-state systems

Coin-operated turnstile

The state of the system can assume only two values
(Locked and Unlocked) and remains unchanged except
at the following events

* e, :putting a coin in the slot

* e,:pushing the arm of the turnstile

ez

43



Finite automata | FSM (finite state machine)

A finite automaton is a mathematical model of an event-driven
finite-state system:

M = (Q,Z,é)
» Q= {QM q2, - - } is a set of discrete states

> X = {el, €2, . .. ,em} finite set (alphabet) of input symbols (events)

» 0:0QxX— 2@ transition (set-valued) function

5((], e) C () isthe set of all states the system can transit to from
state g under the input symbol e

2¢ denotes the power set of (), i.e. the set of all subsets of ()

44



M = (Q,X,0)

Q:{Q17QQ}
22{61,62}
§:0Q x Y — 29

q1

q2

€1 €9
q2 q1
2 q1

45



Finite automata | M =(Q,X,6)

Given an initial set of states [nit C ()
M accepts an input sequence {00, 01,09, .. } with . € X2, if
there exists a sequence of states {80, S1552y - } wit S € () such that:

» So € Inat

» Sit+1 € (S(Sk,()'k)

{307 S1552y - } in the definition above is called an execution of M

under the input sequence {O-Oa 01,029, .. }

46



Finite automata
Init = {1}
o,o 2, 1} is an execution under input{a, b}
{1,2,3,1,2} underinput {a,b,a,a}

{a,b,b} is not accepted as an input

Given Init C (), the language L (M) accepted by M
is the set of all sequences of input symbols that are accepted by A/ with

Inat asinitial set of states

47



Finite automata

A finite automaton M is deterministic if there is at most one execution for
any initial state and any input string

Otherwise, it is nondeterministic

deterministic nondeterministic

48



Finite automata |

A finite automaton M = (@), >,0) has a blocking state ¢ € () if

6(qg,e) =0, forall e € X

no blocking state blocking state: q =3



Event-driven Manufacturing
finite-state systems machine

The machine can be: Idle, Working or Down
Transitions between states depend on the following events:

 p:ifthe machine is Idle and a part arrives, it will start Working the part

* ¢ : while the machine is Working it may complete the part and become /dle

f : while the machine is Working it may break Down

r : while the machine is Down it may repaired and become /dle

p
r f
- Down Work
C

w

50



Some events are not accepted in some states:

* the machine cannot process a part when it is Down

* the machine cannot process a new part when it is Working

Not all the sequences of events are acceptable by the machine

The finite automaton is deterministic and nonblocking

When the initial state is Idle,
the language of the machine is
(regular expression)

(pc+pfr) (1 +p+pf)

51



Time to exercise

Compute the regular expressions of the following machines

1
8 0 =0,1 1+0(0 + 1)*

(a+ bc*b)*bc*

52



Linear time-invariant systems (time-driven ) I

t(t) = Azx(t) + Bu(t) reR" uelR’

xr(k+1) = Ax(k) + Bu(k)

Global existence and uniqueness

Vz, there exists a single solution with #(0) = x¢ defined on [0, o).

The solutions depend continuously from the initial conditions o .

53
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Superposition principle

a linear combination of solutions is again a solution

55



-—

(1) = —me(t) + pult)

3
|
I
.F
=

u(t) = FE  DC source of voltage

vk +1) = (1+ r)a(k) — u(k)

u(k) =P fixed monthly payment

56



Superposition principle on the free evolution

©(t) = Ax(t) x(t) = i c; et
v(k+1) = Ax(k) z(k) = Z ¢i A,

Nice properties:

* Unique and constant equilibrium

» Stability directly given by the eigenvalues of A

* Local properties = global properties (like stability, etc.)



A Aot

(A—)\lf)vl =0

Y1 + coe

z(t) = cre

(%)

(A—)\QI)UQZO
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)\1;)\2>0 )\1,)\2<0 A <0< A\

X2

Unstable node Asymptotically Unstable
stable node saddle point
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z(t) = creMvy + ey (A=X1)v; =0

(A_)\QI)UQZO

\ i
)\1>)\2:0 )\1<)\2:0
Unstable linear Stable linear

subspace subspace
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Stable center Unstable spiral Asymptotically
stable spiral
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Repeated eigenvalues

(A — )\[) V1 = 0
(A — )\I) Vo) =— 0
algebraic multiplicity = geometric multiplicity
\
A>0 A <O

geometric multiplicity of an eigenvalue =
number of linearly independent eigenvectors for the eigenvalue.
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Repeated eigenvalues
(A — )\I) V1 = 0

r(t) = creMvy + ¢ (te/\tvl + e/\tvz) (A—AD)
— Vo = U1

algebraic multiplicity > geometric multiplicity

X2 X2

\\ X1 X1

A

A >0 A<

Unstable improper Asymptotically stable
node improper node
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Linear vs nonlinear | Existence of solutions

A solution may not exist

o(t) = —sgn(x(t))  2(0) =0

on any interval [0, €), x(¢) cannot remain zero,
become positive, or become negative

Theorem [local existence]

z(t) = f(x(1))

If f:R" — IR" is continuous, then Vz, there exists at least a

solution with z(0) = z, defined on some [0, €) .

63



Linear vs nonlinear | Uniqueness of solutions

25

Multiple solutions may exist

:U(t) = a:(t) x(O) =0 151

0.5 ¢
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Linear vs nonlinear Uniqueness of solutions

25

Multiple solutions may exist

Theorem [local existence and uniqueness]

If f:IR" — IR" is Lipschitz continuous, then Vx; there exists a
single solution with z(0) = z, defined on some [0, «).

| f(z1) — f(x2)]| < L||xy —a2||, Vay,22 € any bounded set of IR"
L depending on the set

65



Linear vs nonlinear |

Global existence of solutions
is not ensured

10

Global Existence and
uniqueness of solutions

66




Linear vs nonlinear |

Global existence of solutions
is not ensured

o(t) = z(t)°
~_x(0)?
“) =1 oy

5

x(0) = 0.

x(o) : 4(

Global Existence and
uniqueness of solutions

10

2 3 4 5

Theorem [global existence and uniqueness]

If f:IR" — IR" is globally Lipschitz continuous, then Vx; there exists a
single solution with z(0) = ¢ defined on [0, o).

If (1) = f(2)| < Ljay — 2o, Yy, 20 € R”

67



Linear vs nonlinear

Equilibria and stability

The equilibrium point x is stable if small perturbations
lead to small changes

Ve, d 5({) : |:I:0 — :13,3| < 0= |;r(t) — :.1:,3| < €, Vt > 0 inbehavior

Ve 35(e) |0 — x| < 6 |z(t) — ze| < €,VE>0

The equilibrium point x. is asymptotically stable if small perturbations

® itisstable lead to small changes
in behavior and are
® J6,: |xo— x| < o= lim |z(t) — x| =0 re-absorbed, in the
=00 long run

68



III

“small” perturbations
lead to “big” changes
in position

unstable

asymptotically
stable

III

“small” perturbations lead to
“small” changes in position and
are re-absorbed, in the long run

“small” perturbations
lead to “small” changes
in position

stable



One of the major discoveries of the twentieth
century was that deterministic systems could be
inherently unpredictable.

The Butterfly effect
Predictability: does the flap of a butterfly's wings ing:

Sensitivity to initial conditions

Systems that are sensitive to initial conditions and bounded are said to be chaotic

A small change in the present state can result in large differences in a later state.

70



The logistic map | population growth rate

x(k) — x(k)/N

ek +1) = r(x) a(k)

r(k+1)=Raxk)(1—2(k))

0,7
0,6 _%Mﬂﬁﬁiﬂﬂﬂﬂﬂw
0,5
04 R =26
03
0,2 /
0,1
0 . . . . .
0 5 10 15 20 25 30
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